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In neuroscience, functional connectivity can be seen as a graph of inter-
actions between brain oscillations rhythms and individual neuronal activity.
This graph is associated with a cognitive state and helps understand high-
cognitive processes such as learning. However, up to our knowledge, there
is no model nor method to assess at once directed interactions between all
these heterogeneous multiscale data. In this article, we propose a new model
called HM-MVAR (Heterogeneous Multiscale Multivariate Autoregressive)
to represent linear combinations of classic interaction patterns such as phase-
locking or power-triggered phenomena. Because of the multiscale structure,
we use a block version of stationarity to exhibit conditions under which the
corresponding process exists and is stationary. We also propose a data-driven
weighted LASSO estimator based on martingale exponential deviation in-
equalities that may have an interest per se. We prove that our estimator sat-
isfies an oracle inequality and we show its good performance on realistic
simulations. Finally, when applying it on a publicly available multiscale data
set from the Buzsaki Lab, we recover interactions described in the literature
but also uncover new phenomena of potential interest.

1. Introduction. To understand how the brain processes various external and internal
stimuli in order to regulate behavior, neurophysiologists can record simultaneously during an
experiment, two types of data: (i) the spiking activity (individual spikes or action potentials)
of various neurons and (ii) the local field potentials (LFPs) of brain regions. Even if both
spiking activity and LFPs are discretized at the time resolution of the recording device, they
are of very different nature. On one hand, the action potentials, reconstructed as "spike trains"
are a 0/1 phenomenon: they are time point processes where a point corresponds to a time of
emission of an action potential by a neuron. On the other hand, local field potentials (LFPs)
are continuous data made of the summation of the synaptic electrical activity of thousands
of neurons near a recording electrode. LFPs resemble electroencephalograms (EEGs), except
that classic EEGs are recorded on the scalp of the individual, most often a human, whereas
LFPs are recorded from within the brain with intracranial electrodes, most often in rodents.
The LFP/EEG signals can be decomposed into various frequencies associated with different
brain states. These brain rhythms (for instance frequencies in the theta or gamma bands) are
believed to play a role in synchronizing the neural activity within and across brain areas to
efficiently process information [8].
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In the past decade, there have been more and more works in neurobiology showing that
there are interactions between spike trains (synchronization, for instance) [23], interactions
between rhythms (e.g., specific phases of the theta rhythm are associated with large gamma
oscillations) [7] [30], but also that rhythms can influence the spiking activity of neurons (e.g.,
large gamma oscillations are associated with an increase in the firing rates of neurons) [22]
and more recently that spikes reciprocally influence brain rhythms [36]. All these interactions
are not constant over time and often appear in association with specific events (stimulus,
behavior) or brain states (attention, sleep). This association between an interaction pattern or
graph and a cognitive state is called "functional connectivity" in neuroscience. It represents a
unique way to understand how the brain works [29].

There are generic tools to estimate interactions between homogeneous data (only spike
trains or only LFP/EEG-rhythms), but the spikes-rhythms interplays are much more elusive.
In the works cited above, the interactions were discovered by looking specifically at data
type pairs (neurons / gamma rhythm for instance) that were already thought to be relevant
for the experiment. There is a pressing need in the community for a generic tool that is able
to use heterogeneous data (spike trains and LFP) to reconstruct an interaction graph between
all of them, especially when the data come from two or more simultaneously recorded brain
regions. There are various works providing partial methods to do this, which we discuss
below. However, to the best of our knowledge, none is able to produce directed interaction
graphs with rhythms and spike trains.

Graphs of dependence between heterogeneous data are very pervasive in recent years in
statistics [11], but so far, the models behind do not encompass a time evolution neither a
frequency decomposition as we need here.

If we focus on the point processes part, there have been various works to retrieve depen-
dence graph, even when these graphs are fluctuating over time [24]. As for models of spikes
trains, there has been a lot of work around Hawkes processes and variants such as Galves-
Löcherbach model to estimate a functional connectivity graph [16] [26]. Condition to decide
when the model is stationary or not have been found [16] [6], procedures to reconstruct the
graph and sparse estimation have been provided [26]. There are also available tools to test
the existence of an interaction in the graph [9]. Furthermore, it has been shown that Lasso
estimators satisfy an oracle inequality[21] [32]. The present work aims at extending this to
the much more general case of heterogeneous data, where point processes are mixed with a
continuous signal.

When only LFP or EEG data are considered, there has been a huge amount work spent
on multivariate autoregressive regression (MVAR) model [31] [4] [25] [42]. In particular
condition for stationarity are known [4] and reconstruction of interaction are often done via
Partial Directed Coherence (PDC) and test on the existence of an interaction [3, 14]. In [4],
the convergence of the Least Squares estimator is shown, but up to our knowledge, no oracle
inequality or sparse estimator of the graph is available. Moreover, when dealing with rhythms
in LFP/EEG, the previous PDC approach can be used rhythm per rhythm but cannot directly
find interaction between different rhythms. To do so, there has been some attempts to look
directly at coherence or partial coherence despite an acknowledged lack of interpretability
of the results [2] and even some works use these notions between rhythms and spike trains
[38][43]. Note in particular that with these notions, the resulting graph is not directed and
one cannot know exactly which data is influencing the other one because there is no temporal
model behind.

Some works tried to mix spike trains and LFP without the rhythm approach. In [18], the
authors present a model-free framework in which the interactions are detected through non
parametric tests using Granger’s causalities. In [27] the LFP can influence the spike trains
but it is considered only as exogenous data and is not modeled. The authors of [27] prove
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consistence of the Least Square estimator of the spiking probabilities, as well as the consis-
tence for the variance estimator of the spike-LFP modulation. In [39] a similar approach is
presented, but also the maximal interaction lag is a parameter to be estimated. In [1] with a
similar model, the parameters are fitted through an unsupervised learning algorithm. In [35]
the model also includes a latent brain state variable.

Let us also mention one work mixing heterogeneous data [12][5], where spike trains -
modeled as a Hawkes process - are influencing directly the voltage of one given neuron, the
purpose being mainly to adaptively estimate the functions parameterizing the voltage itself
and not the whole range of possible interactions between the data at hand.

The model we propose here, called Heterogeneous Multiscale MultiVariate AutoRegres-
sive model (HM-MVAR), mixes the point process signals and the wavelet coefficients of
the continuous signals thanks to interaction functions between wavelet coefficients, between
spike trains and between wavelets and spikes trains.

Models able to catch dynamics of discrete time wavelets coefficients are numerous in the
literature. In particular Markov models have been used, especially for the dependency of one
rhythm on another, but only the directed interactions from the coarser wavelet coefficient to
the finest wavelet coefficients were considered[40, 15, 41]. In [41] the convergence rate of the
Kalman Filter Least Squares estimator is shown, together with the corresponding algorithm
complexity. However in all of these works, the relations between the variables is always
vertical, generally from coarser to finer scales and time is not taken into account so that the
evolution over time of the process is not modeled.

To summarize, there is no work, up to our knowledge, able to estimate directed interactions
in time between wavelets coefficients modeling the rhythms and point processes modeling the
spike train. The aim of the present work is to:

• Propose a generative probabilistic model, called HM-MVAR, able to take into account var-
ious type of interactions between all the LFP rhythms and spike trains at hand. Each time,
an interaction corresponds to an interaction function from one type of data (one rhythm,
one spike train) to another, with a certain range in the past. Therefore the interaction is
directed and has a causal interpretation in Granger sense [19].

• Show that such a process exists and has a block stationary version under some constraints.
• Propose a Lasso estimator of the interaction functions that satisfies an oracle inequality

and therefore provide a sparse directed graph to summarize the interaction between the
data.

• Show on simulation and on a representative open data set [33, 17] that our method is able
to provide a meaningful heterogeneous functional connectivity graph in neuroscience.

In Section 2, we present our model and the variety of typical situations that it can model.
In Section 3, we prove the existence of a block stationary solution. In Section 4, we propose
a Lasso estimator of the interaction functions, with weights that are issued from martingales
concentration results that may have an interest per se. We also prove that this Lasso estimator
satisfies an oracle inequality. In Section 5, a simulation study is presented and in Section 6,
we present the results on real data and discuss their relevance.

2. The HM-MVAR model .

2.1. Notation. We are focusing on a discrete time setting where the time index t lies in
Z. We use the notation a : b to represent all integers i such that a≤ i≤ b.

We want to model the interactions of P continuous data, (Xp
t )p∈1:P ∈ RP (e.g. the local

field potentials of P different brain regions) and M point data, (Sm
t )m∈1:M ∈ {0,1}M (e.g.

spike trains of M different neurons).
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We assume that we have the following wavelet decomposition of the continuous data:

(1) ∀t ∈ Z, Xp
t =

J∑
j=0

∑
k∈Z

W p
j,kϕj,k(t).

