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Introduction

Synchronization and cooperative behaviors are ubiquitous in nature. Social groups of animals such as schools of fish, flocks of birds and fireflies show the power of these phenomena. Inspired from nature, synchronization and other cooperative control problems, in networks of dynamical systems, has attracted the attention of many scientists [START_REF] Camazine | Self-Organization in Biological Systems[END_REF]. The objective in cooperative control is to design a distributed controller so that the aggregate system achieves specified behaviors, such as flocking [START_REF] Lee | Stable flocking of multiple inertial agents on balanced graphs[END_REF][START_REF] Gu | Leader-follower flocking: Algorithms and experiments[END_REF], synchronization [START_REF] Rodriguez-Angeles | Mutual synchronization of robots via estimated state feedback: a cooperative approach[END_REF][START_REF] Abdessameud | Attitude synchronization of multiple rigid bodies with communication delays[END_REF], coordination [START_REF] Wang | A dual quaternion solution to attitude and position control for rigid-body coordination[END_REF][START_REF] Qin | Coordination of multiple agents with double-integrator dynamics under generalized interaction topologies[END_REF], rendezvous and formation control. The fundamental cooperative behavior is consensus, where all agents in a network reach an agreement in some coordinates of interest. Consensus control can be split into two classes, namely, the leader-follower, where a network of agents agree at a given leader reference; and the leaderless, where in the absence of a leader, the agents converge to a certain common value [START_REF] Arcak | Passivity as a design tool for group coordination[END_REF][START_REF] Ren | Distributed Coordination of Multi-agent Networks: Emergent Problems, Models, and Issues[END_REF][START_REF] Liu | Consensus for multiple heterogeneous Euler-Lagrange systems with time-delay and jointly connected topologies[END_REF][START_REF] Aldana | Pose consensus in networks of heterogeneous robots with variable time delays[END_REF][START_REF] Klotz | Asymptotic synchronization of a leader-follower network of uncertain Euler-Lagrange systems[END_REF].

The consensus control problem presents significant theoretical and practical challenges, specially when dealing with networks of nonlinear systems, as Euler-Lagrange (EL) agents [START_REF] Bai | Cooperative control design: a systematic, passivity-based approach[END_REF][START_REF] Ren | Distributed Coordination of Multi-agent Networks: Emergent Problems, Models, and Issues[END_REF][START_REF] Hatanaka | Passivity-Based Control and Estimation in Networked Robotics[END_REF]. The control of EL-agents is interesting because these systems describe the behavior of several physical systems-including mechanical, electrical and electromechanical systems [START_REF] Ortega | Passivitybased Control of Euler-Lagrange Systems: Mechanical, Electrical and Electromechanical Applications[END_REF]. The first results on consensus (synchronization) of a particular class of EL-agents has been reported in [START_REF] Chopra | On synchronization of networked passive systems with time delays and application to bilateral teleoperation[END_REF] and the case of general, nonidentical, EL-systems has been re-ported in [START_REF] Nuño | Synchronization of networks of nonidentical Euler-Lagrange systems with uncertain parameters and communication delays[END_REF]. Since then, a plethora of different controllers have been proposed to solve both consensus problems. See [START_REF] Wang | Consensus of networked mechanical systems with communication delays: A unified framework[END_REF] for a unified treatment of different consensus controllers for EL-systems and [START_REF] Hatanaka | Passivity-Based Control and Estimation in Networked Robotics[END_REF] for a survey of recent developments on this topic.

As is well-known [START_REF] Ortega | Passivitybased Control of Euler-Lagrange Systems: Mechanical, Electrical and Electromechanical Applications[END_REF] the Coriolis and centrifugal forces that appear in EL systems are work-less, therefore they don't play any role on the regulation of the position of the system-a feature that is encrypted in the well-known "Skew symmetry property" of EL systems. On the other hand, the presence of the gravity forces has to be taken into account when solving this task, because they affect the equilibrium point. For fully actuated EL systems it is possible to propose the exact cancellation of these forces and then solve the regulation task with a simple Proportional plus damping (P+d) controller [START_REF] Takegaki | A new feedback method for dynamic control of manipulators[END_REF]. Since these forces are usually uncertain it is necessary to appeal to an adaptive version of the controller. Within the context of robotics, this problem was first solved in [START_REF] Tomei | Adaptive PD controller for robot manipulators[END_REF] adding an ingenious gravity estimation feature.

