SUPPLEMENTARY MATERIAL OF:
 HETEROGENEOUS MULTISCALE MULTIVARIATE AUTOREGRESSIVE MODEL: EXISTENCE, SPARSE ESTIMATION AND APPLICATION TO FUNCTIONAL CONNECTIVITY IN NEUROSCIENCE

By Stefano Spaziani ${ }^{1, a}$, Gabrielle Girardeau ${ }^{2, b}$, Ingrid Bethus ${ }^{3, \mathrm{c}}$ and Patricia Reynaud-Bouret ${ }^{4, \mathrm{~d}}$
${ }^{1}$ Université Côte d’Azur, CNRS, LJAD, France, ${ }^{\text {a }}$ Stefano.Spaziani@univ-cotedazur.fr
${ }^{2}$ Institut du Fer-à-Moulin, Inserm U1270, Sorbonne Université, France, ${ }^{\text {b }}$ gabrielle.girardeau@inserm.fr
${ }^{3}$ Université Côte d'Azur, CNRS, IPMC, France, ${ }^{\text {c }}$ Ingrid.Bethus@univ-cotedazur.fr
${ }^{4}$ Université Côte d’Azur, CNRS, LJAD, France, ${ }^{\text {d Patricia.Reynaud-Bouret@univ-cotedazur.fr }}$

1. Proofs.

Proof of Lemma 3.3. Let us prove in fact by induction that

$$
\mathbb{E}\left(\left\|\mathbb{G}_{s}\left(\mathbf{0}, \xi_{0}^{s}\right)\right\|_{1}^{m}\right)<\infty,
$$

for $s=0, \ldots, 2^{J}-1$.
For $s=0$,

$$
\left\|g_{0}\left(0, \xi_{0}\right)\right\|_{1} \leq M+\|\mu\|_{1}+\left\|\varepsilon_{0}\right\|_{1} .
$$

Since ε_{0} is a finite Gaussian vector, this has finite moment of every order.
For $s>0$, we have that

$$
\left\|\mathbb{G}_{s}\left(\mathbf{0}, \xi_{0}^{s}\right)\right\|_{1}=\left\|\mathbb{G}_{s-1}\left(\mathbf{0}, \xi_{0}^{s-1}\right)\right\|_{1}+\left\|g_{s}\left(\left[0, \mathbb{G}_{s-1}\left(\mathbf{0}, \xi_{0}^{s-1}\right)\right], \xi_{s}\right)\right\|_{1} .
$$

So it remains to prove that $\left\|g_{s}\left(\left[0, \mathbb{G}_{s-1}\left(\mathbf{0}, \xi_{0}^{s-1}\right)\right], \xi_{s}\right)\right\|_{1}$ has a finite moment of order m. But

$$
\left\|g_{s}\left(\left[0, \mathbb{G}_{s-1}\left(\mathbf{0}, \xi_{0}^{s-1}\right)\right], \xi_{s}\right)\right\|_{1} \leq M+\|\mu\|_{1}+\left\|H^{W} * \kappa^{W}\left[\mathbb{G}_{s-1}\left(\mathbf{0}, \xi_{0}^{s-1}\right)\right]\right\|_{1}+\left\|\varepsilon_{s}\right\|_{1} .
$$

Since ε_{s} is Gaussian, it has finite moment of order m. So we only need to prove that $\left\|H^{W} * \kappa^{W}\left[\mathbb{G}_{s-1}\left(\mathbf{0}, \xi_{0}^{s-1}\right)\right]\right\|_{1}$ has finite moment of order m.

By (??), one can see that

$$
\begin{aligned}
\left\|H^{W} * \kappa^{W}\left[0, \mathbb{G}_{s-1}\left(\mathbf{0}, \xi_{0}^{s-1}\right)\right]\right\|_{1} \leq & \max _{k=1, \ldots, s}\left\|H^{W}(k)\right\|_{1, \infty}\left\|\kappa^{W}\left[\mathbb{G}_{s-1}\left(\mathbf{0}, \xi_{0}^{s-1}\right)\right]\right\|_{1} \\
& \leq(K \vee 1) \max _{k=1, \ldots, s}\left\|H^{W}(k)\right\|_{1, \infty}\left\|\mathbb{G}_{s-1}\left(\mathbf{0}, \xi_{0}^{s-1}\right)\right\|_{1},
\end{aligned}
$$

by 1 -lipschitzianity of the masks. So by induction hypothesis, this quantity has therefore finite moment of order m, which concludes the proof.

Proof of Lemma 3.4. We are again using induction to prove that

$$
\mathbb{E}\left(\left\|\mathbb{G}_{s}\left(X_{-\infty}^{-1}, \xi_{0}^{s}\right)-\mathbb{G}_{2^{J}-1}\left(Z_{-\infty}^{-1}, \xi_{0}^{s}\right)\right\|_{1}\right) \leq \sum_{b=1}^{\infty} a_{b}^{s} \mathbb{E}\left(\left\|X_{-b}-Z_{-b}\right\|_{1}\right),
$$

with $s=0, \ldots, 2^{J}-1$.