The W p
j,k’s reflect the intensity of the pth LFP in the frequence band corresponding to 2j

(called the jth rhythm in the sequel) at location k2J+1−j as soon as j ≥ 1. The W0,k’s reflect
the slow drift in the data. The finest level J is usually defined in link with the data frequency
acquisition and the preprocessing steps performed by the neurophysiologists to separate LFP
from spike trains, so that in practice J is fixed and quite small (up to 10).

To write (1), we consider a discrete, eventually biorthogonal wavelet basis ϕj,k(.), where
j ∈ 0 : J is the scale parameter and k ∈ Z the localisation (see [10], [20]). More precisely,
j = 0 corresponds to the father wavelet with ϕ0,k(t) = ϕ0,0(t− k2J). For j ≥ 1, we have that
ϕ(j,k)(t) = ϕj,0(t−k2J+1−j). If we were in continuous time, those would have been dilation
of the mother wavelet, but in discrete time it is not stricto sensu true, except for the Haar
basis [20].

For interpretability of our models, we need that all ϕj,k’s have a finite support that we
denote [ℓj,k, rj,k] and because of the translation properties above, we have that

∀k ∈ Z,
{
ℓj,k = ℓj,0 + k2J+1−j if j ≥ 1
ℓ0,k = ℓ0,0 + 2J if j = 0.

Our model is describing the evolution of (Xp
t )p∈1:P and (Sm

t )m∈1:M by describing directly
the evolution of the coefficients themselves (W p

j,k)p,j as a function of k, jointly with the
evolution of (Sm

t )m=1,...,M . In particular, since W p
j,k represents the intensity of the jth rhythm

of the pth LFP’s at location k2J+1−j , we want to describe the co-evolution of processes that
do not happen at the same time scale. From a modeling point of view, we want to keep Xp

t
adapted to the filtration Ft that we use. This is why we are considering in the sequel that

∀p ∈ 1 : P, j ∈ 0 : J,k ∈ Z, the variable W p
j,k appears at time ℓj,k,

so that with (1), we can compute Xp
t thanks to all the variables that have happen before

time t.
More precisely, the filtration is defined by

∀t ∈ Z, Ft = σ

(Sm
u )m ∈ 1 : M

u ≤ t

, (W p
j,k) p ∈ 1 : P

j ∈ 0 : J
ℓj,k ≤ t


2.2. Evolution of the point process part. The model of evolution of the point processes

part is inspired by discrete Hawkes processes [32], where we incorporate dependency to the
rhythms. This leads to this set of equations for the point process part Sm

t :

(2)
P (Sm

t = 1|Ft−1) = νm +
∑

m′ ∈ 1 : M
u < t

hmm′(t− u)Sm′

u +
∑

p ∈ 1 : P

κSpj ∈ KS
pj

j, k/ℓj,k < t

hmp,j,κpj
(t− ℓj,k)κ

S
pj(W

p
j,k)

= νm +
∑

m′ ∈ 1 : M
d ∈ 1 : +∞

hmm′(d)Sm′

t−d +
∑

p ∈ 1 : P

κSpj ∈ KS
pj

j, k/ℓj,k < t

hmp,j,κpj
(t− ℓj,k)κ

S
pj(W

p
j,k)
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In the previous equation, if the wavelet part on the right is not there, one recognizes the
classical Hawkes processes equation (see [32]). Indeed, the spontaneous part, νm, corre-
sponds to the firing rate of neuron m if no interaction takes place. The synaptic integration is
present as the sum of all hmm′(d)’s if there is a spike (Sm′

u = 1) at distance d: if hmm′(d)> 0,
neuron m′ excites neuron m after a delay d, whereas if hmm′(d)< 0, neuron m′ inhibits neuron
m after a delay d. An example of such interactions is provided in the following example.

EXAMPLE (Excitation of one neuron by another neuron). Figure 1 shows the spike trains
of two neurons where Neuron 2 excites Neuron 1. This corresponds to a positive h12 at short
range: shortly after a spike generated by Neuron 2 we have more spikes produced by Neuron
1. To pass from the model to a realistic raster plot we have to divide the discrete time indexes
by the sampling frequency of our instrument, usually ≥ 1000Hz.

0 2000 4000 6000 8000

Neuron  1 VS Neuron  2

Time

N
eu

ro
n 

#

1
2

FIG 1. Excitation of one neuron by another one. The time occurrences of spikes are represented by dots (blue
for Neuron 2, black for Neuron 1). The parameters characterizing the two spiking probabilities (see (2)) are:
ν1 = 4e− 4, ν2 = 2.8e− 3, h12(t) = 0.041t∈[331,360].

The wavelet part in the above equation (2) is more intricate. First, (see below) the W p
j,k’s

are unbounded, so we cannot use a linear transformation of W p
j,k in (2). This is why we use

a mask κSj,k(W
p
j,k) with κSj,k(0) = 0, assumed to be 1-Lipschitz and bounded by two absolute

constants wp,j ≤ 0 and w̄p,j ≥ 0 so that

wp,j ≤ κSpj(W
m
j,k)≤ w̄p,j .

A typical example is (with fixed w > 0)

κSpj(W
p
j,k) = κSw(W

p
j,k) :=


w if W p

j,k >w

W p
j,k if −w ≤W p

j,k ≤w

−w if W p
j,k <−w

Because we can envision many of these masks, one might want to incorporate several of
them, in the description. This is why we can use a finite dictionary KS

pj of at most K masks,
that might be tuned for each wavelet level (p, j).
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For each of these masks κSpj(W
p
j,k) and each wavelet level (p, j), one has an interaction

function hmp,j,κS
pj
(t− ℓj,k). At the difference with the interaction functions hmm′ , its impact is

not just modulated by a 0/1 phenomenon but by the value of κSpj(W
p
j,k). To fix ideas, one can

envision the following example.

EXAMPLE (Phase lock of spikes on a given rhythm). Let us define two masks κ+(W ) =
|κSw(W )|1W>0 and κ−(W ) = |κSw(W )|1W>0. With the Haar basis, one can use for a fixed
positive parameter a,

hmp,j,κ+
= a11:2J−j−1 and hmp,j,κ−

= a12J−j :2J+1−j−1.

This models a phase locking phenomenon, where spikes of m are more likely to appear in
the upper oscillation of the jth rhythm of the pth LFP (see Figure 2). Indeed if W p

j,k > 0,
the oscillation of length 2J+1−j presents the up phase followed by the down phase, so in the
first half of the period, the neuron is excited. If W p

j,k < 0, the oscillation of length 2J+1−j

presents the down phase followed by the up phase, so it is in the second half of the period
that the neuron is excited. Of course this phenomenon is stronger when |W p

j,k| is large, as one
can see on Figure 2.
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FIG 2. Phase lock of spikes on a given rhythm. The LFP filtered at level j = 2 is represented in black and
the spikes of Neuron 1 are represented by blue dots. The parameters characterizing the equations (2) and (4)
are: ν1 = 0.0024, h11,2,κ+

= 0.0111:28−1, h
1
1,2,κ− = 0.01128:29−1, µ

1,2 = 0.5, σ1,2 = 1. The LFP signal is
always computed starting from the wavelets coefficient through the wavelet antitransform (1).

Note that (2) can only hold if a condition of the following type is satisfied, to ensure that
the full quantity can indeed be interpreted as a probability:

(3)



1≥ νm +
∑

m′ ∈ 1 : M
u < t

max(hmm′(t− u),0) +
∑

p ∈ 1 : P

κSpj ∈ KS
pj

j, k/ℓj,k < t

max(hmp,j,κS
pj
(t− ℓj,k),0)w̄p,j

0≤ νm +
∑

m′ ∈ 1 : M
u < t

min(hmm′(t− u),0) +
∑

p ∈ 1 : P

κSpj ∈ KS
pj

j, k/ℓj,k < t

min(hmp,j,κS
pj
(t− ℓj,k),0)wp,j
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FIG 3. Spikes triggering a given rhythm. The LFP filtered at j = 5 is represented in black and the spike train of
Neuron 1 in blue. The parameters characterizing equations (2) and (4) are: ν1 = 0.0064, µ1,5 =−0.3, σ1,5 =

.1, h
1,5
1 (t) = 21t∈[31,60].

2.3. Evolution of the wavelet coefficients. The model of evolution for the continuous part
is inspired by Multivariate Autoregressive models for the continuous processes [14], except
that it is written on the rhythms directly, keeping in mind that a given W p

j,k appears at ℓj,k.
This leads to the following equation.

