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1. Proofs

Proof of Lemma 3.3. Let us prove in fact by induction that
E(|Gs(0,£)7") < oo,

for s =0,...,27 — 1.
For s =0,
1900, &o)[l1 < M + ||ullx + [leolls-
Since gq is a finite Gaussian vector, this has finite moment of every order.
For s > 0, we have that

IG+(0,5) Il = 1Gs—1(0,657 )l + l9s([0, Gs-1(0,&5 )], &) -

So it remains to prove that [gs([0, Gs_1(0,&5)],&)|1 has a finite moment of
order m.
But

195 ([0, G510, &™) )l < M+ [l + 1 HY 5 6™ [Gs—1(0, 6571 + lles -

Since e, is Gaussian, it has finite moment of order m. So we only need to
prove that [|[HY k" [G,_1(0,&~")]|1 has finite moment of order m.
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By (??), one can see that

I 5 6 V10,Go (0,657l < e Y () s el (G (0,65l

< (K V1) mas [HY ()10 |Go1(0,657) 1,

by 1-lipschitzianity of the masks. So by induction hypothesis, this quantity has
therefore finite moment of order m, which concludes the proof. O

Proof of Lemma 3.4. We are again using induction to prove that

o0

E(|Gs(XZ5, &) — Gar—1(Z225. €)l1) Z E([ X = Z-sll1)

with s =0, ...,27 — 1.

For s =0,
l90(X=4:€0) — 90(Z2=4, o)l < A% + AW,
with
A% = ||]1U0gy+HSMS(X:;O) - ]ongerSmS(z:;)Hl
and

AV = |[(u+HY « s (XZL) 4+20).6(0) = (n+ HY 5 £ (ZZ)) + £0)-6(0)|1-
For A%, note that for all ¢, a € [0,1] and U uniform variable E(|[ly<e—1u<c|) =

E(]lmin(a,c)gUgmax(a,c)) = |a - C|. So

o0

E(A%) = E(| H¥*[x%(XZ3) =+ (ZZ)]Ih) < (Kv1) ) max 15 () 1,00 BN X = Z 31,
b=1

with I, = (ib—l + 1) : (jb—l + 1).
For AW | it is even more straight forward since

AV <Y [ (X720 =s" (ZZ)] I < (K V1) ZmaXIIHW( Mol X—p=Z ]l

And therefore
=(KVv1 H® HY .
(B 1)l | ) o+ s T ) ]
At step s > 0,

E(|Gs(X =0+ €3) =622, E)l11) S E(IGs-1(X 250, &) =Gs-1(Z225,& 1)
+E(lgs (X0, G- 1 (X200, &7 ] &) = 951225, Go1(Z25, &7, 60) )
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Let us concentrate on the last term. We obtain by splitting again as before
between the spike part and the wavelet part that

E([lgs([XZaes Gom1 (X2, €57, &6) — 95([ 225, Gom1(Z25, €7D &) ) <

Y (K V1) maX||HS(k+S)||1oo+maX||HW(k+S)||1oo]EHX b — Z-pl1t+
b=1
(KV1)[ max HHS( Moot max [JHY (B)1,00]E[Gs-1(X 50,65 )=Cs1(Z 20, 65~

00

We have that ag as well as all the

S w
(K V1) |75 ), + 10 | ) o

are smaller than e, whereas

a2 (KV ) max [H3H)|10 + max [HY (8)]1]
So finally we have proved by recursion that
E(|Gs(XZ%. &) — Gs(Z225,€)1h) Z PEIX o = Zsll1),

with a§ = aj ' (1 + d) + ey
By solving the recursion, and using that ab < ep we get that if d > 0,

€y

and if d = 0, af < (s + 1)e, which concludes the proof.
O

Proof of Theorem 3.2. The condition of Theorem 3.2 on the e;’s combined with
the result of Lemma 3.4 is exactly the Lipschitz condition that is needed in
Theorem 3.1 of [2], whereas Lemma 3.3 with m = 1 is the other condition
needed to apply it.