In the context of multi-agent systems P+d schemes with gravity cancellation have been proposed in [START_REF] Ren | Distributed leaderless consensus algorithms for networked Euler-Lagrange systems[END_REF][START_REF] Nuño | Consensus in networks of nonidentical Euler-Lagrange systems using P+d controllers[END_REF][START_REF] Nuño | Achieving consensus of Euler-Lagrange agents with interconnecting delays and without velocity measurements via passivity-based control[END_REF][START_REF] Ye | Distributed model-independent consensus of Euler-Lagrange agents on directed networks[END_REF]. Besides having the advantage of a simple implementation they do not require the agents to exchange their velocities with their neighbours. However, their disadvantage is that they are not robust to parameter uncertainty-refer to [START_REF] Nuño | Coordination of multi-agent Euler-Lagrange systems via energy-shaping: Networking improves robustness[END_REF] where the uncertainty problem has been analyzed. To deal with parametric uncertainty adaptive schemes have been proposed in [START_REF] Chung | Cooperative robot control and concurrent synchronization of Lagrangian systems[END_REF][START_REF] Nuño | Synchronization of networks of nonidentical Euler-Lagrange systems with uncertain parameters and communication delays[END_REF][START_REF] Meng | Leader-follower coordinated tracking of multiple heterogeneous Lagrange systems using continuous control[END_REF][START_REF] Chen | Distributed average tracking of networked Euler-Lagrange systems[END_REF][START_REF] Abdessameud | Leader-follower synchronization of Euler-Lagrange systems with time-varying leader trajectory and constrained discrete-time communication[END_REF][START_REF] Chen | Distributed average tracking of networked Euler-Lagrange systems[END_REF][START_REF] Wang | Dynamic feedback for consensus of networked lagrangian systems[END_REF]. Unlike the single EL-system case of [START_REF] Tomei | Adaptive PD controller for robot manipulators[END_REF]-see also [START_REF] Kelly | Comments on 'Adaptive PD Controller for Robot Manipulators[END_REF]-the adaptive multi-agent schemes estimate, not just the gravity forces, but the parameters of the whole dynamics. There are two important drawbacks of estimating all dynamical parameters. First, to ensure a successful parameter search in a bigger dimensional space requires higher excitation levels and longer convergence times-both factors stymying the achievement of good transient performances. Second, it requires the computation of a complicated regressor matrix, that grows in complexity as the degrees-of-freedom of the ELagents increase, rendering the controllers of limited practical interest.

In this paper, we propose two adaptive controllers that solve both consensus problems by only estimating the gravitational term of the agents, and hence without requiring the complete regressor matrix. To the best of our knowledge, this is the first controller for multi-agent systems with only adaptive gravity compensation. One controller is a simple adaptive P+d scheme that does not require velocity information exchange between the agents, however the setting of the controller gains requires the knowledge of the largest eigenvalue of the Laplacian interconnection matrix and the largest of the upper bounds of the inertia matrices-therefore, it is not truly decentralized. The second controller is an adaptive Proportional-Derivative plus damping (PD+d) scheme whose gain condition setting is fully distributed but, because of the addition of the derivative action, requires the exchange of the neighbours velocities. Since these schemes do not estimate the whole EL-dynamics their complexity is significantly smaller than all the previously reported adaptive controllers that require the computation of the regressor matrix for the full dynamics. The regressor matrix of the gravity term is fairly simple because one only needs to calculate the gradient of the potential function associated to gravity and such potential function is the simple sum of the height of the link times its mass times the acceleration of the gravity constant. We have just became aware of the recent work [START_REF] Hernández-Guzmán | Model-independent consensus control of Euler-Lagrange agents with interconnecting delays[END_REF] that also deals with the problem at hand and it provides a Proportional-Integral-Derivative (PID) controller to solve the consensus problem.

The rest of the paper is organized as follows. Section 2 presents the dynamic description of the network of EL-agents. Section 3 reports the controllers that solve the leaderless consensus problem and Section 4 shows the proposed schemes for the leader-follower consensus. Section 5 depicts a simulation study and, finally, Section 6 draws the conclusions of this work and discusses future research.

Background

Notation R := (-∞, ∞), R >0 := (0, ∞), R ≥0 := [0, ∞) and N := {1, 2, 3, . . . }. I n ∈ R n×n is the n × n identity matrix, 1 n ∈ R n is the vector of n elements equal to one and 0 n ∈ R n is the all-zeros vector. For any x ∈ R n , |x| is its Euclidean norm and tanh(x) := [tanh(x 1 ), . . . , tanh(x n )] , where tanh(x) is the standard hyperbolic tangent. λ m {A} and λ M {A} are the minimum and the maximum eigenvalues of the symmetric matrix A ∈ R n×n . N := {1, 2, ..., N} for N ∈ N.

Euler-Lagrange Agents

We consider a network composed of N fully-actuated and conservative EL-agents, with n-Degrees-of-Freedom (DoF). The dynamics of the ith-agent is given by

M i (q i ) qi + C i (q i , qi ) qi + g i (q i ) = τ i (1) 
where q i , qi , qi ∈ R n are the generalized position, velocity and acceleration, respectively; M i (q i ) ∈ R n×n is the generalized inertia matrix, which is symmetric positive definite and lower bounded for all q i ∈ R n ; C i (q i , qi ) ∈ R n×n is the Coriolis and centrifugal forces matrix, defined via the Christoffel symbols of the first kind; and τ i ∈ R n is the control input.

We restrict to EL-agents (1) that satisfy the following assumption: Assumption A1: There exists a known m 2i ∈ R >0 such that, for all

q i ∈ R n , M i (q i ) ≤ m 2i I n .
Model (1) has the following properties [START_REF] Kelly | Control of robot manipulators in joint space[END_REF]:

Property P1: Matrix Ṁi (q i ) -2C i (q i , qi ) is skew-symmetric. Further, Ṁi (q i ) = C i (q i , qi ) + C i (q i , qi ). Property P2: There exists k ci ∈ R >0 such that, for all q i ∈ R n , C i (q i , qi ) qi ≤ k ci qi
2 . Property P3: The gravity vector g i (q i ) is linearly parameterizable. Thus g i (q i ) = Y i (q i )θ i , where Y i (q i ) ∈ R n×m is a matrix of known functions and θ i ∈ R m is a constant vector of the manipulator physical parameters.