(4)
W p

j,k = µp,j+
∑

m ∈ 1 : M
u < ℓj,k

hp,jm (ℓj,k−u)Sm
u +

∑
p′ ∈ 1 : P

κW
p′j′ ∈ KW

p′j′
j′, k′/ℓj′,k′ < ℓj,k

hp,j
p′,j′,κW

p′j′
(ℓj,k−ℓj′,k′)κWp′j′(W

p′

j′,k′)+εpj,k,

In the previous equation, all the εpj,k are independent Gaussian variables with mean 0
and variance σp,j . The parameter µp,j gives the main trend of the wavelet coefficient W p

j,k. In
classical MVAR settings, variables are usually centered before hand [14], but it is not possible
here because of the interaction term with the point process part given by the hp,jm ’s. However
if we use the Haar basis, set J = 0 and discard interaction with spikes, we recover a classical
MVAR model where W p,0

t =Xp
t .

The interaction with the point process part can be easily understood in the light of the next
example.

EXAMPLE (Spikes triggering a given rhythm). If the function hp,jm is large over 1 :
2J+1−j − 1 and if neuron m spikes a lot, the next wavelet coefficient increases. This is what
we see in Figure 3.

Interaction between rhythms can be interpreted in the same way. Again one might want
to use masks κWp′j′ such that κWp′j′(0) = 0. Here these masks are not forced to be bounded, 1-
Lipschitz is a sufficient constraint that is assumed in the sequel. A typical mask is the identity
κWp′j′(W

p′

j′,k′) = W p′

j′,k′ , but one might want to use the following set of masks to describe a
phase locked phenomenon between rhythms, as in the following example.
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EXAMPLE (A fast rhythm power that is in phase-power modulation with slower oscilla-
tions). Imagine j > j′ and use κ1(w) =max(w,0), κ2(w) =min(w,0), then with

hp,jp′,j′,κ1 = a11:2J−j′−1 and hp,jp′,j′,κ2 = a12J−j′ :2J+1−j′−1,

we obtain that

hp,jp′,j′,κ1(ℓj,k − ℓj′,k′)κ1(W p′

j′,k′) + hp,jp′,j′,κ2(ℓj,k − ℓj′,k′)κ2(W p′

j′,k′),

is large when |W p′

j′,k′ | is large and when ℓj,k is in the upper part of the oscillation correspond-

ing to W p′

j′,k′ , whatever the sign of W p′

j′,k′ . A fast rhythm phase locked on the low part of a
slower oscillation is given in Figure 4.

0 200 400 600 800 1000

0
2

4
6

8
10

p1= 1 j1= 4 p2= 1 j2= 8

Time

fil
te

re
d 

LF
P

 1

fil
te

re
d 

LF
P

 2

−
2

0
2

FIG 4. A fast rhythm power that is in phase-power modulation with slower oscillations. The slow rhythm (LFP
filtered at j = 4) is presented in black whereas the fast rhythm (LFP filtered at j = 8) is in blue. The parameters
of the models (4) are: µ1,4 = µ1,8 =−0.3, σ1,8 = σ1,4 = 1, h

1,8
1,4,κ1

=−2126:27−1h
1,8
1,4,κ2

=−211:26−1.

DEFINITION 2.1 (Connectivity graph). For a HM-MVAR model given by (2) and (4), the
corresponding connectivity graph is defined as a graph where vertices correspond to either
neurons (from 1 to M ) or couples (p, j) standing for the jth rhythm of the pth LFP. A directed
arrow from one vertex i′ to another i means that there is non null interaction function hii′ .
Colors of the edges can stand for instance for excitation or inhibition, style for the type of
mask that is used and width for the strength of the interaction function. Some examples are
given in Sections 5 and 6.

From now on, we are interested in a model where both (2), (3) and (4) hold. The next
section focus on giving condition for existence of such processes on Z, whereas Section 4
focus on the estimation of the unknown parameters of the model.

3. Existence of a block stationary solution .
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3.1. Block notation. Let us vectorize the previous equations. For all time t, indices p and
j, we denote W p,j

t the process defined by W p
j,k when t is an ℓj,k and 0 otherwise.

We denote by Yt the vector of RM+P (J+1) such that its first M coordinates are the Sm
t and

the next are the W p,j
t (using the lexicographic order on (p, j)).

We also denote by κS(Yt) (resp. κW (Yt)) the finite vector formed as Yt but where a given
coefficient W p,j

t is replaced by a family of coefficients κSpj(W
p,j
t ) (resp. κWpj (W

p,j
t )), for

κSpj ∈ KS
pj (resp. κWpj ∈ KW

pj ). Note that κS(Yt) (resp. κW (Yt)) is a vector with at most
M + KP (J + 1), where K is the maximal cardinality for the dictionnaries. Note that if
K = 0, meaning that no interaction from wavelets are considered, then κS(Yt) = κW (Yt) =
(Sm

t )m∈1:M .
The matrix formed of columns Yt for a≤ t≤ c, is denoted Y c

a . In this notation, a might be
−∞. In the same spirit, κS(Y c

a ) (resp. κW (Y c
a )) is a matrix formed of the columns defined

by κS(Yt) (resp. κW (Yt)).
For a given matrix Z that has a potentially infinite number of columns labeled from −∞ to

−1 and Q rows and a given matrix H with Q columns and D rows of functions with support
in 1 : +∞, we denote H ∗Z the vector of dimension D given by

H ∗Z =

+∞∑
k=1

H(k)Z−k,

where the product H(k)Z−k is the classical matrix product between the matrix H evaluated
at time k and the column of Z with label −k if it exists - one multiplies by 0 if Z−k does not
exist in Z .

In particular, let HS be the matrix formed at row m by the hmm′(.)’s and hmp,j,κS
p,j

’s and let

HW be the matrix formed at row (p, j) (in the lexicographical order) by the hp,jm (.)’s and
hp,j
p′,j′,κW

p′,j′
’s. We have that for all indices m and p, j,

[HS ∗ κS(Y t−1
−∞ )]m =

∑
m′ ∈ 1 : M

u < t

hmm′(t− u)Sm′

u +
∑

p ∈ 1 : P

κSpj ∈ KS
pj

j, k/ℓj,k < t

hmp,j,κpj
(t− ℓj,k)κ

S
pj(W

p
j,k)

and

[HW ∗κW (Y t−1
−∞ )]p,j =

∑
m ∈ 1 : M
u < ℓj,k

hp,jm (ℓj,k−u)Sm
u +

∑
p′ ∈ 1 : P

κW
p′j′ ∈ KW

p′j′
j′, k′/ℓj′,k′ < ℓj,k

hp,j
p′,j′,κW

p′j′
(ℓj,k−ℓj′,k′)κWp′j′(W

p′

j′,k′).

Note that it is straightforward to prove the following control of the ℓ1 norm:

(5) ∀H,Z, ∥H ∗Z∥1 ≤
+∞∑
k=1

∥H(k)∥1,∞∥Z−k∥1,

where for any matrix A, ∥A∥1,∞ =
∑

imaxj |Ai,j |.
Finally let us denote for all b ∈ Z, ib = b2J , jb = (b+ 1)2J − 1 and Xb = Y jb

ib
.

Let us formalize a trivial statement that is useful to define properly block stationarity.

LEMMA 3.1 (Definition of Block Stationarity). If the sequence of blocks (Xb)b∈Z is sta-
tionary, then for all s, t ∈ Z such that s= t mod (2J), Y s+2J−1

s has the same distribution
as Y t+2J−1

t . This is what we call block stationarity.
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In particular, it means that(Sm
u )m ∈ 1 : M

u ∈ s : s+ 2J − 1

, (W p
j,k) p ∈ 1 : P

j ∈ 0 : J

ℓj,k ∈ s : s+ 2J − 1

 and

(Sm
u )m ∈ 1 : M

u ∈ t : t+ 2J − 1

, (W p
j,k) p ∈ 1 : P

j ∈ 0 : J

ℓj,k ∈ t : t+ 2J − 1


have the same distribution if s= t mod (2J).

Therefore, in the sequel, we want to derive under which condition the blocks Xb of length
2J may form a stationary sequence. Note that we cannot hope for full stationarity of the
vector Yt, because even the number of non zero coefficients in it depends on the pattern of
the ℓj,k’s and is therefore 2J periodic. To prove block stationarity, we want to apply Theorem
3.1 of Doukhan and Wintenberger [13] and to do so we need to express Xb as a function of
the previous blocks. This is what we do in the following section.

3.2. Recursion formulas . Let us introduce the vector of innovation ξt =

[
Ut

εt

]
of size

M + P (J + 1) such that the first M coordinates, given by Ut, are i.i.d. Uniform variables
on [0,1] and the other P (J + 1) coordinates, εt, represent the independent noises on the
wavelet coefficients, the coordinate (p, j) (in the lexicographical order) being εp,jt , a centered
Gaussian variable of variance σp,j .

