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Abstract

This paper is dedicated to a robust ordinal method for learning the prefer-
ences of a decision maker between subsets. The decision model, derived from
Fishburn and LaValle [20] and whose parameters we learn, is general enough
to be compatible with any strict weak order on subsets, thanks to the consid-
eration of possible interactions between elements. Moreover, we accept not to
predict some preferences if the available preference data are not compatible
with a reliable prediction. A predicted preference is considered reliable if all
the simplest models (Occam’s razor) explaining the preference data agree on
it. Following the robust ordinal regression methodology, our predictions are
based on an uncertainty set encompassing the possible values of the model
parameters. We define a robust ordinal dominance relation between subsets
and we design a procedure to determine whether this dominance relation
holds. Numerical tests are provided on synthetic and real-world data to
evaluate the richness and reliability of the preference predictions made.

Keywords: robust ordinal regression, preference elicitation, positive and
negative interactions, subsets comparisons

?This paper is a revised and extended version of a workshop paper at MPREF 2022,
and an extended abstract at AAMAS 2023:
H. Gilbert, M. Ouaguenouni, M. Öztürk, O. Spanjaard, Cautious Learning of Multiat-
tribute Preferences, 13th Workshop MPREF, Jul 2022, Vienna, Austria.
H. Gilbert, M. Ouaguenouni, M. Öztürk, O. Spanjaard, Robust Ordinal Regression for
Collaborative Preference Learning with Opinion Synergies, AAMAS 2023, pp. 2439-2441.
∗Corresponding author
∗∗A significant part of the work presented here has been carried out while Meltem

Öztürk was on delegation at LIP6.

Preprint submitted to arXiv August 6, 2023



1. Introduction

Preference elicitation (or preference learning) is an important step in
setting up a recommender system for decision making. In this preference
elicitation setting, our focus is on determining the parameters of a decision
model that accurately captures the pairwise preferences of a Decision Maker
(DM) over subsets, by comparing subsets of elements. The preferences are
depicted using a highly adaptable model whose versatility stems from its
ability to incorporate positive or negative synergies between elements [24].
Moreover, we provide an ordinally robust approach, in the sense that the
preferences we infer do not rely on arbitrarily specified parameter values,
but on the set of all parameter values that are compatible with the observed
preferences. Importantly, another distinctive feature of our approach is its
ability to learn the parameter set itself (not only the values of parameters).

The preference model we consider can be used in different contexts, de-
pending on the nature of the subsets we are comparing. The subsets are
represented by binary vectors, showing the presence or absence of an ele-
ment in the subset. The elements of a subset can be for example:
• individuals (in the comparison of coalitions, teams, etc.),
• binary attributes (in the comparison of multiattribute alternatives),
• objects (in the comparison of subsets in a subset choice problem), etc.
For illustration, a toy example of such an elicitation context could be a

coffee shop trying to determine its customers’ favorite frozen yogurt flavor
combination by offering them to test a small number of flavor combinations
rather than having them taste each combination.

Objective of the paper. Our objective is to design a preference elicitation
procedure that complies with the two following principles.

First, the sophistication of the learned preference model should be able to
fit any level of complexity of the stated preferences. For this purpose, we use
a utility function f general enough to represent any order � of preference,
i.e., for any strict weak ordering � on a set A of alternatives (i.e., subsets)
there exists f such that, for any pair {A,B} ⊆ A, f(A)> f(B) iff A�B.
Note that we also aim to make the model as simple as possible, in the sense
that the parameter set remains as concise as possible (sparse model).

Second, the predicted pairwise preferences should not depend on the
partly arbitrary choice of precise numerical values for the parameters of the
model but solely on the stated preferences. Hence, we design an ordinally
robust elicitation procedure that maintains an isomorphism between the col-
lected preferential data and the learned model (in the same spirit as ordinal
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measurement for problem solving [4]) by using a polyhedron of possible values
for the parameters, reflecting the uncertainty about them. As a consequence,
when predicting an unknown pairwise preference between two alternatives
A and B, apart from the predictions “A is preferred to B” and “B is pre-
ferred to A”, it is possible that the model does not make a prediction due
to a lack of sufficiently rich preferential data (the absence of prediction is
preferred to a wrong prediction, although a compromise must obviously be
made between the reliability of the prediction and the predictive power of
the learned model).

Elicitation setting. The input of our elicitation procedure is a learning set
consisting of pairwise comparisons of various alternatives. More precisely, we
consider an offline elicitation setting (passive learning) where we assume that
a dataset of comparison examples is available, from which the parameters of
the preference model are (partially) specified. This is a separate framework
from the online elicitation setting (active learning) where we would incre-
mentally select pairwise preference queries to enrich the learning set. The
output of the elicitation procedure consists of pairwise comparisons that
were not present in the learning set, which we call (preference) predictions
hereafter. Note that, in some cases, the model may choose not to provide a
prediction. The elicitation procedure thus results in a strict partial order on
the alternatives.

Organization of the paper. After an overview of the related work (Section 2),
we present the θ-additive utility model (Section 3), as well as the robust
ordinal dominance relation inferred from it, based on the knowledge of a
collection of preference examples. We then show how to determine whether
a subset dominates another subset given the known pairwise preferences of
the DM (Section 4), which enables to make preference predictions. The
paper ends with numerical tests on synthetic and real-world preference data,
and comparison with other preference learning methods (Section 5).

2. Related work

Preference elicitation (see e.g. Dias et al. [16]) and preference learning
(see e.g. Fürnkranz and Hüllermeier [21], Corrente et al. [15]) have been
studied for a long time in operations research and artificial intelligence. This
is a prerequisite in many applications across a wide range of fields, such
as recommender systems, banking, financial management, chemistry, energy
resources, health, investments, and industrial location [2]. Several issues can
be tackled in preference elicitation, among which:
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1. to handle a set of alternatives of combinatorial nature: an incremental
preference elicitation is then often adopted, where comparison exam-
ples are interactively generated with the DM, in order to determine a
necessary “optimal” alternative [e.g., 5, 10, 37];

2. to cope with preferences that cannot be represented by an additive
utility function: for instance, the elicitation of generalized utility func-
tions has been considered in the literature [11], but also the elicitation
of several other involved decision models [6, 34];

3. to deal with “incorrect” preference examples: Bayesian approaches have
been considered in this matter [9, 26], but also possibilistic approaches
[1].

We focus here on the second challenge, by studying the elicitation of a set
function taking into account positive and negative interactions between ele-
ments. Furthermore, preference elicitation problems differ in their purpose:
some aim to produce a recommendation, others a set of recommendations,
and still others pairwise comparisons. We will, in our case, produce a set of
pairwise comparisons.

The Choquet integral is the most studied decision model for taking into
account positive and negative interactions between criteria in multicriteria
decision making [23]. It turns out that a Choquet integral defined on binary
vectors representing subsets can be viewed as a set function. Note that a
Choquet integral is parameterized by a capacity v on the criteria set N , i.e.,
a set function on N that is monotone (A⊆B ⇒ v(A)≤v(B)) and normalized
(v(N) = 1). As will become clear in the remainder of the paper, we do not
impose such constraints in the model we consider. There are some recent
works dealing with the elicitation of the parameters of a Choquet-related
aggregation function: Bresson et al. [12] use a perceptron approach to learn
the parameters of a 2-additive hierarchical Choquet integral, while Herin et
al. [28] propose an algorithm to learn sparse Möbius representations from
preference examples, without a prior k-additivity assumption. For a broad
literature review about learning the parameters of a Choquet integral, the
reader may refer to the article by Grabisch, Kojadinovic, and Meyer [24].
Let us also mention the work by Marichal and Roubens [32], which use a
polyhedron to characterize the set of parameters that are compatible with a
training set of examples. The idea of defining a polyhedron of uncertainty
on the parameters of a utility function goes back at least to the work of
Charnetski and Soland [13]. Their model state that A�B if the proportion
of parameters that give a better value for A than for B among those that
are compatible with the stated preferences is greater than the proportion of
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parameters that give a better value for B than for A. This principle was
also adapted to the case of a Choquet integral by Angilella, Corrente and
Greco [3]. In the sequel, we will use a similar polyhedron.

More precisely, we elicit a partial specification of a set function, namely
the components of the parameter set and the set of parameter values, which
yields an ordinal dominance relation between subsets. As already mentioned,
we do not assume interactions with the DM but only the knowledge of a
“static” training set of examples of pairwise preferences in order to predict
pairwise comparisons between alternatives.