Remark 1. It is a well-known property that the whole dynamic of an EL system can be written in a linearly parametrized form as [START_REF] Spong | Robot modeling and control[END_REF][START_REF] Slotine | Applied nonlinear control[END_REF][START_REF] Kelly | Control of robot manipulators in joint space[END_REF],

M i (q i ) qi + C i (q i , qi ) qi + g i (q i ) = Y i (q i , qi , qi )θ i .
(

) 2 
Setting qi ≡ 0 and qi ≡ 0 results,

g i (q i ) = Φ i (0, 0, qi , q i )θ i := Y i (q i )θ i . (3) 
It is clear from (2) that in the matrix Y i (q i , 0, 0) appear only only the terms of the gravity force. Hence, the resulting vector to be estimated has a significantly smaller size.

Interconnection Topology

As it is customary, we use graphs to represent the interconnection topology among the N EL-agents. In particular, we employ the graph Laplacian matrix L := {L i j } ∈ R N×N that is defined as L ii = j∈N i a i j and L i j = -a i j , where a i j > 0 if j ∈ N i and a i j = 0 otherwise. The set N i contains all the neighbours of the ith-EL-agent. Note that, by construction, L has a zero row sum. Therefore L1 N = 0 n .

We assume that the agents exchange information according to the following assumption. Assumption A2. The EL-agents interconnection graph is undirected, static and connected.

From A2, the Laplacian L is symmetric; positive semidefinite; it has a single zero-eigenvalue, with the associated eigenvector 1 N , and all of the other eigenvalues are strictly positive; and rank(L) = N -1. Further, ker(L) = α1 N , ∀α ∈ R.

In addition to A2, in order to ensure that there is at least one follower agent that receives the leader desired position, we make the following assumption. Assumption A3. There is a nonempty set of follower agents that has direct access to the desired constant position q .

Next, let us define a diagonal matrix A := diag{a i } ∈ R N×N to model the leader-follower interconnections, such that a i > 0 if node i receives the leader desired position and a i = 0, otherwise. Define N as the set of all follower agents that receive the leader desired position. The following lemma, which is a special case of Lemma 3 in [START_REF] Hong | Tracking control for multi-agent consensus with an active leader and variable topology[END_REF] and Lemma 1.6 in [START_REF] Ren | Distributed Coordination of Multi-agent Networks: Emergent Problems, Models, and Issues[END_REF], provides a fundamental property of the composed Laplacian matrix

L := L + A . Lemma 1. Consider the matrix A := diag{a i } ≥ 0 ∈ R N×N
and suppose that N is non-empty. Assume that A2 holds, then the matrix L is symmetric, positive definite and of full rank.

Leaderless Consensus

We say that leaderless consensus problem is solved if there exists

q c ∈ R n such that lim t→∞ | qi (t)| = 0, lim t→∞ q i (t) = q c ( 4 
)
for all i ∈ N. In order to achieve (4), let us define the position error of the ith-agent as e i :=

j∈N i a i j (q i -q j ). (5) 
Then (4) holds if lim t→∞ | qi (t)| = 0 and lim t→∞ |e i (t)| = 0. Note that, using the Laplacian matrix and defining q := [q 1 , . . . , q N ] , we can write e = (L ⊗ I n )q. Thus lim

t→∞ |e i (t)| = 0 ⇔ lim t→∞ |e(t)| = 0. Moreover, (L ⊗ I n )q = 0 ⇔ q = 1 N ⊗ q c .

Leader-Follower Consensus

In the leader-follower consensus we aim at showing that

lim t→∞ | qi (t)| = 0, lim t→∞ q i (t) = q (6) 
for all i ∈ N, where q ∈ R n is the leader constant position that is available to a set of followers N that we assume is nonempty.

In order to ensure (6), we redefine the position error ( 5) as

e i = a i (q i -q ) + j∈N i a i j (q i -q j ) = j∈N i ∪N a i j (q i -q j ). (7) 
Therefore ( 6) is achieved if lim t→∞ | qi (t)| = 0 and lim t→∞ |e i (t)| = 0. To show that this is indeed the case, let us define qi := q iq and q := [ q 1 , . . . , q N ] = q -1 N ⊗ q . Hence we can write e = (A ⊗ I n ) q + (L ⊗ I n )q and since L1 N = 0 then e = (A ⊗ I n ) q + (L ⊗ I n ) q = (L ⊗ I n )q. Assumption A3 and Lemma 1 ensure that e = (L ⊗ I n ) q = 0 ⇔ q = 0 and thus q i = q , for all i ∈ N. Henceforth, the error definition e i is given in [START_REF] Camazine | Self-Organization in Biological Systems[END_REF].

In what follows we design two different adaptive controllers that ensure that velocities and position errors globally and asymptotically converge to zero. The first scheme does not employ the neighbours velocities -but requires the largest Laplacian eigenvalue and the largest of the upper bounds of the inertia matrices-and the second scheme does not require global information to set the control gains -but it requires the neighbours velocities. To have a uniform exposition of the leaderless and the leader-follower problems, in the sequel, we only consider the position error e i defined in [START_REF] Camazine | Self-Organization in Biological Systems[END_REF], and we set a i = 0 ∀i ∈ N for leaderless case.

