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Introduction

Synchronization is a ubiquitous phenomena in the nature. Social living of animals, such as schools of fish, flocks of birds, and fireflies shows the power of the synchronization. Inspired from the nature, consensus problem in networks of dynamical systems has attracted the attention of many scientists. Consensus means that all agents in a network reach an agreement in some qualities. Nowadays, consensus problem has found applications in variety fields such as spacecrafts attitude synchronization, 1 frequency synchronization in power grids, [START_REF] Schiffer | Robustness of distributed averaging control in power systems: Time delays & dynamic communication topology[END_REF] and unmanned aerial vehicles cooperation. [START_REF] Liu | A survey of formation control and motion planning of multiple unmanned vehicles[END_REF][START_REF] Hou | Fast convergence of multi-quadrotor cooperation using weighted-neighborbased control[END_REF] Primary works in this subject consider a simple linear dynamical model for agents with a singleintegrator [START_REF] Olfati-Saber | Consensus problems in networks of agents with switching topology and time-delays[END_REF] or double-integrator. [START_REF] Ren | Consensus algorithms for double-integrator dynamics[END_REF] Because of the nonlinear nature of the most real systems, some papers have investigated consensus in nonlinear systems. [START_REF] Yu | Consensus in directed networks of agents with nonlinear dynamics[END_REF][START_REF] Qu | Cooperative control of dynamical systems with application to autonomous vehicles[END_REF] An important class of nonlinear systems is the Euler-Lagrange (EL) systems. Because EL systems can model a wide range of physical systems such as mechanical, electrical, and electromechanical systems, [START_REF] Ortega | Passivity-based control of Euler-Lagrange systems: mechanical, electrical and electromechanical applications[END_REF] solving consensus problem for these systems is very useful. [START_REF] Nuño | Achieving consensus of euler-lagrange agents with interconnecting delays and without velocity measurements via passivity-based control[END_REF][START_REF] Abdessameud | On the leader-follower synchronization of eulerlagrange systems[END_REF][START_REF] Chen | Distributed average tracking of networked euler-lagrange systems[END_REF][START_REF] Wang | Passivity based synchronization for networked robotic systems with uncertain kinematics and dynamics[END_REF] Basically there three main approaches for solving consensus problem in networks of EL agents, i.e., model-based approaches, adaptive approaches, and modelindependent approaches. In the model-based approaches, exact knowledge about at least some parts of the models is necessary. Benefiting form the exact models, some interesting problems like finite-time consensus and leader-follower consensus with moving leader can be solved. In Chen et al., [START_REF] Chen | Finite-time cooperative-tracking control for networked euler-lagrange systems[END_REF] finite-time leader-follower consensus problem is considered and non-smooth control laws are proposed to solve the problem. It is shown that the smooth version of the presented laws can only achieve ultimate only the gravitational torques instead of the whole dynamics of the agents, reduces the excitation levels required for efficient parameter search, the convergence time, and the complexity of the regressor. Additionally, in most of the reviewed papers above, velocity information exchange between agents is needed even if the consensus position is constant. Transferring velocity measurements increases communication cost of the controller. Also, in some cases such as mobile robots, relative positions can be measured in each agent without using communication channels, while relative velocity measurement is more difficult. [START_REF] Mei | Distributed adaptive coordination for multiple lagrangian systems under a directed graph without using neighbors velocity information[END_REF] Using the relative position sensors instead of the communication channels, significantly eliminates time-delay from the control system. It should be noted that for setting controllers gains, we need some global information like the maximum eigenvalue of the Laplacian matrix of the graph. Rest of the paper is organized as follows. In Section 2, we describe the dynamic model of robot manipulators considered in this paper. In Section 3, we describe network topology and express leaderless and leader-follower consensus problems. Section 4 provides solutions of the consensus problems and proves stability of them. Numerical examples are provided in Section 5 to illustrate the performance of the proposed controllers. Some conclusion remarks are given in Section 6.

Notation : R = (-∞, ∞). I n ∈ R n×n is the identity matrix and I = I N . Operator ⊗ represents the Kronecker product. 1 is a column vector which all entries are equal to one and 0 is a column vector which all entries are equal to zero. Operator • represents Euclidean norm of a vector and 2-norm of a matrix.

