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Abstract—The Industrial Internet of Things (IIoT) has now
emerged for many industrial applications. However, many crit-
ical applications require high reliability and bounded end-to-
end latency. Fortunately, scheduled wireless networks such as
IEEE 802.15.4-TSCH try to orchestrate finely the transmissions.
In particular, the Software-Defined Networking (SDN) paradigm
is promising to concentrate the intelligence of the network
in a controller and to simplify the functions achieved by the
motes. SDN controller relies on link quality information of
wireless devices to construct the routing topology of the network
and to provision adequate radio resources for each link. We
propose here an accurate link quality estimation scheme based
on the SDN-TSCH, as an SDN solution for IEEE 802.15.4-TSCH
network. We exploit the centralized view of the SDN controller
to transmit packets of link quality estimation in a collision-
free manner. Moreover, we investigate the performance of the
control plane of SDN-TSCH through different shared, dedicated,
and hybrid (mix of shared and dedicated cells) approaches.
We figured out that the dedicated control plane provides high
reliability and fast convergence for wireless SDN networks.

Keywords—Industrial Internet of Things; Software Defined
Networking; scheduling; resource allocation; control plane; flow
isolation

I. INTRODUCTION

Industrial Internet of Things (IIoT) is a base enabler for
Industry 4.0 to automate the industrial processes [1]. IIoT
relies on wireless communication, which provides a high level
of flexibility and scalability for industrial applications. A large
number of devices construct a network and transmit their
measurements to a gateway through multi-hop wireless links.

Channel conditions and interference can affect the reliabil-
ity of wireless links, and consequently the Quality of Service
(QoS) of applications. Wireless links are known to be lossy
and time-variant: by changing the channel conditions, a link
may not provide good quality anymore and the receiver does
not receive all the packets correctly. Moreover, interference
happens between concurrent transmissions of the same radio
frequency and fails the transmissions.

Deterministic Medium Access Control (MAC) protocols
have been proposed to cope with these constraints and to
provide reliability. IEEE 802.15.4e-Time Slotted Channel
Hopping (TSCH) [2] proposes a TDMA-based frequency hop-
ping mechanism to avoid the collision. A scheduling matrix
of timeslots and channel offset determines the transmission
opportunity of each link. By staying in the same timeslot,
the frequency channel changes for the next transmission of

a link. IEEE 802.15.4-TSCH supports both centralized and
distributed scheduling algorithms.

Software Defined Network (SDN) paradigm proposes a
high potential to manage industrial networks [3]. By cen-
tralizing the intelligence part of the network and providing a
global view, the SDN controller can perfectly define flow rules
and manage the network efficiency. Particularly in scheduled
industrial wireless networks, exploiting SDN concept helps
to fulfill the flow guarantee of critical applications. SDN-
TSCH [4] leverages the SDN concept for IEEE 802.15.4-
TSCH network to: i) construct a dedicated control plane,
coping with collision and unreliability of wireless links. ii)
meet the QoS requirements of critical applications by flow
isolating and per-flow resource provisioning.

SDN controller relies on local link quality measurements
of nodes to build the network topology and allocate sufficient
radio resources for weak links. Accuracy of link estimation
has a severe impact on bandwidth and energy of the network.

Also, devices are energy-constrained in IIoT networks, and
maintaining a fully dedicated control plane proposes a high
cost of energy.

The contributions of this article are as follows:
1) we propose an approach to enhance the accuracy of link

quality estimation in the SDN-TSCH. In particular, we
delegate the control of Enhanced Beacon (EB) transmis-
sions to an SDN controller. A controller schedules EB
packets to provide a collision-free link estimation for
nodes.

2) we separate the shared cells of EB transmissions from the
shared cells of the rest of the broadcast traffic to avoid
impacting each other.

3) we evaluate the performance of shared and dedicated
control planes in SDN-TSCH network to quantify the
impact of realistic conditions (i.e., lossy links) on the
SDN network, which (to the best of our knowledge) has
never been addressed in scheduled wireless networks. We
illustrate how a fully dedicated control plane provides
high-reliability to maintain the network consistent.

