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Diffusion-based Distributed Parameter Estimation Through Directed Graphs with Switching
Topology: Application of Dynamic Regressor Extension and Mixing

Alexey S. Matveev, Mostafa Almodarresi, Romeo Ortega, Life Fellow, IEEE, Anton Pyrkin, Senior Member,
IEEE, and Siyu Xie

Abstract—In this paper, we consider the problem of discrete-
time, diffusion-based distributed parameter estimation with the
agents connected via directed graphs with switching topologies
and a self loop at each node. We show that, by incorporating
the recently introduced dynamic regressor extension and mixing
procedure to a classical gradient-descent algorithm, improved
convergence properties can be achieved. In particular, it is
shown that with this modification sufficient conditions for global
convergence of all the estimators is that one of the sensors receives
enough information to generate a consistent estimate and that
this sensor is “well-connected”. The main feature of this result
is that the excitation condition imposed on this distinguished
sensor is strictly weaker than the classical persistent excitation
requirement. The connectivity assumption is also very mild,
requiring only that the union of the edges of all connectivity
graphs over any time interval with an arbitrary but fixed length
contains a spanning tree rooted at the information-rich node. In
the case of non-switching topologies, this assumption is satisfied
by strongly connected graphs, and not only by them.

Index Terms—Diffusion strategies, sensor networks, dis-
tributed adaptive filters, dynamic regressor extension and mixing,
consensus algorithms.

I. INTRODUCTION

THE problem of cooperative estimation of an unknown
parameter vector in sensor networks has a wide area

of applications including signal processing and distributed
control, see e.g., [4, 10, 11] for a recent survey of the
field. It is usually assumed that each sensor possesses only
partial information of the unknown parameter process, which
is generated via N linear regression equations (LRE), where
N is the number of sensors. If the partial information available
in some sensors is not sufficient to consistently estimate the
parameters, the idea is to share information among the sensors
to achieve this objective. In most practical scenarios, it is not
possible to have centralized information, therefore, we have
to consider some kind of distributed exchange of information,
which is represented by a weighted graph. Another aspect to
be considered in the problem is the distributed processing of
the information that, as discussed in [10, 11], are classified
into incremental, consensus and diffusion strategies. Given its
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proven advantages—stemming from its more efficient prop-
agation of information—we consider in this paper the latter
strategy, also adopted in [3, 10, 11].

In diffusion parameter estimation strategies the sensors
exchange estimates with their neighbors and fuse the collected
estimates via linearly combining them. Depending on the order
of adaptation and combination, there are two different types
of diffusion strategies: combine-then-adapt (CTA) or adapt-
then-combine (ATC). In this paper, we consider both the CTA
and ATC strategies. The effect of the measurement noise on
both these strategies, within a rigourous stochastic analysis
framework, has been extensively studied in the literature and
we refer the interested reader to [10] for a recent review of
the literature. In this paper, similarly to [3], we adopt a purely
deterministic framework that leads to the, somehow simpler,
stability analysis of a linear time-varying (LTV) system.

The main modification we introduce to the classical gradient
(also called least-mean squares) scheme is the incorporation
of the dynamic regressor extension and mixing (DREM) esti-
mation procedure, recently introduced in [1]. The successful
application of DREM to various theoretical and practical
engineering problems is reported in the tutorial paper [7].
The main feature of DREM that we exploit in this paper is
that it transforms the q-dimensional LRE, associated with a q-
dimensional unknown vector, into q scalar LRE, one for each
one of the unknown parameters. This feature turns out to have
a major impact on the stability properties of the LTV systems
that describe the behavior of the parameter errors.

The main contributions of our paper are the following.

C1 For both CTA and ATC strategies global convergence
of all the DREM-based estimators is ensured if one of the
sensors—which should be “well connected”—receives enough
information to generate a consistent estimate.
C2 The excitation condition imposed on this distinguished
sensor is strictly weaker than the classical persistent excita-
tion (PE) requirement [10] or the relaxed “cooperative PE”
condition introduced in [3].
C3 In contrast with most existing results, we handle directed
graphs with switching topologies, that are required to contain
a jointly spanning tree rooted at the information-rich node
with a self loop at each node. For constant graphs the latter
connectivity requirement is satisfied by strongly connected
graphs—a condition often assumed in the literature [3, 10].

Although we consider a noise-free scenario, it should be
underscored that it has been shown in [8] that DREM is
Input-to-State Stable (ISS), hence robust to additive input
noise. The remainder of the paper is organized as follows.
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The problem formulation and standing assumptions are given
in Section II. Section III briefly reviews the DREM-based
distributed estimator. The main result is presented in Section
IV. Simulation results, which illustrate the performance of
the proposed estimator, even in the presence of noise, are
presented in Section V. To enhance readability, the proof of
the main result is given in Appendix A.

