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Neighbourhood complexity of graphs of bounded twin-width∗

Édouard Bonnet† Florent Foucaud‡ § Tuomo Lehtilä¶ ‖ Aline Parreau∗∗

August 5, 2023

Abstract

We give essentially tight bounds for, ν(d, k), the maximum number of distinct neighbourhoods
on a set X of k vertices in a graph with twin-width at most d. Using the celebrated Marcus-Tardos
theorem, two independent works [Bonnet et al., Algorithmica ’22; Przybyszewski ’22] have shown the
upper bound ν(d, k) ⩽ exp(exp(O(d)))k, with a double-exponential dependence in the twin-width.
The work of [Gajarsky et al., ICALP ’22], using the framework of local types, implies the existence
of a single-exponential bound (without explicitly stating such a bound). We give such an explicit
bound, and prove that it is essentially tight. Indeed, we give a short self-contained proof that for
every d and k

ν(d, k) ⩽ (d+ 2)2d+1k = 2d+log d+Θ(1)k,

and build a bipartite graph implying ν(d, k) ⩾ 2d+log d+Θ(1)k, in the regime when k is large enough
compared to d.

1 Introduction

The aim of this paper is to refine our understanding of how complex the neighbourhoods of graphs of
bounded twin-width can be. We provide an improved bound on the neighbourhood complexity of such
graphs, complemented by a construction showing that our bound is essentially tight. The improvements in
the bounds for neighbourhood complexities translate directly to better structural bounds and algorithms,
in some contexts which are explained below.

Twin-width. Twin-width is a recently introduced graph invariant [10]; see Section 2 for a definition.
It can be naturally extended to matrices over finite alphabets and binary structures [10, 7, 12]. Although
classes of bounded twin-width are broad and diverse, they allow (most of the time, provided a witness
is given as an input) improved algorithms, compared to what is possible on general graphs or binary
structures.

Most prominently, it was shown [10] that, on n-vertex graphs given with a d-sequence (a witness that
their twin-width is at most d), deciding if a first-order sentence φ holds can be solved in time f(d, φ)n, for
some computable function f . In some special cases, such as for k-Independent Set or k-Dominating
Set1, single-exponential parameterised algorithms running in time 2Od(k)n are possible [5]. In the same
setting, the triangles of an n-vertex m-edge graph can be counted in time O(d2n+m) [21]. See [8, 19, 26]
for more applications of twin-width with an algorithmic flavour.
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1That is, the problems of deciding whether in an input graph, there are k vertices that are pairwise non-adjacent or

whose closed neighbourhood is the entire vertex set, respectively.
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Classes of binary structures with bounded twin-width include bounded treewidth, and more gener-
ally, bounded clique-width classes, proper minor-closed classes, posets of bounded width (that is, whose
antichains are of bounded size), hereditary subclasses of permutations, as well as Ω(log n)-subdivisions of
n-vertex graphs [10], and particular classes of (bounded-degree) expanders [6]. A rich range of geometric
graph classes have bounded twin-width such as map graphs, bounded-degree string graphs [10], classes
with bounded queue number or bounded stack number [6], segment graphs with no Kt,t subgraph, and
visibility graphs of simple polygons without large independent sets [4], to give a few examples.

If efficiently approximating the twin-width is a challenging open question in general, this is known
to be possible for the above-mentioned classes (albeit a representation may be needed for the geometric
classes) and for ordered graphs [7]. By that, we mean that there are two computable functions f, g and an
algorithm that, for an input n-vertex graph G from the class and an integer k, in time g(k)nO(1), either
outputs an f(k)-sequence (again, witnessing that the twin-width is at most f(k)) or correctly reports
that the twin-width of G is larger than k.

Structural properties of graph classes of bounded twin-width include χ-boundedness [5], with a poly-
nomial binding function [13], smallness (i.e., containing up to isomorphism 2O(n) n-vertex graphs) [6, 12],
and Vapnik-Chervonenkis (VC) density at most 1 [9, 19, 27]. The latter property is the topic of the
current article.