Predicting a comparison between alternatives can be framed as a bi-
nary classification problem by considering, as a training set, a set of triples
(A,B, c), where A and B are two alternatives and c = 1 if A � B, and
c=0 otherwise. In this setting, many approaches have been proposed, going
from perceptrons [18] to Gaussian processes [14] or Support Vector Machines
(SVM) [17].

An important feature of our elicitation procedure is that it may lead to
not making predictions for some pairwise comparisons if the available pref-
erential information is not conclusive enough. Other classification models
also have such a possibility to not predict a class for some examples, either
because of an ambiguity in the class to predict (ambiguity rejection) or be-
cause the example is too far from the examples that are in the learning set
(novelty rejection). This type of approaches are generally used in safety-
sensitive domains, e.g. to predict a disease in medical applications [29]. For
a complete review of learning with reject option, we refer the reader to the
survey made by Hendrickx et al. [27].

The two closest works to ours are those by Domshlak and Joachims [17]
and by Bigot et al. [7]. Similarly to our approach, Domshlak and Joachims
consider a function that could represent any weak order on the alternatives.
More precisely, they consider a multiattribute utility function that is a sum
of 4n subutilities over subsets of attribute values, where n is the number of
attributes. The subutility values are then learned using an efficient SVM
approach based on the kernel trick [see e.g., 35]. Bigot et al. study the
use of generalised additively independent decompositions of utility functions
[19, 22]. They give a PAC-learner that is polynomial time if a constant
bound is known on the degree of the function, where the degree is the size of
the greatest subset of attributes in the decomposition. Yet, both works do
not fit the robust ordinal learning framework we consider in this article.
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3. From the θ-additive model to robust ordinal dominance

Given a set F = {a1, a2, . . . , an} of elements, we aim to reason on the
preferences of the DM on a set A of subsets A⊆F , representing alternatives.
The characteristic vector

−→
A of a subset A is the n-dimensional binary vector

whose ith component is 1 if ai∈A, and 0 otherwise. For instance, the char-
acteristic vector of A={a1, a2, a4} is

−→
A =(1, 1, 0, 1) if F={a1, a2, a3, a4}. In

the following, we may use one or the other notation for describing a subset.
Here are some examples of alternatives represented by subsets:

• If F is a set of reference users expressing opinions on cultural products
(e.g., movies), a cultural product may be represented by the subset A
of reference users in F that have a positive opinion on it, i.e., ai∈A if
reference user ai has a positive opinion on it, otherwise ai 6∈A.
• If F is the set of players in a squad, a team lineup may be represented

by the subset A of players that compound it.
• If F is a set of binary features of technological products (e.g., smart-

phones), a technological product may be represented by a subset A of
features, i.e., ai∈A if the product has feature ai, otherwise ai 6∈A.

We assume for simplicity that there are no two distinct alternatives cor-
responding to the same subset A ⊆ F , which implies in particular that
2|F|≥|A|. We infer strict pairwise preferences from strict preferences given
by a DM on some subset of alternatives in A, and we use this training set
of pairwise preferences on alternatives (each viewed as a subset) to elicit the
parameters of a utility function f defined on A. The role of the utility func-
tion f is to represent the (unknown) strict weak order on A corresponding to
the DM’s preferences, with A�B iff f(A)>f(B) and A∼B iff f(A)=f(B).

We do not perform a full elicitation of the parameters of f , but we con-
sider an uncertainty set of parameters values consistent with the known
preferences of the DM, as in robust ordinal regression. If f(A)>f(B) for all
parameters values in this uncertainty set, then A is predicted to be strictly
preferred to B. Actually, we do not only learn the parameters values, but
also the components of the parameter set themselves, as we explain below.

3.1. The θ-additive model
Before coming to the proposed θ-additive model, we first recall the stan-

dard additive utility model, and its extension, the k-additive utility model.

The additive and k-additive utility models. As the DM’s preferences over
A are modeled as a strict weak order, there exists a real-valued function
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f such that ∀A,B ∈ A, f(A) > f(B) ⇔ A � B. Many models assume
that f can be represented in a compact way using some sort of additiv-
ity property. The simplest and most used one is the additive model [19].
This model makes the strong assumption that we can find a parameter
value v(a) ∈ R for each element a ∈ F such that for all A ∈ A, the util-
ity of A is f(A) =

∑
a∈A v(a). This assumption is strong because it im-

plies that there is no interaction between the elements. A weaker assump-
tion is that of k-additivity where we suppose the existence of a parameter
v(S) ∈ R for each S ∈ [F ]k, where [F ]k = {S ⊆ F : 1 ≤ |S| ≤ k}. Hence,
in the k-additive model, for all A ∈ A, f(A) =

∑
S∈[F ]k IA(S)vS , where

IA(S) = 1 if S ⊆ A and 0 otherwise, and vS is an abbreviation for v(S).
Obviously, the 1-additive model amounts to the additive model. Taking k
strictly greater than 1 makes it possible to account for (positive or neg-
ative) synergies between subsets of k or less elements. For example, the
2-additive model makes it possible to account for binary synergies. The util-
ity of the alternative A = (1, 1, 0, 1) with the 2-additive model is f(A) =
v({a1})+v({a2})+v({a4})+v({a1, a2})+v({a1, a4})+v({a2, a4}). If there
is a positive synergy between a1 and a2 then f({a1, a2}) > v({a1})+v({a2})
holds because f({a1, a2}) = v({a1}) + v({a2}) + v({a1, a2}). Note inciden-
tally that f({a1, a2}) 6=v({a1, a2}). The n-additive model is general enough
to represent any strict weak order on A because it can represent any real-
valued set function f : 2F → R [25], provided that f(∅) = 0. However, it
requires to specify 2n−1 parameters. We therefore restrict our attention to
additive models requiring fewer parameters.

The θ-additive model. Given a set θ⊆ 2F , and a set function v : θ→R, we
assume that f is of the form f(A) =

∑
S∈θ IA(S)vS , where vS stands again

for v(S). We call this the θ-additive model. For this model, we may also
use the notation fθ,v(A) instead of f(A). The 1-additive (resp. k-additive)
model is the special case in which θ=[F ]1 (resp. θ=[F ]k).

Example 1. Let F={a1, a2, a3, a4} be a set of 4 elements, A={0, 1}4 and
the DM’s preferences be the strict weak order % given by :

{a2, a3, a4} � {a1, a3, a4} � {a1, a2, a4} � {a3, a4}
� {a2, a4} � {a2, a3} � {a1, a4} � {a1, a3}
� {a1, a2} � {a4} � {a3} � {a2}
� {a1} � A={a1, a2, a3, a4} ∼ ∅ � B={a1, a2, a3}.
These preferences can be explained by a clear negative synergy when a1,

a2, and a3 are chosen together (in A and B). Interestingly, instead of using
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a complete 3-additive model, which would require the definition of 14 param-
eters, this strict weak order can be obtained by using a θ-additive model with
θ = {{a1}, {a2}, {a3}, {a4}, {a1, a2, a3}} and v{a1} = 1, v{a2} = 2, v{a3} = 3,
v{a4}=4, v{a1,a2,a3}=−10. This allows us to benefit from the expressiveness
offered by 3-additivity while restricting the number of parameters.

3.2. The θ-ordinal dominance relation
In our elicitation setting, we assume that we have only access to a partial

set R of strict pairwise preferences provided by the DM. This set may contain
only a few comparisons. Our aim is to use these observed preferences to infer
other strict pairwise preferences on the set of alternatives. We formalize R
as a set of pairs (A,B)∈A2 such that (A,B)∈R⇔ A �B.

Moreover, given θ, the set of value functions on θ that are compatible
with the preferences observed in R is denoted by V R

θ :
V R
θ = {v : θ → R | ∀(A,B)∈R, fθ,v(A) > fθ,v(B)}.

Note that, for a given θ, this set V R
θ can be either empty or composed of an

infinity of possible value functions on θ. Notably, if this set is empty then
the preferences of the user cannot be represented by a θ-additive function.
We denote by ΘR the set {θ |V R

θ 6=∅}, i.e., the θ’s such that the preferences
in R are consistent with a θ-additive function.