At time s, it is quite clear that if (2), (3) and (4) are satisfied, then one can represent Ys as
a function gs of the past Y s−1

−∞ and of the innovations:

Ys = gs(Y
s−1
−∞ , ξs) =

[
1Us≤ν+HS∗κS(Y s−1

−∞ )

(µ+HW ∗ κW (Y s−1
−∞ ) + εs).δ(s)

]
,

where the first indicator function has to be understood coordinate by coordinate. The . product
is the product coordinate by coordinate and δ(s) is the vector of size P (J + 1) which at
coordinate (p, j) is 1∃k,ℓj,k=s.

Note that δ(s) is 2J periodic, so that gs(., .) = gs+2J (., .). This means that the dependence
of a block Xb on its past only depends on its past and the innovation vectors. To find the exact
function, let us now focus on the first block X0, with index b= 0, for simplicity. The second
column of the block is depending on Y 0

−∞ =
[
Y −1
−∞, g0(Y

−1
−∞, ξ0)

]
etc. So we can recursively

define for a given past y = Y −1
−∞ of the block X0

(6)
{

if s= 0,G0(y, ξ0) = g0(y, ξ0) ∈RM+P (J+1)

if s > 0,Gs(y, ξ
s
0) = [Gs(y, ξ

s−1
0 ), gs([y,Gs(y, ξ

s−1
0 )], ξs)] ∈R(M+P (J+1))×(s+1)

In the end, if (2), (3) and (4) hold, we always have that for all b ∈ Z,

(7) Xb =G2J−1(X
b−1
−∞, ζb),

with the following notations:

• Xb−1
−∞ = Y jb

−∞ is the past of block b and consists of all the blocks that have happened before
block Xb,

• ζb = ξjbib is the matrix of innovations for the block Xb.

3.3. Block stationarity. Now we are ready to apply Doukhan and Wintenberger’s result
[13].
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THEOREM 3.2. Recall that K is the maximal size of the mask dictionaries KS
pj and KW

pj .

eb = (K ∨ 1)

(
max

k∈ib−1+1:jb
∥HS(k)∥1,∞ + max

k∈ib−1+1:jb
∥HW (k)∥1,∞

)
and

d= (K ∨ 1)

(
max

k∈1:2J−1
∥HS(k)∥1,∞ + max

k∈1:2J−1
∥HW (k)∥1,∞

)
.

Assume that (3) holds and that

+∞∑
b=1

eb <
d

(1 + d)2J − 1
if d > 0

+∞∑
b=1

eb < 2−J if d= 0

then there exists a block τ -weakly dependent stationary solution to (2) and (4), which is
integrable.

If in addition all the masks κWpj ’s are bounded, then this block stationary solution has
moment of every order.

Note that the condition on the interaction functions is satisfied as soon they are summable
and small enough. In particular the condition does not depend on σp,j .

When J = 0, meaning that we do not use the wavelet expansion and just use a spike/LFP
interaction model, we have d= 0. In this case, the term eb is just

eb = (K ∨ 1)
(
∥HS(b)∥1,∞ + ∥HW (b)∥1,∞

)
In particular, if there is only spikes and no LFP in the system (and therefore K = 0), we

recover the condition
∞∑
b=1

∑
m∈1:M

max
m′∈1:M

|hmm′(b)|< 1.

This condition is therefore slightly more reductive than the classical Hawkes condition saying
that the spectral radius of (

∑
b |hmm′(b)|)m,m′∈1:M is strictly smaller than 1 [6] (see also [32]

for more restrictive conditions).
Therefore our condition is not necessary but only sufficient in this case. We do not know

if it is necessary when considering the whole multiscale approach.
To apply Doukhan and Wintenberger to our problem, we need to rely on a norm on

RM+P (J+1) that we chose as the ℓ1-norm and an Orlicz norm linked to a convex func-
tion Φ, that we chose equal to identity. This is why we end up proving the existence of
only a L1 block stationary solution. Passing directly to an L2 Orlicz norm would require
Lipschitizianity of the point process component w.r.t. the L2 norm and it is not possible.
To realize it, let us consider a < c ∈ [0,1] and U a uniform random variable on [0,1] :
E((1U<a − 1U<c)

2) = E(|1U<a − 1U<c)|) = E(1a<U<c) = |c − a| so 1U<a is Lipschitz
w.r.t. an L1 Orlicz norm but not an L2 Orlicz norm.

However, the point process components being always bounded, they have moments of
every order and as soon as the masks κWp,j’s are bounded as well, the fact that the noise is
Gaussian lead to existence of moment of every order. We have not been able to prove it
without the boundedness assumptions on the masks.
We need to prove two conditions to apply Theorem 3.1 of Doukhan and Wintenberger [13].
This is detailed in the two following lemmas. We inform that all the proofs can be found
in Section 1 of the Supplementary Material (Spaziani, Girardeau, Reynaud-Bouret, Bethus
(2023)).
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LEMMA 3.3. Let m> 0 be a fixed integer. The function G2J−1 defined in Section 3.2 by
(7) and the associated innovation matrix ζ0 for block 0, satisfy, for all s≥ 0

E(∥G2J−1(0, ζ0)∥m1 )<∞,

where 0 is the matrix corresponding to null past before 0.

LEMMA 3.4. Let X−1
−∞ and Z−1

−∞ be two different (block) infinite pasts that are possible
for the block X0, then

E(∥G2J−1(X
−1
−∞, ζ0)−G2J−1(Z

−1
−∞, ζ0)∥1)≤

∞∑
b=1

abE(∥X−b −Z−b∥1),

where

ab =

{
((1 + d)2

J − 1)
eb
d

if d > 0

2Jeb if d= 0

4. Sparse estimation by Lasso criterion . In this section, we want to estimate µ,ν and
the interaction functions, to reconstruct a sparse connectivity graph between neurons and LFP
rhythms. Because formula (2) and (4) are linear in these unknown functions and parameters,
and since these interaction functions only depend on a certain lag with respect to the data at
hand (Sm

t or W p
j,k), we are going to approximate formulas (2) and (4) by a linear combination

of cylindrical functions of the past, i.e. functions only depending on a small neighborhood of
the data that we want to explain. Let us present in more details this dictionary of cylindrical
functions.

4.1. Dictionary of cylindrical functions. Let us denote

I = 1 :M ∪ (1 : P × 0 : J),

so that an index i ∈ I can be either referring to neuron m or to a couple (p, j), standing for
the jth rhythm of the pth LFP.

DEFINITION 4.1 (Neighborhood). A neighborhood v is a finite subset of I × 1 : +∞. It
represents a collection of indices of data and lags.

We consider real valued functions ϕ of the past, that is ϕ : Y t−1
−∞ 7→ R, that only depends

on the past configuration and not on the precise value of t. Note however that because of the
pattern of 0 in Yt−2J , which is the same as the one at time t, this function ϕ can use the fact
that t is an ℓj,k or not.

DEFINITION 4.2 (Cylindrical function). Such a function ϕ of the past is cylindrical on
the neighborhood v if ϕ(Y t−1

−∞ ) only depends on any ith coefficient of Yt−s, if (i, s) ∈ v.
Informally, it means that ϕ(Y t−1

−∞ ) only depends on the data that are in the neighborhood v of
Yt. Its maximal lag is given by max{d/∃i ∈ I, (i, d) ∈ v}.

Let us give some illustrative examples of such functions. Let us fix some t ∈ Z. Since we
are approximating (2) and/or (4) by a linear combination of these functions, we also give an
interpretation of the multiplicative coefficient in the expansion.

1. ϕ(.) = 1 is cylindrical on the empty neighborhood v = ∅. Its maximal lag is therefore 0.
The coefficient in front of this ϕ is typically a candidate to be a νm (if we approximate
(2)) or µp,j (if we approximate (4)).
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2. ϕ(Y t−1
−∞ ) = Sm

t−d, for some index m ∈ 1 :M and lag d > 0. This ϕ is cylindrical on v =

{(m,d)}. The coefficient in front of this ϕ is typically a candidate to be a hm
′

m (d) (if we
approximate (2)) or hp,jm (d) (if we approximate (4)).

3. For j > 0, one can also represent the last coefficient of the jth rhythm on the pth LFP
before time t by

ϕ(Y t−1
−∞ ) =

∑
k∈Z

W p
j,k1t−2J+1−j≤ℓj,k<t =

2J+1−j∑
s=1

W p,j
t−s,

since in both sums, only one term is not null. This ϕ is cylindrical on v = {(p, j)} × 1 :
2J+1−j . The coefficient in front of this ϕ is typically a candidate to be the constant value
of hm

′

p,j(d) for d ∈ 1 : 2J+1−j(if we approximate (2)) or hp
′,j′

p,j (d) (if we approximate (4)).
This coefficient corresponds to the dependency w.r.t. to the previous rhythm.