For $s=0$,

$$
\left\|g_{0}\left(X_{-\infty}^{-1}, \xi_{0}\right)-g_{0}\left(Z_{-\infty}^{-1}, \xi_{0}\right)\right\|_{1} \leq A^{S}+A^{W}
$$

with

$$
A^{S}=\left\|\mathbb{1}_{U_{0} \leq \nu+H^{S} * \kappa^{S}\left(X_{-\infty}^{-1}\right)}-\mathbb{1}_{U_{0} \leq \nu+H^{S} * \kappa^{S}\left(Z_{-\infty}^{-1}\right)}\right\|_{1}
$$

and

$$
A^{W}=\left\|\left(\mu+H^{W} * \kappa^{W}\left(X_{-\infty}^{-1}\right)+\varepsilon_{0}\right) \cdot \delta(0)-\left(\mu+H^{W} * \kappa^{W}\left(Z_{-\infty}^{-1}\right)+\varepsilon_{0}\right) \cdot \delta(0)\right\|_{1}
$$

For A^{S}, note that for all $c, a \in[0,1]$ and U uniform variable $\mathbb{E}\left(\left|\mathbb{1}_{U \leq a}-\mathbb{1}_{U \leq c}\right|\right)=$ $\mathbb{E}\left(\mathbb{1}_{\min (a, c) \leq U \leq \max (a, c)}\right)=|a-c|$. So
$\mathbb{E}\left(A^{S}\right)=\mathbb{E}\left(\left\|H^{S} *\left[\kappa^{S}\left(X_{-\infty}^{-1}\right)-\kappa^{S}\left(Z_{-\infty}^{-1}\right)\right]\right\|_{1}\right) \leq(K \vee 1) \sum_{b=1}^{\infty} \max _{k \in \mathbf{I}_{b}}\left\|H^{S}(k)\right\|_{1, \infty} \mathbb{E}\left\|X_{-b}-Z_{-b}\right\|_{1}$,
with $\mathbf{I}_{b}=\left(i_{b-1}+1\right):\left(j_{b-1}+1\right)$.
For A^{W}, it is even more straight forward since

$$
A^{W} \leq\left\|H^{W} *\left[\kappa^{W}\left(X_{-\infty}^{-1}\right)-\kappa^{W}\left(Z_{-\infty}^{-1}\right)\right]\right\|_{1} \leq(K \vee 1) \sum_{b=1}^{\infty} \max _{k \in \mathbf{I}_{b}}\left\|H^{W}(k)\right\|_{1, \infty}\left\|X_{-b}-Z_{-b}\right\|_{1}
$$

And therefore

$$
a_{b}^{0}=(K \vee 1)\left[\max _{k \in \mathbf{I}_{b}}\left\|H^{S}(k)\right\|_{1, \infty}+\max _{k \in \mathbf{I}_{b}}\left\|H^{W}(k)\right\|_{1, \infty}\right]
$$

At step $s>0$,

$$
\begin{aligned}
& \mathbb{E}\left(\left\|\mathbb{G}_{s}\left(X_{-\infty}^{-1}, \xi_{0}^{s}\right)-\mathbb{G}_{s}\left(Z_{-\infty}^{-1}, \xi_{0}^{s}\right)\right\|_{1}\right) \leq \mathbb{E}\left(\left\|\mathbb{G}_{s-1}\left(X_{-\infty}^{-1}, \xi_{0}^{s-1}\right)-\mathbb{G}_{s-1}\left(Z_{-\infty}^{-1}, \xi_{0}^{s-1}\right)\right\|_{1}\right) \\
& \quad+\mathbb{E}\left(\left\|g_{s}\left(\left[X_{-\infty}^{-1}, \mathbb{G}_{s-1}\left(X_{-\infty}^{-1}, \xi_{0}^{s-1}\right)\right], \xi_{s}\right)-g_{s}\left(\left[Z_{-\infty}^{-1}, \mathbb{G}_{s-1}\left(Z_{-\infty}^{-1}, \xi_{0}^{s-1}\right)\right], \xi_{s}\right)\right\|_{1}\right)
\end{aligned}
$$

Let us concentrate on the last term. We obtain by splitting again as before between the spike part and the wavelet part that

$$
\begin{aligned}
& \mathbb{E}\left(\left\|g_{s}\left(\left[X_{-\infty}^{-1}, \mathbb{G}_{s-1}\left(X_{-\infty}^{-1}, \xi_{0}^{s-1}\right)\right], \xi_{s}\right)-g_{s}\left(\left[Z_{-\infty}^{-1}, \mathbb{G}_{s-1}\left(Z_{-\infty}^{-1}, \xi_{0}^{s-1}\right)\right], \xi_{s}\right)\right\|_{1}\right) \leq \\
& \quad \sum_{b=1}^{\infty}(K \vee 1)\left[\max _{k \in \mathbf{I}_{b}}\left\|H^{S}(k+s)\right\|_{1, \infty}+\max _{k \in \mathbf{I}_{b}}\left\|H^{W}(k+s)\right\|_{1, \infty}\right] \mathbb{E}\left\|X_{-b}-Z_{-b}\right\|_{1}+ \\
& (K \vee 1)\left[\max _{k=1, \ldots, s}\left\|H^{S}(k)\right\|_{1, \infty}+\max _{k=1, \ldots, s}\left\|H^{W}(k)\right\|_{1, \infty}\right] \mathbb{E}\left\|\mathbb{G}_{s-1}\left(X_{-\infty}^{-1}, \xi_{0}^{s-1}\right)-\mathbb{G}_{s-1}\left(Z_{-\infty}^{-1}, \xi_{0}^{s-1}\right)\right\|_{1}
\end{aligned}
$$

