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Abstract—In production systems, avoiding repeated failures is
crucial for reducing costs and preventing downtime. Industry
4.0 technologies have enabled companies to collect and analyze
real-time data from machines, which helps in identifying and
preventing potential problems. By using metrics like MTBF and
MTTR and analyzing past failures, we can develop predictive
models to prevent future failures. This paper explores the use of
CRISP-DM methodology in the industrial sector to ensure the ac-
curate prediction of machine failures. Specifically, we examine the
application of this methodology in developing predictive models
for cutting machines. The results demonstrate that CRISP-DM
methodology is effective in developing models that can accurately
predict potential failures and prevent them from occurring. The
findings have implications for companies looking to implement
predictive maintenance strategies in their production systems,
highlighting the importance of using data-driven approaches to
improve reliability and reduce downtime. Overall, our study high-
lights the importance of leveraging industry 4.0 technologies and
CRISP-DM methodology for optimal performance of production
systems in the industrial sector.

Index Terms—Predictive maintenance, Data driven model,
CRISP-DM, Industry 4.0.

I. INTRODUCTION

Predictive maintenance (PdM) has become an indispensable
tool for managing machinery health in various industries due
to the advent of Industry 4.0 and the widespread use of
advanced technologies like intelligent automation, machine
learning, and artificial intelligence [1], [2]. PdM is even
regarded as the driving force behind the fourth industrial
revolution [3], and considered as a high priority topic in indus-
try [4]. As modern machines become more complex and the
demand for optimal performance increases, PAM has emerged
as a proactive maintenance approach that aims to identify and
address potential equipment issues before they become major
problems [5]. PAM leverages data analytics, sensors, and other
cutting-edge technologies to enable companies to optimize
their maintenance schedules, minimize downtime, and reduce
cost and duration associated with repairs and replacements.
Furthermore, PAM helps companies avoid costly shutdowns,
enhance safety, and maintain quality standards [6]-[8].

PdM is gaining even more attention from researchers since
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artificial intelligence (Al) is involved, offering more evolution-
ary perspectives [9]. The incorporation of Machine Learning
(ML) has transformed decision-making for both individuals
and organizations, enabling it to identify illnesses, enhance
productivity, optimize transport routes, predict weather, detect
fraudulent activities, and much more [10]. By allowing ma-
chines to learn from examples and experiences, ML uncovers
hidden insights in data [11]. Through data analysis, identifying
patterns, and developing predictive logic, machines can predict
outcomes without any explicit programming [11], [12]. PAM
can benefit greatly from the application of ML techniques in
several ways:

o Improved accuracy: ML algorithms can learn from his-
torical data and make predictions with a high level of
accuracy. This can help organizations to reduce the risk of
unplanned downtime and improve the reliability of their
equipment.

« Real-time monitoring: ML algorithms can be applied to
real-time sensor data to detect anomalies and patterns
that indicate a need for maintenance. This can help
organizations to address maintenance issues before they
become more serious and lead to downtime.

o Cost savings: By predicting maintenance needs more
accurately, organizations can reduce their maintenance
costs by avoiding unnecessary maintenance or replacing
equipment before it fails.

o Improved asset management: Machine learning can help
organizations to better manage their assets by identifying
trends and patterns that can help to optimize maintenance
schedules, reduce the risk of equipment failure, and
extend the lifespan of their equipment.

Over the past few decades, there has been a significant
increase in the use of data mining to aid decision-making
[13] in manufacturing industries. Kumar and al. propose in
their paper referenced [14] a review on the current state of
data mining technique, focusing on modern manufacturing
methods. Data mining, also known as knowledge discovery in
databases, is the process of discovering patterns and knowl-
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edge from large datasets. To ensure consistent outcomes from
data mining projects, organizations use standardized processes
such as Knowledge Discovery in Databases (KDD), Sample,
Explore, Modify, Model, and Assess (SEMMA), and Cross-
Industry Process for Data Mining (CRISP-DM) for managing
data mining projects [15], [16]. However, not every process
is suitable for all machine learning objectives [17]. Several
studies have been conducted to compare these methods and
highlight their strengths and limitations [16]-[18]. Based on
these studies, we have selected the CRISP-DM method.

CRISP-DM is widely used in various domains, mostly for
finance [15], [19], healthcare [20], [21] and marketing [22],
[23]. A bibliographic study of the different methods and
application areas of the CRISP-DM method is presented in the
article [24]. CRISP-DM has also been successfully applied in
manufacturing context [25]. The authors of the papers [26]-
[28] have developed a framework to introduce big data analytic
into manufacturing systems. Tripathi and al. [29] provide a
detailed review of CRISP-DM in industries. However, very
few studies use this approach for purpose to predict failures
in manufacturing systems [30].

In this study, we propose an application of the generic deep
learning CRISP-DM to quantify the current and predict the
future degradation of machine by means of health indicators.
The approach is tested on a real case study of a cutting ma-
chine that operates continuously for 8 hours a day generating
a 12 months data retrieved directly from the Cutting Assembly
Optimization system (CAO) of the machine.