Dynamic Model

Consider a network of N robotic manipulators, each described by the Euler-Lagrange equation,

M i (q i ) qi + C i (q i , qi ) qi + g i (q i ) = τ i , (1) 
where sub-index i ∈ {1, 2, . . . , N } represents quantities related to the ith manipulator, q i ∈ R n represents the joint angle vector (position vector), M i (q i ) > 0 ∈ R n×n is the inertia matrix, and C i (q i , qi ) ∈ R n×n is the centrifugal and Coriol is forces matrix defined via the kristoffel symbols of the first kind. [START_REF] Spong | Robot modeling and control[END_REF] Also, g i (q i ) ∈ R n shows the gravitational torque and τ i ∈ R n is the motor input torque. Dynamical parameters of the inertia and Coriolis matrices and gravitational torque vector are unknown. We assume that all robotic manipulators are serial with only revolute joints, then following properties are well-known: [START_REF] Spong | Robot modeling and control[END_REF][START_REF] Kelly | Control of robot manipulators in joint space[END_REF][START_REF] Almodaresi | Decentralized control of reconfigurable robots using joint-torque sensing[END_REF] Property 1. Defining matrix C i (q i , qi ) via the Kristoffel symbols of the first kind, 33 time-derivative of the inertia matrix can be written as Ṁi (q i ) = C i (q i , qi ) + C i (q i , qi ). Therefore, matrix Ṁi (q i ) -2C i (q i , qi ) is skew-symmetric, i.e.,

x T Ṁi (q i ) -2C i (q i , qi ) x = 0, ∀x ∈ R n . (2) 
Property 2. Inertia matrix M i (q i ) is symmetric and positive definite and there exist positive constants m i , and m i such that,

m i I n < M i (q i ) < m i I n , (3) 
Property 3. Matrix C i (q i , qi ) is bounded with respect to q i and linear with respect to qi , therefore there exists a known positive constant k ci such that,

C i (q i , qi ) ≤ k ci qi . (4) 
Property 4. For all x, y, z ∈ R n ,

C i (x, y)z = C i (x, z)y. (5) 
Gravitational torque of the EL system can be linearly parametrized as,

g i (q i ) = Y i (q i )ψ i , (6) 
where regressor Y i (q i ) ∈ R n×l is completely known and constant parameter vector ψ i ∈ R l is assumed to be unknown. Parameter vector ψ i depends on the physical parameters of the system. For example, in robotic manipulators, ψ i may depends on link masses, link lengths, and payload mass. Defining the overall joint angle and torque as q := col(q i ), τ := col(τ i ), i = 1, 2, . . . , N,

where col(v i ) denotes a column vector with entries v i , dynamics of the whole network can be compactly written as, M (q)q + C(q, q) q + g(q) = τ,

where, M (q) := blockdiag (M i (q i )) , C(q, q) := blockdiag (C i (q i , qi )) , g(q) := col (g i (q i )) , i = 1, 2, . . . , N, and blockdiag(•) denotes the block diagonal matrix. Defining Y (q) = blockdiag (Y i (q i )) and ψ = col(ψ i ), overall gravity vector g(q) can be written as,

g(q) = Y (q)ψ. (9) 
From Property 2 it can be seen that the block diagonal matrix M (q) is positive definite and satisfies,

λ(M ) ≤ max i {m i }, (10) 
where λ(M ) is the maximum eigenvalue of the matrix M (q).

Network Topology and Consensus Problems

In this section some definitions from the algebraic graph theory are given and then the leaderless and leader-follower consensus problems are introduced.

