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Decentralized Adaptive Control of Robotic Systems Using Uncalibrated Joint Torque Sensors

Design of standard centralized motion controllers for robotic systems requires precise model structures for manipulator dynamics. Moreover, the resulting closed loop system is normally sensitive to sensor failure as each joint receives information from the entire robot sensors. Recently it has been shown that the use of joint torque sensors eliminates the need to model manipulator link dynamics which involves numerous parameters to be identified. In this paper, we present a dynamically smooth adaptive decentralized controller for robotic manipulators where the control law in each joint depends only on local measurements from that joint. The use of possibly un-calibrated joint torque sensors eliminates the need for modeling link dynamics. Global and asymptotic motion tracking is achieved. Simulation examples demonstrate significant improvement in robustness of the controlled system in face of sensor failure.

I. INTRODUCTION

Model based control of robotic manipulators is challenging due to nonlinearity, strong coupling and existence of parametric/non parametric uncertainties in link dynamics. As a result, most model based controllers posses centralized property where the computed control law for each joint depends on information gathered from the entire manipulator sensors. This makes the closed loop controlled system susceptible to sensor failure. Recently, it has been shown that the use of joint torque sensors eliminates the need for precise modelling of manipulator link dynamics [START_REF] Kosuge | Motion control of a robot arm using joint torque sensors[END_REF], [START_REF] Aghili | Adaptive control of manipulators using uncalibrated joint-torque sensing[END_REF] and the resulting control system becomes inherently robust against phenomenons such as payload varying and external disturbance forces.

Decentralized control of general nonlinear systems has been investigated in recent literature. In [START_REF] Xu | Decentralized measurement feedback stabilization of large-scale systems via control vector lyapunov functions[END_REF] a decentralized controller for local regulation of a class of nonlinear system was proposed where a dissipativity condition was assumed for controller derivation. A recursive method was proposed in [START_REF] Zhang | Nonlinear decentralized control of large-scale systems with strong interconnections[END_REF] for decentralized controller design of a class of nonlinear systems with linear growth condition and the controller achieved global regulation. Unfortunately, dynamics of robotic manipulators are strongly coupled and do not satisfy certain assumptions of the previous works. Moreover, instead of point regulation, asymptotic trajectory tracking is usually sought.

In case of robotic manipulators, [START_REF] Liu | Decentralized control of robot manipulators: nonlinear and adaptive approaches[END_REF], [START_REF]Decentralized pd and robust nonlinear control of robot arms[END_REF] proposed a decentralized adaptive controller to achieve ultimate boundedness of motion tracking error by using a cubic damping factor in the control law. Nonsmooth adaptive decentralized controller proposed by [START_REF] Hsu | A fully adaptive decentralized control of robot manipulators[END_REF], [START_REF] Hsu | Adaptive decentralized control of robot manipulators driven by current-fed induction motors[END_REF] ensured asymptotic motion tracking. Decentralized adaptive robust controller of [START_REF] Yang | Decentralized adaptive robust control of robot manipulators using disturbance observers[END_REF] used disturbance observers and guaranteed ultimate boundedness of tracking error.

In this paper we propose a decentralized adaptive controller by using joint torque sensors. The use of joint torque sensors eliminates the need to model link dynamics which are algebraically complex and contain numerous parameter which are hardly identifiable by typical estimators. The proposed controller does not use any upper bound for nonlinear terms in manipulator dynamics and archives global motion tracking. Dynamics of the controller is smooth and the controller gains can be kept arbitrary low to reduce system sensitivity to noise.

II. SYSTEM DESCRIPTION

We consider dynamics of a manipulator described by

M (q)q + C(q, q) q + g(q) = τ m -τ f (1) 
where q ∈ R n denotes the configuration vector. M (q) > 0 ∈ R n×n stands for the inertia matrix and C(q, q) q ∈ R n represents the centrifugal and coriolis forces. Also, g(q) ∈ R n denotes the gravity vector and τ m ∈ R n is the generated force/torque in manipulator joints. The effect of friction is represents by τ f ∈ R n . The following assumptions are considered [START_REF] Aghili | Adaptive control of manipulators using uncalibrated joint-torque sensing[END_REF] A 1: Robot manipulator is serial and electrically driven.