Unfortunately, given θ ∈ ΘR such that V R
θ 6= ∅, a pair {v, v′} of value

functions in V R
θ may lead to infer opposite preferences, as illustrated below.

Example 2. Let F = {a1, a2, a3, a4}. Let us assume that, contrary to Exam-
ple 1, we now only observe preferences on the singletons {a1}, {a2}, {a3}, {a4}:

{a4} � {a3} � {a2} � {a1}, or equivalently:
R = {({a4}, {a3}), ({a4}, {a2}), ({a4}, {a1}),

({a3}, {a2}), ({a3}, {a1}), ({a2}, {a1})}.
The two additive functions v and v′ defined by:

v({a1})=1, v({a2})=2, v({a3})=3, v({a4})=5

and v′({a1})=1, v′({a2})=3, v′({a3})=4, v′({a4})=5

are both in V R
θ , but we infer {a1, a4} � {a2, a3} from v while we infer

{a2, a3} � {a1, a4} from v′.

This example shows that, given R, choosing a specific function v∈V R
θ can

lead to infer preferences that are only related to this arbitrary choice [4]. Our
aim is to infer preferences for pairs outside R in a reliable way by eliminating
such arbitrary choices. In this purpose, we turn to a robust ordinal regression
approach based on the observed preferences in R.
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Fishburn and Lavalle [20] showed how one can obtain an ordinal dom-
inance relation from a partially specified 2-additive numerical model. We
now explain how their idea can be extended to a θ-additive model.

Definition 1. Let F be a set of elements, A ⊆ 2F a set of subsets and R
a set of pairs (A,B)∈A2 where (A,B) ∈ R ⇔ A � B. Given θ ∈ΘR, the
θ-ordinal dominance relation, denoted by �Rθ , is defined for A,B ∈ A by:

A �Rθ B ⇔ ∀v ∈ V R
θ , fθ,v(A) > fθ,v(B).

The θ-ordinal dominance relation is independent from the choice of a
specific v∈V R

θ . Naturally, (A,B)∈R⇒A�Rθ B. Nevertheless, note that the
binary relation �Rθ is obviously partial, and we define the incomparability
relation ∼Rθ as:

A ∼Rθ B ⇔ ∃v, v′ ∈ V R
θ , fθ,v(A) ≥ fθ,v(B) and fθ,v′(B) ≥ fθ,v′(A).

If A�RΘB then we can predict, based on R and for a θ-additive model, that
A is strictly preferred to B. If A∼Rθ B then no prediction is made

We conclude this section by mentioning some properties of �Rθ :
• Unlike �, the relation �Rθ is not a strict weak order: it is asymmetric

but it may not be complete nor negatively-transitive. The absence of
preference prediction may occur in two situations that are not equiva-
lent: either A and B belong to the same incomparability class of the
(unknown) strict weak order � on A, i.e., A∼B, or there is not enough
preferential information in R to conclude that A �B or B �A.
• Since the ordinal dominance relation depends on the preference set R

and on the model θ, the relation �Rθ evolves when θ or R are restricted
or extended. In particular, if θ′⊆θ then any prediction that is yielded
using ordinal dominance with the model θ is also yielded using ordinal
dominance with the model θ′; thus, if V R

θ 6= ∅ and V R
θ′ 6= ∅, then θ′

appears as more appealing from a preference learning standpoint since
it allows more predictions to be made. Furthermore, one could prefer
θ′ over θ because of the philosophical principle of parsimony [e.g. 8].

A more formal and detailed description of the properties of �Rθ can be
found in the supplementary material (Appendix A).

3.3. The robust ordinal dominance relation
Note that the ordinal dominance relation is dependent on the choice of a

specific set θ∈ΘR. However, as shown in the following example, there may
be several θ’s in ΘR.

Example 3. Assume that R consists of all pairwise preferences resulting
from � in Example 1. Setting θ={{a1}, {a2}, {a3}, {a4}} yields then V R

θ =∅.
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In contrast, setting θ1 = {{a1}, {a2}, {a3}, {a4}, {a1, a2, a3}} yields V R
θ1
6= ∅.

Actually, there are many other sets θ compatible with the preferences in R:
it can be shown1 that ΘR={θ : θ1 ⊆ θ} for this example.

The question that naturally arises is whether we could find two different
models θ1, θ2 ∈ ΘR that are both compatible with the observed preferences in
R and such that A �Rθ1 B and B �Rθ2 A for a pair of alternatives (A,B)∈A2.
Unfortunately, this situation may indeed happen:

Example 4. Let R = {({a1}, {a2})}, θ1 = {{a1}} and θ2 = {{a2}}. Note
that both θ1 and θ2 belong to ΘR. If we consider θ1 = {{a1}}, the set V R

θ1
is compounded of value functions v defined on θ1 such that v({a1}) > 0.
Hence, for all v ∈ V R

θ1
we have fθ1,v({a1, a2}) = v({a1}) > 0 = fθ1,v(∅) and

thus {a1, a2} �Rθ1 ∅. Conversely, if we consider θ2 = {a2}, the set V R
θ2

is
compounded of value functions v defined on θ2 such that v({a2})< 0. This
yields fθ2,v({a1, a2})=v({a2})<0 for each v∈V R

θ2
and thus ∅�Rθ2 {a1, a2}.

In what follows, we will define a more robust variant of the ordinal dom-
inance relation. This variant will take into account the plurality of models
compatible with the observed preferences.

Note that there always exists a θ able to represent R (at worst, θ= 2F )
and that if a θ-additive model is compatible with R, then any θ′-additive
model with θ ⊆ θ′ is also compatible with R. For this reason, the number of
sets θ compatible with the observed preferences may be very large.

For this reason, we start by restricting the set of models to take into
account. In this purpose, we need a binary relation v on ΘR, such that
θ v θ′ if θ is considered simpler than θ′. Our idea is to only consider sets
θ that are minimal according to such a binary relation, i.e., θ such that
6 ∃θ′∈ΘR for which θ′vθ. This is motivated by the philosophical principle of
parsimony that the simpler of two explanations is to be preferred (Occam’s
razor [8]). Different possible definitions for v will be discussed upon in the
following subsection.

We call v-simplest θ of ΘR the parameter sets θ∈ΘR which are minimal
w.r.t. v, and we denote by ΘR

v their set. Based on ΘR
v, we extend the ordinal

dominance relation to define the v-robust ordinal dominance relation.

Definition 2. Let F be a set of elements, A ⊆ 2F a set of subsets and R a
set of pairs (A,B) ∈A2 where (A,B) ∈R ⇔ A�B. The v-robust ordinal

1It has been computer tested by brute force enumeration.
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dominance relation, denoted by �Rv, is defined, for A,B ∈ A, as follows:

A �Rv B ⇐⇒ ∀θ ∈ ΘR
v, A �Rθ B,

⇐⇒ ∀θ ∈ ΘR
v, ∀v ∈ V R

θ , fθ,v(A) > fθ,v(B).

In other words, A v-robustly ordinally dominates B if A θ-ordinally
dominates B according to all θ in ΘR

v, i.e., all the v-simplest θ’s of ΘR.

3.4. Different definitions for v
We say that a relation v is based on a function ξ when θ v θ′ if and only

if ξ(θ) ≤ ξ(θ′). Several aspects can be taken into account to define ξ:
• A first idea is to favor parameter sets θ that minimize the complexity of
synergies between the attributes. To measure this complexity, we use the
degree of θ, namely deg(θ) = max{|S| : S ∈ θ} (i.e., the greatest cardinality
of a subset of interacting attributes). This leads to the binary relation vdeg

based on deg, i.e., θ1 vdeg θ2 ⇔ deg(θ1) ≤ deg(θ2).
• A second idea is to favor parameter sets θ having the sparsest possible
representation [38], i.e., those which minimize card(θ) = |θ|. This choice
yields the binary relation vcard, which is the relation based on the function
card, i.e., θ1 vcard θ2 ⇔ card(θ1) ≤ card(θ2).
• Alternatively, we define a binary relation combining the ideas of vdeg

and vcard by considering both the number and the size of elements in a
parameter set θ. In this purpose, we define vws, the relation based on the
function ws(θ)=

∑
S∈θ |S|, i.e., θ1 vws θ2 ⇔ ws(θ1) ≤ ws(θ2).

