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In this article, we study the energy minimization problem of dissipative two-level
quantum systems whose dynamics is governed by the Kossakowski–Lindblad equa-
tions. In the first part, we classify the extremal curve solutions of the Pontryagin
maximum principle. The optimality properties are analyzed using the concept of
conjugate points and the Hamilton–Jacobi–Bellman equation. This analysis com-
pleted by numerical simulations based on adapted algorithms allows a computation
of the optimal control law whose robustness with respect to the initial conditions
and dissipative parameters is also detailed. In the final section, an application in
nuclear magnetic resonance is presented. © 2010 American Institute of Physics.
#doi:10.1063/1.3479390$

I. INTRODUCTION

In this article, we consider the energy minimization problem: min %0
T!u1

2!t"+u2
2!t""dt with fixed

transfer time T for steering an initial state q0 to a final state q1, where q= !x ,y ,z" and the dynamics
is given by the control system,

ẋ = − !x + u2z ,

ẏ = − !y − u1z ,

ż = "− − "+z + u1y − u2x . !1"

This system is deduced from Kossakowski–Lindblad equations22,32 describing the dynamics of
two-level dissipative quantum systems in the rotating wave approximation.11 Also up to a proper
renormalization, it corresponds to the Bloch equation in nuclear magnetic resonance !NMR" when
the detuning term is zero.31 The set #= !! ,"+ ,"−" is the set of dissipative parameters satisfying the
constraints 2!$"+$ &"−&, the control is the complex function u=u1+ iu2 associated with the
physical control, which is an electromagnetic field. The cost corresponds to the energy transfer
between the control field and the internal Hamiltonian and is an important physical issue.4,5 The
Bloch ball &q&%1, which is the physical state space of the system, is invariant for the dynamics.

Such a control problem is motivated by two recent experimental research projects. The first
one concerns the control of the rotation of a molecule in a gas phase by using laser fields37 and the
second deals with the control of the spin dynamics by a magnetic field in NMR.31 This second
problem is the ideal testbed for the application of optimal control to quantum systems since the
dissipative parameters can be identified with a great accuracy and all the computed trajectories can
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be tracked experimentally.3,25,26,28,31 For the first problem, the experimental situation is more
complex since many levels have to be taken into account, but our derived numerical schemes are
promising even in this case.42

The use of recent geometric control techniques to analyze quantum control systems is a new
challenge in optimal control. In this context, many articles are devoted to the conservative case,
e.g., see Refs. 4, 5, 16, 17, and 26. The aim of our research program is to extend the analysis to
the dissipation case.34,38 In a first series of articles,11,14,15,39 we have considered the time-minimal
control problem with a control bound &u&%M. The departing framework for the time-minimum
and energy minimization problems is the same. Writing the control system in the form

q̇ = F0!q" + '
i=1

2

u1Fi!q" ,

the Pontryagin maximum principle36 tells us that for the time-minimal control problem, outside a
surface &: Hi=0, i=1,2, where Hi denotes the Hamiltonian lift (p ,Fi!q") of the vector field Fi, the
optimal trajectories are selected among a set of extremal curves solutions of the Hamiltonian
vector field H! with the Hamiltonian,

H = H0 + !H1
2 + H2

2"1/2,

while for the energy minimization problem, the corresponding Hamiltonian !in the normal case" is
given by

H = H0 +
1
2

!H1
2 + H2

2" .

Despite similar Hamiltonians, the analysis of this article for the energy minimization problem
compared with the one of the time-minimal control problem will show significant different results.
Two reasons can be mentioned to explain this discrepancy. The first one is technical: for the
time-minimal control problem, the Hamiltonian vector field H! is not smooth on the surface & and
this leads to behaviors of extremal curves that are complicated to analyze. For the energy mini-
mization problem, it remains smooth on the whole space and asymptotic behaviors are related to
those of smooth Hamiltonian vector fields. In this latter case, the normal extremals are associated
with a mechanical system with potential V and many qualitative properties can be deduced from
the graph of V only.

The two optimal control problems are similar for a specific value of the parameters: if "−
=0 and "+=!, both cases amount to analyze a quasi-Riemannian problem on the two-sphere of
revolution given by the Grushin metric: g=d'2+tan2 'd(2, where ' is the angle along a meridian,
while ( is the angle of revolution along the z-axis. For such a metric, a complete analysis is
contained in Ref. 8 where the extremal curves are of two types: meridian circles and '-periodic
orbits winding around the equator. Moreover, the conjugate and cut loci have been explicitly
described. The energy minimization problem amounts to generalize this program by a classifica-
tion of the extremal curves and an optimality analysis. In addition, the robustness properties with
respect to the dissipative parameters, which are an important physical issue, will be discussed.

This article is organized in three sections. In the first section, we present a classification of the
extremal flow, in both abnormal and normal cases. In the normal case, using spherical coordinates,
the Hamiltonian takes the form

H = p)!"− cos ' − )!* cos2 ' + !"" + p'*−
"−

)
sin ' + * sin ' cos '+ +

1
2

!p'
2 + p(

2 cot2 '" ,

where *="+−!. It can be interpreted as a deformation of the Grushin case that occurs for "−
=0 and *=0. Extremal curves can be classified in two classes. When p(=0, this corresponds to
curves in meridian planes, which restricts the system to the two-dimensional !2D"-plane !y ,z"
controlled with a real field only. A complete classification of the extremal curves is given, splitting
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the analysis into two parts, the case "−=0 where the system is integrable, while for "−#0, only
the asymptotic properties of the extremals are described. In the case p(#0, again the analysis
splits into two parts. The first one is the integrable case "−=0, where we have two types of
extremal curves, that is, short periodic curves not crossing the equator and long periodic curves
crossing the equator, which are deformations of the extremal curves of the Grushin case. In both
cases, we give a parametrization of the extremals using elliptic functions. In the general situation
"−#0, the analysis is less complete but the asymptotic behaviors of the solutions can be described
in the framework of Hamiltonian dynamics. In Sec. III, the geometric analysis of the extremal flow
is used to deduce the optimality properties of the extremals. The problem is to compute the first
conjugate point where an extremal ceases to be locally optimal for the C1-topology on the set of
curves and the cut point where it ceases to be globally optimal. They will form, respectively, the
conjugate and cut loci. We introduce the Hamilton–Jacobi–Bellman equation whose integration
gives the value function and the isocost spheres, which are the level sets of the value function.
Since the value function solution of the Hamilton–Jacobi–Bellman equation is constructed with
the concept of central field, the classification of extremals leads to the computation of microlocal
solutions which have to be glued together to deduce the global solution. This problem can be
handled by computing the conjugate and cut loci. From the general theory !see Ref. 9", the
conjugate points can be computed using the variational equation. One can get geometric estimates
of such points in the integrable case "−=0, while in the general situation "−#0, we obtain
numerical estimates. The final section is devoted to the algorithms and the numerical simulations
based on our geometric discussion to conclude the analysis. Several codes developed in a parallel
research project in orbital transfer are used:9 shooting method, computation of Jacobi fields related
to the concept of conjugate points, and a numerical continuation scheme where the homotopy
parameter + is related to the dissipative parameters *="+−! and "−. As a conclusion, we present
an application to nuclear magnetic resonance !NMR", comparing the energy-minimal trajectory to
the time-minimal trajectory.

II. GEOMETRIC ANALYSIS OF THE EXTREMAL CURVES

A. Maximum principle

First of all, we recall some standard results concerning the maximum principle needed in our
computations !see Ref. 10 for the details". Consider the energy minimization problem:
minu!·"%0

T'i=1
m ui

2!t"dt, where the transfer time T is fixed for a smooth system of the form: q̇
=F0!q"+'i=1

m uiFi!q" on a smooth manifold M and where the set of admissible controls U is the set
of bounded measurable mapping u : #0,T$→Rm such that the corresponding trajectory q! · ,u ,q0",
initiating from q0 is defined on the whole interval.

According to the maximum principle, the optimal solutions are a subset of a set of extremal
curve solutions of the equations,

dq

dt
=

$H̃

$p
,

dp

dt
= −

$H̃

$q
, !2"

where H̃!q , p ,u" is the pseudo-Hamiltonian H0+'u=1
m uiHi+ p0'i=1

m ui
2, with Hi being defined as

Hi= (p ,Fi!q"), i=0,1 , ¯ ,m. Moreover, an extremal control has to satisfy the maximization con-
dition

H̃!q,p,u" = max
v"Rm

H̃!q,p,v" , !3"

and p0 is constant and nonpositive. In this situation, one immediately deduces that the maximiza-
tion condition leads to solve the equation: $H̃ /$u=0 and one must distinguish two cases.

!1" Normal case. If p0,0, it can be normalized to p0=−1 /2 and solving $H̃ /$u=0 leads to ui

=Hi, i=1, ¯ ,m. Plugging such ui into H̃ defines a true Hamiltonian: Hn=H0+ 1
2'i=1

m Hi
2,

092705-3 The energy minimization problem J. Math. Phys. 51, 092705 "2010!



whose !smooth" solutions correspond to normal extremal curves z! · "= !q! · " , p! · "", while
normal extremal controls are given by ui=Hi!z", i=1, ¯ ,m.

!2" Abnormal case. It is the situation where p0=0 and hence such extremals have to satisfy the
constraints: Hi=0, i=1, ¯ ,m. Such extremals do not depend on the cost and correspond to
the so-called singular trajectories of the system.10

B. Geometric computations of the extremals

We shall complete the computation by introducing adapted geometric coordinates. If q
= !x ,y ,z" are the Cartesian coordinates of the state restricted to the Bloch ball: &q&%1, using
spherical coordinates,

x = ) sin ' cos (, y = ) sin ' sin (, z = ) cos ' ,

the system becomes

)̇ = "− cos ' − )!* cos2 ' + !" ,

'̇ = −
"− sin '

)
+ * sin ' cos ' + v2,

(̇ = − cot 'v1 !4"

where *="+−! and the new control v=v1+ iv2 is given by v=e−i(u. Note, in particular, that the
cost is invariant,

,
0

T

!v1
2 + v2

2"dt = ,
0

T

!u1
2 + u2

2"dt .

1. Normal extremals in spherical coordinates

Proposition 1: The Hamiltonian Hn associated with normal extremals is given in spherical
coordinates by

Hn = p)!"− cos ' − )!* cos2 ' + !"" + p'*−
"−

)
sin ' + * sin ' cos '+ +

1
2

!p'
2 + p(

2 cot2 '" ,

where ( is a cyclic variable and p( is a first integral.

2. Abnormal extremals in spherical coordinates

Proposition 2: In the case *#0, an abnormal extremal has to satisfy p'=0 and can be

!1" '=- /2 if "−#0 and (=(0 constant.
!2" '#- /2 and corresponds to a singular trajectory of the 2D-system

ẏ = − !y − u1z, ż = "− − "+z + u1z ,

assuming the control field u=u1 real. It is given in polar coordinates by '=0 or
2)* cos '="−, while p(=0 is the transversality condition meaning that the (-variable is not
taken into account. The angle ( satisfies: (̇=−cot 'v1, where v1 is any control.

C. The analysis in the normal case

The Hamiltonian takes the following form:
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Hn = "−*p) cos ' −
p'

)
sin '+ + H ,

where

H = − )p)!* cos2 ' + !" +
1
2

p'* sin!2'" +
1
2

!p'
2 + p(

2 cot2 '" .

We deduce immediately the following result.
Proposition 3: If "−=0, the Hamiltonian Hn reduces to H and is completely integrable.

Introducing r=ln ), it takes the form

H = − pr!* cos2 ' + !" +
1
2

p'* sin!2'" +
1
2

!p'
2 + p(

2 cot2 '" ,

where the set of parameters #= !"+ ,!" is such that 2!$"+$0. The Hamiltonian is invariant for
the central symmetry: !p' ,'"! !−p' ,-−'" and, moreover, a transformation of the form p!+p,
#!+#, +.0, transforms H into +H.

A key property in our analysis is the introduction of a mechanical system. We have

'̇ =
$Hn

$p'
= −

"−

)
sin ' +

1
2

* sin 2' + p',

which leads to

Hn =
1

2
*p' +

*

2
sin!2'" −

"− sin '

)
+2

+ "−p) cos ' − )p)!* cos2 ' + !" +
1

2
p(

2 cot2 ' −
1

2
** sin 2'

2
−

"− sin '

)
+2

.

Hence, we have
Proposition 4: The equation Hn=h can be written as follows:

1
2

'̇2 + V!'" = h ,

where

V = "−p) cos ' − )p)!* cos2 ' + !" −
1
2
**

sin!2'"
2

−
"− sin '

)
+2

+
1
2

p(
2 cot2 '

is a potential.
In particular, if "−=0, the potential reduces to

V!'" = − pr!* cos2 ' + !" −
1
8

*2 sin2!2'" +
1
2

p(
2 cot2 ' .

If we set /=- /2−', one gets

V!/" = − pr!* sin2 ' + *" −
1
8

*2 sin2!2/" +
1
2

p(
2 tan2 / .