The existence of a T-weakly stationary integrable solution for Xj is therefore
granted and we obtain a block stationary integrable solution (see Lemma 3.1).

It remains to prove the existence of moment of every order for the wavelet
part. If the masks are bounded, ]E(ka\}"g .—1) is bounded by a fixed positive
constant, say Cp; (all the sums converge because Yopep < 00). So for every
positive integer m,

E(IWFl™) < 2" 71 C + 2" T E(lep ™)

and E(|W7,|™) is therefore finite.

Yl
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Proof of Lemma 4.5. We follow the steps in [3]. For the first inequality, we can
assume that ||¢||oc = 1 because the formula is homogeneous in this quantity.
Let for all ¢,

Z¢ Yo [ST" —E(S™|Fe_1)] and V= Z¢> Yo )2 E(ST | Ferr).

Note first that M; is a martingale with respect to the filtration and that My =
M. We denote

¢
= D E((M — My—1)*|Fi).
Lemma 3.3. of [4] gives that fr all A > 0
St = exp()\Mt - Z ?At)
k>2

is a supermartingale and that in particular E(€7) < 1. But A¥ < V; because
|9]loc < 1 and because |S™ —E(S™|Fs_1)| < 1. So if we take p(\) = e* = A —1,

we have that
E(EAMT*TZ’(A)VT) <1.

In particular, we have by Markov inequality, for every x, A > 0,

Py > vip N ) <o (1)

But we can apply (1) to

HA(YE) [S™ — E(S™|Fe1)] -

MH

t:O
So if Vi = Y2, o(Y21)2S87, this leads us to: for all u > 0,

v
I

P(Vr > Vi + S+ 5y < e,
7

X

This means that with probability larger than 1 —e™*,

W . x
VT + )

p=(n) p—= ()

as long as u — () > 0. We take p = 1/2, which leads to

Vr <

so that
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Note also that 1¥(\) < A2/(2[1 —A/3]) for all A < 3. This is the starting point
of a peeling argument similar to [3]. We get therefore that for all €,z > 0

P(Mp > \/2(1 +€) (gVT + 3a:> z+x/3 and w < (2% + Sx) <) <2 <m + 1) e ",

Note that we can always take w = 3z and v = 2(T + 1) + 3z. This leads to the
first inequality. Then because we want to look at the absolute value, we apply
the same inequality to —M;f and then to all ¢ € ®. This leads to

T+1
P (3¢ €®, M2 >\/3(1+e)Vix+ <; +/6(1+¢ ) ||<Z>oox) < AHD <M + 1) e ",

To make the upper bound less than «, we need to take x > 1 and then % +1<
T. So it is sufficient to take x such that

log(T) _
4#P (| —————+1 ¥ =a.
# <log(1 +e) th)e “
In particular with e = 0.5, one has that log(T")/log(1+4€) + 1 < 4log(T), which
gives the final part.

O

Proof of Lemma 4.6. Let us assume as before that ||¢||c = 1 because the for-
mula is homogeneous.
Let R < L be integers such that

Mp = 30 GV [Wh BV F )]
keER:L

Note that for all A > 0

A2 .
E(e* |ﬂﬂll—am( > ¢Yt1ﬁw;—quAHMﬂ+—‘Qﬂpuﬁglﬂﬁ.

keR:L—1

So that by recursion, one can easily prove that
B (i) <1,

This leads as before by Markov inequality : for all z, A > 0

A
P(M;: > =Vr+ E) <e
2 A

We are going, as before to use a peeling argument. To do so we need to restrict
ourselves to the event w < Vp <wv. We fix € > 0, vg = w, vg+1 = (1 + €)vg and
D the smallest integer such that vp > v. For all A and fix d € 1: D,

—X

A
IP’(M;E > §VT + § and vg_1 < Vp <wg) <e ”.
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So

IP’(M? > —wy Jr% and vg_1 < Vp <wy) <e "

We choose the optimal A = \/2z/v4 to get
IP’(M? > 2ugx and vg_1 < Vp <wg) <e .