II. RELATED WORKS

Software Defined Networking (SDN) [5] is a promising
paradigm to make the network more agile. SDN decouples
the intelligence part (control plane) of network devices from
the forwarding part (data plane). It centralizes the network



intelligence in the SDN controller, which has a complete
view of the network. The SDN controller uses a so-called
southbound API (e.g., OpenFlow) to communicate with the
data plane and install rules on forwarding devices. The node
has just to apply rules in its flow table to forward any packet.
Many propositions have been done to adapt the SDN for
Wireless Sensor Networks (WSNs), and delegate processing
tasks from constrained devices to the SDN controller.

The SDN controller relies on the local information gathered
from nodes to construct a representation of the network (as
a graph) and to make decisions. As a result, link quality
estimation is of crucial importance to allow a controller to
make relevant decisions. Link quality estimation is widely
investigated in the literature [6]. Link quality can mainly be
estimated based on [7]:

• physical layer metrics including Link Quality Indicator
(LQI), Signal to Noise Ratio (SNR), and Received Signal
Strength Indicator (RSSI);

• link-layer information such as Packet Reception Rate
(PRR).

In SDN-WISE [8], the RSSI of the last beacon packet is
used as the link quality metric. The RSSI value is later used as
edge weight in the topology graph of the network. However,
RSSI is an inadequate metric in estimating the quality of links,
and a high RSSI does not automatically imply a high packet
reception ratio [9].

TinySDN [10] relies on probing packets to estimate the
link quality. Each node broadcast probing packets and waits
for the responses from neighbors to calculate the Expected
Transmission Count (ETX) for each link. ETX takes into
account link asymmetry and provides high-throughput routes.
However, sending probing packet increase the communication
overhead. Also, in overloaded networks, many nodes fail to
compute the ETX because they cannot receive packets.

SDN-TSCH [4], without defining a new probing packet,
leverages Enhanced Beacons (EBs) of the TSCH network to
estimate the link quality [11]. Each node counts the number
of received EBs from each neighbor in a given time window
and provides this information to a controller. A controller
computes the Packet Receiving Rate (PRR) of EBs for each
neighbor as a link quality metric. The periodically sending
nature of EBs lets nodes continuously perform link estimation.
However, EB packets are handled on shared cells, so they may
experience collisions resulting in a potential underestimation
of the link quality.

III. BACKGROUND

We first detail background notions on IEEE 802.15.4-
TSCH, a scheduled protocol for low-power networks. Then,
we present SDN-TSCH which is an SDN scheme for IEEE
802.15.4-TSCH network.

A. IEEE 802.15.4-TSCH

IEEE 802.15.4-TSCH [2] is a mode of the IEEE 802.15.4
standard which targets industrial applications. The approach
exploits a frequency-time division multiple access (FTDMA)

MAC layer, with a channel hopping mechanism. Transmis-
sions rely on an FTDMA matrix, that defines when a trans-
mitter can start a transmission, and which channel it has to
use. FTDMA helps to combat internal interference: when
two transmitters may interfere, the network schedules their
transmissions at different instants or frequencies. Frequency
hopping mitigates multipath fading and external interference.
Indeed, other networks may be colocated, using the same
unlicensed band, adding noise to some frequencies. Frequency
hopping helps to reduce the probability of repetitive packet
losses: link-layer retransmissions will use a different fre-
quency.

TSCH relies on a slotframe that is repeated over time. A
slotframe can be represented as a scheduling matrix composed
of cells (pairs of timeslots and channel offsets). The standard
defines two types of cells in the scheduling matrix:
a dedicated cell is allocated to one transmitter. The transmit-

ter waits for a fixed offset from the beginning of the cell
to accommodate clock drifts, and then sends its frame.
If the same dedicated cell on the same channel offset
is assigned to interfering transmitters, collisions will be
repetitive.

a shared cell can be allocated to more than one transmitter,
so collision may happen between two concurrent trans-
missions. Thus, a contention resolution mechanism is
applied for acknowledged packets. The transmitter starts
the TX in the next shared cell and waits for an ack. If no
ack is received, it waits for a random number of shared
cells to retransmit the same packet. Thus, collisions may
be quite frequent in shared cells [12].

The standard lets the scheduling mechanism unspecified.
The scheduling algorithm may be distributed as well as
centralized [13]. In distributed scheduling, each node executes
an algorithm to dynamically modify its local schedule. Versus,
in centralized scheduling, an algorithm is executed by a
centralized controller such as a Path Computation Element
(PCE) [14] that has complete knowledge of the network
topology, as well as the traffic needs.