• Lastly, we define the binary relation vlex, defined by using lexicographi-
cally the binary relations vdeg, vcard, and vws, in this order. This relation
could be seen as based on the function lex where lex(θ) = n4ndeg(θ) +
n2ncard(θ) + ws(θ).

Example 5. Let R={({a1, a2}, {a3, a4}), ({a1, a2}, {a1, a3})}. It is easy to
see that V R

θ 6= ∅ for θ = {{a1, a2}}, which corresponds to a model of degree
2. However, we may prefer being consistent with a model of degree 1, even
if there are more elements in it: θ′ = {{a1}, {a2}} or θ′′ = {{a1}, {a3}} or
θ′′′ = {{a2}}. In this example, the minimal parameter set θ among θ′, θ′′, θ′′′

w.r.t. relation vdeg (resp. vcard, vws, vlex) is {θ′, θ′′, θ′′′} (resp. {θ′′′} in
the three cases).

4. Preference prediction by using robust ordinal dominance

Given a set R of pairwise preferences and a binary relation v on ΘR, the
preference learning method we propose consists in predicting that a subset
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A is preferred to B if A�RvB, i.e., A is preferred to B for all simplest models
θ∈ΘR and value functions v∈V R

θ . The purpose of this section is to detail
the procedure for determining whether A�Rvlex

B. It is organized as follows:
• We show that determining if A �Rθ B is polytime in |R| and |θ|, while
determining if A�Rv B amounts to testing whether ΘR

v ∩ ΘR
B%A = ∅, where

ΘR
B%A={θ ∈ ΘR : B�Rθ A or B∼Rθ A} (Subsection 4.1).
• As determining an explicit representation of ΘR

v is likely to be cumbersome
(as the size of ΘR

v can be very large), we turn to an implicit representation
based on the values deg(θ), card(θ), ws(θ) for θ ∈ ΘR

v. We thus study
the computational complexity of determining deg(θ) (resp. card(θ), ws(θ),
lex(θ)) for θ∈ΘR

v and v=vdeg (resp. v=vcard, v=vws, v=vlex), showing
that the former problem can be solved in polynomial time, while the others
are NP-hard (Subsection 4.2).
• The implicit representation of ΘR

vlex
is based on the following idea: if

we know that θ0 ∈ ΘR
vlex

, then θ ∈ ΘR
vlex

⇔ (deg(θ), card(θ), ws(θ)) =
(deg(θ0), card(θ0), ws(θ0)). It is thus enough to determine a single model
θ0 ∈ΘR

vlex
to be able to determine whether a model belongs to ΘR

vlex
. This

is why we propose a Mixed Integer Program (MIP) to compute a model
θ∈ΘR

vlex
, derived from a linear program for determining whether a model θ

belongs to ΘR (Subsection 4.3).
• We derive from it another MIP to compute a model in ΘR

vlex
∩ ΘR

B%A,
concluding A 6�Rvlex

B if it exists, A�Rvlex
B otherwise (Subsection 4.4).

4.1. Determining whether A�Rθ B and whether A�RvB
We first show that, unsurprisingly, linear programming provides an op-

erational tool for determining whether A�Rθ B. Viewing a value function on
θ as a vector v = (vS)S∈θ where vS = v(S), the set V R

θ corresponds to the
polyhedron defined by the following linear constraints in the |θ|-dimensional
parameter space (where each parameter vS corresponds to a dimension)2:

∀(X,Y ) ∈ R,
∑
S∈θ

IX(S)vS −
∑
S∈θ

IY (S)vS ≥ 1.

For a given set R of strict pairwise preferences and a model θ ∈ ΘR,
checking whether A�Rθ B can be evaluated in polynomial time in |R| and
in |θ| by solving the following linear program PA�Rθ B, where there is one

2The right hand side of the constraint is here set to 1, but it could be set to any
strictly positive constant as utilities vS are always compatible with R to within a positive
multiplicative factor.
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variable vS∈R for each pair S∈θ:

(PA�Rθ B)


min

∑
S∈θ

IA(S)vS −
∑
S∈θ

IB(S)vS∑
S∈θ

(IX(S)− IY (S))vS ≥ 1 ∀(X,Y ) ∈ R \ {(A,B)},

vS ∈ R ∀S ∈ θ.
We have that A�Rθ B if and only if the optimal value of PA�Rθ B is strictly
positive, as it implies that

∑
S∈θ IA(S)vS >

∑
S∈θ IB(S) for all v∈V R

θ .
In contrast with this positive complexity result for ordinal dominance,

determining whether A�RvB by direct use of the definition of robust ordinal
dominance would require a high computational burden. We overcome this
difficulty by reducing this problem to testing whether ΘR

v ∩ΘR
B%A is empty.

To achieve this reduction, let us study the relationships between ΘR
A%B,

ΘR
B%A and ΘR

v. For visual support, the reader may refer to Figure 1. We
recall that we denote by ΘR

B%A the set {θ ∈ ΘR : B �Rθ A or B ∼Rθ A}. As
one of the relations A�θ B or B �θ A or A∼θ B holds for any θ ∈ΘR, we
have that ΘR = ΘR

A%B∪ΘR
B%A. Consequently, ΘR

v ⊆ΘR
A%B∪ΘR

B%A because
ΘR
v ⊆ΘR. Furthermore, ΘR

A%B∩ΘR
B%A = {θ ∈ΘR : A∼θ B} 6= ∅ as soon as

there exists θ∈ΘR for which A ∼θ B.

ΘR
vΘR

A%B ΘR
B%A

Figure 1: (ΘR
v ∩ΘR

B%A=∅ ⇔ A �Rv B) and (ΘR
v ∩ΘR

A%B=∅ ⇔ B �Rv A).

To evaluate whether a robust ordinal dominance relation holds between
two subsets A and B, we examine if one of the following conditions holds:

(i) ΘR
v ∩ΘR

B%A=∅,
(ii) ΘR

v ∩ΘR
A%B=∅.

We have indeed the following result:

Proposition 1. For any A,B⊆ F , we have A �Rv B ⇔ ΘR
v ∩ΘR

B%A = ∅.
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Proof. It follows from the following sequence of equivalences:
A �Rv B ⇔ ∀θ ∈ ΘR

v, A �Rθ B ⇔ ∀θ ∈ ΘR
v, B 6�Rθ A and A 6∼Rθ B

⇔ ΘR
v ∩ΘR

B%A = ∅. �

Symmetrically, we have obviously that B �RΘ A ⇔ ΘR
v ∩ ΘR

A%B = ∅.
To test whether ΘR

v ∩ ΘR
B%A = ∅, the mathematical programming approach

we propose applies to cases where relation v is based on a function ξ. The
approach starts by computing a single model θ∈ΘR minimizing ξ(θ), which
is enough for determining the value ξ(θ) of any θ∈ΘR

v, as they all share the
same optimal value ξ(θ). We now study the complexity of computing such
an optimal θ in ΘR. More precisely, we study the complexity of the following
decision problem MIN-θ-ξ, for ξ∈{card, ws, deg, lex} (as is well-known, the
optimization problem is at least as hard as its decision variant):

MIN-θ-ξ

INPUT: A set A of alternatives, a set R = {(A,B), A,B ∈ A} of strict
pairwise preferences, an integer τ ∈ Z+.
QUESTION: Does there exist θ ∈ ΘR such that ξ(θ) ≤ τ?

4.2. Computational complexity of MIN-θ-ξ for ξ∈{card, ws, lex, deg}
We show here that MIN-θ-ξ is NP-hard for v∈{ws, card, lex}, while it

can be solved in polynomial time for v=deg.

Theorem 1. MIN-θ-card and MIN-θ-ws are NP-complete.

Proof. The membership of MIN-θ-card to NP follows from the fact that
minθ card(θ)≤2|R| and checking that θ∈ΘR can be done in polynomial time
in |R| and |θ|. Indeed, the parameter set θ={A∈A : (A, ·)∈R or (·, A)∈R}
obviously belongs to ΘR, and |θ| ≤ 2|R|. The proof that MIN-θ-ws belongs
to NP is similar, based on the fact that minθ ws(θ)≤2|R| × n.

To prove the NP-hardness, we use a reduction from Hitting Set:

Hitting Set

INPUT: Given a set of n elements: X = {xi}1≤i≤n, a family of m sets
S = {Si : Si ⊆ X , 1 ≤ i ≤ m}, and an integer τ ∈ Z+.
QUESTION: Does there exist X ′ ⊆ X such that ∀Si ∈ S, Si ∩ X ′ 6= ∅ and
|X ′| ≤ τ?