We have that a_{b}^{0} as well as all the

$$
(K \vee 1)\left[\max _{k \in \mathbf{I}_{b}}\left\|H^{S}(k+s)\right\|_{1, \infty}+\max _{k \in \mathbf{I}_{b}}\left\|H^{W}(k+s)\right\|_{1, \infty}\right]
$$

are smaller than e_{b}, whereas

$$
d \geq(K \vee 1)\left[\max _{k=1, \ldots, s}\left\|H^{S}(k)\right\|_{1, \infty}+\max _{k=1, \ldots, s}\left\|H^{W}(k)\right\|_{1, \infty}\right]
$$

So finally we have proved by recursion that

$$
\mathbb{E}\left(\left\|\mathbb{G}_{s}\left(X_{-\infty}^{-1}, \xi_{0}^{s}\right)-\mathbb{G}_{s}\left(Z_{-\infty}^{-1}, \xi_{0}^{s}\right)\right\|_{1}\right) \leq \sum_{b=1}^{\infty} a_{b}^{s} \mathbb{E}\left(\left\|X_{-b}-Z_{-b}\right\|_{1}\right)
$$

with $a_{b}^{s}=a_{b}^{s-1}(1+d)+e_{b}$.
By solving the recursion, and using that $a_{b}^{0} \leq e_{b}$ we get that if $d>0$,

$$
a_{b}^{s} \leq\left((1+d)^{s+1}-1\right) \frac{e_{b}}{d},
$$

and if $d=0, a_{b}^{s} \leq(s+1) e_{b}$ which concludes the proof.

Proof of Theorem 3.2. The condition of Theorem 3.2 on the e_{b} 's combined with the result of Lemma 3.4 is exactly the Lipschitz condition that is needed in Theorem 3.1 of [2], whereas Lemma 3.3 with $m=1$ is the other condition needed to apply it.

The existence of a τ-weakly stationary integrable solution for X_{b} is therefore granted and we obtain a block stationary integrable solution (see Lemma 3.1).

It remains to prove the existence of moment of every order for the wavelet part. If the masks are bounded, $\mathbb{E}\left(W_{j, k}^{p} \mid \mathcal{F}_{\ell_{j, k}-1}\right)$ is bounded by a fixed positive constant, say $C_{p, j}$ (all the sums converge because $\left.\sum_{b} e_{b}<\infty\right)$. So for every positive integer m,

$$
\mathbb{E}\left(\left|W_{j, k}^{p}\right|^{m}\right) \leq 2^{m-1} C_{p, j}^{m}+2^{m-1} \mathbb{E}\left(\left|\varepsilon_{p, j}\right|^{m}\right)
$$

and $\mathbb{E}\left(\left|W_{j, k}^{p}\right|^{m}\right)$ is therefore finite.

Proof of Lemma 4.5. We follow the steps in [3]. For the first inequality, we can assume that $\|\phi\|_{\infty}=1$ because the formula is homogeneous in this quantity. Let for all t,

$$
M_{t}=\sum_{s=0}^{t} \phi\left(Y_{-\infty}^{s-1}\right)\left[S_{s}^{m}-\mathbb{E}\left(S_{s}^{m} \mid \mathcal{F}_{s-1}\right)\right] \quad \text { and } \quad V_{t}=\sum_{s=0}^{t} \phi\left(Y_{-\infty}^{s-1}\right)^{2} \mathbb{E}\left(S_{s}^{m} \mid \mathcal{F}_{s-1}\right) .
$$

Note first that M_{t} is a martingale with respect to the filtration and that $M_{T}=M_{T}^{\phi}$. We denote

$$
A_{t}^{k}=\sum_{s=0}^{t} \mathbb{E}\left(\left(M_{s}-M_{s-1}\right)^{k} \mid \mathcal{F}_{s-1}\right) .
$$

Lemma 3.3. of [4] gives that fr all $\lambda>0$

$$
\mathcal{E}_{t}=\exp \left(\lambda M_{t}-\sum_{k \geq 2} \frac{\lambda^{k}}{k} A_{t}^{k}\right)
$$

is a supermartingale and that in particular $\mathbb{E}\left(\mathcal{E}_{T}\right) \leq 1$. But $A_{t}^{k} \leq V_{t}$ because $\|\phi\|_{\infty} \leq 1$ and because $\left|S_{s}^{m}-\mathbb{E}\left(S_{s}^{m} \mid \mathcal{F}_{s-1}\right)\right| \leq 1$. So if we take $\psi(\lambda)=e^{\lambda}-\lambda-1$, we have that

$$
\mathbb{E}\left(e^{\lambda M_{T}-\psi(\lambda) V_{T}}\right) \leq 1 .
$$

In particular, we have by Markov inequality, for every $x, \lambda>0$,

$$
\begin{equation*}
\mathbb{P}\left(M_{T} \geq V_{T} \frac{\psi(\lambda)}{\lambda}+\frac{x}{\lambda}\right) \leq e^{-x} . \tag{1}
\end{equation*}
$$