Network Topology

To achieve consensus, EL agents exchange information over a network which is described by a graph G = (V, E, A). The set of nodes V = {v 1 , v 2 , . . . , v N } represents the EL agents and the set of edges E ⊂ V × V describes the connection between them. Agent j sends information to agent i (i = j) if and only if

E ij = (v i , v j ) ∈ E. We assume that the graph is self-loop-free which means, E ii / ∈ E for all i ∈ {1, 2, . . . , N }. The matrix A = [a ij ] ∈ R N ×N
is the adjacency matrix of the graph and dedicates a positive weight to each edge. Therefore a ij > 0 if E ij ∈ E, otherwise a ij = 0. The neighbours' set of node v i is defined as

N i := {v j ∈ V : (v i , v j ) ∈ E}. ( 11 
)
A graph is called undirected if a ij = a ji for all i, j ∈ {1, 2, . . . , N }. An undirected graph is connected if there exist a path between every pair of nodes. [START_REF] Godsil | Algebraic graph theory[END_REF] For describing a graph, it is convenient to define the Laplacian matrix as

L := ∆ -A, ∆ := diag(A.1), (12) 
From the definition (12), vector 1 is a right eigenvector of the matrix L associated with the zero eigenvalue, i.e., L.1 = 0. In this paper following assumption about the network topology is considered.

Assumption 1. Network graph G is undirected and connected.

Assumption 1 guarantees that the Laplacain L is a positive semi-definite matrix with a single zero-eigenvalue, therefore ker(L) = {c.1 : c ∈ R}.

(13)

Consensus Problems

Consider a group of N robot manipulators with a network topology satisfying Assumption 1. Assume that only the position information of the agents exchange through the network.

The purpose of this paper is to find a distributed controller for solving following consensus problems.

1. Leaderless Consensus Problem: Position of all robot manipulators have to reach a same constant position asymptotically, i.e., lim t→∞ q i (t) = q c lim t→∞ qi (t) = 0, (14) for some constant q c ∈ R n . 2. Leader-Follower Consensus Problem: Consider a leader node with constant position q ∈ R n . The leader's position is available for only some of manipulators not for all of them. Position of all manipulators have to reach the leader's position asymptotically, i.e., lim t→∞ q i (t) = q lim t→∞ qi (t) = 0, (15)

Controller Design and Stability Analysis

In this section, separate controllers for both leaderless and leader-follower consensus problems are designed.

Leaderless Consensus Problem

Consider the ith relative position error defined as

e i := vj ∈Ni a ij (q i -q j ), (16) 
Then the ith agent control law for solving leaderless consensus problem is proposed as

τ i = -pe i -d i qi + ĝi , (17) 
where p and d i are positive proportional and damping gains, respectively, and ĝi is an adaptive estimation of the gravity vector g i , which is given by,

ĝi = Y i ψi , ( 18 
) ψi = -Γ i Y i T γ qi + p e i 1 + e i T e i , ( 19 
)
where γ is a positive gain and Γ i = Γ i T is a positive definite adaptation gain matrix. Implementation of the controller can be described as in Algorithm 1.

Algorithm 1 Leaderless consensus algorithm

For a given manipulator i, start with an initial estimate of gravity parameters ψi (0), then, proposed controller is implemented recursively by following steps.

1: Collect position's information from the neighbours' set N i and calculate relative position error e i (t) defined in ( 16). 2: Update gravity parameters' estimation ψi (t) by using (19). 3: Update gravity vector's estimation ĝi (t) by using (18). 4: Calculate input torque τ i (t) by using (17).

Remark 1. The control law (17) has a distributed structure, i.e., each agent need only some information from its neighbours to generates the control law. Additionally, there is no need for velocity information exchange.

Remark 2. Most of the existing works in distributed adaptive control of networked EL agents are inspired from the conventional Slotine and Li adaptive controller [START_REF] Slotine | Adaptive manipulator control: A case study[END_REF] for a single EL system. Therefore they use a linearly parametrized form of the whole dynamics as

M i (q i )x + C i (q i , qi )y + g i (q i ) = Φ i (x, y, q i , qi )θ i , (20) 
where Φ i ∈ R n×ρ is a known regressor and θ i ∈ R ρ is an unknown constant vector which depends on the physical parameters of the system. Since the Slotine and Li adaptive controller needs the velocity tracking error, these methods will need the velocity information exchanges among agents. For example consider the following adaptive controller [START_REF] Nuno | Synchronization of networks of nonidentical eulerlagrange systems with uncertain parameters and communication delays[END_REF] ,