A 2: Center of mass of all rotors lie on their rotation axis. A 3: The rotors of the drive systems are axi-symmetric, i.e., their inertias about the x-and y-axes are identical.

We assume that each joint of the manipulator is equipped with a joint torque sensor. It is shown in [START_REF] Aghili | Adaptive control of manipulators using uncalibrated joint-torque sensing[END_REF] that the joint torque signal can be computed by

τ J := (M L + (T (q) -I) T J)q + (C -J Ṫ (q, q)) q + g (2)
where M L ∈ R n×n represents link inertia matrix and J = diag {J 1 , J 2 , . . . , J n } contains polar inertia of rotors. Also, the matrix T ∈ R n×n depends on the kinematics of robot with a lower triangular structure given by

T (q) =        1 0 0 • • • 0 z 2 .z 1 1 0 • • • 0 z 3 .z 1 z 3 .z 2 1 • • • 0 . . . . . . . . . . . . . . . z n .z 1 z n .z 2 z n .z 3 • • • 1        (3) 
where z k ∈ R 3 is a unit vector along the rotational axis of rotor k and expressed in fixed frame (see Fig. 2). Clearly, z k is a function of robot configuration which is computable from the forward kinematics. Therefore, we have z k = Z k (q). Since the rotation of joint k has no effect on orientation of z 1 , . . . , z k , we conclude that z i .z j for j < i is only a function of q j , . . . , q i-1 . Therefore, the i th row of the T (q) is only a function of q 1 , . . . , q i-1 . Lower triangular structure of T (q) and particular dependence of its rows to q are key properties that will be used for designing the decentralized controller. Consider decomposition of the inertia matrix as [START_REF] Namvar | Failure detection and isolation in robotic manipulators using joint torque sensors[END_REF] M (q) = M L (q) + JT (q) + (T (q) -I) T J (4)

Replacing in [START_REF] Kosuge | Motion control of a robot arm using joint torque sensors[END_REF] and by virtue of (2), the manipulator dynamics can be rewritten as

J d dt (T q) = τ m -τ J -τ f (5) 
In light of (3) the i th equation in (5) becomes

J i qi +J i i-1 j=1 {(z i .z j ) qj + d dt (z i .z j ) qj } = τ mi -τ Ji -τ f i (6)
Now, we define the interacting force by

d i (t) := i-1 j=1 {(z i .z j ) qj + d dt (z i .z j ) qj }, i = 1, . . . , n (7) 
The function d i (t) contains interaction forces exerted each joint by the other joints. From ( 6) and (7), we have

J i qi + J i d i (t) = τ mi -τ Ji -τ f i , i = 1, . . . , n (8) 
We assume joint torque sensors are subject to unknown bias and gain such that

τ Ji = κ i τ si + γ i (9) 
where τ si denotes sensor measurement and κ i and γ i are unknown sensor gain and offset, respectively. We assume that joint friction can be linearly parameterized by

τ fi = Y fi ( qi )θ fi (10) 
where Y fi ∈ R 1×p is a known regressor friction and θ fi ∈ R p×1 contains unknown friction parameters. Therefore, we can express [START_REF] Hsu | Adaptive decentralized control of robot manipulators driven by current-fed induction motors[END_REF] as

Y i (q, q, τ si )θ i = τ mi (11) 
where the regressor Y i (q, q, τ si ) is given by

Y i (q, q, τ si ) = (q i + d i ) τ si 1 Y fi ( 12 
)
and the vector θ i contains rotor, joint torque sensor and friction parameters.

θ i = J i κ i γ i θ T fi T (13) 
Let θ j i denotes as the j th element of the θ i , we assume that

θ j i ≤ θ j i ≤ θ j i (14) 
where θ j i , θ j i are some known constant bounds. Problem 1: Given the manipulator dynamics [START_REF] Hsu | Adaptive decentralized control of robot manipulators driven by current-fed induction motors[END_REF] and the measured values of q, q, τ s , our problem is to find a decentralized control law τ m such that τ mi depends only on q i , qi , τ si , and the motion tracking error e converges to zero asymptotically, where e = q -q d and q d denotes the desired configuration.