4. One can also want to look at the first half-period, which is especially useful for phase lock
phenomena. In this case,

ϕ(Y t−1
−∞ ) =

2J−j∑
s=1

W p,j
t−s,

is the last non null W p
j,k if it appears less than half a period away and 0 otherwise. It is

cylindrical on v = {(p, j)} × 1 : 2J−j .
5. One can also consider the second half period with

ϕ(Y t−1
−∞ ) =

2J+1−j∑
s=2J−j+1

W p,j
t−s,

which is the last non null W p
j,k if it appears in the second half period and 0 otherwise.

6. In Cases 3-5, one can replace W p,j
t−s by masked version, for instance κw(W

p,j
t−s), κ

1(W p,j
t−s)

or κ2(W p,j
t−s), depending if the function ϕ is there to explain spikes or wavelet coefficients.

The use of masks might make the linear approximation closer to (2) or (4). Also the oracle
inequality proved in the sequel, only works for bounded dictionaries, which means that
we need to use at least mask of the type κw even for the wavelet part. One can also take
|κw(W p,j

t−s)| to have access to (an approximation of) the power of the rhythm itself.
7. To avoid having too many coefficients to estimate, one can also want to group several times

or cycles in one single ϕ. For instance, with spikes, one might take, for fixed positive lags
L<R

ϕ(Y t−1
−∞ ) =

R∑
s=L

Sm
t−s,

which is in fact the number of spikes in the window t−R : t−L. This ϕ is cylindrical on
the neighborhood v = {m}×L :R. Its corresponding coefficient aϕ would correspond to
an approximation of hm

′

m (d)1L≤d≤R in (2) or of hp,jm (d)1L≤d≤R in (4) by a constant value
aϕ1L≤d≤R.

8. The same thing can be done on rhythms, except that it makes more sense to take multiple
of the periods. So let L>R be fixed positive integers and define for instance

ϕ(Y t−1
−∞ ) =

L2J−j+1∑
s=R2J−j+1+1

W p,j
t−s,
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which is the sum of all the L − R coefficients of the jth rhythm of the pth LFP before
time t−R2J−j+1. This is cylindrical on {(p, j)} ×R2J−j+1 + 1 : L2J−j+1. This might
be especially useful if we think that large oscillations in a fast rhythm for a certain time
might trigger a large oscillation at a slower rhythm a few cycles later. This could make also
sense if we replace W p,j

t−s by |W p,j
t−s|, to only count power and discard phase cancellations

between the previous cycles.
9. Finally, and especially for influence of spikes on LFP, one might want to aggregate over

all neurons, so that one could consider

ϕ(Y t−1
−∞ ) =

M∑
m=1

R∑
s=L

Sm
t−s,

which the total number of spikes produced on all neurons that have been registered, in the
window t−R : t− L. The corresponding coefficient measures the excitation effect of a
population of neurons on a particular rhythm. In the real data application (see Section 6),
we will in particular aggregate over all the neurons in a given brain region.

With the previous examples, it is easy to see that formula (2) and (4) can be seen as fixed
linear combination of elementary cylindrical functions (Cases 1 to 6 typically). Moreover,
if we want to approximate the interaction functions by piecewise constant functions over a
coarser grid than the one given by t, we might want to use the grouped version (Case 7 and 8
for instance). One might also want to group in particular neurons (Case 9). These dimension
reductions (at least the ones on time) are common in the Hawkes setting [32], much less in
the MVAR one.

In the sequel, we are going to fix the index i we are looking at (either a neuron m or a
rhythm j of a LFP p), and fix a finite dictionary Φi of cylindrical functions to explain the
conditional expectation f i

t (Y
t−1
−∞ ) = E(Yt,i|Ft−1), where Yt,i is the ith index of Yt.

Note that f i
t is as gt in Section 3, a periodic function of the past Y t−1

−∞ and that in the most
general case f i

t+2J = f i
t . In particular, f i

t is null when δi(t) is null, where δi(t) is defined by

δi(t) =

{
1 if i=m ∈ 1 :M
1∃ℓj,k,ℓj,k=t if i= (p, j) ∈ 1 : P × 0 : J.

The approximation of f i = (f i
t )t∈0:T on the dictionary Φi is therefore given, for a a ∈RΦi

by f i
a = (f i

a,t)t∈0:T , with

f i
a,t(Y

t−1
−∞ ) =

∑
ϕ∈Φi

aϕϕ(Y
t−1
−∞ )δi(t).

We work with the following random norm on the vectors of functions of the past, q =
(qt)t∈0:T

∥q∥2 =
∑
t∈0:T

[
qt(Y

t−1
−∞ )

]2
,

and associate scalar product < q, q′ >=
∑

t∈0:T qt(Y
t−1
−∞ )q′t(Y

t−1
−∞ ). For intuition, in the se-

quel note that if q is 2J periodic, which is the case for f i and f i
a, these quantities should be

growing with N the number of blocks. If the sequence Y is block stationary, we can even
hope by ergodicity that this grows linearly with N .

On the other hand, we also use the classical euclidian norm on the vector a ∈ RΦi

given
by

∥a∥2 =
∑
ϕ∈Φi

a2ϕ

and associated scalar product also denoted < ., . >. We use the same notation for both norms
but note that depending on the objects it has different meaning.
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4.2. Contrast and Lasso penalization. Let A be the maximal lag of all the cylindrical
functions ϕ used in dictionary Φ. Let B be the largest integer such that B2J ≥A. Let us also
set N and T two positive integers such that T =N2J − 1

Up to a shift in time of the data, let us assume that we observe the P LFP’s and the M spike
trains on −(B + 1)2J : (N + 1)2J − 1. Thanks to the wavelet transformation [20], it means
we that we have access to the W p

j,k for all ℓj,k ∈ −A : T , which means that all f i
a(Y

t−1
−∞ ) are

computable for all i ∈ I and t ∈ 0 : T .
We consider the following least-square contrast.

DEFINITION 4.3 (Least-square contrast). The least-square contrast is defined by:

C(f i
a) =−2

T∑
t=0

f i
a,t(Y

t−1
−∞ )Yt,i +

T∑
t=0

[
f i
a(Y

t−1
−∞ )

]2
=−2< f i

a, Y
i >+∥f i

a∥2,

with Y i = (Yt,i)t∈0:T . This can be seen as C(f i
a) =−2a⊤bi + a⊤Gia, where a= (aϕ)ϕ∈Φi

is the vector of unknown coefficients,

bi =

(
T∑
t=0

ϕ(Y t−1
−∞ )Yt,i

)
ϕ∈Φi

and Gi =

(
T∑
t=0

ϕ(Y t−1
−∞ )ϕ′(Y t−1

−∞ )

)
ϕ,ϕ′∈Φi

.

We are looking at sparse solutions, this is why we want to solve this weighted Lasso
problem:

(8) âi = arg min
a∈RΦi

−2a⊤bi + a⊤Gia+ γw⊤
i |a|,

where .⊤ denotes the transpose, wi is a weight vector, which adapts the penalty to each ϕ
(Weighted Lasso), γ > 0 is a tuning parameter and |a| = (|aϕ|)ϕ∈Φi . This will lead us to a
sparse reconstructed connectivity graph.

DEFINITION 4.4 (Reconstructed connectivity graph). This connectivity graph has ver-
tices given by I . A directed edge from i′ ∈ I to i ∈ I means that

• there is a non zero âi,ϕ in the Lasso problem of i,
• for a ϕ cylindrical on a neighborhood v such that there exists some positive lag d for

which (i′, d) ∈ v.

To evaluate the full connectivity graph between spike trains and rhythms, we are going
solve successively all the Lasso problems for each i ∈ I . For each of these Lasso problems,
we might want to tune the dictionary Φi and the weights wi: in particular they depend on the
nature of i (neurons or rhythm).

4.3. Choice of minimal weights d. In this section, we derive a set of minimal weights for
which our method works. All the wi,ϕ used in the sequel will be such that wi,ϕ ≥ di,ϕ, where
the values of di,ϕ are derived in this section. This choice of minimal weights di is based on
exponential deviation inequalities, derived from the martingale structure of our model. The
first result holds for the spike data and is inspired by similar results in continuous time [21].