Hence, V!−/"=V!/".
If "−=0, a special case occurs when *="+−!=0: the )-variable cannot be controlled and the

energy minimization problem is equivalent to the length minimization problem for the metric g
=d'2+tan2 'd(2. This metric appears also in the time-minimal control problem since if we pa-
rametrize by arc-length, the length corresponds to the time. This control model will play a key role
in our analysis.

Definition 1: The quasi-Riemannian metric !with a singularity at the equator" g=d'2
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+tan2 'd(2 is called the standard Grushin metric on the two-sphere of revolution.
Observe that if "−=0, then V!'"→+0, when '→0, -, if p(#0. This allows one to gener-

alize the Grushin case introducing a one parameter pr-family of mechanical systems on the two-
sphere of revolution which shares the symmetry properties of the Grushin model. The above
geometric considerations will lead us to pursue the analysis. First of all, we shall consider the case
where p(=0, which corresponds to meridian circles in the Grushin model, while p(#0 extends the
case of extremal curves winding around the equator.

D. Normal extremals in meridian planes

Due to the symmetry of revolution of the problem with respect to the z-axis, we have the
following important propositions.

Proposition 5: Extremal curves such that p(=0 correspond to extremal curves of the 2D-
system:

ẏ = − !y − u1z, ż = "− − "+z + u1y ,

where the control u is restricted to the real part u1 of the control field, the cost being %0
Tu1

2!t"dt.
They give the solutions of the optimal control problem when the initial and final points q0, q1 are
contained in a same meridian plane.

Proposition 6: If the initial point q0 of the 3D-system is on the z-axis, then the optimal solution
is up to a (-rotation around the z-axis a solution of the 2D-restricted problem.

1. The integrable case !−=0

The discussion splits into two parts: classification of the phase portraits and parametrization of
the extremals.

The Hamiltonian for p(=0 reduces to

Hn = "−-p) cos ' −
p'

)
sin '. − )p)!* cos2 ' + !" +

1
2

p'* sin!2'" +
1
2

p'
2 .

If "−=0, introducing r=ln ), it takes the form

H = − pr!* cos2 ' + !" +
1
2

!p'* sin!2'" + p'
2 " .

Fixing the level set by Hn=h and with '̇= p'+* sin!2'" /2, one gets

1
2

'̇2 + W!'" = h̄ ,

where h̄=h+ pr"+ and the potential is given by

W!'" =
*2

2
sin2 '!sin2 ' − a", a =

1
2

−
pr

*
.

Observe that the system is --periodic, and the potential function is symmetric: W!−'"=W!'" and
W!-−'"=W!'". Thus, in order to construct the phase portrait of the system, it is enough to
analyze the behavior of the function W on the interval #0,- /2$. The equilibrium points can be
determined by the equation
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$W

$'
= 2*2 sin ' cos '!sin2 ' − a" = 0.

We get then fixed points '=k- /2 corresponding to the abnormal directions, and in addition, if
a" $0,1#, we have one more nontrivial root '* in the interval #0,- /2$, which is defined by the
relation: sin '*=/a.

To construct the phase portraits, the discussion goes as follows.
Case a" $0,1#: We represent the graph of the potential W!'". One has W!0"=0 and

W!- /2"=*2 /2!1−2a"=*pr. Hence, W!- /2".0 if and only if pr*.0. One gets the two cases
displayed in Fig. 1 for *pr,0 and *pr.0. Observe that these phase portraits are identical up to
a shift by - /2. If pr=0, then a= 1

2 , and hence '*=- /2. In this critical case, we have the phase
portrait of a pendulum with stable equilibria at - /4, 3- /4, and unstable equilibria at '=0, 3- /2
!see Fig. 2".

0

δ p
r

−δ2a2/2

W(φ)

0

δ p
r

−δ2a2/2

−1

−0.5

0

0.5

1

1 2
3

4
5

φ* π−φ*π/20 π
φ

1 2
3

4
5

−π/2 −φ* 0 φ* π/2
φ

FIG. 1. Phase portraits in the case a" $0,1# for *pr,0 !left" and *pr.0 !right". In the left panel, numbers 1, 2, 3, 4, and
5 are, respectively, associated with −*2a2 /2, h̄,*pr, h̄=*pr, *pr, h̄,0, h̄=0, and h̄.0. In the right panel, they corre-
spond, respectively, to −*2a2 /2, h̄,0, h̄=0, 0, h̄,*pr, h̄=*pr, and h̄.*pr.

−2

0

2

ππ/20

φ̇

−2

0

2

−π/2 π/20

φ̇

−0.5

0

0.5

π/4 π/40
φ

φ̇

FIG. 2. Phase portraits in the case a# #0,1$ for *pr,0 !top", *pr.0 !middle", and for pr=0 !bottom".
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Case a# #0,1$: The phase portraits are simpler and correspond to phase portraits of a pen-
dulum where

• if *pr,0, the stable equilibria are at - /2, 3- /2 and unstable equilibria are at 0, -; and
• if *pr.0, two stable equilibria are at 0, - and unstable equilibria are at - /2, 3- /2.

Remark 1: From the previous discussion, the mechanical system can be interpreted as a
system on the cylinder, identifying 0 and - and this leads to two types of periodic trajectories:

!a" oscillating trajectories that are homotopic to zero and
!b" rotating trajectories that are not homotopic to zero.

In addition, we have nonperiodic trajectories corresponding to separatrices behaviors.
Note that along the first class of trajectories, the angle ' oscillates between '−,'+, while in

the second case in the interval #0,-$. In this discussion, the abnormal lines correspond to '=0,
- /2, which are singular points of the normal flow.10

To integrate the equations, one can use elliptic integrals. A complete parametrization can be
obtained using elliptic functions.1,29 The computation goes as follows. We have

d'

dt
= 1/2!h̄ − W!'"", 1 = 2 1,

and one can consider the branch with 1=1,

'̇ = /2!h̄ − W!'"" .

By setting x=sin2 ', '" $0,- /2#, we get

dx = 2 sin ' cos 'd'

and

dt =
d'

/2!h̄ − W!x""
=

dx

2/2/x!1 − x"!h̄ − W!x""
. !5"

The parametrization of the solution is related to the roots of the polynomial

P!x" = h̄ − W!x" = −
*2x2

2
+ a*2x + h̄ ,

whose discriminant is

3 = a2*4 + 2*2h̄ = *2!2h̄ + a2*2" .

This leads to the following discussion. Consider the case a" $0,1#. According to Fig. 1, nontrivial
motion occurs if h̄.−*2a2 /2 and, hence, 3.0. The two roots are denoted by 0x1 ,x21 and their
positions with respect to 00, 11 can be deduced from Fig. 1. To get the parametrization, one can use
Weierstrass or Jacobi functions. In the first case, we set y=1 /1−x and Eq. !5" takes the form

dx

2/2/x!1 − x"!h̄ − W!x""
=

dy
/Q!y"

,

where Q is a cubic polynomial whose roots are deduced from the original roots 00,x1 ,x21. The
integration is then standard.

We shall give the parametrization using the Jacobi functions. Assume that the roots
00,1 ,x1 ,x21 are ordered as y1.y2.y3.y4 and Eq. !5" is written as
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*dx

dt
+2

= 4*2!x − y1"!x − y2"!x − y3"!x − y4" .

To conclude the integration we use the transformation from Ref. 20. We set

z2 =
!y2 − y4"!x − y3"
!y2 − y3"!x − y4"

.

Introducing

31
2!x" = 4!x − y1"!x − y2"!x − y3"!x − y4"

and

32!z" = !1 − z2"!1 − k2z2" ,

we obtain

1
3!z"

dz

dt
=

M

31!x"
dx

dt
,

where

k2 =
!y2 − y3"!y1 − y4"
!y1 − y3"!y2 − y4"

, M2 = *2!y2 − y3"!y1 − y3" .

In this representation, the solution is z=sn!Mt+/0 ,k", where z oscillates periodically between −1
and 1 if 0%k%1 or −1 /k, 1 /k if k$1, with k being the modulus. According to our parametriza-
tion, when x oscillates between y2 and y3, z2 oscillates between 0 and 1, and the parameter k
" #0,1$.

The x-variable can be found by inverting the Möbius transformation

x =
z2!y2 − y3"y4 − !y2 − y4"y3

z2!y2 − y3" − !y2 − y4"
.

If the initial condition x!0"=x0 is fixed by x0=sin2 '!0", then z!t"=sn!*Mt+/0 ,k", with /0 defined
by z!0"=sn!/0 ,k".

The integration of the remaining equation

ṙ = − * cos2 ' − "+ = *x − "+

leads to an expression of the form

r!t" = − "+t +, a + b sn2 u

c + d sn2 u
du ,

where a, b, c, and d are constants that can be expressed in terms of *, x1, and x2. The integral term
can be computed using elliptic integrals of the third kind.29 Indeed,

, a + b sn2 u

c + d sn2 u
du =

a

c
u +

!bc − ad"
c2 , sn2 u

1 + e sn2 u
du , !6"

where e=d /c. Defining the complex parameter ā by the equation

sn2 ā = −
e

k2 ,

the last term of !6" can be found using the standard form of the elliptic integral of the third kind
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4!u, ā,k" = ,
0

u k2 sn ā cn ā dn ā sn2 v
1 − k2 sn2 ā sn2 v

dv .

Applying the previous techniques, one gets the following parametrizations.

• Short orbits −*2a2 /2, h̄,*pr,0 or −*2a2 /2, h̄,0,*pr.

We have 0,x1,x2,1. Then

x!t" =
x1x2

x2 − !x2 − x1"sn2!Mt + /0,k"
,

r!t" =
*x1

M
*4* x2 − x1

x2
,am!Mt + /0,k",k+

− 4* x2 − x1

x2
,am!/0,k",k++ − "+t ,

where

M2 = *2x2!1 − x1", k2 =
x2 − x1

x2!1 − x1"
.

• Long orbits *pr, h̄,0.

In this case 0,x1,1,x2, and

x!t" =
x1

1 − !1 − x1"sn2!Mt + /0,k"
,

r!t" − r!0" =
*x1

M
!4!1 − x1,am!Mt + /0,k",k"

− 4!1 − x1,am!/0,k",k"" − "+t ,

where

M2 = *2!x2 − x1", k2 =
x2!1 − x1"

x2 − x1
.

• Long orbits 0, h̄,*pr. This case is analog to the previous one up to the shifting along the
'-axis. More precisely, we have x1,0,x2,1, and

x!t" = 1 −
1 − x2

1 − x2 sn2!Mt + /0,k"
,

r!t" − r!0" = −
*!1 − x2"

M
!4!x2,am!Mt + /0,k",k"

− 4!x2,am!/0,k",k"" − !t

for M and k as in the previous case.
• Rotating motions *pr,0, h̄ or 0,*pr, h̄.

We have x1,0,1,x2. We set
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M2 = *2x2!1 − x1", k2 =
x2 − x1

x2!1 − x1"
.

Then

x!t" =
x1 sn2!Mt + /0,k"

sn2!Mt + /0,k" − 1 + x1
,

r!t" − r!0" = −
*x1

M
*4* 1

1 − x1
,am!Mt + /0,k",k+

− 4* 1
1 − x1

,am!/0,k",k++ + !− "+t + *x1"t .

2. The general case !−Å0

In this section, we shall interpret the effect of "−#0 on the set of extremals. Using polar
coordinates, the mechanical system takes the form

'̇2

2
+ V!',pr,r" = h ,

where

V!',pr,r" = pr#"− cos 'e−r − !! + * cos2 '"$ −
1
2
-* sin!2'"

2
− "− sin 'e−r.2

.

Since "−#0, we have a coupling between the evolution of the '- and r-variables which can be
interpreted as a true dissipation effect on the set of extremals. In order to make the analysis, we
use Cartesian coordinates which allow to make a Poincaré compactification to analyze the 5-limit
set. The Hamiltonian becomes

Hn = − !ypy + pz!"− − "+z" +
1
2

!ypz − zpy"2.

Introducing

P = ypz − zpy, Q = ypy + zpz

the extremal system is

ẏ = − !y − zP ,

ż = !"− − "+z" + yP ,

ṗy = !py − pzP ,

ṗz = "+pz − pzP ,

and the Poincaré compactification is

ẏ = − !yw2 + z!zpy − ypz" ,

ż = "−w3 − "+w2z + y!ypz − zpy" ,
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ṗy = !pyw
2 + pz!zpy − ypz" ,

ẇ = 1.

The quantities P, Q corresponding to dual polar coordinates can be used as coordinates provided
that py

2+ pz
2#0. We have

Q̇ = "−pz,

Ṗ = *!ypz + zpy" − "−py .