But we can apply (1) to

$$
\sum_{t=0}^{T}\left(-\phi^{2}\left(Y_{-\infty}^{s-1}\right)\right)\left[S_{s}^{m}-\mathbb{E}\left(S_{s}^{m} \mid \mathcal{F}_{s-1}\right)\right]
$$

So if $\hat{V}_{t}=\sum_{s=0}^{t} \phi\left(Y_{-\infty}^{s-1}\right)^{2} S_{s}^{m}$, this leads us to: for all $\mu>0$,

$$
\mathbb{P}\left(V_{T} \geq \hat{V}_{T}+\frac{\psi(\mu)}{\mu} V_{T}+\frac{x}{\mu}\right) \leq e^{-x} .
$$

This means that with probability larger than $1-e^{-x}$,

$$
V_{T} \leq \frac{\mu}{\mu-\psi(\mu)} \hat{V}_{T}+\frac{x}{\mu-\psi(\mu)}
$$

as long as $\mu-\psi(\mu)>0$. We take $\mu=1 / 2$, which leads to

$$
V_{T} \leq \frac{3}{2} \hat{V}_{T}+3 x
$$

so that

$$
\mathbb{P}\left(M_{T} \geq\left(\frac{3}{2} \hat{V}_{T}+3 x\right) \frac{\psi(\lambda)}{\lambda}+\frac{x}{\lambda}\right) \leq 2 e^{-x}
$$

Note also that $\psi(\lambda) \leq \lambda^{2} /(2[1-\lambda / 3])$ for all $\lambda<3$. This is the starting point of a peeling argument similar to [3]. We get therefore that for all $\epsilon, x>0$
$\mathbb{P}\left(M_{T} \geq \sqrt{2(1+\epsilon)\left(\frac{3}{2} \hat{V}_{T}+3 x\right) x}+x / 3\right.$ and $\left.w \leq\left(\frac{3}{2} \hat{V}_{T}+3 x\right) \leq v\right) \leq 2\left(\frac{\log (v / w)}{\log (1+\epsilon)}+1\right) e^{-x}$.
Note that we can always take $w=3 x$ and $v=\frac{3}{2}(T+1)+3 x$. This leads to the first inequality.
Then because we want to look at the absolute value, we apply the same inequality to $-M_{T}^{\phi}$ and then to all $\phi \in \Phi$. This leads to

$$
\mathbb{P}\left(\exists \phi \in \Phi,\left|M_{T}^{\phi}\right| \geq \sqrt{3(1+\epsilon) \hat{V}_{T}^{\phi} x}+\left(\frac{1}{3}+\sqrt{6(1+\epsilon)}\right)\|\phi\|_{\infty} x\right) \leq 4 \# \Phi\left(\frac{\log \left(\frac{T+1}{2 x}+1\right)}{\log (1+\varepsilon)}+1\right) e^{-x} .
$$

To make the upper bound less than α, we need to take $x>1$ and then $\frac{T+1}{2 x}+1 \leq T$. So it is sufficient to take x such that

$$
4 \# \Phi\left(\frac{\log (T)}{\log (1+\varepsilon)}+1\right) e^{-x}=\alpha
$$

In particular with $\epsilon=0.5$, one has that $\log (T) / \log (1+\epsilon)+1 \leq 4 \log (T)$, which gives the final part.

Proof of Lemma 4.6. Let us assume as before that $\|\phi\|_{\infty}=1$ because the formula is homogeneous.

Let $R \leq L$ be integers such that

$$
M_{T}^{\phi}=\sum_{k \in R: L} \phi\left(Y_{-\infty}^{t-1}\right)\left[W_{j, k}^{p}-\mathbb{E}\left(W_{j, k}^{p} \mid \mathcal{F}_{\ell_{j, k}-1}\right)\right] .
$$

Note that for all $\lambda>0$
$\mathbb{E}\left(e^{\lambda M_{T}^{\phi}} \mid \mathcal{F}_{\ell_{j, L}-1}\right)=\exp \left(\sum_{k \in R: L-1} \phi\left(Y_{-\infty}^{t-1}\right)\left[W_{j, k}^{p}-\mathbb{E}\left(W_{j, k}^{p} \mid \mathcal{F}_{\ell_{j, k}-1}\right)\right]+\frac{\lambda^{2} \sigma_{p, j}^{2}}{2}\left[\phi\left(Y_{-\infty}^{\ell_{j, k}-1}\right)\right]^{2}\right)$.
So that by recursion, one can easily prove that

$$
\mathbb{E}\left(e^{\lambda M_{T}^{\phi}-\frac{\lambda^{2}}{2} V_{T}}\right) \leq 1
$$