II. PROBLEM FORMULATION AND DESCRIPTION OF THE
NETWORK TOPOLOGY

In this section we present the discrete-time, distributed
estimation problem that is studied in the paper, and describe
the information exchange pattern between the agents.

A. Distributed cooperative estimation problem

We consider the problem of discrete-time parameter estima-
tion using a network consisting of N sensors distributed over
a geographic region, which communicate with one another to
obtain a consistent estimate of a certain parameter. We assume
that at time t ∈ N+ sensor1 i ∈ N := {1, . . . , N} has access
to the measurements yi(t) ∈ R and φi(t) ∈ Rq , and that they
are related via the following LRE

yi(t) = θ>φi(t), t ∈ N+. (1)

Here θ ∈ Rq is an unknown constant parameter vector that
should be estimated at the site of every sensor. We are
specially interested in the situation where the measurements
of a particular sensor i are insufficient for reconstructing θ in
full; an example arises where all components of the vector
φi(t) = {φij(t)}

q
j=1 ∈ Rq are constantly zero φij(t) = 0

for j = 1, . . . , q′ with a certain q′ ≥ 1. Then, this sensor
i gets a chance to build a proper estimate of the entire θ
only thanks to information received from the peers. Success
of this endeavor is not given for granted and depends on
a number of factors. They are partly concerned with both
information exchange in the network, e.g., the communication
topology, and informativeness of the measurements performed
by various sensors. The focus of the paper is on exactly these
issues, studied within the framework of distributed estimation.
In the face of this primary goal and paper length limit, we
omit a somewhat classical research issue of effects from sensor
noises on the estimate, and consider a “noise-free” scenario.

Specifically, we assume that each sensor receives infor-
mation from some other sensors. How the sensors should
cooperate in individually generating a consistent estimate, and
under which conditions on the measurements this may happen?

B. Description of the communication pattern

The interconnection structure of the network is convention-
ally encoded by a time-varying, directed, and weighted graph
[2]. It is defined as a triple G(t) = [V, E(t),A(t)], where
V = {1, 2, ......, N} is the set of nodes, each associated with a
sensor, E(t) the set of edges, where (i, j) ∈ E(t) if and only if

1The index i takes always values in the set N . Therefore, whenever clear
from the context, this clarification is omitted in the sequel.

node j affects node i at time t, and A(t) = {aij(t)} ∈ RN×N
is the weighted adjacency matrix. Its entries are such that

0 ≤ aij(t) ≤ 1;

N∑
j=1

aij(t) = 1, ∀i, j ∈ N̄ , (2)

and aij(t) > 0⇔ (i, j) ∈ E(t). Along with thereby reflecting
the topology of the network, the weights aij(t) indicate the
strengths of interaction among various nodes. The set of
neighbors of sensor i is defined as

Ni(t) = {j ∈ V | (i, j) ∈ E(t)}.

In contrast with most of works on distributed estimation, we
consider time-varying graphs and, moreover, directed graphs.
Hence the matrix A(t) is not necessarily symmetric. Our
assumptions about the graph are fully exposed in Section IV.

III. PROPOSED DREM-BASED DISTRIBUTED ESTIMATOR

In this paper, we adopt the diffusion estimation strategy,
where the sensors share estimates with their neighbors via
communication and fuse the collected data via linear combina-
tion. The estimate of θ built by sensor i at time t is denoted by
θ̂i(t). Such an estimate is typically generated with a gradient
algorithm. The main novelty of the paper stems from using,
instead, a DREM-based distributed estimator [1, 7].

A. The underlying DREM estimator

To make the paper self-contained, we now briefly recall the
construction of the DREM estimator for the isolated i-th sensor
and highlight the main convergence property of this estimator.

To streamline the presentation, we introduce the following
notations:

Φi(t) :=


(
φi(t)

)>(
φi(t− 1)

)>
...(

φi(t− q + 1)
)>

∈ Rq×q,

Y i(t) =


Y i1 (t)
Y i2 (t)

...
Y iq (t)

 := adj{Φi(t)}


yi(t)

yi(t− 1)
...

yi(t− q + 1)

 ,
δi(t) := det{Φi(t)}, (3)

where we denote by adj{·} the adjugate matrix. Let θ` stand
for the `-th entry of θ. (The index ` always takes values in
the set q̄ := {1, . . . , q}. This clarification is basically omitted
in the sequel, unless it is not clear from the context.) The
gradient estimate of this entry is generated via

θ̂i`(t+ 1) = θ̂i`(t) +
δi(t)

µi + (δi(t))
2

(
Y i` (t)− δi(t)θ̂i`(t)

)
, (4)

where µi > 0 is a parameter of the estimator. Given an
initial estimate θ̂i`(0), the subsequent estimates θ̂i`(t), t ≥ 1
are uniquely determined via (4).