Adaptive P+d Controller

The proposed adaptive P+d scheme is given by

τ i = -d i qi -p i e i + Y i (q i ) θi , (8) 
where p i , d i ∈ R >0 are the proportional and damping injection gains. The parameter estimation law is

θi := -Γ i Y i (q i ) 1 p i qi + tanh(e i ) , (9) 
where > 0, Γ i is a positive definite diagonal matrix and tanh(e i ) is a vector defined with the standard hyperbolic tangent as tanh(e i ) := [tanh(e i1 ), . . . , tanh(e in )] .

The resulting closed-loop system is

qi = -M -1 i (q i ) C i (q i , qi ) qi + d i qi + p i e i + Y i (q i ) θi (10) 
where θi := θ i -θi .

Proposition 1. For each i ∈ N, consider the system (1) in closed loop with [START_REF] Chen | Distributed average tracking of networked Euler-Lagrange systems[END_REF] and [START_REF] Chen | Distributed average tracking of networked Euler-Lagrange systems[END_REF]. Then, under Assumptions A1, A2, and A3, (4) and ( 6) hold for the leaderless and leader-follower setups respectively, provided that is set satisfying

< min i∈ N          1 2m 2i L i p i ; d i p i m max 2 λ M {L } + √ nk ci + d i 2µ i          (11) 
where

µ i < 2p i d i is an arbitrary constant, m max 2 := max i∈ N {m 2i }, and L i := L ii + a i .
Proof. Consider the following Lyapunov candidate function

W = i∈ N V i + 1 4 a i |q i -q | 2 + U i , (12) 
where V i is a positive definite function and U i is a cross term between position error and velocity. These functions are

V i = 1 2 1 p i q i M i qi + 1 2 j∈N i a i j |q i -q j | 2 + θ i Γ -1 i θi , (13) 
and

U i = tanh (e i )M i (q i ) qi , (14) 
respectively. Then, W can be written as

W = 1 2 i∈ N 1 p i ( qi + p i tanh(e i )) M i ( qi + p i tanh(e i ))
+ θ i Γ -1 i θi -2 p i tanh (e i )M i tanh(e i ) + 1 2 j∈N i ∪N a i j |q i -q j | 2 .
Further, using the fact that |tanh(e i )| 2 ≤ |e i | 2 , the term tanh (e i )M i tanh(e i ) can be bounded as

tanh (e i )M i tanh(e i ) ≤m 2i |e i | 2 ≤ m 2i L i j∈N i ∪N a i j |q i -q j | 2 .
(15) Thus, W admits the following bound

W ≥ 1 2 i∈ N 1 p i ( qi + p i tanh (e i )M i ( qi + p i tanh(e i )) + 1 2 -2 m 2i L i p i j∈N i ∪N a i j |q i -q j | 2 + 1 2 a i |q i -q | 2 + θ i Γ -1 i θi , (16) 
Note that setting

< min i∈ N          1 2m 2i L i p i         
ensures that 1 2 -2 m 2i L i p i > 0 and hence W is positive definite and radially unbounded with regards to qi , q iq j and θi . Now evaluating Vi along [START_REF] Chopra | On synchronization of networked passive systems with time delays and application to bilateral teleoperation[END_REF], and using the fact that θi = -θi , yields Vi = -

d i p i | qi | 2 -q i e i -θ i 1 p i Y i (q i ) qi + Γ -1 i θi + 1 2
j∈N i a i j ( qiq j ) (q iq j ), and using (9

) it becomes Vi = - d i p i | qi | 2 -q i e i + tanh (e i )Y i (q i ) θi + 1 2 j∈N i a i j ( qi -q j ) (q i -q j ). ( 17 
)
From the property that the Laplacian matrix is symmetric, we have that

i∈ N q i e i - 1 2 
j∈N i a i j ( qi -q j ) (q i -q j ) = 0. ( 18 
)
Hence, defining

V = i∈ N V i yields V = - i∈ N d i p i | qi | 2 -tanh (e i )Y i (q i ) θi . ( 19 
)
The time-derivative of

U i is Ui = d dt tanh (e i ) M i qi + tanh (e i ) Ṁi qi + M i qi .
Using P1 and (10) yields

Ui = d dt tanh (e i ) M i (q i ) qi + tanh (e i )C i (q i , qi ) qi -tanh (e i ) d i qi + p i e i + Y i (q i ) θi . (20) 
In what follows we find an upper bound of Ui . For, note that the term d dt tanh (e i ) M i (q i ) qi can be manipulated as

i∈ N d dt tanh (e i ) M i (q i ) qi = d dt tanh (e) M(q) q, ( 21 
)
where q is defined pilling-up their N elements and M(q) := blockdiag{M i (q i )}. Now the fact that

| d dt tanh(e i )| ≤ |ė| = |(L ⊗ I n ) q| ≤ λ M {L}| q| is employed to obtain the following inequality d dt tanh (e) M(q) q ≤ m max 2 λ M {L}| q| 2 (22) 
Moreover, using P2 and |tanh

(e i )| 2 ≤ n, yields tanh (e i )C i (q i , qi ) qi ≤ √ nk ci | qi | 2 . ( 23 
)
Applying Young's inequality [START_REF] Hardy | Inequalities[END_REF] to -tanh (e i ) qi , results