τ i = Φ i ( ėi , e i , q i , qi ) θi -D i i , θi = -Γ i Φ T i i (21) 
where i = qi + λe i , D i is a positive definite diagonal matrix, θi is an adaptive estimation of θ i and q i , e i , Γ i have the same definitions as in this paper. Form (21), it can be seen that τ i depends on ėi and therefore for implementing this control law, each agent needs the velocity information of its neighbours. Additionally, parametrizing the whole dynamics of the EL system causes the parameter vector θ i to have bigger size than the parameter vector ψ i . This will increase the computational cost of the controller.

The control law (17) and adaptation law (19) can be compactly written as,

τ = -(P L ⊗ I)q -D q + ĝ, (22) 
ĝ = Y ψ, (23) ψ 
= -ΓY T γ q + Z(e)(P L ⊗ I)q , ( 24 
)
where P := pI n , D := blockdiag(d i I n ), Γ := blockdiag(Γ i ), Y := blockdiag(Y i ), e := (L ⊗ I)q, and normalization matrix Z(e) is defined as,

Z(e) := blockdiag 1 1 + e i T e i I n . (25) 
Based on the definition of normalization matrix Z = Z(e), following Lemmas can be concluded.

Lemma 1. Define e := (P L ⊗ I)q, then,

Ze ≤ √ N 2 p. (26) 
Proof. See Appendix A.

Lemma 2. Define matrix W (e, ė) as,

W (e, ė) := blockdiag ėi T e i 1 + e i T e i I n , (27) 
then,

Ż = -2ZW, W ≤ 1 2 λ(L) q , ( 28 
)
where λ(L) represents the maximum eigenvalue of the Laplacian matrix L.

Proof. See Appendix B.

Lemma 3. Normalization matrix Z can be factorized as Z = R T R where R ≤ 1 and,

R = blockdiag 1 1 + e T i e i I n . (29) 
Also,

Re = 0 ⇐⇒ e = 0. (30) 
Proof. See Appendix C.

Theorem 1. Consider a network of EL agents (1) with an interconnection graph satisfying Assumption 1. The control law (17) with the adaptive law (19) solves the leaderless consensus problem ( 14) if controller gains are set such that

γ > max 1 λ(D) λ(M )λ(L)p + 1 2 λ(M )λ(L)p √ N + 1 2 λ(D) 2 + 1 2 k c p √ N , λ(M ) P L ⊗ I . (31) 
Proof. We will prove Theorem 1 based on the LaSalle-Yoshizawa theorem. [START_REF] Krstic | Nonlinear and adaptive control design[END_REF] It should be noted that, the LaSalle-Yoshizawa theorem is an extension of the LaSalle theorem [START_REF] Khalil | Nonlinear systems[END_REF] and it applicable to the non-autonomous nonlinear systems. For this purpose, we first introduce a new positive definite Lyapunov function. Then, we take time derivative from the Lyapunov function and simplify it by using the properties of the dynamic system. Consider candidate Lyapunov function as,

V = 1 2 γ qT M q + 1 2 γq T (P L ⊗ I)q + q T (P L ⊗ I) T ZM q + 1 2 ψT Γ -1 ψ. ( 32 
)
where parameters' error vector is defined as ψ = ψ -ψ. Appendix D shows that the Lyapunov function ( 32) is positive definite if γ satisfies (31). Differentiating from the Lyapunov function (32) with respect to time results, V = 1 2 γ qT M q + 1 2 γ qT Ṁ q + 1 2 γ qT M q + 1 2 γ qT (P L ⊗ I)q + 1 2 γq T (P L ⊗ I) q+ qT (P L ⊗ I) T ZM q + q T (P L ⊗ I) T ŻM q + q T (P L ⊗ I) T Z Ṁ q + q T (P L ⊗ I) T ZM q+