Proposition III.1 Consider the LRE (1) and the signals (3).
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(i) For each entry θ` of θ and at any time t, we have

Y i` (t) = δi(t)θ`. (5)

(ii) The gradient estimate of the `-th entry verifies

lim
t→∞

θ̂i`(t) = θ`, ∀θ̂i`(0) ⇔ δi(t) /∈ `2, (6)

where `2 is the space of square summable sequences.

Proof: The proof of (i) follows immediately by noting that
yi(t)

yi(t− 1)
...

yi(t− q + 1)

 = Φi(t)θ,

multiplying this equation by adj{Φi(t)}, and recalling that for
any (possibly singular) q × q matrix M , we have [5]:

adj{M}M = det{M}Iq.

Claim (ii) is established by noting that the estimation errors
θ̃i`(t) := θ̂i`(t)− θ` satisfy the recursive equation

θ̃i`(t+ 1) =
µi

µi + (δi(t))
2 θ̃

i
`(t),

and observing that

∞∏
j=0

[
µi

µi + (δi(j))
2

]
= 0 ⇔ δi(t) /∈ `2. ���

B. Diffusion strategies

As indicated in the introduction, see also [10], depending
on the order of adaptation and combination, there are two
different types of diffusion strategies, CTA or ATC. Now we
describe these strategies for the proposed DREM estimator.

Algorithm 1 CTA diffusion DREM algorithm
For any sensor i and parameter element θ`, pick an initial
estimate θ̂i,CTA` (0) and then do the following for t = 0, 1, . . ..

1: Combine local estimates:

β̂i,CTA` (t) =
∑

j∈Ni(t)

aij(t)θ̂
j,CTA
` (t).

2: Adapt the local estimate:

θ̂i,CTA` (t+ 1) = β̂i,CTA` (t)

+
δi(t)

µi + (δi(t))
2

(
Y i` (t)− δi(t)β̂i,CTA` (t)

)
.

C. Derivation of the error equations

To simplify the error equations, we introduce the following
notations:

Algorithm 2 ATC diffusion DREM algorithm
For any sensor i and parameter element θ`, pick an initial
estimate θ̂i,ATC` (0) and then do the following for t = 0, 1, . . ..

1: Adapt the local estimate:

β̂i,ATC` (t+ 1) = θ̂i,ATC` (t)

+
δi(t)

µi + (δi(t))
2

(
Y i` (t)− δi(t)θ̂i,ATC` (t)

)
.

2: Combine local estimates:

θ̂i,ATC` (t+ 1) =
∑

j∈Ni(t)

aij(t)β̂
j,ATC
` (t+ 1).

Θ̂CTA
` (t) := col

(
θ̂1,CTA` (t), . . . , θ̂N,CTA` (t)

)
∈ RN ,

Θ` := col(1, . . . , 1)θ` ∈ RN , (7)

X`(t) := Θ̂CTA
` (t)−Θ`, (8)

Θ̂ATC
` (t) := col

(
θ̂1,ATC` (t), . . . , θ̂N,ATC` (t)

)
∈ RN ,

Z`(t) := Θ̂ATC
` (t)−Θ`, (9)

B(t) := diag

 1

1 + (δ1(t))2

µ1

, · · · , 1

1 + (δN (t))2

µN

 ∈ RN×N .

(10)
We are in a position to present the error equations.

Lemma 1 For any entry θ` of the estimated parameter θ, the
error vectors (8) and (9) evolve as follows

X`(t+ 1) = B(t)A(t)X`(t), (11)
Z`(t+ 1) = A(t)B(t)Z`(t), (12)

where A(t) is the weighted adjacency matrix of the graph.

Proof: First of all, we put

Y`(t) := col(Y 1
` (t), . . . , Y N` (t)),

∆(t) := diag{δ1(t), . . . , δN (t)},

B̂
CTA

` (t) := col(β̂1,CTA
` (t), . . . , β̂N,CTA` (t)),

B̂
ATC

` (t) := col(β̂1,ATC
` (t), . . . , β̂N,ATC` (t)),

L(t) := diag
{

δ1(t)

µ1 + (δ1(t))
2 , . . . ,

δN (t)

µN + (δN (t))
2

}
.

Based on (5) and (7), we see that

Y`(t) = ∆(t)Θ`. (13)

For the CTA diffusion DREM algorithm, we have

B̂
CTA

` (t) = A(t)Θ̂CTA
` (t)

Θ̂CTA
` (t+ 1) = B̂

CTA

` (t) + L(t)
(
Y`(t)−∆(t)B̂

CTA

` (t)
)
.