Given an instance (X ,S, τ) of the Hitting Set problem, we define the follow-
ing instance (A, R, τ ′) of MIN-θ-card (resp. MIN-θ-ws).
We let A = S ∪ {∅}, τ ′ = τ , and consider the following set of preferences:

R = {(S, ∅) : S ∈ S}.
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Now we show that (X ,S, τ) is a yes-instance of Hitting Set iff (A, R, τ ′) is a
yes-instance of MIN-θ-card (resp. MIN-θ-ws). Note that a set θ belongs to
ΘR if and only if it satisfies the following condition:

∀(S, ∅)∈R, ∃T ∈θ such that T ⊆ S. (C)
Indeed, each preferences in R can then be satisfied by assigning positive
values to parameters entailed by the elements of θ. Moreover, note that if a
set θ satisfies C and ∃T ∈θ such that |T | > 1, then the set θ′ obtained from
θ by replacing T by any singleton {x}⊂T also satisfies C. Hence, within the
sets satisfying C and minimizing card, there exists a set θ′ compounded only
of singletons, minimizing both card and ws (because card(θ)=ws(θ) if θ is
compounded only of singletons). By taking X ′={x : {x} ∈ θ′}, we obtain a
hitting set of size |X ′| ≤ τ . This yields the following conclusion: there exists
a hitting set of size s ≤ τ if and only if there exists a set θ satisfying C such
that card(θ)=s (resp. ws(θ)=s). This argument completes the proof.

The following result is a direct consequence of the previous one:

Corollary 1. MIN-θ-lex is NP-hard.

Proof. Given an instance (A, R, τ) of the MIN-θ-card problem, we could
solve for each degree d ∈ {0, 1, . . . |F|} an instance (A, R, τ ′) of the MIN-θ-
lex problem where τ ′ = dn4n + (τ + 1)n2n.

In contrast, we show a polynomial-time complexity result for MIN-θ-deg,
by resorting to the kernel trick, widely used in machine learning [see e.g.,
35]. Given a vector space X of dimension nX and a transformation function
ϕ : X → Y, where the dimension nY of vector space Y is exponential in
nX , the kernel trick consists in computing the scalar products 〈ϕ(x), ϕ(y)〉
of x, y ∈ X in polynomial time in nX , by using a kernel function K(x, y)
that returns the value 〈ϕ(x), ϕ(y)〉 without requiring to explicit ϕ(x) and
ϕ(y). In our setting, X is the set of characteristic vectors of subsets A of
F , and Y the set of “augmented” characteristic vectors containing additional
dimensions corresponding to binary values IA(S) for S ∈ [F ]τ (more details
in the proof). The complexity result is formulated as follows:

Theorem 2. MIN-θ-deg can be solved in polynomial time in |R| and n.

Proof. Let (A, R, τ) be an instance of MIN-θ-deg. We wish to determine if
preferences in R can be represented by a θ-additive model with θ=[F ]τ . For
notational convenience, we set θ(τ) =[F ]τ and nτ = |θ(τ)|=

∑τ
i=1

(
n
i

)
. We as-

sociate to θ(τ) the vector
−−→
θ(τ) =(S1, . . . , Snτ ), where subsets S={ai1 , . . . , aik}

(i1<. . .<ik) are indexed in lexicographic order of vectors (|S|, i1, . . . , ik).
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For instance, if F = {a1, a2, a3} and θ = θ(3) then
−→
θ = ({a1}, {a2}, {a3}, {a1, a2}, {a1, a3}, {a2, a3}, {a1, a2, a3}). Addi-

tionally, for a value function v : θ → R, we denote by −→v = (vS1 , . . . , vSnτ )

the vector of values associated to the elements of
−−→
θ(τ) ordered in the same

fashion. Finally, given A ∈ A, we denote by
−→
A τ the binary vector

−→
Aτ =

(IA(S1), . . . , IA(Snτ )) where IA(Si) is the indicator function of Si ∈ θ(τ).
Problem MIN-θ-deg evaluates if the following proposition holds:

∃−→v ∈ Rnτ s.t. ∀(A,B) ∈ R;
−→
A τ
−→v T >

−→
B τ
−→v T .

A value vector −→v of minimum norm can be determined by solving the fol-
lowing convex quadratic program:

min−→v ∈Rnτ

1

2
−→v −→v T

s.t.
−→
A τ
−→v T ≥

−→
B τ
−→v T + 1 ∀(A,B) ∈ R

Using the same trick as Domshlak and Joachims [17], instead of solving this
program whose number nτ of variables is not polynomial in the size of our
instance of MIN-θ-deg (because τ is an input variable and not a constant),
we consider its Wolfe dual defined by:

max
α∈R|R|

∑
(A,B)∈R

α(A,B) −
1

2

∑
(A,B)∈R

∑
(C,D)∈R

α(A,B)α(C,D)(
−→
A τ −

−→
B τ )(

−→
C τ −

−→
Dτ )T

s.t. α ≥ 0

By defining the kernel function K(τ)(A,B) =
−→
A τ
−→
B τ

T
, the previous pro-

gram can be written as:

max
α∈(R+)|R|

∑
(A,B)∈R

α(A,B) −
1

2

∑
(A,B)∈R

∑
(C,D)∈R

α(A,B)α(C,D)

(K(τ)(A,C)−K(τ)(A,D)−K(τ)(B,C) +K(τ)(B,D))

which can be solved in polynomial time in |R| and n provided that
K(τ)(X,Y ) can be evaluated in polynomial time in n without expliciting
X and Y .

Indeed, since the reformulation yields a convex quadratic program of
polynomial size in the input data, the problem can then be solved in polyno-
mial time (by polynomial time solvability of convex quadratic programming
[30, 31]). We now prove thatK(τ)(X,Y ) can be efficiently computed without
expliciting X and Y . Let k be the size of the intersection between X and Y ,
i.e., k = |X ∩ Y |. Note that K(τ)(X,Y ) counts the number of parameters
of θ(τ) that are subsets of both X and Y . We conclude by noting that the
number of such elements corresponds to

∑τ
i=1

(
k
i

)
, i.e., the number (<2n) of
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non-empty subsets of size less than or equal to τ in X ∩ Y .

Remark 1. Note that Tehrani et al. [36] and Herin et al. [28] have proposed
kernel functions K(x, y) that return the scalar product 〈ϕ(x), ϕ(y)〉 of aug-
mented vectors ϕ(x), ϕ(y) used to obtain an additive expression 〈m,ϕ(x)〉
of a discrete Choquet integral C(x), where m is the vector of Möbius masses
obtained from the capacity used in C(x). It turns out that there is a close link
between fθ,v and a Choquet integral C(x) expressed as 〈m,ϕ(x)〉 (note how-
ever that we do not impose the constraints on the v(S) values ensuring the
monotonicity of the capacity, or the normalization constraint

∑
S v(S)=1).

However, their kernel functions do not use the same calculations as ours: we
take advantage of the particular case we study, where all components of x
take binary values, to compute the kernel function in O(n) instead of O(n2).

Algorithm 1 takes as input a set R of strict pairwise preferences and
computes min{deg(θ) : θ ∈ ΘR} by solving a sequence of convex quadratic
programs establishing whether there exists θ∈ΘR such that ξ(θ)=τ (which
holds if the optimal value of the program is bounded). The variable τ is
gradually incremented from 1. At each iteration, the objective function
parameters are updated by using the kernel trick, which makes the procedure
polynomial-time in |R| and n.