VC density and neighbourhood complexity. VC density is related to the celebrated VC dimen-
sion [30]. Given a set-system (or hypergraph) S on a domain X, the shatter function πS : N → N is
defined as

πS(n) = max
A∈(X

n)
|{Y ⊆ A | ∃S ∈ S, Y = A ∩ S}|.

The Perles-Sauer-Shelah lemma states that πS(n) = O(nd) if the VC dimension of S (i.e., the supremum of
{n | πS(n) = 2n}) is a finite integer d. Then the VC density of S is defined as inf{c ∈ R | πS(n) = O(nc)},
and as +∞ if the VC dimension is unbounded.

We define the VC density of an infinite class C of finite graphs as the VC density of the infinite
set-system formed by the neighbourhood hypergraph of the disjoint union of the graphs of C, that is,
{NG(v) | v ∈ V (⊎G∈CG)}, where NG(v) denotes the set of neighbours of v in G. The VC density
is an important measure in finite model theory, often more tractable than the VC dimension (see for
instance [1, 2]). Tight bounds have been obtained for the VC density of (logically) definable hypergraphs
from graph classes of bounded clique-width [25] (with monadic second-order logic), and more recently, of
bounded twin-width [19] (with first-order logic).

In structural graph theory and kernelisation [17] (a subarea of parameterised complexity [15]) the
function πN (G), where N (G) is the neighbourhood hypergraph of G, is often1 called neighbourhood com-
plexity. (See [3] for an algorithmic study of the computation of this notion.) In these contexts, obtaining
the best possible upper bound for πN (G) (and not just the exponent matching the VC density) translates
to qualitatively better structural bounds and algorithms; see for instance [9, 11, 16, 29].

The r-neighbourhood complexity of G is the neighbourhood complexity of Gr, with same vertex set
as G, and an edge between two vertices at distance at most r in G. Reidl et al. [29] showed that
among subgraph-closed classes, bounded expansion2 is equivalent to linear r-neighbourhood complexity.
Indeed, the more general nowhere dense classes [23]3 have almost linear r-neighbourhood complexity [16]:
there is a function f : N × N → N such that for every ε > 0, πN (Gr)(n) ⩽ f(r, ε)n1+ε for all n. On
hereditary classes, i.e., closed under taking induced subgraphs, there is no known characterisation of
linear neighbourhood complexity.

As we already mentioned in a different language, bounded twin-width classes have been proven to have
linear neighbourhood complexity. See [9, Lemma 3] or [27, Section 3] for two independent proofs, both
using the Marcus-Tardos theorem [22]. However, the dependence in the twin-width is doubly exponential
in both papers. Setting ν(d, k) as the maximum number of distinct neighbourhoods on a set of size k
within a graph of twin-width at most d, i.e., max{πN (G)(k) | G has twin-width at most d}, they show
that ν(d, k) ⩽ exp(exp(O(d)))k. There is a recent third proof not using the Marcus-Tardos theorem [19].

1Some authors define the neighbourhood complexity as n 7→
πN(G)(n)

n
.

2A notion from the Sparsity theory of Nešetřil and Ossona de Mendez [24] extending bounded degree and proper minor-
free classes.

3Another invention of the Sparsity program [24].
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The authors tackle the more general problem of bounding the number of distinct first-order definable
subsets within a fixed set. In the particular case of neighbourhoods, even though this is not made explicit
in [19], their proof gives a similar upper bound of ν(d, k) to ours.

Our results. In this note, we give in Section 3 a short and self-contained proof (also not using the
Marcus-Tardos theorem) that ν(d, k) ⩽ 2d+log d+Θ(1)k. In Section 4, we complement that proof with
a construction of a bipartite graph witnessing that ν(d, k) ⩾ 2d+log d+Θ(1)k, which makes our single-
exponential upper bound in twin-width essentially tight.

2 Preliminaries

We use the standard graph-theoretic notations: V (G), E(G), G[S], G− S respectively denote the vertex
set, edge set, subgraph of G induced by S, and subgraph of G induced by V (G) \ S. If v ∈ V (G), then
the open neighbourhood of vertex v in G denoted by NG(v) (or N(v) if G is clear from the context) is the
set of neighbours of v in G. If X ⊆ V (G), then an X-neighbourhood is a set N(v)∩X for some v ∈ V (G).