This paper is organized into four sections starting by an
introduction. In section 2, the CRISP-DM method is elabo-
rated. Section 3 presents the case study, business need, data
acquisition and pre-processing, and the application of the
machine-learning model. Finally, section 4 summarizes the
paper’s major findings.

II. BACKGROUND TO CRISP-DM

The CRoss-Industry Standard Process for Data Mining
(CRISP-DM) is widely recognized as the industry-standard
process model for implementing data mining projects [15],
[24]. The authors of the papers [26], [28] aimed to enhance
the CRoss-Industry Standard Process for Data Mining (CRISP-
DM), which is a publicly available standard for carrying out
data mining projects. This framework comprises six stages:
Business Understanding, Data Understanding, Data Prepara-
tion, Modeling, Evaluation, and Deployment, with a particular
focus on the first two stages (Fig. 1). The Business Under-
standing stage aims to comprehend the project’s objectives
and requirements from a business perspective, while the Data
Understanding stage involves data collection [31]. To bridge
the gap between Business Understanding and Data Under-
standing, the authors introduced intermediate steps. These
steps involve transforming business objectives into technical
tasks, selecting the data required to accomplish these tasks, and
identifying suitable measurement equipment and methodology.
These additional steps establish a direct connection between
organizational goals and the technical implementation of PdM,

and serve as examples of strategic maintenance implementa-
tion in a company.

[ Business

Data
Understanding Understanding

Data

Preparation
4
Deployment Q
y

Modelling

Evaluation

Fig. 1. The CRISP-DM process [15]

A. Description of CRISP-DM steps

The guide of CRISP-DM [31] describes the main idea, tasks
and output of these phases shortly, bellow the summary:

+ Business understanding: This initial phase focuses on
understanding the project objectives and requirements
from a business perspective, then converting this knowl-
edge into a data mining problem definition and a prelim-
inary plan designed to achieve the objectives.

« Data understanding: During this phase, data is col-
lected, examined, and explored to identify potential data
quality issues, interesting subsets, and possible hypothe-
ses.

« Data preparation: Involves building the final data-set for
modeling by selecting tables, records, attributes, cleans-
ing and transforming data to suit modeling tools. This
data preparation is likely to occur multiple times during
the process.

o Modeling: Selects and applies various modeling tech-
niques with calibrated parameters to achieve optimal
values. Some modeling techniques may require specific
data forms, hence the re-execution of the data preparation
phase.

« Evaluation: Ensures that the constructed models fulfill
intended business objectives and comprehensively re-
views the previous steps. One of the key objectives is to
determine whether any crucial business issues may have
been overlooked during the modeling phase.

o Deployment: Incorporates the model into decision-
making processes, ranging from generating a report to
implementing a repeatable data mining process, depend-
ing on the project’s requirements.
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III. NUMERICAL EXPERIMENT

A. Cutting machine description

The Crimp Center 64 is a state-of-the-art crimping machine
with up to four processing stations.

Fig. 2. Cutting machine Crimp Center 64

The cutting machine is capable of performing high-quality
crimping, sealing, twisting and tinning of wires ranging from
0.13 to 6 mm? (26 - 10 AWG) at an impressive maximum
feed rate of 12 m/s correspondent to 39.4 ft/s (table I). It
boasts exceptional performance, allowing for fast changeovers,
high productivity and short set-up times. The machine is user-
friendly, equipped with a modern software interface and a
touchscreen for easy operation. It also has easy network inte-
gration, making it accessible to a range of users. A wide range
of accessories and options are available, giving it versatility
and adaptability to various applications. The Crimp Center 64
is built for durability, with dynamic and powerful servo drives
combined with an intelligent control system that ensures high
production rates to meet even the most demanding schedules
(Fig. 2). All data, including wire data, crimp data, and seal
data, can be saved and retrieved for future use.

TABLE I
PRODUCT TYPES

Picture Product type
= = Partial strip both ends
2-Step strip both ends
e Crimp to crimp
> © Crimp to crimp (closed barrel terminals)
S CH— Crimp to seal
> co——t Seal to seal

At a maximum feed rate of 12 m/s (39.4 ft/s), the Crimp
Center 64 allows high-quality crimping, sealing, and tinning
of wires from 0.13 to 6 mm? (26 - 10 AWG) at maximum
productivity (Table 1).

B. Application

This section covers the implementation of the CRISP-DM
methodology to predict machine failures in a wire cutting
machine that operates for 8 hours a day. The methodology is
implemented on an Intel Core i5 machine with 8GB of RAM
and programmed in Python 3.10.

1) Business understanding: The project aims to enhance
the maintenance KPIs of a manufacturing plant by focusing
on two primary objectives.

o to increase the Mean Time Between Failure (MTBF) of
a wire cutting machine.
¢ to achieve a shorter Mean Time To Repair (MTTR).

The wire cutting process involved several operations, includ-
ing receiving wire spools, cutting wires, performing crimping
operations, and conducting quality checks.

o As-Is State: Business defined the root of low Overall
Equipment Effectiveness (OEE) is the availability of
cutting machines.

o To Be State: Machine Learning based model that deter-
mines the failures.

o Success: Reducing the downtime of cutting machines by
50%, the first 6 months and 100%, the second 6 months.

o Entity: Improve Mean Time Between failures (MTBF)
and Mean Time To Repair (MTTR).

o Evaluation Metric: Accuracy.