But vg = (1 + €)vg—1 < (1 + €)Vr on this event. Hence we get

P(M$ > \/2(1 + €)Vpz and vg_y < Vi <wg) < e72.

It remains to take a union bound to have

IP’(M;E > V21 +€e)Vpz and w < Vp <wv) < De™ ™.

But D < (log(v/w)/log(1 +€) +1).

Moreover, V does not have an obvious lower bound, so we can redo all this
argument with [V + 71‘7;2),3'] instead of Vp and therefore take w = 7. On the
other hand, we can always take v = (T + l)aﬁ’j + 770273'- This leads to the first
inequality. The second one is just an union bound and we choose = such that
#® (log(v/w)/log(l+¢€)+1) e * < a.

The final part is obtained by taking n = ¢ = 0.5. In this case, for all T' > 1

(log((T +1)n~t +1)
log(1 +€)

+ 1) < 9log(T).

O

Proof of Theorem 4.8. The proof is very classical, with a slight complexity due
to the weights (see [6, 7, 5, 1] and the references therein. It is there for sake of
completeness.

Since i is fixed, let us drop the index i to simplify notation and let us also
write f = fi.

Let l_7¢ =< ¢, f >, so that the martingales M$ controlled in Lemma 4.5 and
4.6 are in fact the by — bg. In particular on the event of interest, we have that

by — bg| < dg < wy.
First of all, let us prove that for all a € R®, we have
2< f—faf = F>+(r=2) D wylagl <(v+2) Y welag —agl (2)
¢¢S(a) ¢€S(a)

Let us take an s such that sy = sign(ag) if ¢ € S(a) and sy = sign(ay)
if ¢ ¢ S(a). By solving the subgradient conditions, the solution & of the Lasso
minimisation satisfy that there exists some §, such that §4 = sign(ay) if ¢ € S(a)
and §4 € [—1,1] if ¢ ¢ S(a) and such that

2Ga —2b+yw.8 =0,
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with . the term-to-term product. This implies that
(2Ga—2b) " (6 —a) +y[w.(3—5)]" (@a—a) = —[w.s]" (ad—a)+2(b—0) " (a—a).

But by looking at all cases, one can easily prove that for all ¢, (8,—5¢)(ag—ags) >
0.
Next note that

[w.s]" (& — a) Z wesign(ag)(de — ag) + Z wesign(ag)(ae).
#€S(a) P¢S(a)

So
—Aw.s] (@ —a) <y Y wlag —agl =y D wlagl,
deS(a) #¢S(a)

which gives, since (Ga —b)" (& — a) =< f — fa, f — f >, that

2< ffa f-F> 7 Y wolagl < (42) Y wolag—ag+2(b-0)7 (a—a).

¢¢S(a) »€S(a)
But
20-0)T(a—a) <2 wylag —ag| =2 Y wylag—agl+2 Y wylagl,
ped $eS(a) $¢5(a)

which gives (2).
Next note that

2< f—fa f=F>=IFf = FIP+If = fall® = I fa = FII% (3)

so that if < f—Afa, f — f >> 0, the first equation of Theorem 4.8 holds.
If <f—faf—f>>0, by (2

(v=2) Y welagl < (v+2) Y wlag — agl- (4)

¢¢S(a) $eS(a)

Soif x = G —a and J = S(a), we see that this is exactly the condition in
RE(k, ¢, s), and that therefore

(@—a)"Gi(a—a) > Nk Z (ag — ag)>. (5)

$€S(a)

Moreover (2) also gives us that

2< fofa f=F > (742) D wglag—agl < (v+2) [ D w¢ > (g — ag)?
¢€S(a) $€S(a peS(a)
(6)
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So (3) gives us that