Using (8) and substituting (13) into the last equation, we get

X`(t+ 1) = A(t)Θ̂CTA
` (t)−Θ`

+ L(t)
(
∆(t)Θ` −∆(t)A(t)Θ̂CTA

` (t)
)
. (14)
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Since A(t)Θ` = Θ` due to (2) and (7), we see that

X`(t+ 1) =
(
IN −L(t)∆(t)

)
A(t)X`(t)

= B(t)A(t)X`(t),

where B(t) is defined in (10).
For the ATC diffusion DREM algorithm, we have

B̂
ATC

` (t+ 1) = Θ̂ATC
` (t) + L(t)

(
Y`(t)−∆(t)Θ̂ATC

` (t)
)

Θ̂ATC
` (t+ 1) = A(t)B̂

ATC

` (t+ 1). (15)

By invoking (9), substituting (13) into (15) and using
A(t)Θ` = Θ` once more, we arrive at

Z`(t+ 1) = A(t)
(
IN −L(t)∆(t)

)
Z`(t) = A(t)B(t)Z`(t),

which completes the proof. ���

IV. MAIN RESULT

Our main result provides conditions for global asymptotic
stability of the LTV systems (11) and (12). They describe the
evolution of the estimation errors that arise when using the
CTA and ATC DREM-based diffusion strategies, respectively.
Interestingly, the conditions are the same for both strategies.
Specifically, there are five conditions. The first three of them
are very mild, even self-evident in the present context: namely,
that the signals appearing in the LREs (1) are bounded, that
the positive elements of the adjacency matrix remain bounded
away from zero and that all agents use their own information
to generate their estimate. These assumptions are grouped
together into one and are formally articulated as follows.

Assumption 1 i) In (3), δi(t) are bounded over t.
ii) There is α ∈ (0, 1) such that aij(t) > 0⇒ aij(t) ≥ α.

iii) Each node contains a self loop at any time.

Here i) holds true if all the regressors φi(t) are bounded. For
time-invariant graphs, ii) is always true. In general, ii) means
that the strength of any existing influence does not degenerate
to zero as time progresses.

The remaining two conditions pertain, respectively, to the
information content of the regressor vectors φi(t) and the
scope for the dissemination of this information among agents
via the network. The former condition is consonant to exci-
tation assumptions that are typically imposed on the signals
when treating parameter estimation and state observation tasks.
With respect to DREM and according to Proposition III.1,
now such an assumption is concerned with the non-square
summability of the determinant of the extended regressor
matrix Φi(t).2 In the networked scenario examined in this
paper, convergence of all estimators holds even if only one
of the agents verifies this condition, provided that this agent
is “suitably connected” to all the others. The last is fleshed
out by our fifth condition. To state it, we need the following
notation: For any discrete interval I = [t0 : t1) := {t =
t0, . . . , t1 − 1}, we denote by G(I) the graph with nodes

2In [7, Proposition 3] it is shown that this assumption on the lack of square
summability is strictly weaker than the classical PE requirement of gradient
estimators.

i ∈ N̄ that results from the union of the edges of all graphs
G(t0),G(t0 + 1), · · · ,G(t1 − 1).

Assumption 2 i) There exists a node r ∈ N̄ such that the
sequence δr(t) /∈ `2.

ii) There is a natural number p such that the graph G
[
[tp, (t+

1)p)
]

contains a spanning tree rooted at r for any t ∈ N+.

For example, ii) holds with any r ∈ N̄ if there exists p such
that the graph G

[
[tp, (t+ 1)p)

]
is strongly connected for any

t ∈ N+.
We are in position to present the main result of the paper.

Theorem 1 Consider a network of N sensors, each verifying
the LRE (1), whose information exchange is characterized by
the graph G(t). Suppose that Assumptions 1 and 2 hold. Start-
ing from any initial conditions, the parameter estimation errors
of the CTA and the ATC DREM-based diffusion algorithms
converge to zero in all nodes, that is,

lim
t→∞

X`(t) = 0 and lim
t→∞

Z`(t) = 0, ∀` ∈ q̄.

V. SIMULATION RESULTS

In this section, we illustrate the performance of the proposed
distributed estimation scheme with simulation examples. We
consider a network of four sensors with a time-varying inter-
action graph G(t) that switches among three topologies shown
in Fig. 1. The adjacency matrices of the graphs are set as

A1 =


1 0 0 0

1/3 2/3 0 0
0 1/6 5/6 0
0 0 0 1

 ,A2 =


1 0 0 0

1/3 2/3 0 0
0 0 1 0
0 0 1/6 5/6



A3 =


2/3 0 0 1/3
0 1 0 0
0 1/6 5/6 0
0 0 0 1

 .
The pattern of switchings among the topologies is given by

A(t) =

 A1 t = 0, 1, 2, 3
A2 t = 4, 5, 6, 7
A3 t = 8, 9, 10, 11

, A(t+ 12) = A(t).

As can be easily seen, then the union of the graphs over every
time interval with a length at least 12 is directed and strongly
connected. Assume that a constant parameter vector θ ∈ R2

should be cooperatively estimated. Consider the following
regression vectors

φ1(t) =

[
a(t)

1

]
, φ2(t) =

[
1
0

]
, φ3(t) =

[
−1
0

]
, φ4(t) =

[
2
0

]

1

3

24

1

3

24

1

3

24G1 G2 G3

Fig. 1: The set of switched topologies. The graph retains each topology for
4 time steps and then moves to the next topology.
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Fig. 2: Root mean square of the overall parameter estimation error.

where a(t) is generated via the recursion a(t) = a(t − 1) +
2(−1)t/

√
t and a(0) = −1. It follows that

δ1(t) =
2(−1)t√

t
/∈ `2, δ2(t) = δ3(t) = δ4(t) = 0.