This leads as before by Markov inequality : for all $x, \lambda>0$

$$
\mathbb{P}\left(M_{T}^{\phi} \geq \frac{\lambda}{2} V_{T}+\frac{x}{\lambda}\right) \leq e^{-x}
$$

We are going, as before to use a peeling argument. To do so we need to restrict ourselves to the event $w \leq V_{T} \leq v$. We fix $\epsilon>0, v_{0}=w, v_{d+1}=(1+\epsilon) v_{d}$ and D the smallest integer such that $v_{D} \geq v$. For all λ and fix $d \in 1: D$,

$$
\mathbb{P}\left(M_{T}^{\phi} \geq \frac{\lambda}{2} V_{T}+\frac{x}{\lambda} \text { and } v_{d-1} \leq V_{T} \leq v_{d}\right) \leq e^{-x}
$$

So

$$
\mathbb{P}\left(M_{T}^{\phi} \geq \frac{\lambda}{2} v_{d}+\frac{x}{\lambda} \text { and } v_{d-1} \leq V_{T} \leq v_{d}\right) \leq e^{-x}
$$

We choose the optimal $\lambda=\sqrt{2 x / v_{d}}$ to get

$$
\mathbb{P}\left(M_{T}^{\phi} \geq \sqrt{2 v_{d} x} \text { and } v_{d-1} \leq V_{T} \leq v_{d}\right) \leq e^{-x}
$$

But $v_{d}=(1+\epsilon) v_{d-1} \leq(1+\epsilon) V_{T}$ on this event. Hence we get

$$
\mathbb{P}\left(M_{T}^{\phi} \geq \sqrt{2(1+\epsilon) V_{T} x} \text { and } v_{d-1} \leq V_{T} \leq v_{d}\right) \leq e^{-x}
$$

It remains to take a union bound to have

$$
\mathbb{P}\left(M_{T}^{\phi} \geq \sqrt{2(1+\epsilon) V_{T} x} \text { and } w \leq V_{T} \leq v\right) \leq D e^{-x}
$$

But $D \leq(\log (v / w) / \log (1+\epsilon)+1)$.
Moreover, V_{T} does not have an obvious lower bound, so we can redo all this argument with $\left[V_{T}+\eta \sigma_{p, j}^{2}\right]$ instead of V_{T} and therefore take $w=\eta$. On the other hand, we can always take $v=(T+1) \sigma_{p, j}^{2}+\eta \sigma_{p, j}^{2}$. This leads to the first inequality. The second one is just an union bound and we choose x such that $\# \Phi(\log (v / w) / \log (1+\epsilon)+1) e^{-x} \leq \alpha$.

The final part is obtained by taking $\eta=\epsilon=0.5$. In this case, for all $T>1$

$$
\left(\frac{\log \left((T+1) \eta^{-1}+1\right)}{\log (1+\epsilon)}+1\right) \leq 9 \log (T)
$$

PROOF OF THEOREM 4.8. The proof is very classical, with a slight complexity due to the weights (see $[6,7,5,1]$ and the references therein. It is there for sake of completeness.

Since i is fixed, let us drop the index i to simplify notation and let us also write $\hat{f}=f_{\hat{a}_{i}}^{i}$.
Let $\bar{b}_{\phi}=<\phi, f>$, so that the martingales M_{T}^{ϕ} controlled in Lemma 4.5 and 4.6 are in fact the $b_{\phi}-\bar{b}_{\phi}$. In particular on the event of interest, we have that

$$
\left|b_{\phi}-\bar{b}_{\phi}\right| \leq d_{\phi} \leq w_{\phi}
$$

First of all, let us prove that for all $a \in \mathbb{R}^{\Phi}$, we have

$$
\begin{equation*}
2<\hat{f}-f_{a}, \hat{f}-f>+(\gamma-2) \sum_{\phi \notin S(a)} w_{\phi}\left|\hat{a}_{\phi}\right| \leq(\gamma+2) \sum_{\phi \in S(a)} w_{\phi}\left|\hat{a}_{\phi}-a_{\phi}\right| \tag{2}
\end{equation*}
$$

Let us take an s such that $s_{\phi}=\operatorname{sign}\left(a_{\phi}\right)$ if $\phi \in S(a)$ and $s_{\phi}=\operatorname{sign}\left(\hat{a}_{\phi}\right)$ if $\phi \notin S(a)$. By solving the subgradient conditions, the solution \hat{a} of the Lasso minimisation satisfy that there exists some \hat{s}, such that $\hat{s}_{\phi}=\operatorname{sign}\left(\hat{a}_{\phi}\right)$ if $\phi \in S(\hat{a})$ and $\hat{s}_{\phi} \in[-1,1]$ if $\phi \notin S(\hat{a})$ and such that

$$
2 G \hat{a}-2 b+\gamma w \cdot \hat{s}=0
$$

with . the term-to-term product. This implies that

$$
(2 G \hat{a}-2 \bar{b})^{\top}(\hat{a}-a)+\gamma[w \cdot(\hat{s}-s)]^{\top}(\hat{a}-a)=-\gamma[w \cdot s]^{\top}(\hat{a}-a)+2(b-\bar{b})^{\top}(\hat{a}-a) .
$$