Algorithm 1 Compute min{deg(θ) : θ ∈ ΘR}
Input: set R of strict pairwise preferences
Output: min{deg(θ) : θ ∈ ΘR}
τ ← 1
for (A,B)∈R do

for (C,D)∈R do . Initialization of dictionary Q
Q[A,B,C,D]← |A ∩ C| − |A ∩D| − |B ∩ C|+ |B ∩D|

while max
α≥0

∑
(A,B)∈R

α(A,B) −
1

2

∑
(A,B)∈R

∑
(C,D)∈R

α(A,B)α(C,D)Q[A,B,C,D] is unbounded do

. the α(X,Y )’s are the variables of the convex quadratic program

. α≥0 means that α(X,Y )≥0 for all (X,Y )∈R

. Q contains the coefficients of the objective function, updated at each iteration
τ ← τ + 1
for (A,B)∈R do

for (C,D)∈R do
Q[A,B,C,D]← Q[A,B,C,D] +

(|A∩C|
τ

)
−
(|A∩D|

τ

)
−
(|B∩C|

τ

)
+
(|B∩D|

τ

)
return τ

4.3. Computing (deg(θ), card(θ), ws(θ)) for θ∈ΘR
vlex

As all models θ∈ΘR
vlex

share the same vector (deg(θ), card(θ), ws(θ)), it
is enough to compute a single model θ∈ΘR

vlex
to deduce this vector, which
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will be required to determine whether A�Rvlex
B. The negative complexity

result (Corollary 1) regarding the computation of a model θ∈ΘR
vlex

does not
prevent us from proposing an exact solution method that will prove efficient
in practice. For this purpose, we first present a Linear Program (LP) allowing
us to determine in polynomial time in |R| and |θ| whether θ ∈ΘR, given a
model θ and a set R of strict pairwise preferences. From this LP, we will
then develop a MIP formulation for computing θ∈ΘR

vlex
.

For a given set R of strict pairwise preferences and a given model θ,
checking whether θ∈ΘR can be evaluated in polynomial time in |R| and in
|θ| by solving the following linear program Pθ, where there is one variable
e(A,B)≥0 for each pair (A,B) in R:

(PRθ )



min
∑

(A,B)∈R

e(A,B)∑
S∈θ

(IA(S)− IB(S))vS + e(A,B) ≥ 1 ∀(A,B) ∈ R,

e(A,B) ≥ 0 ∀(A,B) ∈ R,
vS ∈ R ∀S ∈ θ.

We have that θ∈ΘR if and only if the optimal value of PRθ is 0, because in
this case we can find values for variables vS that respect all the preferences
in R without the help of the additional slack variables e(A,B).

We now show how to derive, from PRθ , a MIP formulation for computing
a model θ∈ΘR

vlex
. For this, we first compute deg(R)=min{deg(θ) : θ∈ΘR},

by using Algorithm 1. We then add a binary variable bS for each S∈ [F ]deg(θ),
as well as big-M constraints to ensure that bS =1 iff S∈θ (i.e., S belongs to
the model θ∈ΘR

vlex
). Determining a model θ∈ΘR

vlex
can be done by solving

the following lexicographic optimization problem:

(PRvlex
)



min lex
∑

S∈[F ]deg(R)

bS ,
∑

S∈[F ]deg(R)

bS |S|∑
S∈[F ]deg(R)

(IA(S)− IB(S))vS ≥ 1 ∀(A,B) ∈ R, (1)

−bSM ≤ vS ≤ bSM ∀S ∈ [F ]deg(R),

bS ∈ {0, 1} ∀S ∈ [F ]deg(R).

where M = (2
∑deg(R)

i=1

(
n
i

)
+ |R|) × (|R|)2|R|+2, so that if the values vS can

be set to satisfy constraints 1, then there exist such values in the interval
[−M,M ] (see [33]). Every feasible instantiation of variables vS , bS in PRvlex

corresponds to an element θ ∈ ΘR, namely θ = {S ∈ [F ]deg(R) : bS = 1}.
Lexicographic optimization amounts to determine, among feasible instanti-
ations of vS , bS that minimize the first objective

∑
S∈[F ]deg(R) bS , one that
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minimizes the second objective
∑

S∈[F ]deg(R) bS |S|. It is well-known that this
can be achieved as follows, using a mixed integer programming solver:
• first, we solve the MIP P1 obtained by replacing the lexicographic

objective function in PRvlex
by min

∑
S∈[F ]deg(R) bS ;

• denoting by opt1 the optimal value of P1, we then solve the MIP P2

where the objective function in PRvlex
is replaced by min

∑
S∈[F ]deg(R) bS |S|,

under the additional constraint
∑

S∈[F ]deg(R) bS ≤ opt1.
As every feasible instantiation corresponds to a model θ of minimal degree
deg(θ) (i.e., deg(θ)=deg(R)), we thus obtain a model θ∈ΘR

vlex
, from which

we deduce (deg(θ), card(θ), ws(θ)) for θ∈ΘR
vlex

. In the following, we denote
by (deglex, cardlex, wslex) the vector (deg(θ), card(θ), ws(θ)) for θ∈ΘR

vlex
.

4.4. Determining whether A�Rvlex
B

Determining whether A�Rvlex
B amounts to solve:

(PA�RvlexB
)



min
∑

S∈[F ]deg(R)

bS |S|∑
S∈[F ]deg(R)

bS ≤ cardlex, (2)∑
S∈[F ]deg(R)

(IB(S)− IA(S))vS ≥ 0, (3)∑
S∈[F ]deg(R)

(IX(S)− IY (S))vS ≥ 1 ∀(X,Y ) ∈ R, (4)

−bSM ≤ vS ≤ bSM ∀S ∈ [F ]deg(R),

bS ∈ {0, 1} ∀S ∈ [F ]deg(R).

A feasible solution of PA�RvlexB
yields a model θ satisfying deg(θ)=deglex

(variables bS are only defined for S ∈ [F ]deg(R)) and card(θ) = cardlex (by
constraint 2 on the value of card(θ)). Furthermore, constraint 3 ensures
that θ∈ΘR

B%A, while constraint 4 ensures that θ∈ΘR. If the optimal value
of PA�RvlexB

is wslex, then the corresponding model θ belongs to θ ∈ΘR
vlex

(because then (deg(θ), card(θ), ws(θ)) = (deglex, cardlex, wslex)), and thus
there exists θ∈ΘR

vlex
∩ΘR

B%A. Consequently:
• if the optimal value is strictly greater than wslex, or the polyhedron is

empty, then ΘR
vlex
∩ΘR

B%A=∅ and hence A�Rvlex
B (by Proposition 1);

• if the optimal value of PA�RvlexB
is wslex, then A 6�Rvlex

B.
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5. Numerical tests

We call hereafter ORD the learning approach consisting in computing
(deg(R), card(R), ws(R)) and using �Rvlex

for preference prediction. Numer-
ical tests were carried out on Google Colab3, with the aim of comparing
ORD with state of the art approaches in two different settings:
• A first set of experiments were carried out on synthetic data, i.e., ob-

tained by simulating a user. They aimed at evaluating our approach in
an ideal setting where a θ-additive model perfectly fits the preferences.
• A second set of experiments were carried out on real-world data for

content-based filtering methods (more precisely, movies described by
binary attributes). These tests aimed at evaluating how our approach
deals with partially described alternatives (i.e., with possible “colli-
sions” if two distinct alternatives share the same description), com-
pared to other state of the art approaches.

In both sets of experiments, we start with a learning set of preferences. Based
on this learning set, pairwise preference predictions are then requested on
random pairs of alternatives (pairs not in the learning set). As said earlier,
the model may not make a prediction if it is not robust enough given the
available preference data (i.e., if there is no robust ordinal dominance).

5.1. The synthetic and real-world datasets
The dataset consists of ratings assigned by a user (DM) on a set A of N

alternatives. Given a set F ={a1, . . . , an} of binary features, a learning set
Atrain consists of k≤N ratings of alternatives in A, where each alternative
Ai (i = 1, . . . , N) is described by a binary vector

−→
A i = (A1

i , . . . A
n
i ), with

Aji =1 if aj ∈Ai, and Aji =0 otherwise. The user rating of Ai is denoted by
ri. The set of known strict preferences is R={(Ai, Aj)∈A2

train : ri > rj}.
The real-world data consist of ratings of movies by users picked up from

the IMDb dataset4. This is a dataset of movie reviews that contains over
50k reviews. Each movie Ai is described by a set of binary features Aji , and
the ratings ri are integer values ranging from 1 to 10. The experiments were
conducted with a dataset of 50 users (randomly sampled) who each rated at
least k=100 movies. Each movie is described using a subset of n=8 binary
features (corresponding to the main genres of the movie, e.g., “adventure”,
“animation”, “children”, “comedy”, “fantasy”, etc.).

3two virtual CPU at 2.2GHz, 13GB RAM.
4www.kaggle.com/datasets/gauravduttakiit/imdb-recommendation-engine.
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The synthetic data are generated in two steps: first a θ-additive function
fθ,v is randomly sampled, then a rating function is inferred from fθ,v. The
procedure is precisely detailed in the following two paragraphs.