III. CONTROLLER

Let define the composite motion tracking error by

s = ė + Γe, v = qd -Γe (15) 
where

Γ = diag(γ 1 , γ 2 , • • • , γ n ) is a constant positive definite matrix.
The control law is proposed as

τ mi = Ĵi ( vi + d di ) + κi τ si + γi + Y fi θfi -k i s i ( 16 
)
where Y fi denotes the friction regressor for the joint i and d di is defined by

d di := i-1 j=1 {(z id .z jd ) q jd + d dt (z id .z jd ) qjd } ( 17 
)
z id is computable from the forward kinematics. The control law ( 16) can be equivalently written by

τ mi = Y vi ( vi , qi , qd , qd , q d , τ si ) θi -k i s i ( 18 
)
where qd , qd are the desired values of joint acceleration and velocity. Regressor Y vi in the control law ( 18) is given by

Y vi ( vi , qi , qd , qd , q d , τ si ) = ( vi + d di ) τ si 1 Y fi (19)
Also, θi is the estimate of θ i and is generated by

θi = Proj(-L -1 i Y T vi s i ) (20) 
where L i is a constant, diagonal, and positive-definite adaptation gain matrix and Proj(•) denotes a projection algorithm that guarantees θi respects the limits specified by [START_REF] Hardy | Inequalities[END_REF]. Remark 1: According to (19) and (17) the control law in each joint depends on measured values of q i , qi and τ si . However, the control law uses information from desired values of all joints' acceleration, velocity, and configuration variables which are available a priori.

Theorem 1: Under the decentralized control law (18) and the parameter update law (20), joint configuration and velocity tracking error converges to zero, globally and asymptotically.

IV. PROOF OF THEOREM 1

Theorem 1 is proved based on the mathematical induction. First, we prove theorem statement for the first subsystem. Then, we assume that the statement is true for i -1 subsystems and show it holds for the i th subsystem.

Substituting the control law (18) into the system dynamics (11) yields the error dynamics described by

J i ṡi = Y vi ( vi , qi , qd , qd , q d , τ si ) θi + J i di -k i s i ( 21 
)
where θi := θi -θ i and di := d di -d i . Now we define a Lyapunov function as

V i = 1 2 J i s 2 i + 1 2 θT i L i θi (22) 
Differentiating with respect to time, yields

Vi = -k i s 2 i + J i s i di + s i Y vi + θT i L i θi (23) 
Substituting θi from update law (20) implies that the last term in (23) is less than or equal to zero for all time, [START_REF] Bridges | Control of rigid-link, flexible-joint robots: a survey of backstepping approaches[END_REF]. Hence,

Vi ≤ -k i s 2 i + J i s i di (24) 
A. Computation of an upper bound for | di | Definition 1: Matrix R j i denotes the rotation matrix from frame i to j such that if v is a vector expressed in frame i then R j i v is the representation of v in frame j. Based on the Denavit-Hartenberg convention, we have

R k k+1 =   cq k -sq k cα k sα k sq k sq k cq k cα k -cq k sα k 0 sα k cα k   (25) 
where sx = sin x and cx = cos x. Moreover, q k is angle from x k to x k+1 and α k is angle between z k to z k+1 , [START_REF] Spong | Robot modeling and control[END_REF].

Remark 2: The parameter α k in (25) depends only on the structure of manipulator and therefore it is constant. Hence, matrix R k k+1 is a function of q k which can be time varying. Now, assume that the matrix R k (k+1)d is defined as R k (k+1)d := R k (q kd ). Also, let e k denote as the k th element of the error vector e. Based on Remark 2 the following lemmas can be concluded.

Lemma 1:

R k (k+1)d -R k k+1 1 ≤ 2 |e k | (26) Proof: See Appendix I
The following result is a straightforward consequence of lemma 1.