Other simulation parameters are chosen as,

θ =

[
1
1

]
, θ̂i,CTA(0) =

[
0
0

]
, µi = 1.

The output was corrupted with an additive i.i.d. Gaussian noise
with zero mean and variance 0.1.

To show the superiority of our method over the method
recently proposed in [10], simulation tests were carried out
for both. According to the Monte Carlo simulation method,
we repeated the simulation m = 500 times with various
noise realizations and then calculated the root mean square
error XRMS(t) =

(
1
m

∑m
j=1 ‖Xj(t)‖2

)1/2
, where Xj =

[X>j,1 X>j,2]> and subscript j denotes the jth simulation
result. Fig. 2 shows XRMS(t) for the proposed DREM CTA
algorithm and for the normalized least-mean-squares (NLMS)
CTA algorithm in [10]. As can be seen from the figure, the
former algorithm visibly outperforms the latter. The average
error ≈ 0.1 of the DREM algorithm is fairly understand-
able and excusable in the face of the above sensor error
variance 0.1, whereas the error of the method from [10]
is approximately 2.5 times worse. Fig. 3 also displays the
standard deviation of ‖Xj(t)‖. Along with DREM-CTA and
NLMS-CTA, simulations were also performed for DREM-
ATC and NLMS-ATC. We omit detailed presentation of the
respective results and limit ourselves to the remark that the
error behaviors were nearly the same as in the case of CTA.

The next simulation test aims at highlighting some theo-
retical findings of this paper. To this end, we consider two
scenarios: where all δi(t)’s are in `2 and, respectively, just
one δj(t) is not in `2. The graph, adjacency matrices, and
initial conditions are taken from the previous simulation; the
parameters µi = 0.1. For the first scenario,

δ1(t) =
2

t
, δ2(t) =

1

t2
, δ3(t) =

(1

3

)t
, δ4(t) =

(1

4

)t
;

0 500 1000 1500 2000
0

0.05

0.1

0.15

st
d
(

‖X
j
(t
)‖
)

 

 

DREM CTA

NLMS CTA

Fig. 3: Standard deviation of ‖Xj(t)‖.
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δ
1(t) /∈ ℓ2, δ

j(t) = 0, j = 2,3,4
δ
i(t) ∈ ℓ2, δ

i(t) 6= 0, i = 1,2,3,4

Fig. 4: Parameter estimation error.

all these sequences are in `2. For the second scenario,

δ1(t) =
2√
t
, δ2(t) = δ3(t) = δ4(t) = 0.

Parameters estimation errors for these cases are shown in Fig.
4. This example underscores the relevance of point i) from
Assumption 2 as an “almost necessary” assumption to ensure
the consistency of the parameter estimates.

VI. CONCLUSION

It has been shown in the paper that the use of the DREM
method allows us to relax the assumptions and improve the
convergence properties of diffusion-based distributed parame-
ter estimation. The main contributions of the work are, on one
hand, that the excitation conditions to ensure convergence are
strictly weaker than the classical PE requirement. On the other
hand, the connectivity assumptions of the switching topologies
are very mild, while in the case of fixed topologies they are
satisfied by strongly connected graphs—that is the standing
assumption in the existing literature.

In contrast with other papers, e.g., [10, 11], and similarly
to [3], we have adopted a deterministic setup of the problem.
Given this situation, the analysis of the effect of the noise is
limited to proving properties like ISS that, as shown in [8],
holds true for DREM. As is well-known, the ISS property
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ensures the robustness to additive noise of the key asymptotic
stability property. In any case, we have provided a Monte
Carlo simulation which includes several realizations of the
noise, to show the performance improvement due to the use of
DREM. Stochastic stability analysis of the proposed method
in the presence of additive noise is a future line of our research.
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APPENDIX

We first make the observation that the vector sequences are
related via the invertible transformation

X`(t+ 1) = B(t)Z`(t).

Consequently, in the sequel we will concentrate only on the
stability of one LTV system, namely

X`(t+ 1) = B(t)A(t)X`(t). (16)

The inequalities between vectors from RN are meant com-
ponentwise. Integer intervals are denoted by [k1 : k2] :=
{t is an integer and k1 ≤ t ≤ k2}; the symbols [k1 : k2), (k1 :
k2], etc. are defined likewise. In this section, Assumptions 1–2
are supposed to be true.