LEMMA 4.5. For any function bounded ϕ : Y t−1
−∞ 7→R, and any index m, let

Mϕ
T =

T∑
t=0

ϕ(Y t−1
−∞ ) [Sm

t −E(Sm
t |Ft−1)] and V̂ ϕ

T =

T∑
t=0

[
ϕ(Y t−1

−∞ )
]2
Sm
t .
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Then for any ϵ, x > 0,

P
(
Mϕ

T ≥
√

3(1 + ϵ)V̂ ϕ
T x+

(
1

3
+
√

6(1 + ϵ)

)
∥ϕ∥∞x

)
≤ 2

(
log
(
T+1
2x + 1

)
log(1 + ε)

+ 1

)
e−x.

As a consequence, for any family Φ of such functions ϕ, with finite cardinal #Φ, if T > 1
and α ∈ (0,1), the event

Ωα
Φ = {∀ϕ ∈Φ, |Mϕ

T | ≤ dϕ},

with

dϕ =

√√√√√3(1 + ϵ)V̂ ϕ
T log

4#Φ
(

log(T )
log(1+ϵ) + 1

)
α

+

[
1

3
+
√

6(1 + ϵ)

]
log

4#Φ
(

log(T )
log(1+ϵ) + 1

)
α

∥ϕ∥∞,

is of probability at least 1− α. In particular, one can take

(9) dϕ =

√
9

2
V̂ ϕ
T log

(
16#Φlog(T )

α

)
+

10

3
log

(
16#Φlog(T )

α

)
∥ϕ∥∞,

LEMMA 4.6. For any function bounded ϕ : Y t−1
−∞ 7→R, and any index p, j, let

Mϕ
T =

∑
k/0≤ℓj,k≤T

ϕ(Y t−1
−∞ )

[
W p

j,k −E(W p
j,k|Fℓj,k−1)

]
and V ϕ

T = σ2
p,j

∑
k/0≤ℓj,k≤T

[
ϕ(Y t−1

−∞ )
]2
.

Then for any x, ϵ, η > 0,

P

(
Mϕ

T ≥
√

2(1 + ϵ)
[
V ϕ
T + ησ2

p,j∥ϕ∥2∞
]
x

)
≤

 log
(
(T+1)

η + 1
)

log(1 + ε)
+ 1

e−x.

As a consequence, for any family Φ of such functions ϕ, with finite cardinal #Φ, if T > 1
and α ∈ (0,1), the event

Ωα
Φ = {∀ϕ ∈Φ, |Mϕ

T | ≤ dϕ},

with

dϕ =

√√√√√2(1 + ϵ)[V ϕ
T + ησ2

p,j∥ϕ∥2∞] log

#Φ
(
log((T+1)η−1+1)

log(1+ϵ) + 1
)

α


is of probability at least 1− α. In particular one can take

(10) dϕ =

√
3[V ϕ

T + 0.5σ2
p,j∥ϕ∥2∞] log

(
36#Φlog(T )

α

)

Note that to use this dϕ, we need to know σ2
p,j , but an upper bound can work as well and

we could take in practice an overall estimation of the variance of W p
j,k.
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4.4. Oracle inequality. Before proving oracle inequalities, let us state the property we
assume on the matrices Gi’s. In the following for a subset J ⊂ Φi and x ∈ RΦi

, we denote
xJ = (xϕ)ϕ∈J , |xJ |1 =

∑
ϕ∈J |xϕ|, ∥xJ∥2 =

∑
ϕ∈J |xϕ|2 and Jc =Φi \J . We also note S(x)

the support of the vector x that is S(x) = {ϕ ∈Φi/aϕ ̸= 0}.

DEFINITION 4.7 (Property RE(κ, c, s) for Gi/N ). For κ, c real positive numbers and s
positive integer, Gi/N has the Restricted Eigenvalue property RE(κ, c, s), if for all x ∈RΦi

and J of cardinal less than s, such that |xJc |1 ≤ c|xJ |1, we have

x⊤Gix≥Nκ∥xJ∥2.

First of all, we divided Gi by N , the number of blocks because in the stationary regime,
we can hope that by ergodicity, this quantity converges. This has been proved for instance
in the pure Hawkes case [32]. Moreover, by controlling both the distance to this limit and
the limit itself, it has been proved (see [32]) that if the models have some fast decaying Ka-
likow decomposition, with large probability, the Gi/N matrix satisfies RE(κ, c, s) for some
parameters κ, c and s. The same argument is not possible here because Kalikow decompo-
sition do not exist for Gaussian processes (up to our knowledge). On the other hand, there
has been many works on Gaussian matrices to show under which property they are satisfying
RE(κ, c, s) (see [34] and the references therein). We do not know how to prove such proper-
ties when the process is a mix of both cases. This is why the following theorem is stated on
the event where RE(κ, c, s) holds.

THEOREM 4.8. Let i ∈ I be a fixed index, with associated finite dictionary of cylindrical
functions Φi and let γ, the tuning parameter, be such that γ > 2.

Let us fix some weights wi such that wi,ϕ ≥ di,ϕ, for all ϕ ∈ Φi where the di’s and the
corresponding Ωα

Φi are given in Lemma 4.5 or 4.6, depending on the type of i (spike train or
rhythm). Let also γ > 2.

On the event

• where Ωα
Φi of probability larger than 1− α holds

• and where Gi/N satisfies RE(κ, c, s) with

c=

(
γ + 2

γ − 2

)
maxϕ∈Φi wi,ϕ

minϕ∈Φi wi,ϕ
,

one has that âi defined by (8) satisfies

∥f i
âi
− f i∥2 ≤ inf

a/#S(a)≤s

∥f i
a − f i∥2 + (γ + 2)2

4κ

∑
ϕ∈S(a)

w2
i,ϕ

N

 .

Moreover if there exists a∗i such that f i = f i
a∗
i

and #S(a∗i )≤ s, then

|âi − a∗i |1 ≤
2γ(γ + 2)

2κ(γ − 2)
√
N

∑
ϕ∈S(a∗)

w2
i,ϕ√

Nminϕ∈Φi wi,ϕ

.

Note first that if we take wi,ϕ = di,ϕ, the leading term in w2
i,ϕ is of order V̂ ϕ

T in Lemma

4.5 and V ϕ
T in Lemma 4.6, times a logarithmic factor of the form log(#Φi) + log log(T ).

In particular, it increases with the number of blocks N and we can hope by ergocidicity
that V̂ ϕ

T /N and V ϕ
T /N converges to constant. Also in both cases these terms are estimating

a variance. Therefore one can see roughly w2
i,ϕ/N as a constant with respect to N up to
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logarithmic term. Hence the first equation is an oracle inequality stated on a norm to the
square that should increase linearly in N and for which the bias term is counterbalanced by
a variance term that should remain roughly constant and proportional to the number of non
zero coefficients in a.

The convergence when N increases is more clear in the second equation. If there is in-
deed a sparse representation of f i on the dictionary, then one is able by the previous pro-
cedure to retrieve this set of coefficients and the error on the coefficients decrease like
[log(#Φi) + log log(T )]1/2/

√
N , which is what one would expect for such convergence re-

sults in Lasso setting, except the factor log(logT ), which comes from a very sharp control of
the martingales in our dependent setting.

Note however that we do not need for the previous theorem to assume that the sequence
of observations Y is block stationary to prove the theorem. The stationary case just gives us
the intuition of the order of magnitude of the several terms.

The constant c in RE(κ, c, s) depends both on γ and the weights. In particular if γ is
large or close to 2 or if the weights have a very large amplitude, c becomes very large and
RE(κ, c, s) is much less likely to be fulfilled. One could in particular have a smaller c by
taking constant weights wi,ϕ =maxϕ∈Φi di,ϕ, so that c= (γ + 2)/(γ − 2).

However, in practice the choice of varying weights makes the estimation much more robust
to heterogeneity of the inputs and of the dictionary. This kind of comparison on simulation
has already been made in [21, 37].

5. Simulations . In this section we test the performance of the previous LASSO estima-
tion procedure on simulated data.

5.1. Overall simulation plan. All the following experiments follow the same schedule:

1. A point of the discrete time domain corresponds to a time (in seconds) thanks to the
sampling frequency, that we chose to resemble the acquisition of real data. We choose a
sampling frequency fS = fLFP and Υ is the observation time in seconds.

2. We performed 5 different numerical settings, where each time a different sparse true con-
nectivity graph is used. Each setting corresponds therefore to the choice of the number
of neurons M and LFP signals, P , as well as the finer scale J . Then each neuron m and
LFP rhythm (p, j) is characterized by its spontaneous value νm (µp,j) and by its interac-
tions with the other variables hm· (t) (hp,j· (t)). To simplify, we chose each time to be in
the case where we can decompose our process on a specific dictionary, presented in the
next section. The dictionary has been chosen to mimic patterns of cerebral activity that are
known in the literature (see also the examples of Section 2). The parameters’ significations
are given in Table 1. The values of the parameters which remain constant throughout all
simulations are also written in the table, they are of the order of magnitude of classical ex-
periments in neuroscience. (Note: when we set the νm in the tables of parameters, we are
writing the biology-friendly νm · fS - in Hz). The remaining values will be made explicit
for each experiment.

