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1. Proofs

Proof of Lemma 3.3. Let us prove in fact by induction that

E(∥Gs(0, ξs0)∥m1 ) <∞,

for s = 0, ..., 2J − 1.
For s = 0,

∥g0(0, ξ0)∥1 ≤M + ∥µ∥1 + ∥ε0∥1.

Since ε0 is a finite Gaussian vector, this has finite moment of every order.
For s > 0, we have that

∥Gs(0, ξs0)∥1 = ∥Gs−1(0, ξ
s−1
0 )∥1 + ∥gs([0,Gs−1(0, ξ

s−1
0 )], ξs)∥1.

So it remains to prove that ∥gs([0,Gs−1(0, ξ
s−1
0 )], ξs)∥1 has a finite moment of

order m.
But

∥gs([0,Gs−1(0, ξ
s−1
0 )], ξs)∥1 ≤M + ∥µ∥1 + ∥HW ∗ κW [Gs−1(0, ξ

s−1
0 )]∥1 + ∥εs∥1.

Since εs is Gaussian, it has finite moment of order m. So we only need to
prove that ∥HW ∗ κW [Gs−1(0, ξ

s−1
0 )]∥1 has finite moment of order m.
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By (??), one can see that

∥HW ∗ κW [0,Gs−1(0, ξ
s−1
0 )]∥1 ≤ max

k=1,...,s
∥HW (k)∥1,∞∥κW [Gs−1(0, ξ

s−1
0 )]∥1

≤ (K ∨ 1) max
k=1,...,s

∥HW (k)∥1,∞∥Gs−1(0, ξ
s−1
0 )∥1,

by 1-lipschitzianity of the masks. So by induction hypothesis, this quantity has
therefore finite moment of order m, which concludes the proof.

Proof of Lemma 3.4. We are again using induction to prove that

E(∥Gs(X−1
−∞, ξ

s
0)−G2J−1(Z

−1
−∞, ξ

s
0)∥1) ≤

∞∑
b=1

asbE(∥X−b − Z−b∥1),

with s = 0, ..., 2J − 1.
For s = 0,

∥g0(X−1
−∞, ξ0)− g0(Z

−1
−∞, ξ0)∥1 ≤ AS +AW ,

with
AS = ∥1U0≤ν+HS∗κS(X−1

−∞) − 1U0≤ν+HS∗κS(Z−1
−∞)∥1

and

AW = ∥(µ+HW ∗ κW (X−1
−∞) + ε0).δ(0)− (µ+HW ∗ κW (Z−1

−∞) + ε0).δ(0)∥1.

For AS , note that for all c, a ∈ [0, 1] and U uniform variable E(|1U≤a−1U≤c|) =
E(1min(a,c)≤U≤max(a,c)) = |a− c|. So

E(AS) = E(∥HS∗[κS(X−1
−∞)−κS(Z−1

−∞)]∥1) ≤ (K∨1)
∞∑
b=1

max
k∈Ib

∥HS(k)∥1,∞E∥X−b−Z−b∥1,

with Ib = (ib−1 + 1) : (jb−1 + 1).
For AW , it is even more straight forward since

AW ≤ ∥HW ∗[κW (X−1
−∞)−κW (Z−1

−∞)]∥1 ≤ (K∨1)
∞∑
b=1

max
k∈Ib

∥HW (k)∥1,∞∥X−b−Z−b∥1.

And therefore

a0b = (K ∨ 1)[max
k∈Ib

∥HS(k)∥1,∞ +max
k∈Ib

∥HW (k)∥1,∞].

At step s > 0,

E(∥Gs(X−1
−∞, ξ

s
0)−Gs(Z−1

−∞, ξ
s
0)∥1) ≤ E(∥Gs−1(X

−1
−∞, ξ

s−1
0 )−Gs−1(Z

−1
−∞, ξ

s−1
0 )∥1)

+ E(∥gs([X−1
−∞,Gs−1(X

−1
−∞, ξ

s−1
0 )], ξs)− gs([Z

−1
−∞,Gs−1(Z

−1
−∞, ξ

s−1
0 )], ξs)∥1)
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Let us concentrate on the last term. We obtain by splitting again as before
between the spike part and the wavelet part that