2) Data Understanding and Data Preparation: The main-
tenance interventions were comprehensively recorded directly
in the Cutting and Assembly Optimization system (CAO).
This resulted in the creation of an analyzable database that
is now available for the necessary analyses. The database
includes information such as the machine type, number of
goods produced, and downtime (measured by mean time
between failures (MTBF) and mean time to repair (MTTR).
All historical data is systematically recorded in the system.
This study specifically pertains to a cutting machine during the
year 2022, from January to December. The dataset contains
549 raw and 20 columns. The MTBF column becomes our
target variable. Fig. 4 presents the data visualization.

I Breakdowns =No

40+
I Breakdowns =Yes

20

Number of breakdowns

0 5000 10000 15000
MTBF

Fig. 3. Visualization of target variable

3) Modeling: Selecting the ’best model” is a critical step in
machine learning, as it determines the accuracy and efficiency
of the outcome. This process involves evaluating various

Authorized licensed use limited to: UNIVERSITE DE LILLE. Downloaded on September 14,2023 at 08:00:46 UTC from IEEE Xplore. Restrictions apply.

225



models and selecting the one that performs the best in terms
of predictive power, generalization ability, and computational
efficiency. A well-informed and careful selection of the best
model can greatly enhance the success of the machine-learning
task. We have conducted 3 tests in the initial dataset using 3
different methods, respectively Random Forest, Decision Tree,
and K-Neighbors, and obtained the results presented in Table
1L

TABLE II
MODEL COMPARAISON IN THE INITIAL DATASET
Model Accuracy
Random forest 80%
Decision tree 79%
K-Neighbors 53%

It is evident from the evaluation metrics that the Random
Forest model outperforms all other models with perfect scores.
On the other hand, the Decision Tree model performs less ef-
fectively than the ensemble method. The K-Nearest Neighbors
model has the lowest performance, leading to the conclusion
that clustering methods might not be the best approach for
identifying maintenance failures.

Therefore, we will use the Random Forest Classifier model
for classification. This machine-learning algorithm combines
multiple decision trees to perform classification. It consists
of creating a large number of decision trees and using their
collective predictions to classify data accurately [32]. The
output of each tree is combined through a voting process to
produce the final prediction.

Original fraining set

Random sampling with
replacement
Set1 Set2 Setk Setn
M
Random selection of m
features
A
¥ ¥ ¥ ¥
Cl fi Cl d 1 Cli fi Classification
model 1 model 2 model k model n
L L J J
P4

Select the final
classification

Fig. 4. Flowchart of the Random Forest model

4) Evaluation and Deployment: The final work package fo-
cused on evaluating the results in a small series of experiments.
After preparing the datasets for training, we separated the
target from the features and split the data into two parts: 80%
for training and 20% for validation. To evaluate the accuracy
of our model, we conducted an accuracy test, the results of
which are shown in Fig. 5. An epoch in machine learning

refers to a single iteration of the entire training dataset passing
through the algorithm during the training process. The number
of epochs is a crucial hyper parameter that specifies how many
times the entire training dataset will pass through the learning
process of the algorithm.

Model loss Model accuracy
— Accuracy
0671
008 ’(
n ©
v “
304 306
U
q
0.2 044
0 2000 4000 0 2000 4000
Epoch Epoch

Fig. 5. Accuracy and loss of the model

The test conducted to measure the performance of the model
using a dataset of samples showed excellent results, with an
accuracy score of 0.8276 indicating a strong performance.

Hyperparameters are parameters that are not learned directly
by estimators, but are passed to the estimator class constructor
in scikit-learn. Examples include C, kernel, and gamma for
Support Vector Classifier, and alpha for Lasso. To achieve the
best cross-validation score, it is recommended to search for
the optimal hyperparameters. To determine the best parameter
setting for our model, we utilize an optimization technique
called Grid Search. This method involves testing a range of
parameters and comparing their performance (as shown in
Figure 6).

Define parameters range

I

Generate a grid search space

I

Train RF with selected parameters

I

Performance evaluation

Al parameters
are tested?

RF optimization parameters

I

Re-irain with optimized parameters

Fig. 6. Flowchart of the Grid Search algorithm
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After the retaining of the model, we were able to achieve a
higher model score of 0.862.

IV. CONCLUSION

This paper presents the application of the CRISP-DM
framework in a study case aimed at improving the key perfor-
mance indicators (KPIs) of a manufacturing plant. The process
involved various stages, including business understanding, data
understanding and preparation, modeling, and evaluation and
deployment. The study utilized historical data recorded in
the Cutting and Assembly Optimization system (CAO). The
selected machine learning algorithm was the Random Forest
Classifier model, which achieved an accuracy of 0.8276. The
model was further optimized using hyper parameter optimiza-
tion through Grid Search, resulting in a model score of 0.862.
The successful application of CRISP-DM in this study case
demonstrates the effectiveness of this framework in data-driven
decision-making and problem-solving.
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