Sampling a θ-additive function fθ,v. For sampling a function fθ,v, we first
sample a set θ and then we sample parameters vS for S∈θ. More precisely,
the generation of θ is achieved as follows. First, θ is initialised as the set
of singletons {a1}, {a2}, . . . , {an}, then we add bα × (2n − n)c subsets of
attributes, where the coefficient α ∈ [0, 1] makes it possible to control the
model’s complexity: for α = 0, only the singletons are in θ, which yields
the simple additive utility model, and for α = 1, all subsets of attributes
are present, wich yields the most general utility model. Each subset S is
sampled according to a parameter p∈(0, 1]:

1. Initialize S as a singleton by uniformly sampling in F .
2. Uniformly sample another attribute in F and add it to S.
3. Exit this process if S=F .
4. Exit this process with a probability p otherwise go to 2.

The expected size of sets S we sample is E[|S|] = 2 + (1− p− (1− p)n−1)/p.
Once θ is set, we sample the parameters vS for each S ∈ θ with a normal
distribution N (0, σ). The sampling of fθ,v thus depends on three parameters
p, α and σ. In the tests, p varies in [0.1, 0.9], α in [0.1, 0.5], and σ=100.

From fθ,v to a rating function. A function r :A→ {1, . . . , t} simulates the
ratings of the user (of which only a subset of examples r(Ai) = ri, for i ∈
{1, . . . , k}, is known to the model). The definition of r from fθ,v depends
on a parameter t defining the domain {1, . . . , t} of possible ratings. The
range of scores fθ,v(A)=

∑
S∈θ vSIA(S) of alternatives A is partitioned into

t equally-sized intervals (vk−1, vk] between the min score v0 =minA∈A fθ,v(A)
and the max score vt=maxA∈A fθ,v(A). The function r is then:

r(A) = min{1 ≤ k ≤ t : fθ,v(A) ≤ vk}.
Put another way, the rating of A corresponds to the index k of the interval
(vk−1, vk] in which fθ,v(A) lies. In general, the wider the domain of possible
ratings, the fewer incomparabilities (alternatives with the same rating).

5.2. Baseline models
We briefly describe here the baseline models to which ORD is compared.

Throughout the subsection, we have θ= [F ]deg(R) and each alternative A is
described by an augmented binary vector

−→
A = (IA(S1), . . . , IA(S|θ|)), where

S1, . . . , S|θ| are the subsets of F of size less than or equal to deg(R).
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Linear Regression (LR). We consider the θ-additive model, and we use linear
regression to determine the value function v̂ such that fθ,v̂ best approximates
the utility function f , by minimizing

∑k
i=1(
−→
A i
−→v T−normalized(ri))

2, where
normalized(ri) = ri−mini ri

maxi ri−mini ri
(note that

−→
A i
−→v T = fθ,v(Ai)). Put another

way, we use the least squares method5 with ratings normalized in [0, 1]. We
predict A�B if fθ,v̂(

−→
A )>fθ,v̂(

−→
B ).

Support Vector Machine (SVM). This baseline model is inspired by the ap-
proach proposed by Domshlak and Joachims [17]. An SVM approach is a
supervised learning method for binary classification: each example in the
dataset is labeled by 0 or 1; an SVM is learned from the dataset6, from
which labels are inferred for new examples. In our setting, each preference
A�B in R yields two examples: a (|θ|+1)-dimensional vector (

−→
A−
−→
B, 1)

and another vector (
−→
B −

−→
A, 0). That is, the third component of (

−→
A−
−→
B, c)

is c = 1 if A is preferred to B, and c = 0 if it is not. For predicting the
preference between two alternatives A and B, we infer the labels of (

−→
A−
−→
B )

and (
−→
B−
−→
A ) by using the SVM. If the label of (

−→
A−
−→
B ) is 1 (resp. 0) and

that of (
−→
B−
−→
A ) is 0 (resp. 1), then we predict A�B (resp. B�A).

K-Nearest Neighbours (KNN). The distance-based models are widely used
in the context of recommender systems. The distance-based model we con-
sider is implemented as follows. The predicted rating of an alternative A is
obtained by making a weighted sum

∑K
i=1wiri of the ratings r1, . . . , rK of its

K nearest neighbours A1, . . . , AK in the learning set7, with each weight wi
proportional to the Euclidean distance of the neighbour

−→
A i to

−→
A . The value

of K was set to K = 5 in our experiments, after preliminary tests showing
this was the value yielding the best results for the dataset considered here.
For predicting the preference between two alternatives A and B, we compute
the predicted ratings of them, and predict the preference accordingly.

5.3. Experimental setup
In all experiments, the dataset is a set A of N alternatives, described

by a set F of n binary features, and an associated rating vector r (integer
values). The rating r(A) of each alternative A∈A is known. To compare the
performances of the different learning methods, we extract a subset Atrain of

5Precisely the LinearRegression function from the scikit-learn python library.
6We use the SVC function from the scikit-learn python library.
7We use the KNeighborsClassifier function from the scikit-learn python library.
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k alternatives from A, on which the models are trained. The alternatives in
Atrain are chosen uniformly at random. We then randomly sample 100 pairs
{A,B} in A such that A 6∈ Atrain or B 6∈ Atrain (possibly neither A nor B
belongs to Atrain), and we compare the predicted pairwise preference with
the actual preference: A�B if r(A)> r(B), B �A if r(B)> r(A), A∼B
(incomparability) if r(A)=r(B). The extraction of a subset Atrain from A,
the training of each model and the (100) pairwise preference predictions are
performed 10 times, and the prediction performances are averaged over the
10 runs. We detail below the parameters that are used for the experiments
on synthetic data and for the experiments on real-world data.

Synthetic data. The experiments on synthetic data were conducted with
|F|=8 binary features, which yields a set A of 2|F|=256 alternatives, a scale
of t=12 possible ratings, and the set of parameters (α, p, σ)=(0.1, 0.9, 100)
for the generation of fθ,v. This set of parameters yields functions fθ,v that
are usually up to 4-additive, with an average |θ| equal to 12. This setting
is not really restrictive as, given the number of strict pairwise preferences
in R that are considered in our experiments (i.e., |R| ≤

(|Atrain|
2

)
), it is un-

likely that R cannot be represented by using a function fθ,v of degree up to
4. The size of Atrain indeed varies between 12 and 29, from which between
|R|=

(
12
2

)
=66 and

(
29
2

)
=400 pairwise preferences can be inferred.

Real-world data. For each of the 50 users that have rated at least 100 movies,
a dataset A including between 45 and 100 alternatives is first extracted. A
training set Atrain is then extracted from A, with |Atrain| corresponding to
90% of |A| (which is common practice in machine learning, in particular for
performing 10-fold cross-validation). The size of Atrain thus varies from 5 to
10, from which between |R|=

(
5
2

)
=10 and

(
10
2

)
=45 pairwise preferences can

be inferred.

5.4. Evaluation metrics
We outline here the specific metrics that will be used to evaluate the

ORD approach and compare it to other methods. To define our metrics we
consider the 9 cases that can occur in the confusion matrix defined below.

Confusion Matrix. For a given pair of alternatives (A,B)∈A2 each model
could either infer (predicted output) that A is better than B (A � B), or
that A is worse than B (B � A) or it could return that the relation between
A and B is unknown. Then, as outlined earlier, by comparing r(A) and r(B),
we can have (real outputs) that A is indeed better than B if r(A) > r(B) or
that A is worse than B if r(B) > r(A) or that the relation between them is
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unknown if they share the same rating (incomparability). Our metrics are
based on the confusion matrix defined in Table 1, where the rows symbolizes
the predicted outputs and the columns the real outputs.

Predicted/Real (B)etter (W)orst (U)nknown
(B)etter BB BW BU
(W)orst WB WW WU

(U)nknown UB UW UU

Table 1: Confusion matrix.

Precision. The precision is defined as the ratio between the number of correct
predictions among all the predictions that were made.

P =
BB +WW

BB +WW +BW +WB +BU +WU
.

Recall. The recall is defined as the ratio between the number of correct
predictions among all the predictions that could be made.

R =
BB +WW

BB +WW +BW +WB + UB + UW
.

The precision metric penalizes the models making unreliable predictions,
while the recall metric penalizes the models that avoid making predictions.