-tanh (e i ) qi ≤ µ i 2 |tanh(e i )| 2 + 1 2µ i | qi | 2 , (24) 
for any µ i > 0. Hence

i∈ N Ui ≤ i∈ N m max 2 λ M {L} + √ nk ci + d i 2µ i | qi | 2 -p i - µ i d i 2 |tanh(e i )| 2 -tanh (e i )Y i (q i ) θi ,
where we have also employed the fact that

tanh (e i )e i ≥ |tanh(e i )| 2 . ( 25 
)
This fact is proved in Appendix A. Thus Ẇ can be bounded as

Ẇ ≤ - i∈ N c 1i | qi | 2 + c 2i |tanh(e i )| 2 , (26) 
where

c 1i := d i p i -m max 2 λ M {L } + √ nk ci + d i 2µ i , (27) 
and

c 2i := p i - µ i d i 2 . ( 28 
)
Clearly, setting satisfying [START_REF] Chung | Cooperative robot control and concurrent synchronization of Lagrangian systems[END_REF] ensures that Ẇ is negative definite with regards to qi and e i . Therefore we have a positive definite and radially unbounded Lyapunov function W with a negative definite time-derivative. Since qi = e i = 0 is the only possible trajectory that lives in the set { Ẇ = 0}, invoking the LaSalle-Krasovskii Invariance Theorem [START_REF] Krasovskiȋ | Stability of motion[END_REF] we conclude that qi → 0 and e i → 0 as t → ∞. Using the properties of the Laplacian matrix, we finish the proof.

The following remarks are in order: Remark 2. While the gain condition setting (11) requires some global information, i.e., the maximum eigenvalue of the Laplacian matrix and the maximum upper bound of the inertia matrices m max 2 , a distributed algorithm can be used to obtain these values. For example, the algorithm proposed in [START_REF] Franceschelli | Decentralized estimation of laplacian eigenvalues in multi-agent systems[END_REF][START_REF] Aragues | Distributed algebraic connectivity estimation for undirected graphs with upper and lower bounds[END_REF] can be used to find the maximum eigenvalue of the Laplacian; and the scheme of [START_REF] Tahbaz-Salehi | A one-parameter family of distributed consensus algorithms with boundary: From shortest paths to mean hitting times[END_REF] is able to calculate m max 2 .

Remark 3. The adaptive P+d controller is inspired in the control law reported in [START_REF] Nuño | Consensus in networks of nonidentical Euler-Lagrange systems using P+d controllers[END_REF], for networks of EL-agents, and in the adaptive scheme reported in [START_REF] Tomei | Adaptive PD controller for robot manipulators[END_REF][START_REF] Kelly | Comments on 'Adaptive PD Controller for Robot Manipulators[END_REF]. In fact, instead of the hyperbolic tangent function, other bounded functions of the error can be employed in the adaptation law, e.g., the function h i (e i ) := 1 1+|e i | 2 e i that is used in [START_REF] Tomei | Adaptive PD controller for robot manipulators[END_REF], or function f i (e i ) := 1 1+|e i | e i , that is applied in [START_REF] Kelly | Comments on 'Adaptive PD Controller for Robot Manipulators[END_REF]. Refer to [START_REF] Ortega | Passivitybased Control of Euler-Lagrange Systems: Mechanical, Electrical and Electromechanical Applications[END_REF] for the generalization of these bounded functions. Remark 4. Controller (8)-( 9) does not require the neighbours velocities and the regressor matrix Y i (q i ) is only related to the gravity vector in (1).

Adaptive PD+d Controller

In this section we design a fully distributed controller that only requires local information available at each ith-agent but requires the exchange of the neighbours velocities.

The proposed adaptive PD+d scheme is

τ i = -d i qi -p i e i -k i ėi + Y i (q i ) θi , (29) 
where p i , k i , d i ∈ R >0 are the proportional, the derivative and the damping injection control gains; and ėi :=

j∈N i ∪N a i j ( qi -q j ). ( 30 
)
The parameter estimation law is now given by

θi := -Γ i Y i (q i ) 1 p i qi + i tanh(e i ) , (31) 
where i > 0, Γ i ∈ R m×m is a strictly positive diagonal matrix and function tanh(e i ) is the vector of hyperbolic functions of e i . The resulting closed-loop system is

qi = -M -1 i (q i ) C i (q i , qi ) qi + d i qi + p i e i + k i ėi -M -1 i (q i )Y i (q i ) θi . (32) 
Proposition 2. For each i ∈ N, consider the system (1) in closed loop with ( 29) and [START_REF] Qin | Coordination of multiple agents with double-integrator dynamics under generalized interaction topologies[END_REF]. Then, under Assumptions A1, A2, and A3, (4) and ( 6) hold for the leaderless and leaderfollower setups respectively, provided that is set satisfying

i < min        k i p i m 2i , 2d i + k i a i p i m 2i (L ii + a i ) + 2 √ nk ci + d i µ i        (33) 
where µ i < 2p i d i is an arbitrary constant.