A. General Preliminaries

Lemma 2 Suppose that an infinite sequence {µ(t)}∞t=0 with
nonnegative entries µ(t) ≥ 0 obeys iterative inequalities of the
following form

µ(t+ 1) ≤ 1

1 + δ(t)2
µ(t) + η(t), (17)

where η(t) ≥ 0 ∀t and supt≥0 δ(t) <∞. If

{δ(t)}∞t=0 /∈ `2 and {η(t)}∞t=0 ∈ `1, (18)

where `1 is the set of absolute summable sequences, then

µ(t)→ 0 as t→∞. (19)

Proof: Arguing via induction on t and based on (17), it is
easy to see that for t ≥ 1,

µ(t) ≤ Ξ(0, t)µ(0) +

t−1∑
k=0

Ξ(k + 1, t)η(k),

where

Ξ(p, q) :=

q−1∏
k=p

1

1 + δ(k)2
,

and any product
∏k2
k1
. . . with k2 < k1 is defined to be 1. We

put B := 1 + supt≥0 δ(t) < ∞, c := ln(1+B2)
B2 and note that

ln(1 + y) ≥ cy whenever 0 ≤ y ≤ B2 since the logarithm is
a concave function. Hence

− ln Ξ(p, q) =

q−1∑
k=p

ln(1 + δ(k)2) ≥ c
q−1∑
k=p

δ(t)2,

Ξ(p, q) ≤ exp

−c q−1∑
k=p

δ(t)2

 (18)⇒

Ξ(p, q)→ 0 as q →∞ for any fixed p.

We also note that 0 ≤ Ξ(p, q) ≤ 1. By picking some integer
T > 0, we have for all t > T

µ(t) ≤ Ξ(0, t)µ(0) +

T−1∑
k=0

Ξ(k + 1, t)η(k) +

t−1∑
k=T

Ξ(k + 1, t)η(k)

≤ Ξ(0, t)µ(0) +

T−1∑
k=0

Ξ(k + 1, t)η(k) +

t−1∑
k=T

η(k)

⇒ lim
t→∞

µ(t) ≤
∞∑
k=T

η(k).

The proof is completed by letting T →∞. •
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Lemma 3 In order that (19) holds for any sequence {δ(t)}∞t=0

satisfying the first relation from (18), it is not only sufficient
but also necessary that the sequence {η(t)}∞t=0 satisfies the
second relation from (18).

Proof: Suppose to the contrary that
∑∞
t=0 η(t) =∞. Then

there exists an infinite time sequence 0 < t1 < t2 < . . . such
that ςi

def
=
∑ti−2
k=ti−1−1 η(k)→∞ as i→∞. Now we consider

the sequence

δ(t) =

{
1 if t = ti − 1 for some i
0 otherwise,

which evidently satisfies the first relation from (18). Also, we
consider the solution {µ(t)} of the iterative equations that
result from putting = in place of ≤ in (17) and starts with
µ(0) = 0. It is easy to see that

µ(t1 − 1) = ς1, µ(t2 − 1) =
1

2
ς1 + ς2,

µ(t3 − 1) =
1

22
ς1 +

1

2
ς2 + ς3,

µ(ti − 1) =
1

2i−1
ς1 +

1

2i−2
ς2 + · · ·+ ςi ≥ ςi ∀i.

Hence µ(ti) → ∞ as i → ∞, in violation (19). The
contradiction obtained proves that

∑∞
t=0 η(t) <∞. •

Lemma 4 The system (16) is monotone: for any its two
solutions {x′(t)}∞t=0 and {x′′(t)}∞t=0, we have

x′(0) ≤ x′′(0)⇒ x′(t) ≤ x′′(t) ∀t = 0, 1, . . .

The proof of this lemma is straightforward from (16) and
the first inequality in (2).

Corollary 1 For any solution {x(t)}∞t=0 of (16), x(0) ≥ 0⇒
x(t) ≥ 0 ∀t = 0, 1, 2, . . .

Any solution with x(0) > 0 is said to be positive. By
Corollary 1, x(t) ≥ 0 ∀t for them. Though it will not be
used in the sequel, we note that in fact x(t) > 0 ∀t for them
due to the “self loop property” from Assumption 1.

Corollary 2 Suppose that z(t) → 0 as t → ∞ for some
positive solution {z(t)}∞t=0 of (16). Then the origin is globally
asymptotically stable equilibrium of the system (16).

Proof: For any solution {x(t)}∞t=0 of (16), there exist so
large ς > 0 and ρ > 0 that −ςz(0) ≤ x(0) ≤ ρz(0) since
z(0) > 0 here. So long as both {−ςz(t)}∞t=0 and {ρz(t)}∞t=0

are the solutions of (16), Lemma 4 guarantees that

−ςz(t) ≤ x(t) ≤ ρz(t) ∀t = 0, 1, 2, . . .