E(∥gs([X−1
−∞,Gs−1(X

−1
−∞, ξ

s−1
0 )], ξs)− gs([Z

−1
−∞,Gs−1(Z

−1
−∞, ξ

s−1
0 )], ξs)∥1) ≤

∞∑
b=1

(K ∨ 1)[max
k∈Ib

∥HS(k + s)∥1,∞ +max
k∈Ib

∥HW (k + s)∥1,∞]E∥X−b − Z−b∥1+

(K∨1)[ max
k=1,...,s

∥HS(k)∥1,∞+ max
k=1,...,s

∥HW (k)∥1,∞]E∥Gs−1(X
−1
−∞, ξ

s−1
0 )−Gs−1(Z

−1
−∞, ξ

s−1
0 )∥1

We have that a0b as well as all the

(K ∨ 1)[max
k∈Ib

∥HS(k + s)∥1,∞ +max
k∈Ib

∥HW (k + s)∥1,∞]

are smaller than eb, whereas

d ≥ (K ∨ 1)[ max
k=1,...,s

∥HS(k)∥1,∞ + max
k=1,...,s

∥HW (k)∥1,∞]

So finally we have proved by recursion that

E(∥Gs(X−1
−∞, ξ

s
0)−Gs(Z−1

−∞, ξ
s
0)∥1) ≤

∞∑
b=1

asbE(∥X−b − Z−b∥1),

with asb = as−1
b (1 + d) + eb.

By solving the recursion, and using that a0b ≤ eb we get that if d > 0,

asb ≤ ((1 + d)s+1 − 1)
eb
d
,

and if d = 0, asb ≤ (s+ 1)eb which concludes the proof.

Proof of Theorem 3.2. The condition of Theorem 3.2 on the eb’s combined with
the result of Lemma 3.4 is exactly the Lipschitz condition that is needed in
Theorem 3.1 of [2], whereas Lemma 3.3 with m = 1 is the other condition
needed to apply it.

The existence of a τ -weakly stationary integrable solution for Xb is therefore
granted and we obtain a block stationary integrable solution (see Lemma 3.1).

It remains to prove the existence of moment of every order for the wavelet
part. If the masks are bounded, E(W p

j,k|Fℓj,k−1) is bounded by a fixed positive
constant, say Cp,j (all the sums converge because

∑
b eb < ∞). So for every

positive integer m,

E(|W p
j,k|

m) ≤ 2m−1Cmp,j + 2m−1E(|εp,j |m)

and E(|W p
j,k|m) is therefore finite.
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Proof of Lemma 4.5. We follow the steps in [3]. For the first inequality, we can
assume that ∥ϕ∥∞ = 1 because the formula is homogeneous in this quantity.
Let for all t,

Mt =

t∑
s=0

ϕ(Y s−1
−∞ ) [Sms − E(Sms |Fs−1)] and Vt =

t∑
s=0

ϕ(Y s−1
−∞ )2E(Sms |Fs−1).

Note first that Mt is a martingale with respect to the filtration and that MT =
Mϕ
T . We denote

Akt =

t∑
s=0

E((Ms −Ms−1)
k|Fs−1).

Lemma 3.3. of [4] gives that fr all λ > 0

Et = exp(λMt −
∑
k≥2

λk

k
Akt )

is a supermartingale and that in particular E(ET ) ≤ 1. But Akt ≤ Vt because
∥ϕ∥∞ ≤ 1 and because |Sms −E(Sms |Fs−1)| ≤ 1. So if we take ψ(λ) = eλ−λ−1,
we have that

E(eλMT−ψ(λ)VT ) ≤ 1.

In particular, we have by Markov inequality, for every x, λ > 0,

P(MT ≥ VT
ψ(λ)

λ
+
x

λ
) ≤ e−x. (1)

But we can apply (1) to

T∑
t=0

(−ϕ2(Y s−1
−∞ )) [Sms − E(Sms |Fs−1)] .

So if V̂t =
∑t
s=0 ϕ(Y

s−1
−∞ )2Sms , this leads us to: for all µ > 0,

P(VT ≥ V̂T +
ψ(µ)

µ
VT +

x

µ
) ≤ e−x.

This means that with probability larger than 1− e−x,

VT ≤ µ

µ− ψ(µ)
V̂T +

x

µ− ψ(µ)
,

as long as µ− ψ(µ) > 0. We take µ = 1/2, which leads to

VT ≤ 3

2
V̂T + 3x,

so that

P(MT ≥
(
3

2
V̂T + 3x

)
ψ(λ)

λ
+
x

λ
) ≤ 2e−x
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Note also that ψ(λ) ≤ λ2/(2[1−λ/3]) for all λ < 3. This is the starting point
of a peeling argument similar to [3]. We get therefore that for all ϵ, x > 0

P(MT ≥

√
2(1 + ϵ)

(
3

2
V̂T + 3x

)
x+x/3 and w ≤

(
3

2
V̂T + 3x

)
≤ v) ≤ 2

(
log(v/w)

log(1 + ϵ)
+ 1

)
e−x.