Proof. Consider the following Lyapunov function candidate

E = i∈ N V i + 1 2 a i |q i -q | 2 + i U i + 1 2 i k i |tanh(e i )| 2 , ( 34 
)
where V i and U i have been defined in ( 13) and ( 14). Hence we have that

E ≥ 1 2 i∈ N 1 p i ( qi + i p i tanh(e i )) M i ( qi + i p i tanh(e i )) + i (k i -i p i m 2i ) |tanh(e i )| 2 + 1 2 a i |q i -q | 2 + 1 2 j∈N i ∪N a i j |q i -q j | 2 + θ i Γ -1 i θi
Therefore, setting i < k i p i m 2i ensures that E is positive definite and radially unbounded.

We compute next the total derivative of E. To that end, V evaluated along [START_REF] Qin | Coordination of multiple agents with double-integrator dynamics under generalized interaction topologies[END_REF] and [START_REF] Ren | Distributed leaderless consensus algorithms for networked Euler-Lagrange systems[END_REF] 

yields V = - i∈ N d i p i | qi | 2 + a i qT i (q i -q ) + k i p i q i ėi -i tanh (e i )Y i (q i ) θi .
(35) Now, since

q i ėi =a i | qi | 2 + j∈N i a i j q i ( qi -q j ) =a i | qi | 2 + 1 2 j∈N i a i j | qi -q j | 2 + | qi | 2 -| q j | 2 , (36) 
defining

Q := | q1 | 2 , . . . , | qN | 2 , we can write i∈ N q i ėi = 1 2 i∈ N a i | qi | 2 + j∈N i ∪N a i j | qi -q j | 2 + 1 N LQ = 1 2 i∈ N         a i | qi | 2 + j∈N i ∪N a i j | qi -q j | 2         , ( 37 
)
where we employed the fact that 

1 N L = 0. Thus V becomes V = - i∈ N 1 2p i (2d i + k i a i ) | qi | 2 + a i qT i (q i -q ) -i tanh (e i )Y i (q i ) θi + k i 2p i j∈N i ∪N a i j | qi -q j | 2 .
= d dt tanh (e i ) M i (q i ) qi + tanh (e i )C i (q i , qi ) qi -tanh (e i ) d i qi + p i e i + k i ėi + Y i (q i ) θi .

Now, for any

α i > 0, d dt tanh (e i ) M i (q i ) qi ≤m 2i |ė i || qi | ≤ α i m 2i 2 |ė i | 2 + m 2i 2α i | qi | 2 , ( 38 
)
where we used Young's inequality [START_REF] Hardy | Inequalities[END_REF] to conclude the last inequality. Additionally we have,

|ė i | 2 = j∈N i ∪N a i j ( qi -q j ) 2 ≤ (L ii + a i ) j∈N i ∪N a i j | qi -q j | 2 .
(39) Moreover, the term tanh (e i )ė i satisfies tanh (e i )ė i ≥ tanh (e i ) d dt tanh(e i ).

Hence, setting α i = 1 L ii +a i , Ui can be upper bounded as

Ui ≤ 1 2 m 2i (L ii + a i ) + 2 √ nk ci + d i µ i | qi | 2 -k i tanh (e i ) d dt tanh(e i ) -tanh (e i )Y i (q i ) θi + m 2i 2 j∈N i ∪N a i j | qi -q j | 2 -p i - µ i d i 2 |tanh(e i )| 2 .
Therefore, Ė satisfies

Ė ≤ - i∈ N c 1i | qi | 2 + c 2i i |tanh(e i )| 2 + c 3i j∈N i ∪N a i j | qi -q j | 2 ,
where

c 1i := 1 2p i (2d i + k i a i ) - i 2 m 2i (L ii + a i ) + 2 √ nk ci + d i µ i c 3i := 1 2 k i p i -i m 2i ( 41 
)
and c 2i is defined in [START_REF] Nuño | Consensus in networks of nonidentical Euler-Lagrange systems using P+d controllers[END_REF]. Setting i satisfying [START_REF] Ren | Distributed Coordination of Multi-agent Networks: Emergent Problems, Models, and Issues[END_REF] ensures that c 1i , c 2i and c 3i are strictly positive and thus Ė is negative definite with regards to qi , qiq j and e i . The proof is finished proceeding as in the final step of the proof of Proposition 2.

The following remarks are in order: Remark 5. The estimation gain in ( 9) is the same for all the agents. However, for [START_REF] Qin | Coordination of multiple agents with double-integrator dynamics under generalized interaction topologies[END_REF] this gain is different for each agent. Remark 6. Condition [START_REF] Ren | Distributed Coordination of Multi-agent Networks: Emergent Problems, Models, and Issues[END_REF] requires only information available to the ith-agent.

Simulation

Consider a network of ten 2-DOF planar manipulators. Physical parameters of each manipulator is determined with a vector

P i = [m 1i , m 2i , l 1i , l c1i , l 2i , l c2i , I 1i , I 2i ]
, where m ki , l ki , and l cki are the mass, the length and the distance to the center of mass of link k. Also, I 1i and I 2i are the diagonal elements of the inertia matrix. Three different groups of manipulators are considered. The physical parameters of these manipulators are given in Table 1. The graph Laplacian matrix is given by L = 0.1L g , where

L g =                                              
14 0 -3 0 0 0 0 -4 0 -7 0 9 0 -8 0 0 0 0 0 -1 -3 0 5 0 0 0 0 -2 0 0 0 -8 0 10 0 0 0 0 -2 0 0 0 0 0 8 0 -5 0 -3 0 0 0 0 0 0 6 0 -4 -2 0 0 0 0 0 -5 0 14 0 0 -9 -4 0 -2 0 0 -4 0 10 0 0 0 0 0 -2 -3 -2 0 0 7 0 -7 -1 0 0 0 0 -9 0 0 17

                                              .
The initial joint velocities are assumed to be zero while the initial joint positions are set as q(0) = [2, 6, -7, 3, 1, 8, 0, 1, -6, 9, -5, 0, -4, 5, -3, 4, -2, 7, -8, 1] .