But by looking at all cases, one can easily prove that for all $\phi,\left(\hat{s}_{\phi}-s_{\phi}\right)\left(\hat{a}_{\phi}-a_{\phi}\right) \geq 0$.
Next note that

$$
[w . s]^{\top}(\hat{a}-a)=\sum_{\phi \in S(a)} w_{\phi} \operatorname{sign}\left(a_{\phi}\right)\left(\hat{a}_{\phi}-a_{\phi}\right)+\sum_{\phi \notin S(a)} w_{\phi} \operatorname{sign}\left(\hat{a}_{\phi}\right)\left(\hat{a}_{\phi}\right) .
$$

So

$$
-\gamma[w \cdot s]^{\top}(\hat{a}-a) \leq \gamma \sum_{\phi \in S(a)} w_{\phi}\left|\hat{a}_{\phi}-a_{\phi}\right|-\gamma \sum_{\phi \notin S(a)} w_{\phi}\left|\hat{a}_{\phi}\right|,
$$

which gives, since $(G \hat{a}-\bar{b})^{\top}(\hat{a}-a)=<\hat{f}-f_{a}, \hat{f}-f>$, that

$$
2<\hat{f}-f_{a}, \hat{f}-f>+\gamma \sum_{\phi \notin S(a)} w_{\phi}\left|\hat{a}_{\phi}\right| \leq(\gamma+2) \sum_{\phi \in S(a)} w_{\phi}\left|\hat{a}_{\phi}-a_{\phi}\right|+2(b-\bar{b})^{\top}(\hat{a}-a) .
$$

But

$$
2(b-\bar{b})^{\top}(\hat{a}-a) \leq 2 \sum_{\phi \in \Phi} w_{\phi}\left|\hat{a}_{\phi}-a_{\phi}\right|=2 \sum_{\phi \in S(a)} w_{\phi}\left|\hat{a}_{\phi}-a_{\phi}\right|+2 \sum_{\phi \notin S(a)} w_{\phi}\left|\hat{a}_{\phi}\right|,
$$

which gives (2).
Next note that

$$
\begin{equation*}
2<\hat{f}-f_{a}, \hat{f}-f>=\|\hat{f}-f\|^{2}+\left\|\hat{f}-f_{a}\right\|^{2}-\left\|f_{a}-f\right\|^{2}, \tag{3}
\end{equation*}
$$

so that if $<\hat{f}-f_{a}, \hat{f}-f>\geq 0$, the first equation of Theorem 4.8 holds.

$$
\text { If }<\hat{f}-f_{a}, \hat{f}-f \gg 0 \text {, by }
$$

$$
\begin{equation*}
(\gamma-2) \sum_{\phi \notin S(a)} w_{\phi}\left|\hat{a}_{\phi}\right| \leq(\gamma+2) \sum_{\phi \in S(a)} w_{\phi}\left|\hat{a}_{\phi}-a_{\phi}\right| . \tag{4}
\end{equation*}
$$

So if $x=\hat{a}-a$ and $J=S(a)$, we see that this is exactly the condition in $\mathbf{R E}(\kappa, c, s)$, and that therefore

$$
\begin{equation*}
(\hat{a}-a)^{\top} G_{i}(\hat{a}-a) \geq N \kappa \sum_{\phi \in S(a)}\left(\hat{a}_{\phi}-a_{\phi}\right)^{2} . \tag{5}
\end{equation*}
$$

Moreover (2) also gives us that

$$
\begin{equation*}
2<\hat{f}-f_{a}, \hat{f}-f>\leq(\gamma+2) \sum_{\phi \in S(a)} w_{\phi}\left|\hat{a}_{\phi}-a_{\phi}\right| \leq(\gamma+2) \sqrt{\sum_{\phi \in S(a)} w_{\phi}^{2}} \sqrt{\sum_{\phi \in S(a)}\left(\hat{a}_{\phi}-a_{\phi}\right)^{2}} . \tag{6}
\end{equation*}
$$

So (3) gives us that

$$
\|\hat{f}-f\|^{2} \leq\left\|f_{a}-f\right\|^{2}+(\gamma+2) \sqrt{\sum_{\phi \in S(a)} w_{\phi}^{2}} \sqrt{\sum_{\phi \in S(a)}\left(\hat{a}_{\phi}-a_{\phi}\right)^{2}}-\left\|\hat{f}-f_{a}\right\|^{2}
$$

By using (5), noting that $\left\|\hat{f}-f_{a}\right\|^{2}=(\hat{a}-a)^{\top} G(\hat{a}-a)$, we get

$$
\|\hat{f}-f\|^{2} \leq\left\|f_{a}-f\right\|^{2}+(\gamma+2) \sqrt{\sum_{\phi \in S(a)} \frac{w_{\phi}^{2}}{\kappa N}}\left\|\hat{f}-f_{a}\right\|-\left\|\hat{f}-f_{a}\right\|^{2} .
$$