While many centralized scheduling algorithms have been
proposed, they have been mostly evaluated with Monte-Carlo
simulations, assuming that all the inputs are known accurately.
However, collecting inputs and pushing scheduling decisions
are challenging in wireless low-power networks: transmissions
are unreliable, and the multi-hop nature of the network com-
plexifies the control plane deployment.

B. Overview of SDN-TSCH

In our previous work [4], we proposed SDN-TSCH, an
SDN architecture for industrial wireless sensor networks. The
SDN controller performs the flow isolation in the network
and allocates sufficient resources for the flows with respecting
their QoS requirements.

1) Label switching for SDN: the SDN controller defines a
flow-id for each flow and populates the flow tables accord-
ingly. More precisely, each TX cell is labeled by a flow-id,
and at the beginning of the TX cell, a node picks the first
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Fig. 1: Dedicated control plane in SDN-TSCH

packet corresponding to the flow-id to send. This mechanism
provides flow isolation for data traffic because two flows can
not compete for the same cell if they are assigned to different
flow-ids. The flow-id is piggybacked in the header of each
packet: when receiving a packet, a device extracts the flow-
id from the header and looks up the flow table to find the
matching rule to forward the packet. Particularly, two flow-
ids are defined for the control plane:
”to-controller” for upward control packets generated by

nodes;
”from-controller” for downward packets generated by a con-

troller;
2) Configuration of control plane: a novel node joins the

network, iIt needs first to join the TSCH network. In addition
to TSCH synchronization Information Elements (IEs), the EB
also includes the number of shared cells. The novel node
extracts the number of shared cells and installs shared cells in
its slotframe uniformly. The novel node listens to the medium
for a period of time (report period) and tries to discover its
neighbors by receiving EB packets from them.

When the novel node has performed the discovery process,
it creates a report packet including the list of neighbors
and the number of EBs received from each neighbor. It sends
the report packet through a shared cell to any neighbor
that has already joined the network. The node that receives
the report packet already has a configured control plane
to send the report packet through a dedicated control path
toward a controller.

When a controller receives the report packet, it admits the
novel node by adding it to the list of configured nodes and
selects the neighbor with the highest EB number (extracted
from report) as the parent of the novel node. A controller
chooses two free cells in the schedule to configure the control
plane of the novel node for upward and downward directions.
Then, a controller prepares two config packets to include
flow-ids and the cell IDs in which.

SDN-TSCH exploits the source routing technique to handle
the config packets. Each config packet includes the list
of addresses from the sink node to the novel node, through
which the config packet will be forwarded. Each node that

receives a config packet finds its position in the source
routing list and extracts the next address in the list as the
node to which it has to forward the config packet. The
two last hops (i.e., the novel node and its parent) install the
schedule as specified in the config packet.

In Figure 1, a novel node sends a list of its neighbors
and their EB number to a controller. In return, it receives
a config packet including the schedule for the ”to” and
”from controller” flow-ids. Indeed, the schedule is encoded
for each hop as <number_of_cells:list_of_cells>
that each cell corresponds to a TX cell. All the cells of the
control plane are dedicated to avoid collisions.

3) Admission of a critical data flow: A node that needs to
admit a novel flow sends a flow-request packet through
the control plane toward a controller. The flow-request
contains the source and the destination addresses, as well as
the required QoS (end-to-end reliability and deadline) for the
application. A controller when receiving the flow-request
allocates resources accordingly to respect these QoS require-
ments. For this purpose, the scheduler:

1) allocates backup retransmission cells for weak links
along the path to respect the end-to-end reliability;

2) makes effort to schedule cells back to back before the
deadline. The first forwarding cell for a node is placed
right after the last retransmission cell of the previous hop.

Finally, a controller prepares a config packet to push
the novel configuration. The config packet is forwarded
through the control plane to configure the path from the
destination toward the source. When the source node receives
the config packet, the whole path is configured, and the
node starts sending data packets.

Figure 2 illustrates a simple scenario where S sends a
flow-request (including QoS requirements and address of
D as destination) to a controller through the ”to-controller”
flow-id. In return, the config packet is forwarded in source
routing, like the initial join process. It uses the ”to-controller”
or ”from-controller” depending on if the next hop in the path
is up or downward. A and B relay the config packet to
reach D with no modification on their own schedules. Then,
D receives the config packet and installs the first cells of
the flow (starting from the destination).