The equilibrium points can be easily computed. If "−#0, one has pz=0. Hence, ṗy =0 gives py
=0 if !#0. If ẏ=0, then y=0 and if ż=0, one has z="− /"+. This corresponds to the equilibrium
point of the free motion. Additional critical points can occur at the infinity. Indeed, due to the
dissipation, Poisson-stable point does not exist and from Hopf theorem almost every point is
departing.35 Since the state variables remain bounded, we deduce that the adjoint vector &p&→0 as
t→+0. This can be made more precise using the following transformation:

py = ! cos 6, pz = ! sin 6 ,

with

!!̇ = !py
2 + "+pz

2

and

!py
2 + "+pz

2 $ "+!
2/2

since 2!$"+$0. Hence, in particular, !!t"$e"+t/2!!0" and this gives &p&→+0 if t→+0, pro-
vided that !!0"#0. We also have

6̇ =
* sin!26"

2
+ P .

To summarize, we obtain

!̇ = !!! + * sin2 6" ,

6̇ = * sin!26"/2 + P ,

Ṗ = *#sin!26"Q − cos!26"P$ − "−! cos 6 ,

Q̇ = "−! sin 6 .

It is a convenient coordinate system if !#0. In this representation P is the control and numerical
simulations can be used to analyze the limit behaviors of P and Q. This gives a complete classi-
fication of the extremal curves in meridian planes.

E. Normal extremals in nonmeridian planes

We now proceed to the analysis of normal extremals such that p(#0. As before, we distin-
guish the two cases.
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1. The integrable case !−=0

Fixing the level set to H=h, one can reduce the integration to find the solutions of '̇2 /2
+V!'"=h, while the remaining equations are

(̇ = p(* 1
sin2 '

− 1+, ṙ = − * sin2 ' − "+.

We introduce in this section the following notations:

b = ! − "+, a =
1
2

+
pr

b
, h̄ = h + pr"+ +

p(
2

2
.

If we denote x=sin2 ', we obtain

V!'" = Ṽ!x" =
b2

2x
*x3 − 2ax2 +

p(

b2+ − pr"+ −
p(

2

2

and introducing

W!x" =
b2

2x
*x3 − 2ax2 +

p(
2

b2+ ,

one deduces that ' satisfies the equation

'̇ = 2 /2!h̄ − W!x!'""" .

Step 1: Qualitative analysis of the potential function W. Since x=sin2 ', x" #0,1$ but we
extend the domain to the whole R. First of all we observe that

lim
x→20

W!x" = 2 0, lim
x→20

W!x" = + 0

and

W!1" = − bpr +
p(

2

2
.

Further, we have

Wx! =
b2

x2*x3 − ax2 −
p(

2

2b2+ .

Hence, limx→0 Wx!=0 and the critical points of W are defined by the roots of the cubic polynomial

P1!x" = x3 − ax2 −
p(

2

2b2 .

Since P1!0"=−p(
2 /2b2%0 and P1!!0"=0, if p(#0, the polynomial P1!x" has one positive real root

x*, and the other possible real roots of P1 !at most two" are negative. In particular, it follows that
W!x" can have at most one critical point on $0,1#. This is explained in the next section.

By construction, the critical point x* is a positive zero of the function W!, and thus it solves
the following equation:
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b2x − ab2 =
p(

2

2x2 .

It is then easy to see that in the domain x$0, the graph of the linear function f1=b2x−ab2

intersects the graph of f2= 1
2 p(

2x−2 only once, and the intersection point x*,1 if and only if
f1!1". f2!1". This yields the following condition:

a , 1 −
p(

2

2b2

or, equivalently,

p(
2 − 2pr* , *2.

Now consider the potential W̃!'"=W!x!'"". We have

W̃!!'" = 2W!!x!'""sin ' cos ' ,

hence W̃!!- /2"=0. Taking into account the symmetry of the function W̃ with respect to the
equator '=- /2, we finally obtain two cases accordingly to the values of the dissipative param-
eters !, "+ and the first integrals pr and p(.

Type I: a,1− p(
2 /2b2, then x*,1. The motion of the system takes place in the region h̄

$W!x*". There are three equilibrium states

'*0 =
-

2
,

corresponding to a local maximum of the potential and

'*1 = arcsin /x*, '*2 = - − arcsin /x*,

corresponding to a local minimum of the potential. They belong, respectively, to the energy levels
W!1" and W!x*". There are two types of periodical trajectories: to each value W!x*", h̄,W!1"
corresponds two periodic orbits in each hemisphere which are symmetric with respect to the
equator, and for h̄.W!1", there exists a unique periodic orbit crossing the equatorial plane '
=- /2 and the two pieces are symmetric with respect to the equator. The transition between the
two cases gives a limit situation which is nonperiodic and corresponds to a separatrix on the
energy level h̄=W!1".

Type II: a$1− p(
2 /2b2. In this case the motion of the system takes place in the region h

$W!1" and there exists a unique equilibrium state '*0=- /2. The only type of periodic orbits

crossing the equatorial plane corresponds to the energy levels h̄.W!1". Those orbits can be
identified with the analogous orbits of Case I. This leads to the following definition.

Definition 2: For the generic motion of the mechanical system '̇2 /2+V!'"=h, we have two
types of periodic orbits: orbits located in one hemisphere, called short orbits, and orbits crossing
the equators, called long orbits.

Step 2: Parametrization of the extremal trajectories by elliptic functions. The '-variable is
solution of

'̇ = 2 /2!h̄ − W̃!'"" ,

where the 2 represents the ascending and descending branches. It is not restrictive to consider the
case '̇.0. From the previous discussion, it is sufficient to analyze the equation in the x-variable,
x=sin2 '. Then we can consider
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dt =
d'

/2!h̄ − W̃!'""
=

dx

2/2/x!1 − x"!h̄ − W!x""

and

x!h̄ − W!x"" = −
b2

2
*x3 − 2ax2 −

2h̄

b2 x +
p(

2

b2+ = −
b2

2
P2!x" ,

where P2!x" is the cubic polynomial,

P2!x" = x3 − 2ax2 −
2h̄

b2 x +
p(

2

b2

and we have

dx

2/2/x!1 − x"!h̄ − W!x""
=

dx

2&b&/!x − 1"P2!x"
.

In order to characterize the roots of the polynomial P2, we have to consider two cases.
Case a: h̄,W!1" !short orbits". We have

P2!0" =
p(

2

b2 . 0, P2!1" =
2
b2 !W!1" − h̄" . 0.

According to the shape of the potential, the function h̄−W!x" and, hence, the polynomial P2!x" has
exactly

• two roots 0,x1,x2,1 in the interval $0,1# if W!1". h̄.W!x*",
• no root if h̄,W!x*", and

• short orbits reduce to equilibrium states if h̄=W!x*".

In addition, since P2!x"→−0 as x→−0, one can deduce that P2 necessarily has a negative root
x3,0.

Case b: h̄.W!1" !long orbits". We have

P2!0" =
p(

2

b2 . 0, P2!1" =
2
b2 !W!1" − h̄" , 0.

Taking into account that P2!x" has at most one extremum at 0,x*,1, we deduce that P2!x" has
exactly two positive roots x1, x2 and a negative root x3 so that x3,0,x1,1,x2.

Summing up, we get that in both cases

!1 − x"x!h̄ − W!x"" =
b2

2
!x − y1"!x − y2"!x − y3"!x − y4" ,

where the real roots are ordered according to y1.y2.y3.y4. To integrate, we proceed as before
to get the following parametrization.

Parametrization of periodic orbits. We proceed as in Sec. II D. We have to integrate the
following equation:
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dt =
dx

2&b&/!x − 1"!x − x1"!x − x2"!x − x3"
. !7"

According to our previous analysis, in terms of x-variable the motion occurs in the interval
#x1 ,min0x2 ,11$. The change of variables

z2 =
!min0x2,11 − x3"!x1 − x"

!!min0x2,11 − x1""!x3 − x"

transforms the right-hand side of !7" into the following form:

/b2!max01,x21 − x1"!min01,x21 − x3"dt =
dz

/!1 − z2"!1 − k2z2"
,

where

k2 =
!max01,x21 − x3"!min01,x21 − x1"
!min01,x21 − x3"!max01,x21 − x1"

.

Integrating with z!t"=0 for t=0, we get

z!t" = sn!Mt,k" ,

where

M = /b2!max01,x21 − x1"!min01,x21 − x3" .

The x-variable can be found as

x!t" =
− x1!min01,x21 − x3" + x3!min01,x21 − x1"z2!t"
− !min01,x21 − x3" + x3!min01,x21 − x1"z2!t"

,

with the corresponding initial condition deduced from z!0"=0. The general case can be obtained
using a proper time shift.

Taking into account the position of the roots xi, we get the following parametrization of the
periodic orbits.

Short orbits. We have min01,x21=x2, max01,x21=1. Thus,

k2 =
!1 − x3"!x2 − x1"
!x2 − x3"!1 − x1"

, M = /*2!1 − x1"!x2 − x3" ,

'!t" = arcsin-− x1!x2 − x3" + x3!x2 − x1"z2!t"
− !x2 − x3" + x3!x2 − x1"z2!t" . ,

while the remaining variables are given by

(!t" − (!0" =
!1 − x3"p(t

x3
+

p(!x3 − x1"
x1x3M

4* x3!x2 − x1"
x1!x2 − x3"

,am!Mt,k",k+ ,

r!t" − r!0" = !*x3 + "+"t +
*!x1 − x3"

M
4* x2 − x1

x2 − x3
,am!Mt,k",k+ .

Long orbits. We have min01,x21=1, max01,x21=x2,
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k2 =
!x2 − x3"!1 − x1"
!1 − x3"!x2 − x1"

, M = /*2!x2 − x1"!1 − x3" .

The long orbits cross the equatorial plane and ' has to be prolongated analytically using either
arcsin or -−arcsin. For ( and r, we get

(!t" − (!0" =
!1 − x3"p(t

x3
+

p(!x3 − x1"
x1x3M

4* x3!1 − x1"
x1!1 − x3"

,am!Mt,k",k+ ,

r!t" − r!0" = !*x3 + "+"t +
*!x1 − x3"

M
4*1 − x1

1 − x3
,am!Mt,k",k+ .

To get a complete parametrization for p(#0, one must add

!a" trajectories such that '!t" is reduced to a single point. If we represent the corresponding
trajectory !'!t" ,(!t"" on the two-sphere, they will form the so-called parallel solutions.

!b" The transitions between short and long periodic orbits correspond in the '-variable to sepa-
ratrices. They can be obtained as limit cases for the two families of periodic orbits since
limk→1 sn!u ,k"=tanh u.

Remark 2: This computation can be compared with the Grushin case for which there exists
only one type of periodic orbits, all in the long category. Also the transcendence is different since
one needs only elementary functions in the Grushin case.

Remark 3: One important information concerning the '-parametrization is the amplitude of
the oscillations and the period computation.

2. Analysis in the case !−Å0

In this case, using the coordinates !r ,' ,(", r=ln ), )" $0,1$, r" $−0 ,0$, the system takes the
form

ṙ = "− cos 'e−r − !* cos2 ' + !" ,

'̇ = − "− sin 'e−r + * sin ' cos ' + v2,

(̇ = − cot 'v1,

and the extremal controls are v2= p' and v1= p( cot ' and taking the controls in L2#0,T$, one gets
the condition %0

T!p'
2 + p(

2 cot2 '"dt,+0.
Recall that the equilibrium point of the free motion is given in Cartesian coordinates by

x = y = 0, z =
"−

"+
,

and in spherical coordinates by

) =
&"−&
"+

, ' = 0 if "− . 0, ' = - if "− , 0.

Since %0
T!p'

2 + p(
2 cot2 '"dt,+0, the condition '→0,- on #0,T$ is excluded if p(#0. The Hamil-

tonian is

H = pr#"− cos 'e−r − !* cos2 ' + !"$ + p'-− "− sin 'e−r +
*

2
sin!2'". +

1
2

!p'
2 + p(

2 cot2 '" .

We have
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'̇ =
$H

$p'
= − "−e−r sin ' +

*

2
sin!2'" + p',

hence,

p' = '̇ + "−e−r sin ' − * sin ' cos ' .

The Hamiltonian is written as

H = pr#"− cos 'e−r − !* cos2 ' + !"$ +
1
2

!p' − "−e−r sin ' + * sin ' cos '"2 +
1
2

p(
2 cot2 '

−
1
2

!* sin ' cos ' − "−e−r sin '"2.

Hence, one gets

1
2

'̇2 + V!',r,pr" = h ,

where the potential is now

V = pr#"− cos 'e−r − !* cos2 ' + !"$ −
1
2

!* sin ' cos ' − "−e−r sin '"2 +
1
2

p(
2 cot2 ' .

The first step is to analyze the effect of "− on the parallel extremals occurring when "−=0. That
is, one must find the singular point solutions of the following system:

ṙ =
$H

$pr
= "−e−r cos ' − !* cos2 ' + !" ,

ṗr = −
$H

$r
= "−e−r!pr cos ' − p' sin '" ,

'̇ =
$H

$p'
= − "−e−r sin ' +

*

2
sin!2'" + p',

ṗ' = −
$H

$'
= #"−e−r sin ' − 2* cos ' sin '$pr − p'!− "−e−r cos ' + * cos!2'"" + p(

2 cos '

sin3 '
.