1 2 ψT Γ -1 ψ + 1 2 ψT Γ -1 ψ. ( 33 
)
Before simplifying (33), consider arbitrary vectors x, y ∈ R n and symmetric matrix A ∈ R n×n . As x T Ay is a scaler, we have,

x T Ay = x T Ay T = y T A T x = y T Ax. (34) 
From ( 34), we have,

1 2 γ qT M q = 1 2 γ qT M q, 1 2 γ qT (P L ⊗ I)q = 1 2 γq T (P L ⊗ I) q, 1 2 ψT Γ -1 ψ = 1 2 ψT Γ -1 ψ.
(35) Using ( 35), ( 33) can be simplified as, V = γ qT M q + 1 2 γ qT Ṁ q + γ qT (P L ⊗ I)q + qT (P L ⊗ I) T ZM q + q T (P L ⊗ I) T ŻM q+ q T (P L ⊗ I) T Z Ṁ q + q T (P L ⊗ I) T ZM q + ψT Γ -1 ψ. (36) As the parameter vector ψ is constant, we have, ψ = ψ. Therefore (36) can be written as, V = γ qT M q + 1 2 γ qT Ṁ q + γ qT (P L ⊗ I)q + qT (P L ⊗ I) T ZM q + q T (P L ⊗ I) T ŻM q+ q T (P L ⊗ I) T Z Ṁ q + q T (P L ⊗ I) T ZM q + ψT Γ -1 ψ. (37) Substituting control law (22) into system dynamics (8), closed-loop dynamics is,

M (q)q = -(P L ⊗ I)q -D q + ĝ -g -C q. ( 38 
)
Now, substituting closed-loop dynamic (38) into (37) yields, V = γ qT -(P L ⊗ I)q -D q + ĝ -g -C q + 1 2 γ qT Ṁ q + γ qT (P L ⊗ I)q+ qT (P L ⊗ I) T ZM q + q T (P L ⊗ I) T ŻM q + q T (P L ⊗ I) T Z Ṁ q+

q T (P L ⊗ I) T Z -(P L ⊗ I)q -D q + ĝ -g -C q + ψT Γ -1 ψ. ( 39 
)
Simplifying ( 39) results, V = γ qT -(P L ⊗ I)q -D q + ĝ -g + (P L ⊗ I)q + 1 2 γ qT Ṁ -2C q+ qT (P L ⊗ I) T ZM q + q T (P L ⊗ I) T ŻM q+

+ q T (P L ⊗ I) T Z Ṁ q -(P L ⊗ I)q -D q + ĝ -g -C q + ψT Γ -1 ψ. ( 40 
)
By substituting ( 9) and ( 23) and using Property 1, time derivative of the Lyapunov function ( 40) can be simplified as, V = γ qT -D q + Y ψ + qT (P L ⊗ I) T ZM q + q T (P L ⊗ I) T ŻM q+

+ q T (P L ⊗ I) T Z (C + C T ) q -(P L ⊗ I)q -D q + Y ψ -C q + ψT Γ -1 ψ. ( 41 
)
Using the definition e := (P L ⊗ I)q, (41) can be written as,

V = γ qT -D q + Y ψ + qT (P L ⊗ I) T ZM q + e T ŻM q+ e T Z C T q -e -D q + Y ψ + ψT Γ -1 ψ. ( 42 
)
Collecting terms which include ψ together and rearranging (42) results, V = -γ qT D q + qT (P L ⊗ I) T ZM q + e T ŻM q + e T ZC T q -e T Ze -e T ZD q+ ψT Γ -1 + γ qT Y + e T ZY ψ. (43)

Substituting parameter update law ( 24) into (43), yields, V = -γ qT D q + qT (P L ⊗ I) T ZM q + e T ŻM q + e T ZC T q -e T Ze -e T ZD q (44)

Now replacing Z with R T R (Lemma 3) and Ż with -2ZW (Lemma 2), results,

V = -γ qT D q + qT (P L ⊗ I) T ZM q -2e T ZW M q + e T ZC T q -e T R T Re- e T R T RD q. ( 45 
)
Now, note that e T ZC T q = qT CZe, additionally from Property 4, we have C(q, q)Ze = C(q, Ze) q. Therefore (45) can be written as, V = -γ qT D q + qT (P L ⊗ I) T ZM q -2e T ZW M q + qT C(q, Ze) q -e T R T Ree T R T RD q. (46)