It remains to use that $\beta \eta-\beta^{2} \leq \eta^{2} / 4$ for all real numbers β and η to get the result.
If a^{*} exists with $\# S\left(a^{*}\right) \leq s$, then (6) with $a=a^{*}$ gives us directly that

$$
\left(\hat{a}-a^{*}\right)^{\top} G\left(\hat{a}-a^{*}\right) \leq \frac{(\gamma+2)}{2} \sqrt{\sum_{\phi \in S\left(a^{*}\right)} w_{\phi}^{2}} \sqrt{\sum_{\phi \in S\left(a^{*}\right)}\left(\hat{a}_{\phi}-a_{\phi}^{*}\right)^{2}} .
$$

So by $\mathbf{R E}(\kappa, c, s)$, we get that

$$
\sqrt{\sum_{\phi \in S(a)}\left(\hat{a}_{\phi}-a_{\phi}^{*}\right)^{2}} \leq \frac{(\gamma+2)}{2 \kappa N} \sqrt{\sum_{\phi \in S\left(a^{*}\right)} w_{\phi}^{2}}
$$

Since $<\hat{f}-f_{a}, \hat{f}-f>=\left(\hat{a}-a^{*}\right)^{\top} G\left(\hat{a}-a^{*}\right) \geq 0$, combining the previous result and (4), we obtain

$$
\begin{aligned}
\sum_{\phi \in \Phi} w_{\phi}\left|\hat{a}_{\phi}-a_{\phi}^{*}\right| & =\sum_{\phi \in S\left(a^{*}\right)} w_{\phi}\left|\hat{a}_{\phi}-a_{\phi}^{*}\right|+\sum_{\phi \notin S\left(a^{*}\right)} w_{\phi}\left|\hat{a}_{\phi}\right| \\
& \leq \frac{2 \gamma}{\gamma-2} \sum_{\phi \in S\left(a^{*}\right)} w_{\phi}\left|\hat{a}_{\phi}-a_{\phi}^{*}\right| \\
& \leq \frac{2 \gamma}{\gamma-2} \sqrt{\sum_{\phi \in S\left(a^{*}\right)} w_{\phi}^{2}} \sqrt{\sum_{\phi \in S(a)}\left(\hat{a}_{\phi}-a_{\phi}^{*}\right)^{2}} \\
& \leq \frac{2 \gamma(\gamma+2)}{2 \kappa(\gamma-2)} \sum_{\phi \in S\left(a^{*}\right)} \frac{w_{\phi}^{2}}{N}
\end{aligned}
$$

which leads to the result.