We now define the twin-width of a graph, following the definition of [10].
A trigraph is a triple G = (V (G), E(G), R(G)) where E(G) and R(G) are two disjoint sets of edges

on V (G): the usual edges (also called black edges) and the red edges. Informally, a red edge between two
vertices u and v means that some errors have been made between u and v. The red degree of a trigraph
is the maximum degree of the graph (V (G), R(G)). Any graph G can be interepreted as a trigraph
G = (V (G), E(G), ∅). Given a trigraph and two vertices u, v ∈ V (G) (not necessarily adjacent), the
trigraph G/u, v = G′ is obtained by contracting u and v in a new vertex w such that:

• V (G′) = {w} ∪ V (G) \ {u, v};

• the edges between vertices of V (G) \ {u, v} are the same in G′;

• we set the edges incident to w in the following way:

– wx ∈ E(G′) if xu ∈ E(G) and xv ∈ E(G);

– wx /∈ E(G′) ∪R(G′) if xu /∈ E(G) ∪R(G) and xv /∈ E(G) ∪R(G);

– wx ∈ R(G′) otherwise.

In other words, the common black neighbours of u and v are black neighbours of w. All the other
neighbours of u or v are red neighbours of w. Red edges stay red, black edges stay black, red and black
edges become red. Moreover, non-edges stay as non-edges, non-edges and red edges become red edges,
and non-edges and black edges become red edges. We say that G/u, v is a contraction of G. A d-sequence
of an n-vertex graph G is a sequence of n trigraphs G = Gn, Gn−1, ...., G1 such that each trigraph Gi is
obtained from Gi+1 by a contraction and has red degree at most d. The twin-width of G, denoted by
tww(G), is the minimum integer d such that G admits a d-sequence. Note that an induced subgraph of G
has a twin-width smaller or equal to the twin-width of G [10].

If u ∈ Gi, then u(G) denotes the set of vertices of G eventually contracted to u in Gi. Instead of
considering the trigraphs Gi, we might prefer to deal with the partitions of V (G) induced by the sets
u(G) for u in Gi: Pi = {u(G) | u ∈ V (Gi)}. In this setting, we say that u(G) is a part of Pi. We say
that there is a red edge, a black edge or a non-edge between two parts u(G) and v(G) of Pi if uv is a red
edge, a black edge or a non-edge in Gi.

3 Upper bound on the number of distinct neighbourhoods

We state and prove our upper bound on the maximum number of distinct X-neighbourhoods in bounded
twin-width graphs.

Theorem 1. Let G be an n-vertex graph of twin-width d, and X ⊆ V (G) where X ̸= ∅. Then the number
of distinct X-neighbourhoods in G is at most (d + 2)2d+1|X| = 2d+log d+Θ(1)|X|.
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Proof. Fix non-empty X ⊆ V (G). First of all, for all vertices of V (G)\X with the same X-neighbourhood,
we keep only one representative. Note that the new graph G′′ is an induced subgraph of G, thus its twin-
width is at most d. We further modify graph G′′ by adding for each v ∈ X a new vertex u to G′′ so that
N(u) = N(v) if such vertex does not exist in V (G′′) \ X. We do this one vertex at a time. The new
graph is called G′ and it has the same twin-width as G′′.

Let M = (d + 2)2d+1 + 1. We prove by induction on n that an n-vertex graph of twin-width at most
d with a set X of k ≥ 1 vertices, where all vertices outside X have a distinct X-neighbourhood, satisfies
n ⩽ kM . This will prove that G′ has at most kM vertices, and thus that in G, there are at most (M−1)k
distinct X-neighbourhoods.

The statement is trivially true for n ⩽ 5 since M ⩾ 5, for all d ⩾ 0.
Thus, assume n ⩾ 6. In particular, we have k > 1. Let x ∈ X. Let X ′ = X \ {x} and let Tx be the

set of pairs of vertices outside X that are twins with respect to X ′, i.e.

Tx =

{
{u, v} ∈

(
V (G′) \X

2

)
| N(u) ∩X ′ = N(v) ∩X ′

}
.