It remains to invoke that z(t)→ 0 as t→∞. •

B. Some properties of the dynamic graph

Specifically, we address the graph G(t) from Assumption 1
and recall that its set of nodes N does not vary with time. A
sequential dynamic path in the graph on the time interval ∆ :=
[t1 : t2] is a sequence E(t1), E(t1 + 1), E(t1 + 2), . . . , E(t2)
such that E(t) is an edge in the graph G(t) for all t ∈ ∆ and
the head of E(t) coincides with the tail of E(t + 1) for all

t ∈ [t1 : t2). The tail of the first edge E(t1) is called the tail
of the path, the head of the last edge E(t2) is called the head
of the path; the path is viewed as a method of consecutively
hopping from the path’s tail to its head, with making only
one hop at a time and, moreover, a hop that is feasible at the
concerned time.

Now we invoke the “root” node r from Assumption 2.

Lemma 5 There exists an integer M ≥ 0 such that whenever
t2 − t1 ≥ M , any node i = 1, . . . , N can be reached from r
by following a sequential dynamic path defined on [t1 : t2].

Proof: According to i) in Assumption 2, any node i =
1, . . . , N can be reached from r by following a path in any
graph G

[
[kp, (k + 1)p)

]
. Since its set of edges is the union

of the edges of the graphs G(t) over t ∈ [kp : (k + 1)p), this
transition comes to following some edges of some of these
G(t)’s. This observation is similar in spirit to what is needed
to prove, but, at the same time, is not identical to the desired
statement due to the following reasons:

• There is no guarantee that the edges of G(t)’s are fol-
lowed in the correct temporal order

• There is no guarantee that the edges of the same G(t) are
not employed several times over the path

• The observation deals with only special intervals, i.e.,
those of the form [kp : (k + 1)p) with an integer k.

In fact, the rest of the proof if devoted to overcoming these
logical deficits.

We start with a situation where t1 is an integer multiple of
p, i.e., t1 = pk1 with an integer k1. Let us consider N ! = 1·2·
3 · · ·N intervals [kp, (k+1)p), k = k1, k1+1, . . . , k1+N !−1
and the associated graphs Gk := G

[
[kp, (k + 1)p)

]
. By i) in

Assumption 2, any of them contains a path from r to i. Among
such paths, there is a path of the minimal length, and we pick
one of them Pk. Due to the minimum length property, this
path does not contain loops. Meanwhile, the set PN of all
paths among N nodes that start with r and have no loops
contains (N − 1)! elements. It follows that in the sequence
Pk1 ,Pk1+1, . . . ,Pk1+N !−1 of N ! elements drawn from this
set, some element is encountered no less than N times. Let P
be such an element, and let

m1 < m2 < . . . , < mN ∈ [k1 : k1 +N !) (20)

be indices such that Pk = P for any k of the form k =
mj , j = 1, . . . , N .

Since the path P does not contain loops, it is composed
of no more than N − 1 edges E1, . . . , Ed, d ≤ N − 1
enumerated in accordance with their succession in the path.
Since the number of these edges does not exceed the length
of the sequence Pm1 , . . . ,PmN

, every edge Ei can be at-
tached to its own member of this sequence: Ei ∈ Pmi for
all i = 1, . . . , d. Meanwhile, Pmi

is a path in the graph
Gmi

:= G
[
[mip, (mi + 1)p)

]
, whose edges are formed by

uniting the edges of the graphs G(t) over t ∈ [mip, (mi+1)p).
So there exists τi ∈ [mip, (mi + 1)p) such that Ei is an edge
of the graph G(τi). Inequalities (20) guarantee that

t1 ≤ τ1 < τ2, . . . < τd < t1 +M, where M := N !p.
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Now we are in a position to construct a sequential dynamic
path from r to i that departs at time t1 and arrives at a pre-
specified time t2 ≥ t1 + M . From t1 to τ1, this sequential
path repeatedly follows the self-loop at node r. At time τ1, it
follows the edge E1, thus jumping to its head h1. From τ1 to
τ2, let the path repeatedly follow the self-loop at node h1, and
let it follow the edge E2 at time τ2, thus jumping to its head
h2. We continue likewise until the head hd = i of the last
edge Ed is reached at time τd, and then follow the left-loop
at the node i until time t2. Thus the required sequential path
is constructed.

In the general case where t1 is not necessarily an integer
multiple of p, the sequential path first repeatedly follows the
self-loop at node r until the first time that is an integer multiple
of p, after which the above construction is put in use. This
necessitates to alter the choice of M in the conclusion of the
lemma: M := M + p. •
C. Final steps in the proof of Theorem 1

From now on, we focus on an arbitrarily chosen positive
solution {x(t)}∞t=0 of the system (16).