F1-score. F1-score is a metric that combines precision and recall to provide
a balanced evaluation of a model’s performance. It is obtained by computing
the harmonic mean of precision and recall:

F = 2
P ×R
P +R

.

As the F1-score captures both precision and recall, it is an ideal metric for
evaluating the robustness and accuracy of the studied models. Hence, we
strongly rely on it when presenting our results.

Prediction Correctness. This metric is similar to precision, except that it
does not take into account predictions that cannot be evaluated for lack of
preferential information to check whether they are correct or incorrect.

PC =
BB +WW

BB +WW +BW +WB
.

Prediction Rate. This metric does not take into account the correctness of
the predictions, it simply evaluates the rate at which the model produces
predictions:

PR = 1− UB + UW + UU

M
,

where M represents all the cases of Table 1 (BB + WW + BW + WB +
BU +WU + UB + UW + UU).
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5.4.1. Results on synthethic data

Figure 2: Precision, Recall, Prediction Rate and Prediction Correctness according to the
number |R| of preferences for models ORD (blue), KNN (red), SVM (orange), LR (green).

Figure 3: Average F1-score according to the threshold x on the number of preferences in
R, for models ORD (blue), KNN (red), SVM (orange), LR (green).

The results on synthetic data are presented in Figures 2 and 3, where the
x-axis gives the number of preferences in R (inferred from the ratings of the
alternatives in Atrain) and the curves show the mean and 95% confidence
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interval. The curves show how the different metrics evolve with |R|.
Figure 2 shows that each approach produces a different compromise be-

tween the number of predictions and their quality. The LR and SVM ap-
proaches have, by design, a prediction rate of 1 (the orange line is covered
by the green one in the figure) but with predictions that are always less
accurate than the predictions made by ORD. Since the KNN approach av-
erages the rates of the K nearest neighbours of the instance to predict, it
may occur that two alternatives obtain the exact same score (e.g., if the
K nearest neighbours are the same for both alternatives) and thus that no
strict preference prediction is made. The prediction rate of KNN is 0.8 on
average, but the curve of prediction correctness (and thus the curves of recall
and precision) shows that it does not improve the accuracy of the predictions
compared to the other methods, quite the contrary.

The ORD model, in contrast, outperforms the other models in terms of
precision, as illustrated by the average prediction correctness that is almost
always above 0.85. However, since the recall metric penalizes the models that
do not make enough predictions, the performances of ORD are below the
average performance of the other models in terms of recall. This behavior
is, in a sense, intrinsic to an approach that prioritizes the robustness of
predictions. Nevertheless, as can be seen in Figure 2c, the recall significantly
improves with |R|. There are a few irregularities in the curve of the prediction
rate for ORD, due to the fact that deg(R) grows in steps with |R|, and this
degree impacts |ΘR| and thus the number of predictions made (the ordinal
dominance relationship becoming more stringent).

While the interest of a compromise between quantity and quality of pre-
dictions inherently varies depending on the specific context of an application,
the F1-score is a commonly adopted metric to navigate these trade-offs. Fig-
ure 3 shows the average F1-score on learning instances where |R| ≥ x, in
function of x. We observe that the average F1-scores of ORD, LR and SVM
are close for x = 50 (i.e., R include at least 50 preferences). Notably, as x
grows so that R encompasses at least 170 preferences, the ORD approach
demonstrates a significant performance advantage over LR and SVM.

The curves in Figure 4 gives the average running times of ORD (in sec-
onds, averaged over 20 instances) according to the number n of features (for
300≤|R|≤400) and the number |R| of known strict pairwise preferences (for
n= 8). The orange curve gives the average running time for one pairwise
preference prediction; this is the most time-consuming phase: note indeed
that learning (deg(R), card(R), ws(R)) is only performed once for each R,
while 100 preference predictions are made for each R in our tests.
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Figure 4: Running times of ORD (in seconds).

5.4.2. Results on real-world data
The results obtained on real-world data from IMDb are summarized in

Table 2. Compared to the synthetic data, the precision rates of KNN, LR
and SVM significantly decrease, while the precision rate of ORD is holding
up better. The recall of ORD remains lower than the recall of LR and that
of SVM, but this is overcompensated by the reduced precision performance
gap between ORD and LR/SVM. This allows ORD to achieve a better com-
promise between precision and recall, thus yielding a better F1-Score.

Table 2: Model performances averaged on all the users

Model Prediction Rate Precision Recall F1-Score

KNN 0.82 0.48 0.65 0.59
LR 1 0.55 0.90 0.69
ORD 0.60 0.76 0.83 0.81
SVM 1 0.55 0.92 0.70

6. Conclusion

We have presented here a robust ordinal method for subsets comparisons
with interactions. The model we use is not restrictive, in the sense that
any strict weak order on subsets can be represented. The learning method
achieves a trade-off between the number of predicted preferences and the
accuracy of the predictions, by relying on a robust ordinal dominance relation
between subsets.

Several research directions are worth investigating, among which the
adaptation of the approach to an active learning setting where one inter-
actively determines a sequence of queries to minimize the cognitive burden
for the decision maker, or a better consideration of potential “errors” in the
preferences used as a learning set.
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Appendix A. Properties of the θ-ordinal dominance relation

Proposition 2. The following properties hold for �Rθ :
(i) �Rθ is asymmetric.
(ii) �Rθ may not be complete.
(iii) �Rθ is not necessarily negatively-transitive.

Proof. (i) A �Rθ B ⇒ ∀v ∈ V R
θ , fθ,v(A) > fθ,v(A). Thus there is no function

v′∈V R
θ such that fθ,v′(A) < fθ,v′(A).

(ii) As shown in Example 2, we may have v, v′ ∈ V R
θ such that fθ,v(A) >

fθ,v(B) and fθ,v′(B) > fθ,v′(A). We have then neither A �Rθ B nor B �Rθ A,
and thus �Rθ may not be complete.

(iii) Let F = {a1, a2, a3}, R = {({a1}, {a3})}, θ = {{a1}, {a2}, {a3}}
and v, v′ two value functions defined as follows:

v({a1}) = 2, v({a2}) = 3, v({a3}) = 1,

v′({a1}) = 3, v′({a2}) = 1, v′({a3}) = 2.

We have that v, v′∈V R
θ as fθ,v({a1})>fθ,v({a3}) and fθ,v′({a1})>fθ,v′({a3}).

It follows from fθ,v({a2}) > fθ,v({a1}) that ¬({a1} �Rθ {a2}).
It follows from fθ,v′({a3}) > fθ,v′({a2}) that ¬({a2} �Rθ {a3}).
Yet {a1} �Rθ {a3} by definition of R.

Proposition 3. Given a set R of strict pairwise comparisons, and θ∈ΘR, if
R′⊆R then: (i) θ∈ΘR′ ; (ii) A�R′θ B⇒A�Rθ B; (iii) A�Rθ B⇒¬(B �R′θ A).

Proof. (i) If all the preferences in R can be represented by a θ-additive
function, then so can the preferences in R′ as R′ is compounded of a subset
of the preferences in R.

(ii) If the preferences in R′ imply that A should be necessarily strictly
preferred to B, then R will imply the same conclusion as ΘR ⊆ ΘR′ (be-
cause R contains all the preference constraints in R′, along with additional
constraints).

(iii) The contrapositive is proved as follows: B�R′θ A⇒B �Rθ A by (ii),
and B �Rθ A⇒¬(A �Rθ B) because strict preferences are asymmetrical.

Proposition 4. Let θ, θ′∈ΘR. If θ′⊆θ, then the following assertions hold:
(i) A�Rθ B⇒A�Rθ′B; (ii) A∼Rθ′B⇒A∼Rθ B; (iii) A�Rθ′B⇒¬(B�Rθ A).

Proof. (i) is true because if fθ,v(A) > fθ,v(B) for all v ∈ V R
θ , then we should

also have fθ′,v(A) > fθ′,v(B) for all v ∈ V θ′
R . Indeed, each element of V R

θ′ can
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be seen as a value function in V R
θ in which the parameters vS are set to 0

for S ∈ θ \ θ′.
(ii) follows by a similar argument as for (i).
(iii) The contrapositive is proved as follows: B�Rθ A⇒B �Rθ′ A by (i),

and B �Rθ′A⇒¬(A �Rθ′B) because strict preferences are asymmetrical.
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