Since every vertex of V (G′) \ X has a distinct neighbourhood in X, there are at most two vertices of
V (G′) \X with the same (possibly empty) neighbourhood N in X ′; namely the vertices u, v ∈ V (G′) \X
with N(u)∩X = N and N(v)∩X = N ∪{x} (if they exist). Hence, Tx consists of pairwise-disjoint pairs
of vertices.

We prove the following claim.

Claim A. There exists a vertex x of X such that Tx comprises at most M − 1 pairs, in G′.

Proof of claim. Consider a d-sequence of contractions G′
n, . . . , G

′
1 of G′. Consider the last step G′

i of the
sequence where all the parts of Pi contain at most one vertex of X (that is, contrary to Pi, some part of
Pi−1 contains two vertices of X).

Let P be a part of Pi. Let x be the unique (if there exists one) element of P ∩X. Then we claim that
|P \X| ⩽ 2d+1. Indeed, any two vertices of P \X have some vertex in the symmetric difference of their
X-neighbourhoods, either it is x, or some vertex x′ of X outside P . If that distinguishing vertex is some
x′ that is not in P , then there has to be a red edge between P and the part that contains x′. There are
at most d red edges with P as an extremity. Since all the elements of X are in distinct parts in G′

i, it
means that d + 1 vertices of X are enough to distinguish all the X-neighbourhoods of vertices of P \X,
and thus |P \X| ⩽ 2d+1.

We now consider the next contraction in the sequence, which leads to G′
i−1. By definition of G′

i, it
must contract two vertices corresponding to two parts of Pi that both contain an element of X. Let
x1 and x2 be these two elements of X. Let Q be the part of Pi−1 that contains both x1 and x2. Let
{u, v} be a pair of Tx1 and let Tx1 contain M ′ pairs. Since u and v have the same neighbourhood in
X \{x1}, it means that they are either both adjacent or both non-adjacent to x2, and exactly one of them
is adjacent to x1. Thus, necessarily, one vertex among the pair {u, v} is adjacent to exactly one vertex
among {x1, x2}. In particular, if this vertex is not in Q, then there has to be a red edge between the part
containing this vertex and the part Q in G′

i−1. Since Tx1 contains M ′ pairs (which are disjoint) and Q
has at most 2d+2 vertices not in X, there are at least M ′ − 2d+2 vertices not in X whose part in G′

i−1

has a red edge to Q. Since each other part has at most 2d+1 vertices not in X, it makes at least M ′−2d+2

2d+1

red edges incident to Q. Thus, we must have M ′−2d+2

2d+1 ⩽ d, leading to M ′ ⩽ 2d+1(d + 2) = M − 1, which
proves the claim. (□)

By Claim A, there exists a vertex x ∈ X such that |Tx| ⩽ M − 1. Let Y be a set of |Tx| vertices that
intersects each pair of Tx exactly once. Let GY = G′ − (Y ∪ {x}). Then, X ′ = X \ {x} is a vertex set
of size k − 1 such that all X ′-neighbourhoods of vertices outside X ′ are distinct. The graph GY has at
least n −M vertices, and twin-width at most d. By induction, we have n −M ⩽ |V (GY )| ⩽ (k − 1)M
and thus, n ⩽ kM . Hence, once we recall that no vertex in X has unique X-neighbourhood, there are at
most (M − 1)k distinct X-neighbourhoods, which completes the proof.

4 Lower bound on the number of distinct neighbourhoods

Notice that when |X| and tww(G) are roughly the same, the bound from Theorem 1 cannot be sharp,
since G′ has at most 2|X| + |X| vertices. However, when |X| is large enough compared to tww(G), we
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next show that the bound is sharp up to a constant factor.

Proposition 2. There is a positive constant c, such that for any integer d, there is a bipartite graph G
of twin-width at most d, and a large enough set X ⊆ V (G), with at least c · d2d|X| = 2d+log d+Θ(1)|X|
distinct X-neighbourhoods in G.