Using Property 3 and Lemma 1-3, V can be bounded as,

V ≤ -γλ(D) q 2 + λ(M )λ(L)p q 2 + 1 2 λ(M )λ(L)p √ N q 2 + 1 2 k c p √ N q 2 -Re 2 + Re λ(D) q . ( 47 
)
Applying Young's inequality [START_REF] Hardy | Inequalities[END_REF] to the last term of (47) yields,

Re λ(D) q ≤ 1 2 Re 2 + 1 2 λ(D) 2 q 2 , (48) 
combining ( 47) and (48) results,

V ≤ - 1 2 Re 2 + -γλ(D) + λ(M )λ(L)p + 1 2 λ(M )λ(L)p √ N + 1 2 λ(D) 2 + 1 2 k c p √ N q 2 . ( 49 
)
From (31), it is known that there exist β > 0 such that,

V ≤ -β q 2 - 2 Re 2 . (50) 
Applying the LaSalle-Yoshizawa theorem 37 results, q → 0 and Re → 0. From Lemma 3 it is concluded that e = (L ⊗ I n )q → 0. Assumption 1 ensures that ker(L) = {c.1 : c ∈ R}, and therefore q → 1 ⊗ q c . in other word, qi → 0,

q i → q c ,
hence consensus is reached.

Leader-Follower Consensus Problem

Interconnections between leader and followers can be described with a diagonal matrix B = diag(b i ) ∈ R n×n where b i > 0 if the leader's position is accessible to agent i and b i = 0, otherwise. Assume that at least one agent has access to the leader's position (q ), therefore B is a symmetric positive-definite matrix. By Assumption 1, the follower interconnection Laplacian matrix L is symmetric and positive semi-definite, hence the composite matrix L = L + B is symmetric and positive definite.

Redefining the ith position error as,

e i := b i (q i -q ) + vj ∈Ni a ij (q i -q j ), (51) 
leader-follower controller and parameter estimation law are same as ( 17) and ( 19), receptively, with the new error definition (51). Consider the leader-follower error vector defined as,

q = q -(1 ⊗ q ), (52) 
then, compact form of the leader-follower controller can be written as,

τ = -(P L ⊗ I)q -D q + ĝ, (53) ĝ 
= Y ψ, (54) ψ 
= -ΓY T γ q + Z(e)(P L ⊗ I)q , (55) 
where matrix definitions are same as the leaderless case.

Theorem 2. Consider a network of EL agents (1) with a leader. Assume that follower interconnection graph satisfies Assumption 1 and a nonempty set of followers has access to the leader's position. Then control law (17) and adaptive law (19) using the error definition (51), solves the leader-follower consensus problem (15) if controller gains satisfy

γ > max 1 λ(D) λ(M )λ(L )p + 1 2 λ(M )λ(L )p √ N + 1 2 λ(D) 2 + 1 2 k c p √ N , λ(M ) P L ⊗ I . (56) 
Proof. Candidate Lyapunov function can be constructed by some little modification to the Lyapunov function (32) as,

V = 1 2 γ qT M q + 1 2 γ qT (P L ⊗ I)q + qT (P L ⊗ I) T Z(e)M q + 1 2 ψT Γ -1 ψ. (57) 
Considering gain conditions (56), with a same procedure as the proof of Theorem 1, time derivative of the Lyapunov function can be bounded as

V ≤ -β q 2 - 1 2 Re 2 . ( 58 
)
where e := (P L ⊗ I)q. Since L is positive definite, (P L ⊗ I) is positive definite and therefore invoking LaSalle-Yoshizawa theorem yields, q → 0 and q → 0. Now, from the definition q = q -(1 ⊗ q ), it is concluded that q i → q . Therefore all agents reach a consensus on the leader's position.