The simulation scenario is the same as in [START_REF] Nuño | Achieving consensus of Euler-Lagrange agents with interconnecting delays and without velocity measurements via passivity-based control[END_REF] with the sole difference being that the distance to the center of mass is distinct from the length of the link. The initial parameter estimates are set as θ(0) = 101 2 . The controller gains are chosen as p i = 4,

d i = 8, k i = 2, Γ i = 80I 2 , = 0.25.
To have a more realistic simulation, we consider additive Gaussian noises with variance 0.05 in the joint velocity measurements of all manipulators. Fig. 1 shows the level of the noise in the velocity measurements of the manipulator 1. 

Leaderless Consensus

Adaptive P+d Controller

Simulation results for the leaderless consensus controller without using the neighbours velocities are shown in Figs. 2345. Fig. 2 depicts the joint positions agreement in a consensus point. Fig. 3 shows the joint velocities. Fig. 4 shows the evolution of the estimated parameters. Input torques of the robot manipulators are drawn in Fig. 5.

Adaptive PD+d Controller

The simulation results for the leaderless consensus controller without requiring global information are shown in Figs. 6789. Fig. 6 depicts the joint positions agreement in a consensus point. Fig. 7 shows the joint velocities. Fig. 8 shows the time evolution of the estimated parameters. Input torques of the robot manipulators are drawn in Fig. 9. 

Leader-Follower Consensus

In this case we consider a constant leader position q = [-2, 3] rad. We further assume that the leader position is only available for agents 8 and 9. Therefore the corresponding gains of these agents in the matrix A are set to a 8 = a 9 = 1 and the other gains a i are set to zero.

Adaptive P+d Controller

In this section the performance of the leader-follower controller without using the neighbours velocities is investigated. The time evolution of the robot positions, joint velocities, estimated parameters and input torques are shown in Fig. 10, Fig. 11, Fig. 12 and Fig. 13, respectively.

Adaptive PD+d Controller

In this section the performance of the leader-follower controller without requiring global information is investigated. The time evolution of the robot positions, joint velocities, estimated 

Controller Performance with Parameter Variations

In this section, the effect of a payload variation in the performance of the proposed adaptive controller (8) and the nonadaptive controller [START_REF] Nuño | Consensus in networks of nonidentical Euler-Lagrange systems using P+d controllers[END_REF] is compared, for the leaderless case. Sensors are assumed to be noise-free. Suppose that at time 20sec, the payload of Manipulator 10 is increased by 2kg and the payload of Manipulator 9 is decreased by 1kg. As expected, this payload variation does not affect the consensus behavior of the proposed controller, while the controller of [START_REF] Nuño | Consensus in networks of nonidentical Euler-Lagrange systems using P+d controllers[END_REF] is not capable to withstand the payload variation. In fact, the proposed controller adapts itself with the new payloads by modifying the estimated parameters. These conclusions are drawn from the simulation results shown in Fig. 18. Due to the space limitations, only the positions of Joint 1 are given. 

Comparison with a complete regressor adaptive controller

In this section, the performance of the proposed adaptive gravity compensation (8) and the complete regressor adaptive controller [START_REF] Nuño | Synchronization of networks of nonidentical Euler-Lagrange systems with uncertain parameters and communication delays[END_REF] is compared, for the leaderless scenario. Consider the following linearly parametrized model of each ith-ELagent,

M i (q i )x i + C i (q i , qi )y i + g i (q i ) = Φ i (x i , y i , q i , qi )θ i . (42) 
The proposed scheme in [START_REF] Nuño | Synchronization of networks of nonidentical Euler-Lagrange systems with uncertain parameters and communication delays[END_REF] is given by

τ i = Φ i ( ėi , e i , q i , qi ) θi -D i i , θi = -Γ i Φ T i i , (43) 
where i = qi + λe i and e i is defined in [START_REF] Arcak | Passivity as a design tool for group coordination[END_REF]. Clearly, the implementation of this scheme requires the complete regressor Φ i computation plus velocity information exchange between the agents. To have similar gains for both schemes, the gains of the controller (43) are chosen as D i = 8, λ = 0.5 and Γ i = 80I 2 . Figs. [START_REF] Kelly | Control of robot manipulators in joint space[END_REF][START_REF] Klotz | Asymptotic synchronization of a leader-follower network of uncertain Euler-Lagrange systems[END_REF][START_REF] Lee | Stable flocking of multiple inertial agents on balanced graphs[END_REF] show the performance of both schemes. Fig. 19 shows that the convergence speed of the proposed method [START_REF] Chen | Distributed average tracking of networked Euler-Lagrange systems[END_REF] is faster than the controller of [START_REF] Nuño | Synchronization of networks of nonidentical Euler-Lagrange systems with uncertain parameters and communication delays[END_REF]. The evolution of the estimated parameters is shown in Fig. 20. For the complete regressor adaptive controller, we have estimated five parameters for each manipulator while for the adaptive gravity compensation method, the estimation of just two parameters is enough. As expected, the convergence time of the proposed gravity parameter estimator [START_REF] Chen | Distributed average tracking of networked Euler-Lagrange systems[END_REF] is lower than that of the complete parameter estimator of [START_REF] Nuño | Synchronization of networks of nonidentical Euler-Lagrange systems with uncertain parameters and communication delays[END_REF]. The input torques of the robot manipulators are shown in Fig. 21. In comparison with the controller (8), the initial torques of the controller [START_REF] Nuño | Synchronization of networks of nonidentical Euler-Lagrange systems with uncertain parameters and communication delays[END_REF] are larger. 