Hence, for e−r#0, we must solve

"−e−r cos ' − !* cos2 ' + !" = 0,

pr cos ' − p' sin ' = 0,

p' = "−e−r sin ' −
*

2
sin!2'" ,

pr#"−e−r sin ' − * sin!2'"$ + p'!"−e−r cos ' − * cos!2'"" + p(
2 cos '

sin3 '
= 0.

One gets
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"−e−r =
* cos2 ' + !

cos '
,

pr = p' tan ' ,

p' = "−e−r sin ' −
*

2
sin!2'" ,

and replacing in the last equation, we obtain

tan3 '!* cos2 ' + !"2 −
3
2

tan2 '!* cos2 ' + !"* sin!2'" + tan '
*2

2
sin2!2'" + tan '!* cos2 '

+ !"2 − tan '!* cos2 ' + !"* cos!2'" −
*

2
sin!2'"!* cos2 ' + !" +

*2

2
sin!2'"cos!2'"

+ p(
2 cos '

sin3 '
= 0.

We have to solve

P!'"
sin3 ' cos3 '

= 0,

where

P!'" = sin6 '!* cos2 ' + !"2 −
3
2

sin5 ' cos '!* cos2 ' + !"* sin!2'" + sin4 ' cos2 '
*2

2
sin2!2'"

+ sin4 ' cos2 '!* cos2 ' + !"2 − sin4 ' cos2 '!* cos2 ' + !"* cos!2'"

− sin3 ' cos3 '
*

2
sin!2'"!* cos2 ' + !" + sin3 ' cos3 '

*2

2
sin!2'"cos!2'" + p(

2 cos4 ' = 0.

Again, setting x=sin2 ', one observes that P!x"=0 is a polynomial equation of degree 6 where P
can be written after simplification as

P!x" = !x − 1"2!p(
2 − 2*2x4" + !2x2.

An analysis of the polynomial P leads to the following result.
Proposition 7: The polynomial P has no root in the interval #0, 1$ for any values of the

parameters p(, !, and * satisfying the constraint 2!$"+.
Proof: We construct a polynomial Q such that P!x"$Q!x" for x" #0,1$. Since 2!$"+ and

*="+−!, one deduces that *%!. We also use the fact that the polynomial !x−1"2x2 reaches its
maximum for x=1 /2 in the interval #0, 1$. One then arrives at Q!x"= !x−1"2p(

2+ 7
8!2x2, which is

strictly positive for nonzero values of p( and !. !
Using Proposition 7, it is then straightforward to show that there exist no parallel extremal in

the case "−#0.
To complete the analysis, we proceed as in Sec. II D. Again Hopf theorem can be used to

prove that the adjoint vector p! · " is not bounded when t→+0. However it can be directly seen
using adapted coordinates. We introduce the following notations:

P = ypz − zpy, Q = zpx − xpz, R = xpy − ypx,

and the adjoint vector is represented in polar coordinates
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px = ! sin 7 cos /, py = ! sin 7 sin /, py = ) cos 7 .

Computing, one gets

!̇ = !!! sin2 7 + "+ cos2 7" ,

/̇ = −
sin!27"

2
!P cos / + Q sin /" ,

7̇ = −
* sin!27"

2
+ !Q sin / − P sin /" ,

where P and Q represent the control components. They satisfy the following equations:

Ṗ = *!ypz + zpy" + QR − py"−,

Q̇ = px* − *!pxz + pzx" − PR ,

and, moreover, Ṙ=0. The state variables are solutions of

ẋ = − !x + zQ ,

ẏ = − !y − zP ,

ż = !"− − "+z" + yP − xQ .

In particular, one deduces that !̇$"+! /2 and !!t"$e"+t/2!!0". Hence, !!t"→+0 when t→+0 if
!!0"#0. Again the Poincaré compactification allows one to study the asymptotic behaviors. Due
to the complexity of the equations, it has to be numerically analyzed.

III. THE OPTIMALITY PROBLEM

A crucial step in our analysis is to determine the optimality status of extremal curves since the
maximum principle is only a necessary optimality condition. In order to get second order neces-
sary and sufficient optimality conditions under generic assumptions, the basic problem is to com-
pute the conjugate points. This is the main discussion of this section, in relation to the classifica-
tion of extremals and the determination of the value function, solution of the Hamilton–Jacobi–
Bellman equation.

A. Existence theorem

The standard existence theorem can be applied.30 Indeed, the system can be written in the
form

q̇!t" = Aq!t" + Bq!t"u!t", q!0" = q0

with cost integral %0
T&u&2dt, the class of admissible controls being the set L2#0,T$,

,
0

T

&u&2dt , + 0 .

Since the dynamics is bilinear, the method of variation of the constant leads to a system of the
form: ẏ!t"= !C!t"y!t""u!t", y!0"=y0 for which we deduce immediately the bound
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&y!t"& % 8!&u&L1#0,T$" ,

where 8 is monotone increasing. Another remark is that in the application of the maximum
principle, we can extend the class of admissible control from L0#0,T$ to L2#0,T$ since we apply
only the weak version, the extremal curves corresponding to the singularity of the end-point
mapping. We can replace in the computation of the Fréchet derivative the L0-norm by the
L2-norm.10 This leads to the following properties.

Proposition 8: For the system (1) restricted to the Bloch ball &q&%1, for each pair of points q0,
q1 such that q0 can be steered to q1, there exists an optimal control u* minimizing the cost.
Moreover, the optimal solutions are extremal curves, solutions of the maximum principle.

Remark 4: See also Ref. 24 for another proof.

B. Optimality concepts

Before analyzing the optimality, it is important to introduce the following geometric objects,
which are related to standard Riemannian geometry.21 We shall restrict our analysis to normal
extremals only, for reasons which will be clarified later.

Definition 3: We recall that normal extremals are solutions of the smooth Hamiltonian vector
field H! n and let exp#tH! n$ be the one parameter group. We denote by z!t"= !q!t" , p!t"", t" #0,T$ a
reference extremal. If we fix q!0"=q0, the exponential mapping is the map

expq0,t:p!0" ! 4#exp tH! n!q0,p!0""$ ,

where II: !q , p"!q is the standard projection. The time tc is said conjugate if the exponential
mapping is not immersive at t= tc and we note t1c the first conjugate time, with corresponding first
conjugate point q!t1c". The point q!t", along the reference extremal, is said a separating point if
there exists another extremal curve z!! · "= !p!! · " ,q!! · "" with q! · " and q!! · " distinct such that
q!t"=q!!t" and q and q! have the same cost on #0, t$. The cut point along the reference extremal
is the first point q!tcc" such that q! · " is no more optimal, beyond the time tcc. Fixing the final time
to T, the set of such points when considering all the extremal curves will form, respectively, the
conjugate locus C!q0", the separating locus L!q0" and the cut locus Cut!q0".

C. Symmetries and optimality

Using the discrete symmetric group on the set of extremals, we can immediately compute
obvious separating points.

1. The integrable case

Consider the case "−=0 and p(#0. The relation Hn=h gives

1
2

'̇2 + V!'" = h ,

where the potential is

V!'" = − pr!* cos2 ' + !" −
1
8

*2 sin2!2'" +
1
2

p(
2 cot2 ' .

We fix p( and pr and for each initial condition '!0", we have two extremal curves on the level set
h, starting, respectively, from '̇!0" and −'̇!0". They are distinct and periodic if and only if
'̇!0"#0 and the level set is without equilibrium point !for the fixed values of pr and p(". If T is
the corresponding period, we immediately deduce the following.

Proposition 9: For fixed pr and p(, the two periodic extremal curves starting from '!0",
'̇!0"#0 and with the same (!0", r!0" intersect at the same point, with the same cost, after one
period T. Hence, the corresponding point belongs to the separating locus.
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Moreover, we have the following.
Proposition 10: If the corresponding curves of the above proposition are long periodic extre-

mals, then they intersect after a half-period T /2 and, hence, the associated point belongs to the
separating locus.

Proof: For long periodic extremals, one can use the property that the system and the cost are
reflectionally symmetric with respect to the equator. Hence, both curves starting from '̇!0" and
−'̇!0" intersect on the antipodal parallel -−'!0" at the time T /2 and with the same cost. It is also
true for the ( and r components. !

2. The general case

In the general case, the extremal curves are reflectionally symmetric with respect to meridian
planes. Fixing q!0"= !'!0" ,(!0" ,r!0"", !p'!0" , pr!0"" and considering the two extremal curves
with p( and −p(, one deduces that they are symmetric with respect to the reflexion !' ,("! !' ,
−(". Hence we have the following.

Proposition 11: If we consider the two extremal curves starting from q!0", !p'!0" , pr!0" , 2 p(",
then they intersect at the same point and with the same cost on the opposite half meridian and the
corresponding point belongs to the separating locus.

D. The geometric properties of the variational equation and estimation of conjugate
points

A crucial step in the optimality problem is to analyze the variational equation to estimate the
position of conjugate points.2 It is the object of this section.

1. Preliminaries

Consider a smooth vector field X on a manifold M, 0exp tX1 denotes the local one parameter
group defined by X, q!t"=exp#tX!q0"$ being the solution starting at t=0 from q0. Fixing such a
reference solution defined on #0,T$, the linear equation *q̇!t"=$X /$q!q!t""*q!t" is called the
variational equation along q!t" and the linear vector field is denoted by dX! . If H! is an Hamiltonian
vector field on T*M, and z!t"= !q!t" , p!t"" a reference curve, then the variational equation defines
a linear Hamiltonian vector field. If H! is associated with an optimal control problem, it is called
Jacobi equation and the corresponding nonzero solutions J!t" are called Jacobi fields.

We first recall a standard result from differential calculus.
Lemma 1: We have the following.

• Let 9!s", s" #0,1$ be a smooth curve on M such that 9!0"=q0, 9̇!s"=v. Then the derivative
of the curve 8!s"=exp tX!9!s"" at s=0 is the solution at time t of the variational equation
*q̇=dX! !q!t"" ·*q with the initial condition *q!0"=v.

• d!exp#tX$"=exp!tdX! ".

2. The integrable case

Clearly in the Hamiltonian case, if the Hamiltonian vector field is Liouville integrable, then
the variational equation is integrable #since d exp#tH! $=exp!tdH! "$. More precisely, from Ziglin’s
lemma, each first integral F of the motion allows one to construct a first integral F0 along the
reference solution.7 To make the construction explicit in our case, we proceed as follows. We split
the coordinates !q , p" into !q1 , p1", where q1=', p1= p' and !q2 , p2", where q2= !r ,(", p2
= !pr , p(" and the normal Hamiltonian decomposes into

Hn!q1,q2,p1,p2" = p1a!q1" +
1
2

p1
2b!q1" + c!q1,p2" .

By construction, one has the following.
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Lemma 2: Since q2 is cyclic, then *q2 is cyclic for the variational equation and *p2 is a first
integral.

Hence, to integrate the equations, it remains to consider the reduced system

q̇1 = a!q1" + p1b!q1" ,

ṗ1 = − -p1a!!q1" +
1
2

p1
2b!!q1" + c!!q1,p2". .

where ! denotes the derivative with respect to q1. The reduced variational equation is given by

*q̇1 = a!!q1"*q1 + b!q1"*p1 + p1b!!q1"*q1,

*ṗ1 = − -p1a"!q1"*q1 +
1
2

p1
2b"!q1"*q1 + c"!q1,p2"*q1 + a!!q1"*p1 + p1b!!q1"*p1 + d!q1,p2"*p2. .

Lemma 3: The trajectory !q̇1 , ṗ1" is a solution of the variational equation in which *p2=0 and
the variational equation can be integrated by quadratures.

Proof: The first assertion is a well-known result due to Poincaré and can be easily proven by
direct computation. For the second assertion, we observe that the reduced variational equation can
be written in the form

*q̈1 + b!t"*q̇1 + c!t"*q1 = d!t"*p2,

and since /!t"= q̇1!t" is solution of the right member, if we set *q1=/!t"x!t", then x, is solution of
an equation of the form

e!t"ẍ + f!t"ẋ = d!t"*p2,

which can be integrated with two quadratures. This proves the second assertion. !
Observe also that the previous lemma is a consequence of the following geometric result.33

Proposition 12: If a Lagrangian set of solutions of a linear Hamiltonian equation ẋ=A!t"x is
known, then a complete set of 2n-linearly independent solutions can be found by quadratures.

In our cases, such a Lagrangian set can be constructed by taking the tangent space of the train
of Lagrangian manifolds Lt=exp tHn!T

q!0"
* M".

3. Computation of the conjugate locus for short periodic orbits in the meridian case

Here we will study the conjugate locus of small periodic orbits in meridian planes. According
to the previous analysis of the phase portraits, these orbits occur if −*2a2 /2, h̄,*pr,0 or
−*2a2 /2, h̄,0,*pr. Consider an orbits starting at '!0"='0 and r!0"=r0. Denote x0=sin2 ',

M = /*2!1 − x1"x2, k2 =
x2 − x1

x2!1 − x1"
, z0

2 =
x2!x0 − x1"
x0!x2 − x1"

,

where x1 and x2 are the roots of the quadratic equation h̄−W!x"=0, more precisely,

x1,2 = a 2/a2 +
2h̄

*2 .