IF =P <Mfa—FIP+(v+2) [ D> w? [ Y (as—ag)® = |1 — fall®

¢p€S(a) $€S(a)
By using (5), noting that ||f — f,||2 = (& — a)T G(a — a), we get
" wi .
If = FIP < o= £+ (42, | Do o If = fall = I1f = fall*.
p€S(a)
It remains to use that 3n — 3% < n?/4 for all real numbers 3 and 7 to get the

result.
If a* exists with #S5(a*) < s, then (6) with a = a* gives us directly that

(@a—a*) Gla—a*) < FY+2 Z w? Z ag —ay)?

p€S(a*) ¢€S(a*)

So by RE(k, ¢, s), we get that

2
> o-ci < e

$€S(a PpeS(a*)

Since < f — fo,f — f >= (@ —a*)TG(a — a*) > 0, combining the previous
result and (4), we obtain

dwslag —ajl = D welag —ajl+ D welagl

e $eS(a*) o¢S(a*)
2y N X
< 5 D welas —ag
0l
p€S(a*)
< Do wi | D (as—ap)?
¢peS(a*) ¢€S(a)

IN

2v(y +2) w}
(v —2) >

$€S(a*)

which leads to the result.
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2. Table of performance measures
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Error name | Definition Formula
Ve total error for the spontaneous firing rates Ve = 27]\:{:1 o™ — ™|
e total error for the LFP spontaneous values te = ZZI: 1 23] 0 |/l§7 — u?
sS total error for spike-spike interactions ess = Zm =1 ZT 1 \h ,(16) — A", (10))]
esw total error for spike-LFP interactions esw = szl Zj:(] DL |hp’J(7"5) RY7(r6)]
. . X M P t R
ews total error for LFP-spikes interactions €wsS = D m—1 =1 Zj/:? Ztﬁz‘;pp .|h;'} j’( ) - h;’} j/(i
eww total error for LFP-LFPinteractions ews = Zp =1 EJ /=0 Zt#?lmph' |hz;gj/(t) - hg}]j,(t)|
DG =1 if connectivity graph is perfectly reconstructed | DG= nﬂh 0[A£0N#h£0[h=0
S # of spontaneous values detected S= Zm 1 ﬂ(um >0Mo™ >0)U(v™=0npm=0)t
+ -1 250 ﬂ(up#Oﬂﬂf;ﬁO)U(u” 0na?=0)
— - - 74
ctss # false positive spike-spike parameters ctss = Zm,m/::l Zr:l h:g,(ré):omh:;i,(ré)#o
- - - ——7T b3
c—ss # false negative spike-spike parameters c—s5 = Zmﬂnlzl Do ]]'hm/(ré)¢00ﬁ7:,(r5):0
- . _ P J ] ]
ctsw # false positive spike-LFP parameters Ctsw =21 2 =0 m’:l Z hp*i(r(s):omlfyj(m);
C—sW # false negative spike-LFP parameters C—sw = Zp 1 Z -0 Zm/, Z - ]lhp,j(ré)?sonflfy;_}i(ré):
s . T4su
ctws # false positive LFP-spike parameters ctws = Z%:1 /_1 Z 1—0 Zt#tlpph WP (0)=0nR?d (s
=0nh?]
Cc—wsS # false negative LFP-spike parameters —ws = 271\,{:1 Z r—1 Zj —0 Zi#z:pph 1 ( )£0NAP: it
. T
cHww # false positive LFP-LFP parameters ctoww = Z%p/,l Zm —o Zt#z‘;pph ;j./<t):0mflp;j./<t\
2J P . i
. t su T
C—wW # false negative LFP-LFP parameters —wW = ZP p =1 ZJ /=0 Zt#tlpp} ;f,/(t);éomhp;j,/(t~
Wi P 2] :

TABLE 1

Complete formula for the performance measures.