Lemma 2:

∂R k (k+1)d ∂q kd - ∂R k k+1 ∂q k 1 ≤ 2 |e k | (27) 
Lemma 3:

|z id .z jd -z i .z j | ≤ 6 i-1 k=j |e k | (28) Proof: See Appendix II Lemma 4: Finite constants ζ 1 , ζ 2 , ζ 3 ∈ R exist such that d dt z id .z jd -z i .z j ≤ ζ 1 i-1 k=j | ėk | + ζ 2 i-1 k=j |e k | + ζ 3 i-1 k=j | ėk | i-1 k=j |e k | (29)
Proof: See Appendix III From ( 7) and (17), di can be expressed by

di = i-1 j=1 { γ j z i .z j - d dt (z i .z j ) ėj + (z id .z jd -z i .z j )q dj + d dt (z id .z jd -z i .z j ) qdj -(z i .z j ) ṡj } (30)
Now from Lemma 3, and 4, it can be inferred that

| di | ≤ i-1 j=1 { γ j z i .z j - d dt (z i .z j ) ėj + 6 i-1 k=j |e k | qdj + ζ 1 i-1 k=j | ėk | + ζ 2 i-1 k=j |e k | + ζ 3 i-1 k=j | ėk | i-1 k=j |e k | | qdj | + |z i .z j || ṡj |} (31)

B. Convergence of tracking error

We show that s k and ṡk are bounded and converge to zero for k = 1, 2, ..., n. This is done in two steps. Firstly consider k = 1, based on the error dynamics ( 21) and ( 17) and ( 7)

J 1 ṡ1 = Y v1 θ1 -k 1 s 1 (32)
The Lyapunov function (22) for the system (32) becomes

V 1 = 1 2 J 1 s 2 1 + 1 2 θT 1 L 1 θ1 (33) 
Now, in light of (24) we have V1 ≤ -k 1 s 2 1 . A standard argument [START_REF] Ioannou | Robust adaptive control[END_REF] proves that s 1 ∈ 2 ∩ ∞ , and θ1 ∈ ∞ where ∞ and 2 denote the space of bounded and square integrable functions of time. This together with (32) implies that ṡ1 ∈ ∞ . Therefore s 1 ∈ 2 ∩ ∞ is uniformly continuous and converges to zero. Based on smoothness of all functions and convergence of s 1 to zero, it can be inferred that ṡ1 also converges to zero. In the second step, assume that s k , ṡk ∈ ∞ and converges to zero for 1 ≤ k ≤ i -1. From ( 31) and ( 15) we can see that di is bounded and converges to zero. Additionally, the Lyapunov function ( 22) can be bounded by

1 2 J i s 2 i + 1 2 λ(L i ) θi 2 ≤ V i ≤ 1 2 J i s 2 i + 1 2 λ(L i ) θi 2 (34) 
where λ(L i ) and λ(L i ) denote the minimum and the maximum eigenvalue of L i , respectively. Applying the Young's inequalities [START_REF] Hardy | Inequalities[END_REF] to (24) yields

Vi ≤ -k i s 2 i + |J i s i di | ≤ -k i s 2 i + 1 2 J 2 i s 2 i + 1 2 d 2 i (35)
Assume that µ i is defined by

µ i = | di | 2(k i -1 2 J 2 i -ρ i ) (36) 
where ρ i > 0, and k i is selected such that k i > 1 2 J 2 i + ρ i . Now, from (35) and (36) it can be seen that if

|s i | ≥ µ i then Vi ≤ -ρ i s 2
i and therefore V i is decreasing such that after some finite time, T 0 , we have

V i (t) ≤ V i,max := 1 2 J i µ 2 i + 1 2 λ(L i ) θi 2 max ( 37 
)
where θi max represents the maximum value of θi due to the projection algorithm used in the update law (20). This together with (34), yield