For the values of parameters *pr and h̄ corresponding to the short periodic orbits, we have

0 , x1 % x0 % x2 , 1,

and k" $0,1#.
The next formulas provide an explicit parametrization for small orbits,
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x!t" =
x1x2

x2 − !x2 − x1"sn!Mt + /0,k"2 ,

r!t" − r0 =
*x1

M
*4* x2 − x1

x2
,am!Mt + /0,k",k+ − 4* x2 − x1

x2
,am!/0,k",k++ − "+t ,

where /0=sn−1!z0 ,k".
Consider the exponential mapping associated with our problem,

exp!'0,r0",t: !p'!0",pr" ! !'!t",r!t"" .

The time t* is conjugate to t0=0 if the differential of exp!'0,r0",t is degenerate at t= t*. The
extremals of the Hamiltonian system associated with our problem are parametrized by the initial
values of the adjoint vector !p'!0" , pr". In order to simplify the further calculation of the differ-
ential, it is worth to make a change of variables in the phase space.

Proposition 13: If '!0"#arcsin /xi, i=1,2, then the map

:: !p'!0",pr" ! !x1,k2"

is nondegenerate.
Proof: We can write : as a composition map :=:3 ":2 ":1, where

!p'!0",pr"→
:1

!h̄,a"→
:2

!x1,x2"→
:3

!x1,k2" .

Then

D!p'!0",pr":1 =2 $h̄

$p'!0"
$h̄

$pr

$a

$p'!0"
$a

$pr

3 =2* sin '0 cos '0 + p'!0"
$W

$pr

0 −
1
*
3 .

Thus, det D!p'!0",pr":1=0 if and only if * sin '0 cos '0+ p'!0"= '̇!0"=0, which occurs at the limit
points '0=arcsin /xi, i=1,2, of the orbit. Further,

D!h̄,a":2 =2
$x1

$h̄

$x1

$a

$x2

$h̄

$x2

$a
3 =2−

1

*2/a2 +
2h̄

*2

1 −
a

/a2 +
2h̄

*2

1

*2/a2 +
2h̄

*2

1 +
a

/a2 +
2h̄

*2

3 ,

hence det D!h̄,a":2=−2 /*2/a2+2h̄ /*2#0. Finally, if we denote m=k2, then

det D!x̄1,x":3 = det2 1 0

$m

$x̄1

$m

$x2
3 =

$m

$x2
=

x1

x2
# 0

since x1.0.
The statement of the proposition follows now from the chain rule for composition maps. !
The exponential mapping can be written as a composition map of the form
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exp!'0,r0",t = G " : ,

where

:: !p'!0",pr" ! !x1,m", G: !x1,m" ! !'!t",r!t"" .

According to Proposition 13, the map : is nondegenerate if '0#arcsin /x1,2. Hereafter, we
assume that this condition is verified. Thus, critical points of the exponential mapping correspond
to the critical points of G. Recall that x!t"=sin 2'!t", hence,

D!x1,m"G =
$'

$x
D!x1,m"G1, G1: !x1,m" ! !x!t",r!t"" .

According to the parametrization of the solution,

x!t" = x̄!z!t;x1,m";x1,m" =
x1

1 − m!1 − x1"z!t"2 ,

where z!t"=sn!Mt+/0 ,k" with

M = * *2x1!1 − x1"
1 − m!1 − x1"+1/2

, sn!/0,k" = z!0" .

Thus,

3 = D!x1,m"G1 =2 $x̄

$z

$z!t"
$x1

+
$x̄

$x1

$x̄

$z

$z!t"
$m

+
$x̄

$m

$r!t"
$x1

$r!t"
$m

3 .

In order to shorter the notations, below we will write sn for sn!Mt+/0 ,k", and similarly for other
elliptic functions. The direct calculation yields

$x̄

$x1
=

dn2

!1 − m!1 − x1"sn2"2 ,
$x̄

$m
=

x1!1 − x1"sn2

!1 − m!1 − x1"sn2"2 ,

$x̄

$z
=

2m!1 − x1"x1 sn
1 − m!1 − x1"sn2 .

Hence,

3 =
31

!1 − m!1 − x1"sn2"2 ,

where

31 =22mx1!1 − x1"sn
$z!t"
$x1

+ dn2 2mx1!1 − x1"sn
$z!t"
$m

+ x1!1 − x1"sn2

$r!t"
$x1

$r!t"
$m

3 .

For convenience, we denote T=Mt,

sn0 = z!0", cn0 = cn!/0,k", dn0 = dn!/0,k" .

We finally find the following expression:
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31 = −
M cn sn dn

8
-T2 −

1
1 − m

*ET −
dn sn

cn
+

dn0 sn0

cn0
+*ET +

dn cn
sn

−
dn0 cn0

sn0
+. ,

where

ET = ,
/0

T+/0

dn2!;,k"d; .

Conjugate times t* are solutions of the equation

31!t*" = −
M cn sn dn

8
&32&t=t

*
= 0. !8"

It is not difficult to note that solutions of !8" are actually zeros of 32!t*" term. A more symmetric
form for it can be obtained using the integral formula for ET and the standard relations among
elliptic functions. Indeed,

1
1 − m

*ET −
dn sn

cn
+

dn0 sn0

cn0
+*ET +

dn cn
sn

−
dn0 cn0

sn0
+

=
1

1 − m
,

/0

T+/0

1 −
dn2!;,k"
cn2!;,k"

d; · ,
/0

T+/0

1 −
1

sn2!;,k"
d;

= *T + ,
/0

T+/0 1
cn2!;,k"

d;+*T − ,
/0

T+/0 1
sn2!;,k"

d;+ .

By setting

I1
T = ,

/0

T+/0 1
cn2!;,k"

d;, I2
T = ,

/0

T+/0 1
sn2!;,k"

d; ,

we finally get

32 = T!I2
T − I1

T" + I1
TI2

T.

We remark that both integrals I1
T and I2

T are positive monotone increasing functions of T, and they
both diverge as T→nK!k"−/0 for n"N. The numerical tests suggest that the first conjugate point
occur after one period of '-variable !2K!k" /M".

We present in Fig. 3 the behavior near the origin of a family of orbits, starting at r0=−1 and
x0=0.35 for *=3, pr=0.01, and "+=6.1, calculated up to the first conjugate point !marked by “#”".
The polar coordinates of the initial point in this example are )0=e−1 and '0!0.633 052. The short
periodic solutions for ' exist for h̄" $−1.11,0#. The solutions on the figure correspond to h̄=
−1, −0.9, −0.8, −0.7, −0.6, −0.5, −0.4, and −0.2. The sign “|” marks the end of the first period of
'!t". Illustrated solutions asymptotically tend to the origin, but loose the optimality before, just
after the end of the first period.

E. The value function and Hamilton–Jacobi–Bellman equation

Definition 4: Fixing the initial point to q0, the value function S!T ,q" is the optimal cost to
steer q0 to q in time T. Computing the value function in a conic neighborhood of a reference
extremal curve is called a microlocal solution.

1. The abnormal case

This analysis is mainly based on the work,12 restricting to the simple 2D-situation !see also
Refs. 40 and 41".

092705-26 Bonnard et al. J. Math. Phys. 51, 092705 "2010!



Preliminaries. According to our previous analysis, one can restrict our study to the 2D-system
in the meridian planes, where the control u is restricted to the real field. If "+−!#0, the two
abnormal lines are the z-axis of revolution and an horizontal line. Except at collinear point where
det!F0 ,F1"=0 and at the intersection I of the two lines, one can construct the following normal
form along a reference abnormal curve q! · ". The vector field F1 is identified to $ /$y, while the
abnormal trajectory is identified to q! · " : t! !t ,0". This leads to the model

ẋ = 1 + a!x"y2 + o!y2" ,

ẏ = b!x" + O!y" + u ,

where y is small in a C0-neighborhood of the reference abnormal trajectory. The abnormal control
along the reference trajectory is ua=−b!x" and we choose a control bound &u&%M with M large
enough such that ua is admissible and not saturating, that is, &ua&,M. From the model, we
immediately observe that in a C0-neighborhood of the reference abnormal trajectory, in the limit
case M =+0, the reference abnormal control is

• time-minimal if a!x",0, which corresponds to the hyperbolic situation, and
• time-maximal if a!x".0, which corresponds to the elliptic situation.

Consider now the time minimal control problem for the system, with the control bound &u&%M.
One can easily construct the accessibility set A!q0 ,T" along a reference abnormal direction, where
q0 is identified to 0. In the hyperbolic case, from the classification of the extremal curves near a
point such that H1= 0H1 ,H01=0, each time-minimal curve starting from q0 is an abnormal arc,
followed by a bang arc &u&=M and the same is true for the time-maximizing problem in the elliptic
case. The same holds also in the limit case M→+0 where the boundary tends to the vertical line.10

Hence, according to the maximum principle, the boundary of the accessibility set A!q0 ,T" is near
point A, extremity of the abnormal direction, a C1 curve which is formed by taking an abnormal
arc, followed by a bang arc &u&=M. The same holds also in the limit case M !+0, when the
boundary tends to the vertical line. In particular, we deduce the following proposition.

Proposition 14: Let A be the extremity point at time T of the abnormal line starting from 0.
Then the abnormal control is the only control steering 0 to A in time T provided the corresponding
trajectory remains in a tube around the x-axis. In other words, the abnormal line is C0-isolated
and, hence, is C0-optimal for the energy minimization problem.

The next step is to compute the value function in the abnormal direction. The model is

FIG. 3. Behavior near the origin of a family of orbits !see the text".
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ẋ = 1 + a!x"y2,

ẏ = b!x" + u, min ,
0

tf

u2dt ,

where x4 t. Let X=x− t, one gets

Ẋ = a!t"y2, ẏ = b!t" + u .

One can assume a.0 and setting Y =a1/2y, we obtain

Ẋ = Y2, Ẏ = /ay + a1/2ẏ 4 a1/2!b + u" .

A simplification occurs when the reference abnormal control is zero, which is an important situ-
ation encountered in our application. To summarize, this leads to analyze the simplified problem,

ẋ = 1 + y2, ẏ = u, min ,
0

1

u2dt ,

which is the working example analyzed in Ref. 40. In this example, the normal extremals are
defined by the Hamiltonian

Hn = px!1 + y2" +
1
2

py
2.

Setting px=+ /2, the normal extremals are solutions of the pendulum equation,

ÿ + +y = 0, + = 2px.

One gets three types of normal extremals which are necessary to compute the value function,
starting from 0.

• +=0: y!t"=At+B. Starting from 0, one gets y!t"=At and x!t"= t+At2 /2=1+y2 /2 if tf =1,
which defines a separating parabola X=y2 /2.

• +,0: one has y!t"=C sinh!/&+&t".
• +.0: one has y!t"=C sin!/&+&t".

In Fig. 4, we have represented the level sets of the value function. The value function is not
continuous in A, the cost being zero along the abnormal direction and the level sets are ramifying
at A. We observe two phenomena related to the abnormal direction. First of all, the value function
near A is constructed using hyperbolic trajectories !+,0" and computing this leads to S!x ,y"

X

(a)y
λ<0

λ=0

λ>0

y

X
A

y (b)

X=y2/2

0 0.5 1 1.5 2 2.5 3
−1

−0.5

0

0.5

1

1.5

2

2.5

3

y

x

FIG. 4. Foliation of A!0,1" !a" and level sets of the value function !b". !Bottom panel" Conjugate point analysis. Numerical
values are taken to be +=−4,0 ,4, py!0"=1 from top to bottom.
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5y4 /4X. Point A is obtained on a given level set r for +→−0. This is the phenomenon of
nonproperness of the exponential mapping restricted to the optimal extremal curves. A second
property is observed: the level sets are not smooth along the abnormal direction because of the
existence of cut points. This is related to oscillations of normal extremals in the elliptic case where
+.0. An additional property is the existence of conjugate points represented in Fig. 4 !bottom"
and which occur after the cut point.

Stability analysis. This working example allows one to understand the level sets of the value
function near point A extremity of the abnormal direction and gives the singularity analysis for the
true system of the level sets for r.0 small when the abnormal direction is associated with a zero
control. We obtain two sectors: the one that corresponds to the hyperbolic trajectories, where the
level sets are ramifying, and the one corresponding to the elliptic trajectories, where the cut points
accumulate. The model is not generic since the extremal curves are reflectionally symmetric with
respect to the abnormal direction. In the general case, b is not zero and the normal Hamiltonian
system is not integrable. Nevertheless, since cut points are not conjugate points, this situation is
stable and allows one to evaluate the cut locus near A. For the hyperbolic sector, the exponential
mapping is not proper and this is a stable property. However, asymptotic expressions of the level
sets cannot be computed. Still we conjecture that due to the 2D-situation, the ramification phe-
nomenon is stable.

Computations for the quantum system. From the computation of the Poisson brackets, one gets
the following proposition.

Proposition 15: The abnormal curves for *="+−!#0 will form the two lines.