3. Thanks to equations (2) and (4) we can simulate the evolution of the spiking activity of
the neurons and of the wavelet coefficients of the LFPs.

4. The synthetic data is then employed for the estimation of the original connectivity graph.
The choice of a dictionary Φ permits the computation of the vectors bi, the Gram matrices
Gi, and of the weights wi. The latter are chosen for the neuron part as (9) and for the
wavelet part as (10), with the slight difference that σp,j is over-estimated by the empirical
variance of each of the wavelet coefficients.

5. Finally we studied 3 different methods: Least Squares without penalization, denoted LS,
Lasso (8), and Lasso followed Least Square on the support found by the Lasso, denoted
L+LS.
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Parameter name Definition
Simu#= 100 number of simulations for a given set of parameters.
fS = 1250 sampling frequency for the spikes (in Hz).
fLFP = 1250 sampling frequency for the LFPs (in Hz).
M number of neurons.
P = 1 number of LFP signals.
J = 10 finest scale.
N = 70 number of blocks of 2J LFP points (see Section 4.2). The real duration of each block is 2J/fLFP seconds.
Υ= 57.344 observation duration, equal to 2J/fLFP ·N in seconds.
γS LASSO penalization parameter when estimating the parameters for a spiking probability.
γW LASSO penalization parameter when estimating the parameters for a wavelet coefficient.
νm spontaneous firing rate for neuron m (in Hz).
µp,j = 0 spontaneous value for LFP p, rhythm j (in mV).
σp,j = 0.25 variance of the Gaussian noise ϵ

p
j,k (see 4).

γS = 0.6 penalization parameter (see 8) when estimating the parameters of 2.
γW = 0.3 penalization parameter (see 8) when estimating the parameters of 4.

TABLE 1
Signification of the simulation parameters.

6. The estimation performance is evaluated with the help of various measures. The differ-
ences between the two connectivity graphs can be analyzed by counting missing or extra
edges, and in general how many times the graph is perfectly reconstructed. Then, the pre-
cision of the estimation is assessed by measuring the errors on the spontaneous values and
on the coefficients. The signification of all the performance measures we used is given in
Table 2 and more precise mathematical definitions of the errors are given in Section 2 of
the Supplementary Materials. Note that in the sequel, we give the average values of all the
performance measures over the 100 simulations that are made.

Names Meaning
νe total error for the spontaneous firing rates
µe total error for the LFP spontaneous values
esS total error for spike-spike interactions
esW total error for spike-LFP interactions
ewS total error for LFP-spikes interactions
ewW total error for LFP-LFP interactions
DG =1 if graph is perfectly reconstructed
S # of spontaneous values detected

Names Meaning
c+sS # false positive spike-spike parameters
c−sS # false negative spike-spike parameters
c+sW # false positive spike-LFP parameters
c−sW # false negative spike-LFP parameters
c+wS # false positive LFP-spike parameters
c−wS # false negative LFP-spike parameters
c+wW # false positive LFP-LFP parameters
c−wW # false negative LFP-LFP parameters

TABLE 2
Definition of the various measures of performance.

5.2. Precise tuning of the dictionary for neuroscience purpose. Throughout all the simu-
lations we used a dictionary that is specially tuned to detect interaction that are well-known in
the biological literature. In particular, we focused on the interactions that can appear among
and between the hippocampus and the amygdala in a mouse during a specific sleep phase
called "slow wave sleep" (see Section 6 on experimental data). Most of the rhythms j have a
special meaning in the neuroscientific literature (see Table 3). Hence we did not look for all
possible patterns but only specific interactions that are relevant from a neuroscientific point
of view.

5.2.1. Dictionary for a neuron. Let us first describe the dictionary to reconstruct the
interactions targeting a neuron:
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Rhythm name Slow 1 δ ∆ θ Θ β γ Γ Ripples N/D
Scaling (j) 1 2 3 4 5 6 7 8 9 10
Frequency (Hz) 0.82 1.64 3.28 6.55 13.11 26.21 52.43 104.86 209.71 419.43

TABLE 3
Discrete set of frequencies employed in the simulations and in the analysis of experimental data, corresponding

to a maximum scale J = 10 and to an LFP sampling frequency of 1250Hz. As the names of the frequencies
generally try to follow the known literature [8], we stress that we are forced to use a discrete set of frequencies

and so the names have to be considered as merely indicative.

1. The Spontaneous firing rate νm corresponds to the coefficient of

(11) ϕ1(Y
t−1
−∞ ) = 1

2. Effect of other neurons. This function is needed to detect the increase or decrease of the
spiking probability due to the firing of other neurons. Given a time t ∈ T , a lag r ∈N and
a bin size δ ∈ R, the function counts the spikes of other neurons in the interval 1 + (r −
1)δfS : rδfS .

(12) ϕm
r,δ(Y

t−1
∞ ) =

∑
1+(r−1)δfS≤s≤rδfS

Sm
t−s

In the experiments, we took {ϕm
r,δ,m ∈ 1 :M,r ∈ 1 : 2} with δ = 0.03 seconds.

3. LFP Power influence. Powerful LFP rhythms can increase or decrease the spiking prob-
ability. In the slow wave sleep phase theta waves (j = 4,5) are negligible [28], so we
avoided the theta power influences on the neurons. For each of the other j (0 : 9 \ {4,5}),
we have added to the dictionary:

(13) ϕp,j
Pow(Y

t−1
∞ ) =

·2J−j+1∑
s=1

max(|W p,j
t−s|,w),

which in fact represents the last wavelet coefficient in absolute value, truncated at the fixed
positive constant w. In practice we took w = 2 and this value is so large that the wavelet
coefficients have never been truncated in our experiments.

4. Phase lock. Phase lock phenomena are common in the recordings of cerebral activity. For
the same j indexes as before, we need to add 2 functions in the dictionary, one for the up
phase and one for the down phase:
(14)

ϕp′,j′

↑ (Y t−1
∞ ) =

2J−j−1∑
s=1

max(|W p,j
t−s|,w)1W p,j

t−s>0 +

2J−j+1−1∑
s=2J−j

max(|W p,j
t−s|,w)1W p,j

t−s<0,

which in fact is the absolute value of the last wavelet coefficient if t is in the corresponding
up phase, and
(15)

ϕp′,j′

↓ (Y t−1
∞ ) =

2J−j−1∑
s=1

max(|W p,j
t−s|,w)1W p,j

t−s<0 +

2J−j+1−1∑
s=2J−j

max(|W p,j
t−s|,w)1W p,j

t−s>0,

which in fact is the absolute value of the last wavelet coefficient if t is in the corresponding
down phase.

5.2.2. Dictionary for a wavelet coefficient.. In addition to the previous functions, we
want here to model the global effect of a neuronal population, so that instead of using ϕm

r,δ for



HETEROGENEOUS MULTISCALE MVAR 21

specified neurons m, we grouped them in regions Ri = {m ∈ 1 :M |neuron m is in region i}
and considered the cumulative effect of all the spikes in a region:

(16) ϕRi

r,δ(Y
t−1/fS
1/fS

) =
∑
m∈Ri

∑
1+(r−1)δfS≤s≤rδfS

Sm
t−s,

still with r ∈ 1 : 2 and δ = 0.03s.
Concerning LFP-LFP interactions, the choice of the dictionary depends on j, because of

its neurobiological interpretation.

• For all of the rhythms we use ϕ1 so that the corresponding coefficient is estimating µp,j .
• Again for all of them we added ϕRi

r,δ for r = 1,2 and δ = 0.03 seconds, to leave open the
possibility of estimating the effect of the spikes on each LFP frequency.

• To study the effect of the power of LFP frequencies on other frequencies, we employ the
dictionary function ϕp′,j′

Pow(Y
t−1
∞ ). We employed tactically this fraction of the dictionary

by adding the effect of one cycle of gamma power (j′ = 7,8) on Ripples (j = 9). Indeed,
ripples are bursts of oscillatory activity ranging from 140 to 200 Hz. Therefore they should
be mainly caught by the rhythm j = 9 but it is also possible that its effect leaks to lower,
close frequencies.