Lemma 6 The following relations hold:

m(t)
def
== max

i=1,...,N
xi(t) ≥ 0 and m(t+ 1) ≤ m(t) (21)

Proof: The first relation is immediate from Corollary 1 and
the definition of the positive solution, whereas the second one
is justified as follows:

m(t+ 1) = max
i=1,...,N

xi(t+ 1)

(16)
= max

i=1,...,N

1

1 + (δi(t))2

N∑
j=1

aij(t)xj(t)

xj(t)≤m(t) ∀j
≤ m(t)

N∑
j=1

aij(t)
(2)
= m(t). •

Corollary 3 There exists a finite and nonnegative limit

m = lim
t→∞

m(t). (22)

Corollary 4 It suffices to show that m = 0 since then
Theorem 1 is valid thanks to Corollary 2.

Lemma 7 Suppose that at a time t = τ , the graph G(t)
contains an edge from node j to node i. Let m↑(τ) be an
upper bound on m(τ). Then

m↑(τ)− xi(τ + 1) ≥ α[m↑(τ)− xj(τ)],

where α is taken from ii) in Assumption 1.

Proof: For t = τ , we observe that

xi(t+ 1)
(16)
=

1

1 + (δi(t))2

N∑
q=1

aiq(t)xq(t) ≤
N∑
q=1

aiq(t)xq(t)

=
∑
q 6=j

aiq(t)xq(t) + aij(t)xj(t)
(21)
≤ m↑(t)

N∑
q=1

aiq(t)+

aij(t)[xj(t)−m↑(t)]
(2)
= m↑(t)− aij(t)[m↑(t)− xj(t)]

≤m↑(t)− α[m↑(t)− xj(t)]. •

Corollary 5 Let a sequential dynamic path E(t1), E(t1 +
1), . . . , E(t2) starts with node j and ends with node i. Then

m(t1)− xi(t2) ≥ αt2−t1 [m(t1)− xj(t1)]. (23)

Proof: We argue via induction on t2 = t1, t1 + 1, . . .. For
t2 = t1, (23) is evident. Suppose that (23) is true for some t2 ≥
t1, and consider a dynamic path E(t1), . . . , E(t2), E(t2 + 1)
that starts with node j and ends with node i. Let i∗ stand for
the head of E(t2). By the induction hypothesis,

m(t1)− xi∗(t2) ≥ αt2−t1 [m(t1)− xj(t1)]. (24)

Meanwhile, m(t1) is an upper bound on m(t2) by the second
relation from (21). By applying Lemma 7 to τ := t2, j := i∗,
and m↑(τ) := m(t1), we see that

m(t1)− xi(t2 + 1) ≥ α[m(t1)− xi∗(t2)]
(24)
≥ αt2−t1+1[m(t1)− xj(t1)]. •

To proceed, we invoke the “root” node from Assumption 2
and the integer M from Lemma 5.

Lemma 8 The infinite sequence {η(t) := m(t) − xr(t)}∞t=0

is summable, i.e. belongs to `1.

Proof: For any time instant τ and any node i, there is a
sequential dynamic path that exists within the time interval
[τ : τ + M ], starts with node r, and ends with node i by
Lemma 5. By applying Corollary 5 to this path, t1 := τ, t2 :=
τ +M , and j := r, we see that

m(τ)− xi(τ +M) ≥ αM [m(τ)− xr(τ)].

Taking the maximum over i = 1, . . . , N yields that

m(τ)−m(τ +M) ≥ αM [m(τ)− xr(τ)].

By taking an arbitrary integer θ ≥ 0 and substituting here
τ := θ + qM with an integer q ≥ 0, we infer that

∞∑
q=0

η(θ + qM) =

∞∑
q=0

[m(θ + qM)− xr(θ + qM)]

≤ α−M
∞∑
q=0

[m(θ + qM)−m(θ + (q + 1)M)]

= α−M lim
K→∞

K∑
q=0

[m(θ + qM)−m(θ + (q + 1)M)]

= α−M
{
m(θ)− lim

K→∞
m(θ + (K + 1)M)]

}
(22)
= α−M [m(θ)−m];
∞∑
t=0

η(t) =

M−1∑
θ=0

∞∑
q=0

η(θ + qM)

≤ α−M
[
M−1∑
θ=0

m(θ)−Mm

]
<∞. •
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Completion of the proof of Theorem 1: Thanks to
Lemma 8, η(t) := m(t) − xr(t) → 0 as t → ∞ and so
xr(t)→ m as t→∞ by (22). Meanwhile,

xr(t+ 1)
(16)
=

1

1 + (δr(t))2

N∑
q=1

arq(t)xq(t)

(21)
≤ 1

1 + (δr(t))2

N∑
q=1

arq(t)m(t)
(2)
=
m(t)− xr(t) + xr(t)

1 + (δr(t))2

=
xr(t)

1 + (δr(t))2
+

η(t)

1 + (δr(t))2
≤ xr(t)

1 + (δr(t))2
+ η(t).

So by applying Lemma 2 to µ(t) := xr(t), δ(t) := δr(t) and
invoking Lemma 8, we see that xr(t)→ 0 as t→∞ and so
m = 0. Corollary 4 completes the proof. •
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