!1" The z-axis of revolution y=0, the corresponding abnormal control being given by ua=0.
!2" The abnormal line z="− /2!"+−!", the abnormal control being given by ua="−!"+

−2!" /2y!"+−!", which is blowing up for y=0 if "−!"+−2!"#0. In particular, the abnormal
control for "−=0 is zero.

To apply the previous singularity resolution, one must exclude the case where the singular line
is meeting the collinear set det!F0 ,F1"=0. For the vertical line, it corresponds to !0,0" and
!0,"− /"+". For the horizontal line, if "−=0, it corresponds to !0,0", if "−#0 and "+−2!#0 this
intersection is empty and if "+=2!, it reduces to y=0. Also one must exclude I, the intersection
point of the two singular lines. In particular, as a conclusion of our analysis we have the following
proposition.

Proposition 16: Assume that *="+−!#0. Then for the energy minimization problem with
fixed transfer time and initial condition on the z-axis, the abnormal trajectory along the z-axis is
optimal and the singularity resolution along the abnormal line is valid up to meeting the collinear
set (z=0 or z="− /"+) or the intersection point I of the abnormal lines. The same holds if "−=0 for
the y-axis up to the origin. In the general case "−#0, the optimality status holds up to meeting the
z-axis of revolution.

In fine, an important consequence of our analysis is the following proposition.
Proposition 17: For the energy minimization problem, every optimal curve is smooth.
Proof: From Proposition 16, every optimal curve is extremal. Using the previous analysis, one

cannot connect abnormal and normal extremals. This proves the assertion. !

2. The Hamilton–Jacobi–Bellman theory in the normal case

Before going further in the analysis, we shall present results about Hamilton–Jacobi–Bellman
theory adapted to our study. This crucial presentation is mainly due to Ref. 27. It concerns the
relation between Hamilton–Jacobi equations and Lagrangian manifolds.

Preliminaries. We consider a general smooth control problem on a manifold: q̇=F!q ,u", while
the cost function to be minimized is 7!u"=%0

Tc!q ,u"dt and the control domain is U. Let z
= !q , p""T*M and introduce the pseudo-Hamiltonian,
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H̃p0
!z,u" = (p,F!q,u") − p0c!q,u" ,

where p0$0. The normal case corresponds to p0.0 and it can be normalized to +1. The follow-
ing result is standard but crucial.

Proposition 18: Let

!z̄, ū":J̄ = #9̄,8̄$ ! T*M < U

be a normal smooth reference extremal curve. Assume that there exists an open neighborhood W
of q̄!J̄" and two smooth mappings S :W→R, û :W→U such that

!i" p̄!t"=dS!q̄!t"" for each t" J̄, ū!t"= û!q̄!t"""U for each t" J̄.

!ii" ∀!q ,u""W<U : H̄1!dS!q" ,u"% H̄1!dS!q" , û!q"".
!iii" There exists a constant h such that H̄1!dS!q" , û!q""=h.

Then the reference extremal is optimal with respect to all smooth curves solutions, contained in the
neighborhood W, with the same extremities, and we have two cases:

!a" h=0: transfer time not fixed and
!b" h#0: transfer time fixed.

Proof: Let q be a smooth curve on J= #9 ,8$, with the same extremities

q̄!9̄" = q!9", q̄!8̄" = q!8"

and we denote the cost by 7!q ,u"=%9
8c!q!t" ,u!t""dt. One has

c!q!t",u!t"" = (F!q!t",u!t"",dS!q!t"") − H̄1!dS!q!t",u!t""" ,

which can be written as

c!q!t",u!t"" = dS!q!t""q̇!t" − H̄1!dS!q!t",u!t""" =
d

dt
S!q!t"" − H̄1!dS!q!t",u!t""" .

Therefore,

7!q,u" = S!q!8"" − S!q!9"" − ,
9

8

H̄1!dS!q!t",u!t"""dt .

Similarly,

7!q̄, ū" = S!q̄!8̄"" − S!q̄!9̄"" − ,
9̄

8̄
H̄1!dS!q̄!t", ū!t"""dt .

Hence,

7!q,u" − 7!q̄, ū" = ,
9̄

8̄
H̄1!dS!q̄!t", ū!t"""dt − ,

9

8

H̄1!dS!q!t",u!t"""dt ,

and from cases !ii" and !iii"

H̄1!dS!q!t",u!t""" % h, H̄1!dS!q̄!t", ū!t""" = h .

One deduces that
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7!q,u" − 7!q̄, ū" $ h#!8̄ − 9̄" − !8 − 9"$ .

Hence, we have if h=0, 7!q ,u"$7!q̄ , ū"; if h#0 and 8−9= 8̄− 9̄, again one has 7!q ,u"
$7!q̄ , ū". !

Construction of S and û. The next step consists in constructing S and û. It is based on the
standard theory of extremal fields in calculus of variations, extended to optimal control. It is
presented for the energy minimization problem, but the construction is general.

We select a reference extremal z̄!t"= !q̄!t" , p̄!t"" , t" #0,T$ solution of the Hamiltonian vector
field H! n, with Hn=H0+ 1

2 !H1
2+H2

2", corresponding to the normal case. One assumes that the refer-
ence extremal curve q̄!t" is one-to-one on #0,T$. Let L0=T

q̄!0"
* M be the fiber and from standard

symplectic geometry the set Lt=exp tH! n!L0" will form a train of Lagrangian manifolds, along the
reference extremal curve.

If h is the level set Hn=h of the reference extremal z̄!t", the reference curve can be embedded
in the central field: W̄=exp#tH! n!p!0""$, restricting to the level set Hn=h and p!0" close enough to
p̄!0". This field is 4!"t$0Lt# !Hn=h"". This embedding is locally one-to-one provided the expo-
nential mapping expq!0" restricted to the level set Hn=h is one-to-one along the reference extremal.
This is clearly equivalent to the nonexistence of conjugate point condition: rank!*q!t" , q̇̄!t""
=dim M, where *q!t" is the 4-projection of the fields *z!t" restricting the variational equation
*ż!t"=dH! n!z̄!t""*z!t" to the level set H=h and forming the tangent space to Lt# !Hn=h" along z̄!t".

In this case, L="t$0Lt# !Hn=h" is again a Lagrangian manifold, union of isotopic manifolds
of codimension 1, along the reference extremal curve z̄!t" and, moreover, the standard projection
4 from L to M is locally one-to-one. Therefore, L is a graph !q , p= $S

$q
" whose generating mapping

S is the mapping to construct. We observe that the construction of S amounts to solve the
Hamilton–Jacobi–Bellman equation

Hn*q,
$S

$q
+ = h ,

which is a standard reduction of the more general equation,

$S̄

$t
+ Hn*q,

$S̄

$q
+ = 0,

where S̄!t ,q" is the value function, depending on the final condition q and the transfer time t, S and
S̄ being related by S̄!t ,q"=S−ht.

This construction can be extended in a maximal simply connected domain W of the reference
extremal curve q̄!t". This corresponds to the domain W in Proposition 18.

The integrable case. We consider the situation where "−=0. The following proposition is
clear.

Proposition 19: If "−=0, the complete solution of the corresponding Hamilton–Jacobi–
Bellman problem can be computed by the separation of variables.

A further step is necessary to determine the value function. Since the extremal solutions in the
normal case are given by elliptic functions, to compute the value function, one must solve the
shooting equation: expq0

!T , p!0""=q1. This amounts to inverse the exponential mapping and to use
the inverses of elliptic functions. Concerning the microlocal point of view, we observe that we
have two microlocal solutions corresponding to short and long periodic trajectories. The long ones
are generalizations of the trajectories in the Grushin case and correspond to optimal curves for
reaching points after crossing the equator.

3. The global Hamilton–Jacobi–Bellman equation

The singularity analysis. In order to compute the global optimality synthesis, one must solve
the Hamilton–Jacobi–Bellman equation on the whole domain. To simplify the presentation, we
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shall only consider the restricted problem where "−=0 and r is not controlled. The final transfer
time T is fixed, but has to be taken as a parameter of the problem. For each such fixed T, one can
introduce the sphere of radius r: S!q0 ,r", formed by extremities of optimal curves, with fixed cost
r. Thanks to the existence theorem, it can be computed restricting to extremal curves. The sphere
is a subset of the wave front of radius r, denoted by W!q0 ,r", formed by extremities at time T of
extremal curves with cost r. By looking at the propagation of spheres and wave fronts, one can
construct the optimal synthesis. From classical singularity theory, the singularities of such objects
are related to Lagrangian and Legendrian singularity theory. We next recall the generic situation
!see Ref. 18 for the details".

According to Thom’s point of view, the mathematical model comes from optics. More pre-
cisely, we consider a source point O, which generates waves. Assume that at a given time the wave
front is exactly a parabola and for further time we assume that it propagates along the normals,
according to the rules of propagation of light. One must compute starting from a parabola the
sphere and wave front for the flat metric g=dx2+dy2, while the normal propagation rule corre-
sponds exactly to the transversality condition of the maximum principle. The complete computa-
tion is presented in Fig. 5 !top". The conjugate locus has a cusp at C and corresponds to the
generic singularity associated with Lagrangian singularity theory, while sections of a swallowtail
represent the singularities of the wave front.23 It is also the generic singularity coming from
Legendrian singularity theory. The cut locus is formed by the set of points where two optimal
curves intersect, the limit case being point C, which is a conjugate point representing also the
distance from the source to the cut locus. In other words, the cut locus is the union of the
separating locus with the cusp point C of the conjugate locus.

Further work is necessary8 to deduce the geometric situation in the Grushin case, for an initial
point q!0"= !'!0" ,(!0"" not a pole nor on the equator. It is represented in Fig. 5 !bottom". The cut
locus is a single branch on the antipodal parallel, while the conjugate locus has a standard astroid
shape with four cusps. The main property to obtain this global solution is the discrete symmetry
group corresponding to reflexions with respect to the equator or the meridians.

Next we present the geometric point of view to construct the solution numerically.
The general case. In the general case, for fixed T one must construct the propagation of the

wave front. A dual point of view is to consider for each fixed Hn=h the evolution of the wave front
with respect to time. In the Grushin case, both are equivalent and by homogeneity the level set can
be fixed to h=1 /2. If '!0"#- /2, we are in the Riemannian case and the exponential mapping is
defined on a circle, while if '!0"=- /2, this domain is no more compact since p( belongs to the
whole R.

In the integrable case, restricting to pr=0, the level set Hn=h takes the following form:

!p' + * sin ' cos '"2 + p(
2 cot2 ' = 2h + *2 sin2 ' cos2 ' .

Hence, one must have

O C
Cut locus

Wave front

Conjugate locus

φ

θ

φ(0)

π−φ(0)

Cut locus

Conjugate locus

C

−π π

FIG. 5. !Top" Generic microlocal case. !Bottom" The Grushin case.
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h $ −
*2

2
sin2 '!0"cos2 '!0"

and setting

12 = 2h + *2 sin '!0"cos2 '!0", X = p( cot '!0", Y = p'!0" + * sin '!0"cos '!0" ,

the domain of the exponential mapping is for each h, the set X2+Y2=12, where again p( is
bounded except if '!0"=- /2. If '!0"#- /2, it shrinks into a point if h=h0=
−*2 sin2 '!0"cos2 '!0" /2, while for h.h0, one gets short and long periodic trajectories as dis-
cussed in Sec. II C.

The same construction is valid in dimension 3, in the integrable case where pr is any constant.
The level set Hn=h is again written as

!pr − * cos2 '"2 + !p( cot '"2 + !p' + * sin ' cos '"2 = 2h + *2 sin2 ' cos2 ' + 2pr! + pr
2 + *2 cos4 ' .

!9"

A lifting of the problem can be made, taking into account the homogeneity properties of the
system. For that, it is sufficient to introduce the extended adjoint vector p̃= !pr , p( , p' ,*" and
denoting q̃= !r ,( ,' ,x*" the extended state variable, M̃ =R2<S2 being the extended state space
and T*M̃ is endowed with the Liouville symplectic structure: dq̃∧dp̃.

Hence, the equation Hn=h can be written as

1
2'

i=1

3

(p̃,Gi!q̃")2 = 3 , !10"

where according to !9", the vector fields are defined by

G1 =
$

$r
−

$

$x*
cos2 ' ,

G2 = cot '
$

$(
,

G3 =
$

$'
+ sin ' cos '

$

$x*
,

while 3 corresponds to the right member.
One further lifting is needed since the Grushin metric g=d'2+tan2 'd(2 is singular at the

equator. To make the construction, we observe that near the equator, the Grushin metric is repre-
sented by the quasihomogeneous local model g=dr̄2+ r̄−2d(2, with corresponding Hamiltonian
H= 1

2 !pr̄
2+ r̄2p(

2". Introducing the auxiliary variable /, such an Hamiltonian corresponds to the
restriction of the Hamiltonian,

H =
1
2
*pr̄

2 + * p/

r̄
− r̄p(+2+

to the space p/=0. An easy computation shows that such an Hamiltonian is the standard Hamil-
tonian,
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H =
1
2

#!px
2 + py

2" − 2pz!xpy − ypz" + !x2 + y2"pz
2$ ,

written using the cylindric coordinates. This Hamiltonian describes the evolution of extremal
trajectories in sub-Riemannian !SR"-geometry in the Heisenberg case.10

If we apply this lifting process to !10", it can be written as

1
2'

i=1

3

(p̃!,Gi!!q̃!")2 = 3 ,

where the vector field Gi! is the lifting of Gi to the extended space q̃!= !r̄ , q̃". Moreover, we
observe that one can write

3 = 2h + 2pr! + pr
2 + o!*" .