To find the direction of handling config packet, each node
verifies whether the address of the next hop also exists in the
list of nodes before its position. Indeed, a node is present twice
in the config packet for the subpath between the destination
and the common ancestor (e.g., subpath D, B in Fig. 2). If
this is the case, the next hop is an upper-hand node, and
the config packet must be handled in the upward direction
by ”to-controller” flow-id. Otherwise, the config packet is
handled in the downward direction through ”from-controller”
flow-id. In Figure 2, the config packet includes the path
A,B,D,B,E, S so D knows that B is reachable through
the ”to-controller” flow-id and B knows that E is reachable
through the ”from-controller” flow-id.
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IV. LINK QUALITY ESTIMATION

We need to estimate accurately the link quality to make the
wireless SDN network efficient. The SDN controller exploits
the link quality information to compute the best route and
to allocate sufficient radio resources for each link. Basically,
two different approaches may be applied to estimate the link
quality in wireless networks [6]:
active monitoring: a node sends probing packets to neigh-

bors to estimate the quality of their links. Probing packets
can be sent in broadcast or unicast. However, unicast-
based link monitoring can provide higher accuracy. By
contrast, broadcast-based link monitoring is easy to im-
plement and has lower overhead compared with the
unicast-based approach.

passive monitoring: exploits the existing traffic of the net-
work. Common packets or their acknowledgments can be
leveraged for link quality estimation. Passive link moni-
toring is the widely used method in low-power wireless
networks because of its energy efficiency. However, the
regularity and rate of traffic can impact the accuracy of
the measurements.

A. Requirements

We need to consider the following challenges that are
specific to scheduled wireless networks:
all-neighbors discovery: to build a complete routing topol-

ogy, the SDN controller should be aware of all links and
their qualities in the network. Unfortunately, in scheduled
networks, a node can only estimate the link quality of the
neighbor with which it exchanges packets.

accurate estimation: link quality misestimation has a severe
impact on the network capacity and on reliability. In
the case of underestimation, a controller will allocate
more bandwidth for the link and waste both the network
capacity and the energy. By contrast, if the link quality
is overestimated, not enough bandwidth is allocated,
and some packets will be dropped or received after the
deadline.

continuous estimation: due to the dynamic nature of wire-
less networks, link qualities may change. Thus, the link
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Fig. 3: Accuracy of link quality estimation in SDN-TSCH

estimation system should continuously inform a con-
troller of the last changes in the network.

energy efficiency: exploiting active monitoring in the sched-
uled wireless network is costly. Allocating one dedicated
cell to each neighbor for probing consumes high band-
width and energy. To have an energy-efficient link esti-
mation system, Hermeto et al. [11] proved that accurate
link quality estimation can be achieved by continuously
sending broadcast packets.

B. Limitations of SDN-TSCH

SDN-TSCH proposes a passive link monitoring scheme. It
leverages the EB packets of the TSCH network to estimate the
quality of the links. Each node counts the number of received
EBs from each neighbor in a given period of time. Because
the EB packets are sent periodically, a node knows how many
EBs it should receive from a neighbor during a given amount
of time. A controller calculates the PDR of EB packets and
uses it as a link quality metric.

SDN-TSCH relies on shared cells to send EB packets. To
minimize the collision rate of EB packets, shared cells are
uniformly located in the slotframe. Each node generates EB
packets periodically and tries to send them in the first coming
shared cell.

Figure 3 illustrates the inefficiency of the link quality
estimation in SDN-TSCH. We will detail the simulation setup
in Section VI. We measure the accuracy of the link quality
estimation when varying the ratio of the number of cells
and the number of nodes (network size). More precisely,
we measure the normalized link quality, as the ratio of the
Packet Delivery Ratio (PDR) estimated by the algorithm and
the actual PDR of the link (directly extracted from the PHY
model). As shown, EBs still collide even when allocating a
large number of shared cells, resulting in an inaccurate link
quality estimation. SDN-TSCH keeps on underestimating the
link quality, biased by the collisions of EBs.

We propose to solve here this link quality misestimation by
scheduling more appropriately the EBs. We keep on exploiting
shared cells to optimize the discovery process and the contin-
uous link quality re-estimation, while removing collisions.