Note that we can always take w = 3x and v = 3
2 (T + 1) + 3x. This leads to the

first inequality. Then because we want to look at the absolute value, we apply
the same inequality to −Mϕ

T and then to all ϕ ∈ Φ. This leads to

P
(
∃ϕ ∈ Φ, |Mϕ

T | ≥
√

3(1 + ϵ)V̂ ϕT x+

(
1

3
+
√

6(1 + ϵ)

)
∥ϕ∥∞x

)
≤ 4#Φ

(
log
(
T+1
2x + 1

)
log(1 + ε)

+ 1

)
e−x.

To make the upper bound less than α, we need to take x > 1 and then T+1
2x +1 ≤

T. So it is sufficient to take x such that

4#Φ

(
log(T )

log(1 + ε)
+ 1

)
e−x = α.

In particular with ϵ = 0.5, one has that log(T )/ log(1+ ϵ) + 1 ≤ 4 log(T ), which
gives the final part.

Proof of Lemma 4.6. Let us assume as before that ∥ϕ∥∞ = 1 because the for-
mula is homogeneous.

Let R ≤ L be integers such that

Mϕ
T =

∑
k∈R:L

ϕ(Y t−1
−∞ )

[
W p
j,k − E(W p

j,k|Fℓj,k−1)
]
.

Note that for all λ > 0

E(eλM
ϕ
T |Fℓj,L−1) = exp

( ∑
k∈R:L−1

ϕ(Y t−1
−∞ )

[
W p
j,k − E(W p

j,k|Fℓj,k−1)
]
+
λ2σ2

p,j

2

[
ϕ(Y

ℓj,k−1
−∞ )

]2)
.

So that by recursion, one can easily prove that

E
(
eλM

ϕ
T−λ2

2 VT

)
≤ 1.

This leads as before by Markov inequality : for all x, λ > 0

P(Mϕ
T ≥ λ

2
VT +

x

λ
) ≤ e−x.

We are going, as before to use a peeling argument. To do so we need to restrict
ourselves to the event w ≤ VT ≤ v. We fix ϵ > 0, v0 = w, vd+1 = (1 + ϵ)vd and
D the smallest integer such that vD ≥ v. For all λ and fix d ∈ 1 : D,

P(Mϕ
T ≥ λ

2
VT +

x

λ
and vd−1 ≤ VT ≤ vd) ≤ e−x.
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So

P(Mϕ
T ≥ λ

2
vd +

x

λ
and vd−1 ≤ VT ≤ vd) ≤ e−x.

We choose the optimal λ =
√
2x/vd to get

P(Mϕ
T ≥

√
2vdx and vd−1 ≤ VT ≤ vd) ≤ e−x.

But vd = (1 + ϵ)vd−1 ≤ (1 + ϵ)VT on this event. Hence we get

P(Mϕ
T ≥

√
2(1 + ϵ)VTx and vd−1 ≤ VT ≤ vd) ≤ e−x.

It remains to take a union bound to have

P(Mϕ
T ≥

√
2(1 + ϵ)VTx and w ≤ VT ≤ v) ≤ De−x.

But D ≤ (log(v/w)/ log(1 + ϵ) + 1).
Moreover, VT does not have an obvious lower bound, so we can redo all this

argument with [VT + ησ2
p,j ] instead of VT and therefore take w = η. On the

other hand, we can always take v = (T + 1)σ2
p,j + ησ2

p,j . This leads to the first
inequality. The second one is just an union bound and we choose x such that
#Φ (log(v/w)/ log(1 + ϵ) + 1) e−x ≤ α.

The final part is obtained by taking η = ϵ = 0.5. In this case, for all T > 1(
log((T + 1)η−1 + 1)

log(1 + ϵ)
+ 1

)
≤ 9 log(T ).

Proof of Theorem 4.8. The proof is very classical, with a slight complexity due
to the weights (see [6, 7, 5, 1] and the references therein. It is there for sake of
completeness.

Since i is fixed, let us drop the index i to simplify notation and let us also
write f̂ = f iâi .

Let b̄ϕ =< ϕ, f >, so that the martingales Mϕ
T controlled in Lemma 4.5 and

4.6 are in fact the bϕ − b̄ϕ. In particular on the event of interest, we have that

|bϕ − b̄ϕ| ≤ dϕ ≤ wϕ.