Simulation Results

Consider a network of ten 4-DOF manipulators. Fig. 1 shows the symbolic representation of each manipulator. We consider three different types of manipulators. Physical parameters of the manipulators 1-3, manipulators 4-6, and manipulators 7-10 are given in Table I, Table II, and Table III, respectively. Laplacian matrix of the interconnection graph is given by L = 0.1L g , where,

L g =                
14 0 -3 0 0 0 0 -4 0 -7 0 9 0 -8 0 0 0 0 0 -1 -3 0 5 0 0 0 0 -2 0 0 0 -8 0 10 0 0 0 0 -2 0 0 0 0 0 8 0 -5 0 -3 0 0 0 0 0 0 6 0 -4 -2 0 0 0 0 0 -5 0 14 0 0 -9 -4 0 -2 0 0 -4 0 10 0 0 0 0 0 -2 -3 -2 0 0 7 0 -7 -1 0 0 0 0 -9 0 0 17

               
.

Initial joint velocities are assumed to be zero while initial joint positions are set as

q T 0 = q T (0) = [2, 6, -7, 3, 1, 8, 0, 1, -6, 9, -5, 0, -4, 5, -3, 4, -2, 7, -8, 1, 1, 5, -6, 4, 0, 7, 2, -1, -7, 2, -7, 2, -2, 7, 2, -3, -1, -6, 7, -2].
Initial estimates for the parameters are set as ψ(0) = 0. Design parameters of the controller are chosen as p = 4,

d i = 8, Γ i = 40I, γ = 2.
Simulation results for the leaderless consensus controller are shown in Fig. 2. This figure shows that by using the proposed controller the consensus reaching of joint positions is possible even without exact knowledge of manipulators dynamics and exchanging velocity informations between them. For evaluating the performance of the leader-follower controller, consider a constant leader with q = [-2, -1, 1, 0] T rad. Assume that the leader's position is only available for agents 1, 6, and 7. Therefore the corresponding gains of these agents in the matrix B are set to b 1 = b 6 = b 7 = 20 and other gains b i are set to zero. Time evolution of the agents' positions are shown in Fig. 3.

Performance of the controller in presence of payload variation

In this section, effect of payload variation in the performance of the proposed adaptive controller and the non-adaptive controller [START_REF] Nuno | Consensus in networks of nonidentical euler-lagrange systems using p+ d controllers[END_REF] are compared. It should be noted that the proposed controller [START_REF] Nuno | Consensus in networks of nonidentical euler-lagrange systems using p+ d controllers[END_REF] is not designed to deal with parametric uncertainties. Assume that at time 20sec, payloads of the manipulators 9 and 10 are increased 2kg. As we expect, this payload variation do not affect the consensus reaching of the proposed method in this paper, while it can destroy the performance of the non-adaptive controller. [START_REF] Nuno | Consensus in networks of nonidentical euler-lagrange systems using p+ d controllers[END_REF] In fact, proposed controller adapts itself with the new payloads by modifying the estimated parameters. Simulation result of this case is shown in Fig. 4.

Conclusion

A distributed adaptive controller is proposed to deal with the consensus problem in networks of uncertain EL agents. Both leaderless and leader-follower consensus problems are considered. For implementing the proposed controllers, only some bounds of inertia and Coriolis matrices of manipulators are needed and the gravitational torque is estimated adaptively. Estimating only the gravitational torque of manipulators decrease the computational cost of the controller. Also, against of most existing works, there is no need for velocity information exchange between agents. This property decreases the communicational cost of controller. Additionally using the relative position sensors, can eliminate the communication channels and decrease the time-delay in the control system significantly. Choosing suitable gains for controllers, guaranties the global asymptotic consensus. Stability of the closed-loop system is demonstrated using the Lyapunov analysis. Performance of the controller is investigated for a network of ten manipulators with simulation. Better performance of the proposed controller against a nonadaptive controller in presence of payload variation is demonstrated. An interesting extension for future research is to consider directed graphs instead of undirected graphs. Also, in this work we considered obstacle free workspace, how to extend the proposed solution such that the manipulators avoid obstacles is an interesting topic for future works. 

Fig. 2 .Fig. 3 .

 23 Fig. 2. Leaderless synchronization of the positions.

Fig. 4 .