Proof. Observe that the claim is clearly true for any small d. Thus, we do not need to consider separately
graphs with small twin-width upper bounded by a constant. Hence, we assume from now on that d ≥ d′

where d′ is some positive constant (at least 3).
We construct the graph G as follows. Let A, B, C ∈ Z be three constants that will be given later

(A and B will be roughly equal to
√
d and C will be roughly equal to d). Let X = {x1, ..., xk} be an

independent set of k ≥ d+2
√
d− 2+1 vertices. Our goal is to construct G so that each vertex in V (G)\X

has a unique X-neighbourhood. For any integers i, j, t with 1 ⩽ i ⩽ j ⩽ i + A− 1, j + 2 ⩽ t ⩽ j + 1 + B
and t ⩽ k − C, we create a set Vi,j,t of vertices as follows. Consider the set Xt = {xt+1, ..., xt+C}. For
every subset Y of Xt, let Y ′ = {xi, ..., xj , xt} ∪ Y and add a vertex vY ′ to Vi,j,t, making it adjacent to
the vertices of Y ′. Each set Vi,j,t has size 2C and there are Θ(kAB) (for fixed A, B and C, and growing
k) such sets. Thus there are Θ(kAB2C) vertices in the graph.

Any two vertices not in X have distinct X-neighbourhoods. Indeed, by considering the natural
ordering of X induced by the indices, any vertex not in X is first adjacent to a consecutive interval
of vertices from xi to xj , then is not adjacent to vertices from xj+1 to xt−1 (which is not empty since
t ⩾ j + 2), and then adjacent to xt. Thus, if two vertices have the same X-neighbourhood, they must be
in the same set Vi,j,t. But then, they have a distinct neighbourhood in {xt+1, ..., xt+C}.

We now prove that the twin-width of G is at most M = max{AB,C}+2. For that, we give a sequence
of contractions with red degree at most M .

The contraction sequence is split into k − C steps. During these steps we first consider vertices of X
one by one and then in the last one we deal with the remaining vertices of X. Let 0 ≤ ℓ ≤ k − C − 1.
Step 0 corresponds to the starting point, where each vertex is alone. Let ℓ ⩾ 1. After Step ℓ, there will
be the following parts in the corresponding partition (vertices not in any of the mentioned parts are in
corresponding singleton parts containing only the vertices themselves):

• Let i = ℓ. For each j, t such that i ⩽ j ⩽ i + A− 1 and j + 2 ⩽ t ⩽ j + 1 + B, there is a part Bj,t.
The parts Bi,t (parts with j = i), contain all the vertices of the sets Vi′,j′,t such that j′ ≤ i. The
parts Bj,t with j > i contain all the vertices of the sets Vi′,j′,t such that i′ ⩽ i and j′ = j. Note
that there are AB non-empty Bj,t parts in total.

• There is a part X0 that contains vertices from x1 to xℓ of X.

• There is a part T (for “trash”) that contains all the vertices of the sets Vi′,j,t with t ⩽ ℓ + 1.

All the other vertices are not yet contracted. This corresponds to the vertices from xℓ+1 to xk of X
and to the vertices of the sets Vi′,j,t with i′ > i = ℓ. Indeed, if i′ ⩽ i and t ⩽ i + 1, then the vertices of
Vi′,j,t are in T . If t ⩾ i + 2 but j ⩽ i, then they are in the part Bi,t. If j > i, then they are in the part
Bj,t.

We first prove that the red degree after Step ℓ is at most M . Then, we explain how to get from Step
ℓ to Step ℓ + 1 by keeping the red degree at most M .

Consider the part Bj,t at the end of Step ℓ. A vertex in this part belongs to some set Vi′,j′,t with
i′ ⩽ i = ℓ and j′ = j if j > i or j′ ⩽ i otherwise. In particular, two vertices of Bj,t are adjacent to all the
vertices between xi+1 and xj , to no vertex between xj+1 and xt−1, to xt, and to no vertex after xt+C .
Thus, there is a red edge between the parts Bj,t and X0, and C red edges between the part Bj,t and the
vertices {xt+1, ..., xt+C}. Therefore, the number of red edges incident with Bj,t is at most C + 1.

Consider now the part T . Vertices in T are adjacent only to vertices of X up to xℓ+C+1. Since vertices
x1 to xℓ are all in the part X0, the red degree of T is at most C + 2.