First of all, let us prove that for all a ∈ RΦ, we have

2 < f̂ − fa, f̂ − f > +(γ − 2)
∑

ϕ/∈S(a)

wϕ|âϕ| ≤ (γ + 2)
∑

ϕ∈S(a)

wϕ|âϕ − aϕ|. (2)

Let us take an s such that sϕ = sign(aϕ) if ϕ ∈ S(a) and sϕ = sign(âϕ)
if ϕ /∈ S(a). By solving the subgradient conditions, the solution â of the Lasso
minimisation satisfy that there exists some ŝ, such that ŝϕ = sign(âϕ) if ϕ ∈ S(â)
and ŝϕ ∈ [−1, 1] if ϕ /∈ S(â) and such that

2Gâ− 2b+ γw.ŝ = 0,
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with . the term-to-term product. This implies that

(2Gâ− 2b̄)⊤(â− a)+ γ[w.(ŝ− s)]⊤(â− a) = −γ[w.s]⊤(â− a)+ 2(b− b̄)⊤(â− a).

But by looking at all cases, one can easily prove that for all ϕ, (ŝϕ−sϕ)(âϕ−aϕ) ≥
0.

Next note that

[w.s]⊤(â− a) =
∑

ϕ∈S(a)

wϕsign(aϕ)(âϕ − aϕ) +
∑

ϕ/∈S(a)

wϕsign(âϕ)(âϕ).

So
−γ[w.s]⊤(â− a) ≤ γ

∑
ϕ∈S(a)

wϕ|âϕ − aϕ| − γ
∑

ϕ/∈S(a)

wϕ|âϕ|,

which gives, since (Gâ− b̄)⊤(â− a) =< f̂ − fa, f̂ − f >, that

2 < f̂−fa, f̂−f > +γ
∑

ϕ/∈S(a)

wϕ|âϕ| ≤ (γ+2)
∑

ϕ∈S(a)

wϕ|âϕ−aϕ|+2(b−b̄)⊤(â−a).

But

2(b− b̄)⊤(â− a) ≤ 2
∑
ϕ∈Φ

wϕ|âϕ − aϕ| = 2
∑

ϕ∈S(a)

wϕ|âϕ − aϕ|+ 2
∑

ϕ/∈S(a)

wϕ|âϕ|,

which gives (2).
Next note that

2 < f̂ − fa, f̂ − f >= ∥f̂ − f∥2 + ∥f̂ − fa∥2 − ∥fa − f∥2, (3)

so that if < f̂ − fa, f̂ − f >≥ 0, the first equation of Theorem 4.8 holds.
If < f̂ − fa, f̂ − f >> 0, by (2)

(γ − 2)
∑

ϕ/∈S(a)

wϕ|âϕ| ≤ (γ + 2)
∑

ϕ∈S(a)

wϕ|âϕ − aϕ|. (4)

So if x = â − a and J = S(a), we see that this is exactly the condition in
RE(κ, c, s), and that therefore

(â− a)⊤Gi(â− a) ≥ Nκ
∑

ϕ∈S(a)

(âϕ − aϕ)
2. (5)

Moreover (2) also gives us that

2 < f̂−fa, f̂−f >≤ (γ+2)
∑

ϕ∈S(a)

wϕ|âϕ−aϕ| ≤ (γ+2)

√ ∑
ϕ∈S(a)

w2
ϕ

√ ∑
ϕ∈S(a)

(âϕ − aϕ)2.

(6)
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So (3) gives us that

∥f̂ − f∥2 ≤ ∥fa − f∥2 + (γ + 2)

√ ∑
ϕ∈S(a)

w2
ϕ

√ ∑
ϕ∈S(a)

(âϕ − aϕ)2 − ∥f̂ − fa∥2.

By using (5), noting that ∥f̂ − fa∥2 = (â− a)⊤G(â− a), we get

∥f̂ − f∥2 ≤ ∥fa − f∥2 + (γ + 2)

√√√√ ∑
ϕ∈S(a)

w2
ϕ

κN
∥f̂ − fa∥ − ∥f̂ − fa∥2.

It remains to use that βη − β2 ≤ η2/4 for all real numbers β and η to get the
result.

If a∗ exists with #S(a∗) ≤ s, then (6) with a = a∗ gives us directly that

(â− a∗)⊤G(â− a∗) ≤ (γ + 2)

2

√ ∑
ϕ∈S(a∗)

w2
ϕ

√ ∑
ϕ∈S(a∗)

(âϕ − a∗ϕ)
2.