Conclusions

In this paper we report two novel decentralized adaptive controllers to solve the leaderless and leader-follower consensus in networks of uncertain EL-systems. The controllers estimate only the gravitational term of the dynamics. Therefore, they do not require the computational burden of estimating the whole EL-dynamics. Moreover, one of the proposals is a simple Proportional plus damping scheme and it does not require to exchange velocity information between the agents. The other proposed scheme is a Proportional-Derivative plus damping controller with a fully distributed gain condition setting. Simulations show the performance of the proposed controllers using a network composed of ten EL-agents.

Future research goes along two different avenues: 1) including time-delays in the communications of the agents; and 2) extending the solution to directed graphs. None of these problems can be, however, trivially solved. For the delayed case one has to design a proper Lyapunov function such that its timederivative is negative definite with regards to the delayed error, which is rather difficult -to our knowledge, the first strict Lyapunov function for the delayed case has been designed in [START_REF] Nuño | Strict Lyapunov-Krasovskiȋ functionals for undirected networks of Euler-Lagrange systems with time-varying delays[END_REF] for the P+d with gravity cancellation, i.e., without parametric uncertainty. As for the directed case, we are analyzing the solution of [START_REF] Ye | Distributed model-independent consensus of Euler-Lagrange agents on directed networks[END_REF]. However the Lyapunov function employed in [START_REF] Ye | Distributed model-independent consensus of Euler-Lagrange agents on directed networks[END_REF] can only be employed to conclude a local stability result.
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 1 Figure 1: Joint velocities of the manipulator 1 (blue) versus their measured values (green)

Figure 2 :

 2 Figure 2: Position consensus using the adaptive P+d controller.

Figure 3 :

 3 Figure 3: Joint velocities using the adaptive P+d controller.

Figure 4 :

 4 Figure 4: Estimated parameters for the leaderless consensus with the adaptive P+d controller.
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 5 Figure 5: Input torques for the leaderless consensus with the adaptive P+d controller.

Figure 6 :

 6 Figure 6: Leaderless consensus using the adaptive PD+d controller.
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 78 Figure 7: Joint velocities using the adaptive PD+d controller.

Figure 9 :Figure 10 :

 910 Figure 9: Input torques for the leaderless consensus with the adaptive PD+d controller.

Figure 11 :Figure 12 :

 1112 Figure 11: Joint velocities of the leader-follower controller without using the neighbours velocities.

Figure 13 :

 13 Figure 13: Input torques of the leader-follower controller without using the neighbours velocities.

Figure 14 :Figure 15 :

 1415 Figure 14: Leader-follower synchronization of the positions without requiring information.

  , respectively.

Figure 16 :

 16 Figure 16: Estimation parameters of the leader-follower controller without requiring global information.

Figure 17 :Figure 18 :

 1718 Figure 17: Input torques of the leader-follower controller without requiring global information.

Figure 19 :Figure 20 :

 1920 Figure 19: Position consensus of the controller [26] (first row) versus the proposed controller (8).

Figure 21 :

 21 Figure 21: Input torques of the controller [26] (above) versus the proposed controller (8).

Table 1 :

 1 Physical Parameters of the Robot Manipulators

		Manipulators 1-3 Manipulators 4-6 Manipulators 7-10
		Link 1 Link 2 Link 1 Link 2 Link 1	Link 2
	Link length l ki (m)	0.4	0.4	0.3	0.5	0.5	0.2
	Link mass m ki (kg)	4	2	2.5	3	3	2.5
	Link inertia I ki (kg.m 2 ) 0.478	0.044	0.678	0.144	0.03	0.01
	Center of mass l cki (m)	0.2	0.2	0.15	0.25	0.25	0.1
	Moreover, Ui becomes						
	Ui						
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Appendix A. Proof that tanh (e i )e i ≥ |tanh(e i )| 2 To prove this fact, it is enough to show that

holds for any scalar x ∈ R. For, first define A(x) = tanh(x) (xtanh(x)) and note that (A.1) is equivalent to A(x) ≥ 0 for all x ∈ R. Since tanh(x) has the same sign as x and it vanishes only when x = 0, then we only require to show that |x| ≥ |tanh(x)|. To that end let us define f 1 (x) = |x| and

From the fact that cosh(x) ≥ 1, we conclude that | ḟ2 (x)| ≤ | ḟ1 (x)| for all x ∈ R. Using the comparison lemma, it follows that f 2 (x) ≤ f 1 (x) for all x ∈ R as required.