Single vertices not in X have no incident red edges: indeed, they are all in some sets Vi′,j,t for i′ > i = ℓ
and thus are not adjacent to any vertex of X0. For the same reason, there are red edges incident to X0

only to T and to the parts Bj,t. Hence, the red degree of X0 is at most AB + 1. Similarly, the red degree
of xi′ , i

′ > i + 1 is at most AB + 1. Moreover, the red degree of xi+1 is at most one. Indeed, the only
red edge is between xi+1 and T .

Finally, the red degree after step ℓ is at most max{AB + 1, C + 2} ⩽ M .
Let ℓ ≥ 0. We now explain how we perform the contractions to go from step ℓ to step ℓ + 1.
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1. (only if ℓ ≥ 1) Let i = ℓ. For any i + 3 ⩽ t ⩽ i + 2 + B, merge the part Bi,t with the part Bi+1,t

resulting in part Bi+1,t. The only new red edge this merging may lead to, when Bi,t is non-empty,
is between Bi+1,t and xi+1. Thus, we add only one red edge between xi+1 and Bi+1,t. Thus, the
red degree of Bi+1,t is at most C + 2 and the red degree of xi+1 is at most 2.

2. Add all the vertices of Vi+1,j,t for some j, t to the part (that might be empty at this point) Bj,t.
The red degree of Bj,t is at most C + 2 since we might have a red edge between Bj,t and xi+1.
The number of nonempty parts Bj,t at this point is at most AB + 1 (there is still the part Bi,i+2).
Adding T , this gives AB + 2 red edges incident to a vertex in X (or from part X0).

3. Add xℓ+1 to X0. The part X0 can have red edges only to non-empty parts Bj,t and to T , but no
red edges to the single vertices. Thus, it has red degree at most AB + 2.

4. Put the part Bi,i+2 into T . This part is only adjacent to vertices up to xℓ+2+C , and thus has at
most C + 2 red edges.

Thus, at each point, the red degree is always at most M = max{AB,C} + 2.
The process ends at step ℓ = k − C − 1. Then, all the vertices not in X are in some parts, and there

are at most AB + 1 such parts. On the other side of the bipartition, we have part X0 and C + 1 single
vertices. Thus, the graph is bipartite with both sides of size at most M . One can contract each part
independently to finish the contraction sequence.

To conclude, taking C = d − 2 and A = B = ⌊
√
d− 2⌋, we have M ⩽ d and kAB2C = Θ(kd2d).

Notice that we may assume that A,B and C are positive since d ≥ d′ where d′ was some well chosen
positive constant. This concludes the proof.

5 Conclusion

We have given an essentially tight upper bound for the neighbourhood complexity of graphs of bounded
twin-width together with a construction almost attaining this upper bound. Moreover, our method is
simple and self-contained. A similar upper bound was implied by the techniques in [19] (though not
stated explicitly).

It is known that the twin-width of Gr can be upper-bounded by a function of the twin-width of G
and r [10]. Thus, graphs of twin-width at most d have linear r-neighbourhood complexity. Recently,
improved bounds were given for planar graphs and proper minor-closed graph classes in [20] (such graphs
also have bounded twin-width). We leave as an interesting open problem to obtain an essentially tight
twin-width dependence for the r-neighbourhood complexity.

We remark that the neighbourhood complexity is also related to identification problems on graphs
such as identifying codes or locating-dominating sets, where one seeks a (small) set A of vertices of a graph
such that all other vertices have a distinct neighbourhood in A [18]. Some works in this area about specific
graph classes, are equivalent to the study of the neighbourhood complexity of these graph classes: see for
example [14, 18, 28]. Moreover, we note that for graph classes with VC density 1, since any solution has
linear size, the natural minimisation versions of the above identification problems have a polynomial-time
constant-factor approximation algorithm (trivially select the whole vertex set), while such an algorithm
is unlikely to exist in the general case [14]. Thus, the bounds given in the current work imply a better
approximation ratio for these problems, when restricted to input graph classes of bounded twin-width.

Acknowledgement. We thank an anonymous reviewer for pointing out the implicit upper bound
of [19] mentioned in the introduction.
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[6] Édouard Bonnet, Colin Geniet, Eun Jung Kim, Stéphan Thomassé, and Rémi Watrigant. Twin-
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