Making *=0 in the right member, we see that the corresponding Hamiltonian solutions are pre-
cisely the extremities of the SR-problem

q̇̃! = '
i=1

3

uiGi!!q̃!", min
u!·"

,
0

T

'
i=1

3

ui
2!t"dt .

Hence, for * small enough, the corresponding SR-problem is an approximation of our problem.
This remark is important for two reasons. First of all, SR-geometry is a well developed research
area. In particular, it is a geometry where many microlocal situations have been analyzed !see, for
instance, the Martinet case in Ref. 10". This is clearly related to the microlocal situations encoun-
tered in our analysis.

IV. GEOMETRIC ALGORITHMS AND NUMERICAL SIMULATIONS

A modern and pragmatic treatment of such an optimal control problem needs the development
of appropriate geometric algorithms and appropriate codes which are used to make the numerical
simulations. Such codes based on the techniques of geometric control theory are an important
work mainly developed in a parallel research project in orbital transfer, where low propulsion
technique was used. We shall make a short presentation of these codes, prior to the presentation of
the numerical results.

A. The COTCOT code

The role of this code is to compute extremals and conjugate points in the case where the
Hamiltonian describing the extremal field is smooth. Noting Hn this Hamiltonian and fixing the
extremities q0, q1 of the problem, the extremals are solutions of

ż!t" = H! n!z!t"" ,

and if the boundary conditions are given by q0 and q1, one must find the zeros of the shooting
equation,

E:!T,p0" ! 4!exp TH! n!q0,p0"" − q1,

where T is the transfer time.
In order to compute the conjugate points, one must compute in parallel the Jacobi fields

solutions of the variational equation,

*ż!t" = dH! n!z!t""*z!t"

along the given extremal.
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The aim of the code COTCOT !Conditions of Order Two, COnjugate Times19" is to provide the
numerical tools:

!1" to integrate the smooth Hamiltonian vector field H! n,
!2" to solve the associated shooting equation,
!3" to compute the corresponding Jacobi fields along the extremals, and
!4" to evaluate the resulting conjugate points.

The code is written in FORTRAN language, while automatic differentiation is used to generate the
Hamiltonian differential equation and the variational one. For the users, the advanced language is
MATLAB !see Ref. 9 for a precise description of the COTCOT code with the underlying algorithms:
ordinary differential equation !ODE" integrators, Newton method solver". The conjugate point test
consists of checking a rank condition, which is based on two methods: evaluating zeros of a
determinant or a singular value decomposition.

B. The smooth continuation method

The smooth continuation method is an important numerical approach to solve a system of
equations F!x"=0, where F :Rn→Rn is a smooth mapping. The principle is to construct an ho-
motopy path H!x ,+" such that H!x ,0"=G!x" and H!x ,1"=F!x", where G!x" is a map having
known zeros or where the zeros can be easily computed using a Newton-type algorithm. The zeros
are computed along the path with this method and at each step the procedure is implemented with
the zeros computed at the previous step !see Ref. 6 for the details". It is a general approach which
has to be adapted to optimal control problems: the shooting equation comes from the projection of
a symplectic mapping, the Jacobian can be computed using Jacobi fields and one must consider the
central extremal field associated with the problem !see Ref. 13 for the geometric concepts". A short
description of the method is given below in our case study.

We consider the family of smooth Hamiltonians H+, where +"#= !! ,"+ ,"−" belongs to the
set of dissipative parameters. Assume that one wants to solve the shooting equation, associated
with a fixed end-point conditions q0, q1 and for a specific value of the parameter +1, that is,
E!x"=q1 where

E:x = p!0" ! expq0

+ !T,p!0"" = q1.

The smooth continuation method has to be initialized by choosing a value +0 of the parameter for
which the solution is known or can be computed numerically. This leads to an initial value x0 of
the adjoint vector p!0".

A simple numerical scheme is to discretized the homotopy path from +0 to +1 identified to #0,
1$ as 0=+0!,+1!¯ ,+N! =1 where the shooting equation is solved iteratively using a Newton-type
method: xi+1=xi−E!−1!xi"E!xi".

Clearly we have !see Lemma 1" the following.
Proposition 20: For each +, the shooting equation is of maximal rank if and only if point q1

is not conjugate to q0, for the corresponding H+. Moreover, in this case, the solutions of the
parametrized shooting equation form a smooth curve which can be parametrized by + and the
derivative E! can be generated by integrating the Jacobi equation.

If the simplest numerical scheme discretizing the homotopy path cannot be used, a refined
approach consists of following the smooth path of the zeros solutions by integrating along the path
the implicit ODE describing this set. In this case, a unique shooting is necessary to initialize the
continuation method. A numerical scheme was recently developed from this algorithm. This will
be used to complete the COTCOT code in the numerical simulations below.

The convergence of the continuation methods are related to the following.

!1" From a microlocal point of view, the problem is to control the distance !for the energy cost"
to the conjugate locus C!q0 ,+".
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!2" From a global point of view, the problem is to control the distance to the cut locus Cut!q0 ,+".

We observe that according to our geometric analysis, this amounts in the integrable case to
compute, for a given initial condition q0, the distance to the conjugate locus corresponding to short
and long periodic trajectories.

C. Robustness issues

An important issue in quantum control is the robustness of the control with respect to bound-
ary conditions and parameter uncertainties since the control is implemented as an open loop
function. An example in given by the spin 1 /2 case in NMR where the action of the magnetic field
is related to the exact position of each particle. Clearly our analysis allows one to handle this
problem. The Hamilton–Jacobi–Bellman approach permits one to analyze the sensitivity with
respect to the boundary conditions, while the continuation method is a tool to determine the
sensitivity of the control with respect to the dissipative parameters.

D. Numerical simulations

We next present the numerical results using the adapted numerical codes.

1. Application in nuclear magnetic resonance

We present in this section a numerical application in NMR. We consider the control of a spin
1 /2 particle whose dynamics is governed by the Bloch equation,

2Ṁx

Ṁy

Ṁz

3 = 2 − Mx/T2

− My/T2

!M0 − Mz"/T1
3 + 2 5yMz

− 5xMz

5xMy − 5yMx
3 ,

where M! is the magnetization vector and M! 0=M0e!z is the equilibrium point of the dynamics.31

Since the initial point of the dynamics is on the z-axis, we assume that the dynamics is controlled
through only one magnetic field along the x-axis. The typical value of the amplitude of the control
field is denoted by 5max. We introduce normalized coordinates x! = !x ,y ,z"=M! /M0, a normalized
control field ux=2-5x /5max and a normalized time ==5maxt / !2-". Dividing the previous system
by 5maxM0 / !2-", we get that the evolution of the normalized coordinates is given by the following
equations:
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FIG. 6. !Color online" !Top" Plot of the different optimal trajectories !top" and of the corresponding control fields !bottom"
for different dissipation parameters. Numerical values are, respectively, taken to be *=!−"=0.47, 1.24, and 2.02 for the
red !dark gray", green !light gray", and blue !black" trajectories.
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2ẋ

ẏ

ż
3 = 2 − !x

− !y

" − "z
3 + 2 0

− uxz

uxy
3 ,

where !=2- / !5maxT2" and "=2- / !5maxT1". Note that we have "="+="− in the previous nota-
tions of the dissipation parameters and that the equilibrium state of the dynamics is now the north
pole of the Bloch sphere. Following Ref. 28, we consider the control problem of bringing the
magnetization vector from the equilibrium point M! 0 to the center of the Bloch ball which corre-
sponds to the zero-magnetization vector. Possible numerical values for the dissipation parameters
are given by the experiments implemented in Ref. 28. The experiments were performed at room
temperature with the proton spins of H2O. The parameters were taken to be T1=740 ms, T2
=60 ms, which correspond for 5max / !2-"=32.3 Hz to "−1=23.9 and !−1=1.94. We introduce Tmin
which is the minimum time to reach the target point with the constraint &5&%5max.

28 With the
parameters T1 and T2, the time-optimal sequence has a duration of 202 ms.

Different numerical results about the structure of the extremal trajectories and the conjugate
point analysis are displayed in Figs. 6 and 7. The description is based on a direct integration of the
extremal equations. The optimal solutions have been obtained by solving the shooting equation
with a Newton-type algorithm. No problem of convergence has been encountered in the different
computations and the target state has been reached with a great accuracy.

In Fig. 6, we analyze the relation between the optimal trajectory and the dissipation param-
eters. We consider a control duration of 1.5<Tmin. The variation of *=!−" is realized by chang-
ing the value of !. In Fig. 7, we consider the dissipation parameters of Ref. 28 for the different
trajectories but we modify the control duration which is given by K<Tmin, where K is a scaling
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FIG. 7. !Color online" Plot of the different optimal trajectories !top" and of the corresponding control fields !bottom" for
different control durations. Numerical values are, respectively, taken to be K=1.1, 1.5, and 2 for the red !dark gray", green
!light gray", and blue !black" trajectories. The value K=1 refers to the time-minimum solution for the same dissipation
parameters and a maximum normalized amplitude of the control field of 2-. The black crosses indicate the positions of the
different conjugate points. The middle panel is a zoom of the top figure near the origin.
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periodic orbits, respectively, intersect with the same time.
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parameter. The results show that the structure of the extremals is simple. Note the similar behavior
of the extremal trajectories when the dissipation parameters or the control duration are varied. We
also indicate that all these trajectories could be implemented experimentally in NMR with the state
of the art technology.28 In Fig. 7, we have also evaluated the positions of the conjugate points. For
different control durations, we observe in Fig. 7 that the first conjugate point appears after the
target state. This means that the extremals are locally optimal up to the center of the Bloch ball.
Other global properties of the extremals can be mentioned. We have checked that the total energy
%0

Tu!t"2dt of the control field and the maximum of this control field decrease as T increases. This
means that the maximum amplitude of u!t" can be adjusted by choosing adequately the control
duration. In Fig. 7, we compare the time-optimal solution computed in Ref. 28 with the solutions
in the energy minimum case. The time-optimal solution is composed of two bang pulses of
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FIG. 9. !Color online" Conjugate loci, spheres, and wave fronts for the Grushin !top" and the non-Grushin case !bottom".

092705-38 Bonnard et al. J. Math. Phys. 51, 092705 "2010!



0 2 4 6 8
0

1

2

3
φ

θ
0 1 2 3 4

0

0.2

0.4

0.6

0.8

1

ρ

t

0 1 2 3 4
−40

−20

0

20

40

v 1

t
0 1 2 3 4

−40

−20

0

v 2

t

FIG. 10. !a" Evolution of the angle ' as a function of the angle ( for !=2.5, "+=2, and "−=−0.1. Initial values are taken
to be '!0"=- /4, p)!0"=−10, p(=1, and p'!0"=−1, 0, and 1. !b" Evolution of the radial coordinate ) as a function of time.
#!c" and !d"$ Plot of the two optimal control fields v1 and v2 as a function of time for p'!0"=1.

0 2 4 6 8
0

1

2

3

φ

θ
0 1 2 3 4

0

0.2

0.4

0.6

0.8

1

ρ

t

0 1 2 3 4

−8

−6

−4

−2

0

2

4

6

8

v 1

t
0 1 2 3 4

0

2

4

6

8

10

12

14

v 2

t

FIG. 11. The same as Fig. 10 but for "−=0.1.
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maximum amplitude 2- and two singular controls. When the control duration is close to Tmin, i.e.,
when K is close to 1, we see that the structure of the optimal solution for the energy minimization
case is close to the one for the time-optimal case.

2. Extremals and conjugate points in the integrable case

We illustrate in this section the different analytical results obtained in the integrable case. We
consider the case of Fig. 8 where both short and long periodic orbits exist. In this example, we
only modify the value of p'!0" to change the energy h of the system. We, respectively, obtain short
and long orbits for h,6 and h.6. For p) and p( fixed, there exist two trajectories starting from
!r!0" ,'!0" ,(!0"" which intersect with the same cost on the antipodal parallel !'=-−'!0"" for
long periodic orbits and on the initial parallel !'='!0"" for short periodic orbits. These two
extremals are defined by the two values of p'!0" for which the energy is the same. Such trajec-
tories are displayed in Fig. 8 both for long and short periodic orbits. We have also determined by
using the COTCOT code the position of the first conjugate points for these extremals.