• Finally, we left the highest number of degrees of freedom for the power-phase modulations.
Since by definition of this phenomenon slower frequencies target faster frequencies [8] for
all j ∈ {0 : 9}/{4,5} and all j′ < j we added the two dictionary functions ϕp′,j′

↑ (Y t−1
∞ )

and ϕp′,j′

↓ (Y t−1
∞ ).

excitation/inhibition

power/phase lock

power/phase lock

power/phase lock

power

power/phase lock

power/phase lock

Neuron 2

Neuron 1

LFP_slow (j=1,2)

LFP_delta (j=3)

LFP_beta (j=6)

LFP_drift (j=0)

LFP_gamma (j=7,8)

LFP_Ripples (j=9)

spike−LFP average

power−phase modulation

Neurons (Region i)

LFP_frequencies (j=2,3,6,7,8)

LFP_frequencies j'<j

spike−LFP average

power−phase modulation

power

Neurons (Region i)

LFP_Ripples (j=9)

LFP_frequencies j'<j

LFP_gamma (j=7,8)

FIG 5. Possible interactions between variables. Each interaction corresponds to the coefficient of some dictio-
nary function. Left: possible interactions targeting a neuron. "excitation/inhibition": see (12); "power": see (13);
"phase lock": see (14)(15). Center/right: possible interactions targeting an LFP coefficient. "Spike-LFP average":
see (16); "power": see (13); "power-phase modulation": see (14)(15).

5.3. Results. The description of the parameters of each experiment, as well as the corre-
sponding connectivity graph and the average performance measures are reported in Figures
6 and 7. The first 4 experiments correspond to the classic examples reported in Section 2,
except that the parameters are smaller to make the problem more difficult to see with bare
eyes. The last experiment has been inspired by our results on real data (see Section 6).

1. Excitation: The spiking of Neuron 2 prompts the spiking of Neuron 1.
2. Phase Lock: The gamma (j = 7) up phase of the LFP signal excites Neuron 1.
3. LFP power-phase modulation Gamma (j = 7) coefficients are diminished in the down

phase of the Delta (j = 3) frequency.
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4. Spike-LFP average In this experiment we mimic a negative effect of neuronal spiking onto
a specific LFP rhythm.

5. Close to real data. In the final simulation we estimate a complex connectivity graph, which
is the fitting result of the cerebral sleep activity of a rat (see Section 6). The difference is
that for simplicity the spontaneous values and interaction strengths are restricted to few
possible values.

FIG 6. Performance evaluation for settings 1:3. In each figure, up left: specific parameters for the setting; down
left: average errors over 100 simulations; right: true connectivity graph.
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FIG 7. Performance evaluation for settings 4:5. In each figure, up left: specific parameters for the setting; down
left: average errors over 100 simulations; right: true connectivity graph.

We can see that as expected, the L+LS method is the one giving the smallest error. More
importantly, note that with less than 1 mn of observation, the method is able to recover per-
fectly the simplest graphs. For the close-to-real data, for which the graph is much more com-
plex, in less than one minute of observation, the estimation method is able to have about 0.5%
of false positive and 19% of false negative for the LFP → Spikes interactions, whereas the
other interactions are most of the time perfectly reconstructed. As explained in more detail
in Section 6, we have almost an hour of recordings per condition and we are therefore quite
confident that we make almost no false positives, whereas the percentage of false negatives
should be smaller (if the model is adequate for these data).

6. Experimental Data . After the numerical validation of the LASSO procedure, let us
test its capacity on real data.

The objective of this section is to recover, from a high-quality dataset, relations between
neuronal populations and LFP which are well documented in the literature, to see the ability
of our procedure to screen complex data and detect automatically relevant interactions.

The data comes from the Buzsaki Lab dataset [33] and consists of the neural activity of
a rat, specifically the recording of spikes and LFP belonging to two different brain regions:
the hippocampus (HPC) and the basolateral amygdala (BLA). The neural data have been
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recorded during the training on a spatial aversive task in which a specific location is asso-
ciated with an aversive stimulus, and during sleep episodes before and after training. The
experiment is explained in detail in [17]. The data presented here come from the spike-LFP
recording during a particular sleep phase called non-REM sleep or "slow wave sleep", char-
acterized by widespread slow-frequency (0,5-4 Hz) oscillations in the cortex and ripples in
the hippocampus.

In this framework, we treated the data as follows:

1. We isolated the section of the experiment that we wanted to analyze. We considered the
recordings performed before ("prerun") and after ("postrun") the aversive spatial task in
Rat08 on the 6th day of the experiment. As the rat switched multiple times between slow
wave sleep, REM sleep, and wakefulness, we isolated and then joined the segments of
slow wave sleep data.

2. We want to infer the functional connectivity via the above L+LS (Lasso + Least Squares
Step) procedure, with the same set-up as in the simulations, that is considering J = 10
as the finest scale and employing the same dictionary of functions. We decided to use the
same penalization parameters used in the Simulations, that is γS = 0.6 and γW = 0.3.

3. Since the LFP sampling frequency of the dataset is 1250 Hz, every block of wavelet coeffi-
cients has a duration of 1024/1250 = 0.8192 seconds. Because of the different duration of
each sleep period, we decided to consider 74 segments of N = 70 wavelet blocks for the
prerun slow wave sleep and 72 segments of N = 70 wavelet blocks for the postrun slow
wave sleep. This leads to an observation time of Υ = 57.344 seconds for every segment
and to aggregated observation times of ≈ 1h10m40s for the prerun sleep and ≈ 1h8m45s
for the postrun sleep. The longer the observation time, the higher is the computational cost
but we gain in estimator performance.

4. From this time interval we isolate the spikes and the LFP signals coming from the two
brain regions of interest : the hippocampus (HPC) and baso-lateral amygdala (BLA).

The resulting connectivity graphs are displayed in Figure 8. We presented only the vertices
for which an edge exists to simplify the reading, but in total 156 neurons (with two global
nodes for each neuronal population) and 10*2 LFP rhythms (10 rhythms per region)are used
for the computation of the model, that is the complete graphs would be on 176 nodes.

How to read the graphs. The hippocampus (HPC) neurons and LFPs are shown in light
and dark green, respectively. The BLA neurons and LFPs are shown in yellow and brown.
BLA population activity appears in orange, as HPC population activity is not estimated as
a node of relevance. Positive interactions are shown as red arrows, and negative interactions
as blue arrows. The width of the arrow edges represents the strength (in modulus) of the
interaction. The style of the arrows (solid/dashed) represents the type of interaction. As a
reminder, "Power" means that the power, |W p,j

t |, has an influence on the target rhythm or
neuron. "Phase locking" means that the phase of the brain oscillation has an influence on the
activity of the target neuron(s) or rhythm.

One of the main differences in the connectivity graphs of slow wave sleep preceding vs.
following the aversive task is the emergence of a new positive connection between hippocam-
pal ripples (R1-HPC) and a BLA neuron (neuron 88). This finding echoes the results of [17],
in which they show that during sleep following the task, there is an increase in the mod-
ulation of a small subpopulation of BLA neurons by hippocampal ripples. The graph also
shows a higher effect of beta frequency in the BLA on BLA neurons, a new finding that will
be explored in more detail along with other connectivity changes within and across the two
structures in follow-up works.
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FIG 8. Fitted connectivity graphs in aggregated segments of slow wave sleep cerebral activity before (left) and
after (right) the aversion task. Notice that in the postRUN graph, the Ripples frequency targets amygadala neuron
88, a phenomena described in [17]. Also, after the adversion task we can appreciate a more extensive effect of
the BLA beta frequency on BLA neurons.

7. Conclusion. In conclusion, we proposed a model of spike and LFP rhythm interac-
tions. Conditions under which the model exists in a block stationary version have been made
explicit. A weighted Lasso estimator of the interactions has been proposed, for which we
proved an oracle inequality. The choice of dictionary is crucial and we decided to fine-tune it
to unravel many classical interactions of the literature in neuroscience.

This particular choice of dictionary has the advantage with respect to a more exhaustive
dictionary to limit the number of coefficients to estimate. This makes the estimation more
robust for small observation times. However, in the future, expanding the dictionaries will
potentially allow the unraveling of previously undocumented connections and changes in
connectivity. It will also be interesting to further investigate the data of [17] to see if we can
establish statistical evidence of the connectivity changes across experimental days.

The choice of the parameters γS and γW is also difficult. We could use a cross-validation
procedure by block to optimize it. However, the code is in R and not optimized yet, which
prevented us to implement this computationally costly procedure. This is one of the improve-
ments we would like to make before releasing the code publicly.

Finally, it would be interesting from a mathematical point of view, to see if we can adapt
our model to continuous time, mixing point processes in continuous time and continuous
Gaussian processes. Moreover the possibility to have a continuum of frequencies would be
of interest to fine-tune the detection to meaningful rhythms of the neuroscience literature.
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SUPPLEMENTARY MATERIAL

Supplementary File
The Supplementary Files contains the missing proofs and the precise formulas for the perfor-
mance measures.
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