So by RE(κ, c, s), we get that√ ∑
ϕ∈S(a)

(âϕ − a∗ϕ)
2 ≤ (γ + 2)

2κN

√ ∑
ϕ∈S(a∗)

w2
ϕ.

Since < f̂ − fa, f̂ − f >= (â − a∗)⊤G(â − a∗) ≥ 0, combining the previous
result and (4), we obtain∑

ϕ∈Φ

wϕ|âϕ − a∗ϕ| =
∑

ϕ∈S(a∗)

wϕ|âϕ − a∗ϕ|+
∑

ϕ/∈S(a∗)

wϕ|âϕ|

≤ 2γ

γ − 2

∑
ϕ∈S(a∗)

wϕ|âϕ − a∗ϕ|

≤ 2γ

γ − 2

√ ∑
ϕ∈S(a∗)

w2
ϕ

√ ∑
ϕ∈S(a)

(âϕ − a∗ϕ)
2

≤ 2γ(γ + 2)

2κ(γ − 2)

∑
ϕ∈S(a∗)

w2
ϕ

N
,

which leads to the result.
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2. Table of performance measures
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Error name Definition Formula

νe total error for the spontaneous firing rates νe =
∑M

m=1 |ν̂m − νm|
µe total error for the LFP spontaneous values µe =

∑P
p=1

∑J
j=0 |µ̂

p
j − µp

j |
esS total error for spike-spike interactions esS =

∑M
m,m′=1

∑R
r=1 |ĥm

m′ (rδ)− hm
m′ (rδ)|

esW total error for spike-LFP interactions esW =
∑P

p=1

∑J
j=0

∑M
m′=1

∑R
r=1 |ĥ

p,j
m′ (rδ)− hp,j

m′ (rδ)|
ewS total error for LFP-spikes interactions ewS =

∑M
m=1

∑P
p′=1

∑J
j′=0

∑t#supph
t=t1

|ĥm
p′,j′ (t)− hm

p′,j′ (t)|
ewW total error for LFP-LFPinteractions ewS =

∑P
p,p′=1

∑J
j,j′=0

∑t#supph
t=t1

|ĥp,j
p′,j′ (t)− hp,j

p′,j′ (t)|
DG =1 if connectivity graph is perfectly reconstructed DG= 1∄h=0|ĥ ̸=0∩∄h ̸=0|ĥ=0

S # of spontaneous values detected S=
∑M

m=1 1(νm>0∩ν̂m>0)∪(νm=0∩ν̂m=0)+

+
∑P

p=1

∑J
j=0 1(µ

p
j ̸=0∩µ̂

p
j ̸=0)∪(µ

p
j=0∩µ̂

p
j=0)

c+sS # false positive spike-spike parameters c+sS =
∑M

m,m′=1

∑R
r=1 1hm

m′ (rδ)=0∩ĥm
m′ (rδ)̸=0

c−sS # false negative spike-spike parameters c−sS =
∑M

m,m′=1

∑R
r=1 1hm

m′ (rδ)̸=0∩ĥm
m′ (rδ)=0

c+sW # false positive spike-LFP parameters c+sW =
∑P

p=1

∑J
j=0

∑M
m′=1

∑R
r=1 1h

p,j

m′ (rδ)=0∩ĥ
p,j

m′ (rδ)̸=0

c−sW # false negative spike-LFP parameters c−sW =
∑P

p=1

∑J
j=0

∑M
m′=1

∑R
r=1 1h

p,j

m′ (rδ)̸=0∩ĥ
p,j

m′ (rδ)=0

c+wS # false positive LFP-spike parameters c+wS =
∑M

m=1

∑P
p′=1

∑J
j′=0

∑t#supph
t=t1

1
h
p,j

m′ (t)=0∩ĥ
p,j

m′ (t)̸=0

c−wS # false negative LFP-spike parameters c−wS =
∑M

m=1

∑P
p′=1

∑J
j′=0

∑t#supph
t=t1

1
h
p,j

m′ (t)̸=0∩ĥ
p,j

m′ (t)=0

c+wW # false positive LFP-LFP parameters c+wW =
∑P

p,p′=1

∑J
j,j′=0

∑t#supph
t=t1

1
h
p,j

p′,j′ (t)=0∩ĥ
p,j

p′,j′ (t)̸=0

c−wW # false negative LFP-LFP parameters c−wW =
∑P

p,p′=1

∑J
j,j′=0

∑t#supph
t=t1

1
h
p,j

p′,j′ (t)̸=0∩ĥ
p,j

p′,j′ (t)=0

Table 1
Complete formula for the performance measures.