2. Table of performance measures.

Error name	Definition	Formula
ν_{e}	total error for the spontaneous firing rates	$\nu_{e}=\sum_{m=1}^{M}\left\|\hat{\nu}^{m}-\nu^{m}\right\|$
μ_{e}	total error for the LFP spontaneous values	$\mu_{e}=\sum_{p=1}^{P} \sum_{j=0}^{J}\left\|\hat{\mu}_{j}^{p}-\mu_{j}^{p}\right\|$
$e_{s S}$	total error for spike-spike interactions	$e_{s S}=\sum_{m, m^{\prime}=1}^{M} \sum_{r=1}^{R}\left\|\hat{h}_{m^{\prime}}^{m}(r \delta)-h_{m^{\prime}}^{m}(r \delta)\right\|$
$e_{s W}$	total error for spike-LFP interactions	$e_{s W}=\sum_{p=1}^{P} \sum_{j=0}^{J} \sum_{m^{\prime}=1}^{M} \sum_{r=1}^{R}\left\|\hat{h}_{m^{\prime}}^{p, j}(r \delta)-h_{m^{\prime}}^{p, j}(r \delta)\right\|$
$e_{w S}$	total error for LFP-spikes interactions	$e_{w S}=\sum_{m=1}^{M} \sum_{p^{\prime}=1}^{P} \sum_{j^{\prime}=0}^{J} \sum_{t=t_{1}}^{t \# \text { supp } h}\left\|\hat{h}_{p^{\prime}, j^{\prime}}^{m}(t)-h_{p^{\prime}, j^{\prime}}^{m}(t)\right\|$
$e_{w W}$	total error for LFP-LFPinteractions	$e_{w S}=\sum_{p, p^{\prime}=1}^{P} \sum_{j, j^{\prime}=0}^{J} \sum_{t=t_{1}}^{t_{\# \text { supp }}}\left\|\hat{h}_{p^{\prime}, j^{\prime}}^{p, j}(t)-h_{p^{\prime}, j^{\prime}}^{p, j}(t)\right\|$
DG	$=1$ if connectivity graph is perfectly reconstructed	$\mathrm{DG}=\mathbb{1}_{\nexists h=0\|\hat{h} \neq 0 \cap \nexists h \neq 0\| \hat{h}=0}$
S	\# of spontaneous values detected	$\begin{aligned} & \mathrm{S}=\sum_{m=1}^{M} \mathbb{1}_{\left(\nu^{m}>0 \cap \hat{\nu}^{m}>0\right) \cup\left(\nu^{m}=0 \cap \hat{\nu}^{m}=0\right)^{+}} \\ & +\sum_{p=1}^{P} \sum_{j=0}^{J} \mathbb{1}_{\left(\mu_{j}^{p} \neq 0 \cap \hat{\mu}_{j}^{p} \neq 0\right) \cup\left(\mu_{j}^{p}=0 \cap \hat{\mu}_{j}^{p}=0\right)} \end{aligned}$
${ }^{+}+{ }_{s S}$	\# false positive spike-spike parameters	$c+_{s S}=\sum_{m, m^{\prime}=1}^{M} \sum_{r=1}^{R} \mathbb{1}_{h_{m^{\prime}}^{m}(r \delta)=0 \cap \hat{h}_{m^{\prime}}^{m}(r \delta) \neq 0}$
${ }^{--_{s S}}$	\# false negative spike-spike parameters	$c-{ }_{s S}=\sum_{m, m^{\prime}=1}^{M} \sum_{r=1}^{R} \mathbb{1}_{h_{m^{\prime}}^{m}(r \delta) \neq 0 \cap \hat{h}_{m^{\prime}}^{m}(r \delta)=0}$
${ }^{c}+{ }_{\text {sW }}$	\# false positive spike-LFP parameters	$c+{ }_{s W}=\sum_{p=1}^{P} \sum_{j=0}^{J} \sum_{m^{\prime}=1}^{M} \sum_{r=1}^{R} \mathbb{1}_{h_{m}^{p, j}}^{p, j}(r \delta)=0 \cap \hat{h}_{m^{\prime}}^{p, j}(r \delta) \neq 0$
$c-s W$	\# false negative spike-LFP parameters	${ }^{c-{ }_{s W}}=\sum_{p=1}^{P} \sum_{j=0}^{J} \sum_{m^{\prime}=1}^{M} \sum_{r=1}^{R} \mathbb{1}_{h_{m^{\prime}}^{p, j}}(r \delta) \neq 0 \cap \hat{h}_{m^{\prime}}^{p, j}(r \delta)=0$
${ }^{c+}{ }_{w S}$	\# false positive LFP-spike parameters	$c+{ }_{w S}=\sum_{m=1}^{M} \sum_{p^{\prime}=1}^{P} \sum_{j^{\prime}=0}^{J} \sum_{t=t_{1}}^{t_{\# \text { supp }} \mathbb{1}_{h_{m^{\prime}}^{p, j}}(t)=0 \cap \hat{h}_{m^{\prime}}^{p, j}(t) \neq 0}$
${ }^{c-}{ }_{w S}$	\# false negative LFP-spike parameters	$c-{ }_{w S}=\sum_{m=1}^{M} \sum_{p^{\prime}=1}^{P} \sum_{j^{\prime}=0}^{J} \sum_{t=t_{1}}^{t_{\# \text { supp }}} \mathbb{1}_{h_{m^{\prime}}^{p, j}}(t) \neq 0 \cap \hat{h}_{m^{\prime}}^{p, j}(t)=0$
${ }^{c+}{ }_{w} W$	\# false positive LFP-LFP parameters	$c+_{w W}=\sum_{p, p^{\prime}=1}^{P} \sum_{j, j^{\prime}=0}^{J} \sum_{t=t_{1}}^{t_{\# \text { supp } h}} \mathbb{1}_{h_{p^{\prime}, j^{\prime}}^{p, j}(t)=0 \cap \hat{h}_{p^{\prime}, j^{\prime}}^{p, j}(t) \neq 0}$
${ }^{c-}{ }_{w} W$	\# false negative LFP-LFP parameters	$c-{ }_{w W}=\sum_{p, p^{\prime}=1}^{P} \sum_{j, j^{\prime}=0}^{J} \sum_{t=t_{1}}^{t_{\# \text { supp } h}} \mathbb{1}_{h_{p^{\prime}, j^{\prime}}^{p, j}}^{p, j}(t) \neq 0 \cap \hat{h}_{p^{\prime}, j^{\prime}}^{p, j}(t)=0$

TABLE 1
Complete formula for the performance measures.

REFERENCES

[1] Bühlmann, P. and van de Geer, S. (2011). Statistics for high-dimensional data. Springer.
[2] Doukhan, P. and Wintenberger, O. (2007). Weakly dependent chains with infinite memory. https://doi.org/10.48550/ARXIV.0712.3231
[3] Hansen, N. R., Reynaud-Bouret, P. and Rivoirard, V. (2015). Lasso and probabilistic inequalities for multivariate point processes. Bernoulli 21. https://doi.org/10.3150/13-bej562
[4] Houdré, C. and Reynaud-Bouret, P. (2003). Exponential inequalities, with constants, for U-statistics of order two. Stochastic inequalities and applications 56 55-69.
[5] Hunt, X. J., Reynaud-Bouret, P., Rivoirard, V., Sansonnet, L. and Willett, R. (2019). A datadependent weighted LASSO under Poisson noise. IEEE Transactions on Information Theory 65 15891613.
[6] Ost, G. and Reynaud-Bouret, P. (2018). Sparse space-time models: Concentration Inequalities and Lasso. https://doi.org/10.48550/ARXIV.1807.07615
[7] Willett, R. M. and Nowak, R. D. (2007). Multiscale Poisson intensity and density estimation. IEEE Transactions on Information Theory 53 3171-3187.