3. Conjugate loci, spheres, and wave fronts

We represent in Fig. 9 the conjugate loci, the spheres, and the wave fronts for T=5.5, *=1,
"−=0 and for the initial condition '!0"=- /4. We observe the existence of two microlocal situa-
tions corresponding to short and long periodic trajectories. For the second case, this corresponds to
the persistence of a Grushin-type situation, represented in the same picture, for comparison.
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FIG. 12. The same as Fig. 10 but the extremals are plotted up to the first conjugate point.
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FIG. 13. The same as Fig. 12 but for "−=−0.1.
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4. Extremals and conjugate points in the nonintegrable case

Using a direct integration of the Hamiltonian system we detail in this section the behavior of
the extremals in the case "−#0. The asymptotic behavior when t→+0 is described for any values
of ! and "+ by the following conjecture based on numerical computations.

Conjecture 1: The asymptotic stationary points !) f ,' f ,( f" are characterized by ) f = &"−& /"+,
and ' f =0 if "−.0 or ' f =- if "−,0.

Using the Hamiltonian equations, it is straightforward to show that !) f ,' f ,( f" satisfy

"− cos ' f = ) f!"+ cos2 ' f + ! sin2 ' f" ,

from which one deduces Conjecture 1. The different behaviors of the extremals are represented in
Fig. 10 for "−,0 and in Fig. 11 for "−.0. After a complicated transient oscillatory structure,
every extremal has the same asymptotic limit given by the conjecture 1. This also illustrates the
robustness of the control with respect to parameter uncertainties since the asymptotic behavior of
the extremals only depends on the sign of "− and not on "+ or !. This point could be important in
view of possible experimental applications in NMR of these optimal control laws. Note also the
unbounded and oscillatory behaviors of the two control fields v1 and v2. Finally, we have used the
COTCOT code to evaluate the position of the conjugate points. As can be checked in Figs. 12 and
13, we observe that every extremal possesses a conjugate point, which was not the case in the
time-minimal control of the same system.11
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the control duration is equal to 0.5. The coordinates of the initial point are equal to '!0"=- /4, )!0"=1, (!0"=0, p)!0"
=−5, p'!0"=−1, and p(!0"=1 for !=3. The target state is !) f =0.3534, ' f =0.6004, ( f =2.0534".
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FIG. 15. Three extremal trajectories solutions of the smooth continuation method for !=2, 2.5, and 3. The black dot
indicates the position of the target state.
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5. Continuation results

The smooth and the discrete continuation approaches have been implemented on two ex-
amples. We consider a continuation problem as a function of the parameter ! in Figs. 14 and 15
and as a function of "− in Figs. 16 and 17. In the two cases, we fix a target state of coordinates
!) f ,' f ,( f" and the control duration to T=0.5. The corresponding adjoint state !p)!0" , p'!0" , p(!0""
solutions of this optimal control problem are known at the starting point of the continuation. We
then use the two continuation algorithms to determine the new adjoint states such that the system
reaches the same target state with the same control duration when the dissipative parameters vary.
In the two cases, the control duration is chosen sufficiently small to be before the first conjugate
point, which ensures the convergence of the continuation method.13 Some accessibility problems
can also be encountered for long times. Indeed, one has to check that the target state belongs to the
accessible set of the initial point when the dissipative parameters vary. Due to the dissipation
effects, this is done numerically for each value of the continuation parameter . The step sizes of the
discrete approach are, respectively, equal to 0.02 and 0.01 for the continuations in ! and "−, while
is not fixed for the smooth one. With this step size, the Newton algorithm does not encounter any
problem to converge. The shooting equation is solved at each step with an accuracy of the order
of 10−12. We have also observed that this size has to be increased when the control duration
increases. Note the different behaviors of the two approaches in Fig. 17, which displays the
evolution of the continuation parameter as a function of the number of steps. In the two examples,
we remark that the number of steps needed by the smooth approach is larger than in the discrete
case !Fig. 18". A larger step size can be used in the discrete method because the shooting equation
is solved at each step, which is not the case for the smooth method. The different initial adjoint
states represented in Figs. 14 and 15 show that the results obtained by the two methods are similar.
Note the large variations of the adjoint states, which are due to the relatively large modifications
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FIG. 16. The same as Fig. 14 but for a continuation in "−. The other dissipative parameters are !=2.5 and "+=2 and the
control duration is equal to 0.5. The coordinates of the initial point are equal to '!0"=- /4, )!0"=1, (!0"=0, p)!0"=−5,
p'!0"=−1, and p(!0"=1 for "−=−0.1. The target state is !) f =0.314 95, ' f =0.567 126, ( f =1.242 71".
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FIG. 17. Three extremal trajectories solutions of the smooth continuation method for "−=−0.1, 0, and 0.1. The black dot
indicates the position of the target state.
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of the shape of the optimal trajectories when the dissipative parameters, vary !see Figs. 15 and 17".
This indicates the very good behavior of the continuation approach in this problem.

1 Abramowitz, M. and Stegun, I. A., Handbook of Mathematical Functions !Dover, New York".
2 Agrachev, A. A., Chtcherbakova, N. N., and Zelenko, I., “On curvatures and focal points of dynamical lagrangian
distributions and their reductions by first integrals,” J. Dyn. Control Syst. 11, 297 !2005".

3 Aguilar, J.-P. and Berglund, N., “The effect of classical noise on a quantum two-level system,” J. Math. Phys. 49, 102102
!2008".

4 D’Alessandro, D., Introduction to Quantum Control and Dynamics, CRC Applied Mathematics and Nonlinear Science
Series !Chapman and Hall, Boca Raton, 2008".

5 D’Alessandro, D. and Dahled, M., “Optimal control of two-level quantum systems,” IEEE Trans. Autom. Control 46, 866
!2001".

6 Allgower, E. L. and Georg, K., Introduction to Numerical Continuation Methods, Classics in Applied Mathematics Vol.
45 !SIAM", Philadelphia, PA, 2003. !reprint of the 1990 edition #Springer-Verlag, Berlin; MR1059455 !92a:65165"$".

7 Audin, M., Les Systèmes Hamiltoniens et leur intégrabilité (French) [Hamiltonian Systems and Their Integrability],
Cours Spécialisés #Specialized Courses$ Vol. 8 !Société Mathématique de France, Paris EDP Sciences, Les Ulis, 2001",
pp. 1–170 !French".

8 Bonnard, B., Caillau, J.-B., Sinclair, R., and Tanaka, M., “Conjugate and cut loci of a two-sphere of revolution with
application to optimal control,” Ann. Inst. Henri Poincaré, Anal. Non Linéaire 26, 1081 !2009".

9 Bonnard, B., Caillau, J.-B., and Trélat, E., “Second order optimality conditions in the smooth case and applications in
optimal control,” ESAIM: COCV 13, 207 !2007".

10 Bonnard, B. and Chyba, M., Singular Trajectories and Their Role in Control Theory, Mathematiques and Applications
#Mathematics and Applications$ Vol. 40 !Springer-Verlag, Berlin, 2003" !Berlin".

11 Bonnard, B., Chyba, M., and Sugny, D., “Time-minimal control of dissipative two-level quantum systems: The generic
case,” IEEE Trans. Autom. Control 54, 2598 !2009".

12 Bonnard, B. and Kupka, I., “Théorie des singularités de l’application entrée-sortie et optimalité des trajectoires sin-
gulières dans le problème du temps minimal,” Forum Math. 5, 111 !1993".

13 Bonnard, B., Shcherbakova, N., and Sugny, D., “The smooth continuation method in optimal control with an application
to quantum systems,” ESAIM: COCV.

14 Bonnard, B. and Sugny, D., “Time-minimal control of dissipative two-level quantum systems: The integrable case,”
SIAM J. Control Optim. 48, 1289 !2009".

15 Bonnard, B. and Sugny, D., “Geometric optimal control and two-level dissipative quantum systems,” Contr. Cybernet.
38, 1053 !2009".

16 Boscain, U., Charlot, G., Gauthier, J.-P., Guérin, S., and Jauslin, H.-R., “Optimal control in laser-induced population
transfer for two- and three-level quantum systems,” J. Math. Phys. 43, 2107 !2002".

17 Boscain, U. and Mason, P., “Time minimal trajectories for a spin 1 /2 particle in a magnetic field,” J. Math. Phys. 47,
062101 !2006".

18 Bruce, J. W. and Giblin, P. J., Curves and Singularities: A Geometrical Introduction to Singularity Theory, 2nd ed.
!Cambridge University Press, Cambridge, 1992", pp. 1–321.

19
COTCOT: http://apo.enseeiht.fr/cotcot/.

20 Davies, H., Introduction to Non Linear and Integral Equations !Dover, New York, 1990".
21 do Carmo, M. P., Riemannian Geometry !Birkhäuser, Boston, 1992".
22 Gorini, V., Kossakowski, A., and Sudarshan, E. C. G., “Completely positive dynamical semigroups of N-level systems,”

J. Math. Phys. 17, 821 !1976".
23 Goryunov, V. V. and Zakalyukin, V. M., “Lagrangian and Legendrian singularities,” Singularity theory !World Scientific,

Hackensack, NJ, 2007", pp. 157–186.
24 Guerra, M. and Sarychev, A., “Existence and Lipschitzian regularity for relaxed minimizers,” Mathematical Control

20 40 60 80 100 120 140 160 180
2

2.2

2.4

2.6

2.8

3
Γ

step
5 10 15 20 25

−0.1

−0.05

0

0.05

0.1

γ −

step

FIG. 18. Evolution of the continuation parameters as a function of the number of steps for the discrete method !solid line"
and the smooth one !dashed line".

092705-43 The energy minimization problem J. Math. Phys. 51, 092705 "2010!



Theory and Finance !Springer, New York, 2008", pp. 231–250.
25 Khaneja, N., Brockett, R., and Glaser, S. J., “Time optimal control in spin systems,” Phys. Rev. A 63, 032308 !2001".
26 Khaneja, N., Glaser, S. J., and Brockett, R., “Sub-Riemannian geometry and time optimal control of three spin systems:

Quantum gates and coherence transfer,” Phys. Rev. A 65, 032301 !2002".
27 Kupka, I. !private communication".
28 Lapert, M., Zhang, Y., Braun, M., Glaser, S. J., and Sugny, D., “Singular extremals for the time-optimal control of

dissipative spin 1 /2 particles,” Phys. Rev. Lett. 104, 083001 !2010"; Assémat, E., Lapert, M., Zhang, Y., Braun, M.,
Glaser, S. J., and Sugny, D., “Simultaneous time-optimal control of the inversion of two spin-1/2 particles,” Phys. Rev.
A 82, 013415 !2010".

29 Lawden, D. F., Elliptic Functions and Applications, Applied Mathematical Sciences Vol. 80 !Springer-Verlag, New York,
1989", pp. 1–334.

30 Lee, E. B. and Markus, L., Foundations of Optimal Control Theory !Wiley, New York, 1967", pp. 1–576.
31 Levitt, M. H., Spin Dynamics: Basics of Nuclear Magnetic Resonance !Wiley, New York, 2008".
32 Lindblad, G., “On the generators of quantum dynamical semigroups,” Commun. Math. Phys. 48, 119 !1976".
33 Meyer, K. R. and Hall, G. R., Introduction to Hamiltonian Dynamical Systems and the $N$-Body Problem, Applied

Mathematical Sciences Vol. 90 !Springer-Verlag, New York, 1992", pp. 1–292.
34 Mirrahimi, M. and Rouchon, P., “Singular perturbations and Lindblad-Kossakowski differential equations,” IEEE Trans.

Autom. Control 54, 1325 !2009".
35 Nemytskii, V. V. and Stepanov, V. V., Qualitative Theory of Differential Equations, Princeton Mathematical Series, No.

22 !Princeton University Press, Princeton, NJ, 1960", pp. 1–523.
36 Pontryagin, L. S., Boltyanskii, V. G., Gamkrelidze, R. V., and Mishchenko, E. F., in The Mathematical Theory of Optimal

Processes, translated from the Russian by K. N. Trirogoff, edited by L. W. Neustadt !Wiley, New York, 1962", pp. 1–360.
37 Ramakrishna, S. and Seideman, T., “Intense laser alignment in dissipative media as a route to solvent dynamics,” Phys.

Rev. Lett. 95, 113001 !2005".
38 Stefanatos, D., “Optimal design of minimum-energy pulses for Bloch equations in the case of dominant transverse

relaxation,” Phys. Rev. A 80, 045401 !2009".
39 Sugny, D., Kontz, C., and Jauslin, H. R., “Time-optimal control of a two-level dissipative quantum system,” Phys. Rev.

A 76, 023419 !2007".
40 Trélat, E., “Etude asymptotique et transcendance de la fonction valeur en contrôle optimal; catégorie log-exp en géomét-

rie sous-Riemannienne dans le cas Martinet,” Ph.D. thesis, University of Burgundy, !2000".
41 Trélat, E., “Some properties of the value function and its level sets for affine control systems with quadratic cost,” J. Dyn.

Control Syst. 6, 511 !2000".
42 Vieillard, T., Chaussard, F., Sugny, D., Lavorel, B., and Faucher, O., “Field-free molecular alignment of CO2 mixtures

in presence of collisional relaxation,” J. Raman Spectrosc. 39, 694 !2008".

092705-44 Bonnard et al. J. Math. Phys. 51, 092705 "2010!