 4 Fig. 4. Positions of joint 2 when a payload variation occurs at t = 20s in manipulators 9 and 10.

Table I .

 I Physical parameters of the robot manipulators 1-3. Symbolic representation of each manipulator in the network.

	Fig. 1.				
		Link 1	Link 2	Link 3	Link 4
	Link length (m)	1	1	1	0.3
	Link mass (kg)	2	2	2	1
	Link inertia (kg.m 2 )	0.0421	0.0421	0.0421	0.021
	Mass center (m)	0.5	0.5	0.5	0.15

Table II .

 II Physical parameters of the robot manipulators 4-6.

		Link 1	Link 2	Link 3	Link 4
	Link length (m)	0.5	0.8	0.6	0.2
	Link mass (kg)	1	0.9	1	0.5
	Link inertia (kg.m 2 )	0.03	0.03	0.03	0.01
	Mass center (m)	0.25	0.4	0.3	0.1

Table III .

 III Physical parameters of the robot manipulators 7-10.

		Link 1	Link 2	Link 3	Link 4
	Link length (m)	0.3	0.5	0.4	0.4
	Link mass (kg)	0.5	0.7	0.6	0.7
	Link inertia (kg.m 2 )	0.02	0.05	0.02	0.04
	Mass center (m)	0.15	0.25	0.2	0.2

A. Proof of Lemma 1 From (25), we have

p 2 e i T e i (1 + e i T e i ) [START_REF] Schiffer | Robustness of distributed averaging control in power systems: Time delays & dynamic communication topology[END_REF] .

(A1)

Consider a scaler function f (x) = x (1+x) 2 , where x ∈ R. It can be easily verified that max x f (x) = 1/4. Now, considering e i T e i as x, last term in (A1) can be bounded as,

Consider the normalized error vector definition as êi = ei 1+ei T ei , since W is a diagonal matrix, its 2-Norm can be calculated as

Applying the Cauchy-Schwarz inequality yields

on the other hand êi is a normalized vector and its norm can be bounded as

Combining (A6) and (A7) results

C. Proof of Lemma 3

The matrix R which is defined in ( 29) is a diagonal matrix, therefore its 2-norm can be bounded as

Also, norm of vector Re can be written as

p 2 e T i e i 1 + e T i e i , since p > 0, following equivalences hold,

D. Positive definiteness of the Lyapunov function

Positive definiteness of the Lyapunov function is shown by using the Schur Complements method.

Lemma 4. [START_REF] Gallier | The schur complement and symmetric positive semidefinite (and definite) matrices[END_REF] Consider a block matrix P , of the form

Consider x := col(q, q), The Lyapunov function (32) can be rewritten as
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where

For showing the positive definiteness of the Lyapunov function (A10), since Γ is a positive definite matrix, it is necessary to show that A is a positive semi-definite matrix. Because γM > 0, according to Lemma 4,

According to the Assumption 1, (P L ⊗ I) ≥ 0, therefore a sufficient condition for right side of (A12) is

From the definition of positive semi-definite matrices, (A13) can be written as

Using the definition of maximum singular value of a matrix and the fact Z ≤ 1, The condition (A14) is confirmed if

Therefore choosing an appropriate γ, guaranties that V ≥ 0. Now for showing the positive definiteness of the Lyapunov function V , it is necessary to show V = 0 ⇐⇒ e q = 0, (A16) when e = q = 0, it is straightforward to see that V = 0. Assume that V = 0, then

Replacing A from (A11), gives the following equations, γ(P L ⊗ I)q + (P L ⊗ I) T ZM q = 0, (A18)

M Z(P L ⊗ I)q + γM q = 0. (A19)

Replacing (A19) into (A18) and simplifying, results

From (A13) and (A15), it can be seen that if γ > λ(M ) P L ⊗ I then the matrix (I -1 γ 2 (P L ⊗ I)ZM Z) is positive definite and therefore full-rank. Hence the equality (A20) will be satisfied if e = (P L ⊗ I))q = 0.

(A21)

Now replacing this result into (A19), and using the full-rankness property of the matrix M , yields q = 0. Therefore the Lyapunov function V is positive definite.