1 2 J i s 2 i ≤ 1 2 J i µ 2 i + 1 2 λ(L i ) θi 2 max -1 2 λ(L i ) θi 2 ( 38 
)
for t > T 0 . This implies that s i ∈ ∞ . Boundedness of s i together with (19) yields Y vi ∈ ∞ . Also, the projectionbased update law (20) ensures that θi ∈ ∞ . All terms in the right side of (21) are bounded, therefore ṡi ∈ ∞ . To show s i → 0, consider the level sets of the Lyapunov function ( 22) in Fig. 1. Define the system state as x i = [ s i θi ] T . Let define S i as

s i || θi || || θi || = || θi || max s i = -µ i (t) Ω µi(t) - 1 2 J i µ 2 i 1 2 J i µ 2 i s i = µ i (t) S i Ω *
S i = {(s i , θi ) |s i | ≤ µ i , 0 ≤ θi ≤ θi max } (39)
which specifies a rectangular region in R 2 . Obviously, Vi ≤ 0 outside S i . Evidently, Ω µi(t) is the smallest level set of V i that contains S i . Therefore it can be verified that if x i is initially outside the region S i then x i will necessarily go inside the Ω µi(t) and remain in S i for all time. On the other hand, based on (36); µ i → 0. Hence, Ω µi(t) → Ω * where

Ω * := {(s i , θi ) s i = 0, 0 ≤ θi ≤ θi max } (40)
This concludes that x i will eventually enter Ω * and remain in it for all time. Hence, s i → 0. Boundedness and smoothness of s i together with s i → 0 imply that ṡi → 0.

V. DECENTRALIZED VERSUS DECENTRALIZED CONTROL

Consider the system (5) with the centralized control [START_REF] Aghili | Adaptive control of manipulators using uncalibrated joint-torque sensing[END_REF] τ mc = T (q) -T (Y s ( v, v, q, τ s )ρ s -Ks) (41) ρs = -L s Y T s s where K and L s are positive-definite matrix gains. This control law ensures that s → 0. The control law in (41) can be decomposed as τ mc = τ de + τ ce where

τ de = Ĵ v + κτ s + γ + Y f θf -Ks τ ce = Ĵ(T -I) v + Ĵ Ṫ v -(T -I)Ks (42) 
Since Ĵ and K are diagonal matrices, τ dei depends only on q i , qi , and τ si . However, due to the structure of T , τ cei can depend on q k s other than q i . Comparing (42) and ( 16) yields

τ m = τ de + Ĵd d ( 43 
)
where elements of the vector d d is previously defined in (17).

It can be seen that τ de is similar to our propose decentralized law and τ ce contains Ĵd. Now assume that in the centralized law the coupling torque τ ce is simply ignored. It can readily be shown that if the Lyapunov function is chosen by

V = 1 2 s T Js + 1 2 ρT s L -1 s ρ (44) 
then its time derivative becomes where the vector d is previously defined in [START_REF] Hsu | A fully adaptive decentralized control of robot manipulators[END_REF]. In general, d is not zero and therefore convergence of s can not be proven by the Lyapunov function (44). Presence of the perturbation term, d, can even destabilize the controlled system.

V = -s T Ks -s T Jd (45) 

VI. SIMULATIONS

We consider a 4-DOF serial manipulator shown in Fig. 2. Physical parameters of robot are given in Table I. The gravity acceleration is given as g=9.807m/s 2 . Initial joint angles and velocities are assumed to be zero. It is assumed that the friction τ f i can be modelled by a static model [START_REF] De Wit | A new model for control of systems with friction[END_REF]. Friction model parameters together with joint torque sensor parameters are given in Table II (Stribeck velocity is set to zero). Initial estimates for the parameters are given by Ĵi (0)=2.5kg.m 2 , κi (0)=1, γi (0)=0, Fci (0)=1.5Nm, and Fvi (0)=1Nm.s. We investigate the tracking performance of the robot for the following trajectories.

       q 1d =
2 + 0.5 cos(t) -0.5 sin(3t) q 2d = 3 + 0.3 cos(3t) -0.5 sin(2t) q 3d = -2 + 0.2 sin(3t) + 0.1 cos(4t) q 4d = -4 + 0.3 sin(2t) + 0.2 cos(t) (46) Design parameters for the controller are chosen by 

           Γ = I 4×4 k 1 = 200, L -1 1 = diag(
Asymptotic motion tracking of the controlled system is shown in Fig. 3. Evolution of parameter estimation error θi for each joint is shown in Fig. 4.

A. Performance of the controller in presence of sensor faults

In this section the performance of the proposed decentralized controller and a centralized controller are compared. It is assumed that motion sensors are faulty such that after a specific time a colored noise is added to sensor outputs. The matrix T (q) -T for the manipulator in Fig. 2 is given by

T (q) -T =     1 0 0 sin(q 2 + q 3 ) 0 1 -1 0 0 0 1 0 0 0 0 1     (48) 
By virtue of the centralized law (41), and structure of T (q) -T , it is evident that τ 1 depends on q 1 , q 2 , q 3 and q 4 . Also, τ 2 depends on q 2 and q 3 . Therefore, any fault occurring on q 4 sensor, will affect performance of the first joint. This is investigated by simulation. For example, assume that a fault occurs in angle sensor of the fourth joint at time 7sec., i.e., q m4 (t) = q 4 (t) 0 < t < 7 sec . q 4 (t) + n(t) t ≥ 7 sec .

where q m4 represents the measure value of q 4 and n(t) is a colored Gaussian noise with mean 1 and variance 3. As we expect, in the decentralized controller, sensor fault in the fourth subsystem mainly affects the performance of its subsystem, while the same fault in the centralized controller affects other subsystems (first joint) strongly. Simulation results for this case are demonstrated in Fig. 5. 

VII. CONCLUSION

A dynamically smooth decentralized adaptive controller for trajectory tracking of robot manipulators is proposed based on joint torque sensing. Motion tracking error globally converges to zero without any chattering effect in the control law. Torque sensors are assumed to be uncalibrated and joint rotor inertial and friction parameters are assumed to be unknown. Stability of the controlled systems is demonstrated by strong mathematical induction. Performance of proposed decentralized controller against a centralized controller is demonstrated in presence of sensor faults. By use of R j i = R j j+1 (q j )R j+1 j+2 (q j+1 ) . . . R i-1 i (q i-1 ) it is inferred that

∂R j i ∂q k = R j k ∂R k k+1 ∂q k R k+1 i (57)
Therefore, from (56) the term Ṙj id -Ṙj i can be written as 
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 1 Fig. 1. Level sets of the Lyapunov function (22).
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 2 Fig. 2. Symbolic representation of the manipulator used in the simulation
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 43 Fig. 3. Position tracking.
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 4 Fig. 4. Parameters estimation error θi .
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 5 Fig. 5. Velocity tracking error of joint 1 when a sensor fault occur at t = 7s in joint 4.

TABLE I TABLE I .

 II PHYSICAL PARAMETER OF THE ROBOT MANIPULATOR

		Link 1	Link 2	Link 3	Link 4
	Link length (m)	1	1	1	0.3
	Link mass (kg)	2	2	2	1
	Link inertia (kg.m 2 )	0.0421	0.0421	0.0421	0.021
	Mass center (m)	0.5	0.5	0.5	0.15
	Rotor inertia (kg.m 2 ) 4	3	2	1

TABLE II TABLE II .

 IIII FRICTION AND JOINT TORQUE SENSOR PARAMETERS

		Link 1 Link 2 Link 3	Link 4
	Coulomb friction coef. (Nm)	2.2	2.1	1.9	1.8
	Viscose friction coef. (Nm.s) 1.6	1.4	1.3	1.2
	Gain of joint torque sensor	1.2	1.1	0.9	0.8
	Offset of joint torque sensor	-3.2	-2	1.5	3

PROOF OF LEMMA 1

According to Remark 2 and from (25)

According to trigonometric identities we can easily see that

From definition of the rotational matrix, we have

From properties of the rotational matrix we know that

Adding and subtracting R j+1 id R j j+1 to above equation results

By iterating this trend, we have

Consider the rotational matrix expressed as R j i = [r 1 r 2 r 3 ] where r i , i = 1, 2, 3 are its columns. According to properties of the rotational matrix we know that r i 2 = 1. Hence,

From ( 52) and (53), it is concluded that