C. Organization of the shared cells in the control plane

We need to send control packets in the control plane (join-
ing, configuration, etc). More specifically, report packets
for the novel nodes cannot use dedicated cells since no
resource has been reserved. Thus, the flow-ids ”to-controller”
and ”from controller” have not yet been configured. Similarly,
keep-alive packets are required at the beginning to maintain
the synchronization with the synchronization parent if no data
packet is forwarded. We propose to use shared cells to send
those control packets.

EBs use also shared cells for the network discovery. Thus,
we propose that the SDN controller determines in which
shared cell a node must send its EB packets. A controller
allocates a given shared cell to a single node for the EBs trans-
missions. Thus, we cannot have anymore EB collisions. Since
we use shared cells, all the neighbors receive EBs, contrary
to dedicated cells. More importantly, the link quality may be
estimated and updated for unused or even undiscovered links.

At the beginning of a shared cell, a node makes the
following verifications:

1) if the shared cell is the EB cell dedicated to the node, it
engages the transmission of its EB;

2) if the shared cell is the EB cell for another neighbor
node, the node keeps awake to receive possibly its EBs;

3) if the shared cell is not an EB cell, the node transmits the
first control packet in its queue. If none is present, it stays
awake to receive possibly solicitations from neighbors.

In any case, a node in listening mode can turn off its radio
after a fixed offset if no preamble is detected on the medium.

D. Schedule of EBs shared cells

Each node uses a given shared cell in slotframe to transmit
its EBs. Indeed, each shared cell has a unique ID in the
slotframe, and in joining the network, a controller specifies
which shared ID must be used by a novel node. A controller
allocates shared cell IDs sequentially, in the order of the arrival
of the nodes. The last joined node has the maximum shared
cell id (MAX-ID). In that way, we can make a distinction
between the EB and non-EB parts of the slotframe. Since the
MAX-ID value is announced in the EBs, the novel value is
pushed hop by hop in the network, and after a given amount
of time, all the nodes are aware of the novel cells reserved
for the EBs.

We allocate some extra shared cells for non-EB traffic, and
also separate the shared cells of EBs from non-EBs. To avoid
collision with non-EB packets, nodes should only use the
shared cells that are not used for any EB. Since EB cells are
assigned sequentially, then a node can use any shared cells
that have IDs larger than MAX-ID.

Meanwhile, the distribution of non-EB shared cells can
impact the amount of collision in non-EB traffic. If the
shared cells for non-EB traffic are grouped contiguously in
the slotframe, the nodes experience a high collision rate [15].
Indeed, the nodes that generate their non-EB packets at the
beginning of slotframe have to wait until the end of slotframe
to send their packets. Then, all the nodes try to use the
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Fig. 4: Shared cell ID allocation in slotframe

first coming non-EB shared cell which leads to a cumulative
collision.

We exploit a recursive division algorithm to distribute
uniformly the shared IDs in the slotframe, and thus to reduce
collisions. The recursive division algorithm allocates cell IDs
as far as possible from each other and helps to not have a burst
of traffic after the EB cells. Basically, a controller allocates
the next EB shared cell in the middle of the largest remaining
space without EB shared cells.

Figure 4 also shows an illustration of our algorithm in a
slotframe with 7 shared cells. Recursively, in each step, the
algorithm divides the number of shared cells into two and
allocates the next ID to the middle cell.

E. Estimation of shared cell for non-EB traffic

We use the slotted Aloha model to estimate the number of
shared cells in a slotframe for both EB and non-EB traffic.
We assume that for joining the SDN network, nodes wake up
at any time and generate a join request when they received
a sufficient amount of EBs from already attached neighbors.
We assume the control traffic in shared cells (keep-alive and
report packets) follows a Poisson distribution with a mean
of λ. We calculate the collision probability through:

P (collision) = 1− P (idle)− P (success)

= 1− e−λ − λe−λ
(1)

P (idle) denotes the probability of zero transmission, and
P (success) is the probability of one unique transmission in
the timeslot. By fixing the maximum acceptable value of
P (collision), we obtain the λ value. With the number of
generated packets in the slotframe, we find the number of
required shared cells:

Non EB cell = λ ·Num packet (2)

Num packet is the sum of all non-EB packets for all the
nodes in the slotframe. Indeed, to provide a safety margin,
we assume the worst-case situation in which all the nodes
are in the transmission range of each other, and a shared cell
may be used by any node in the network. Moreover, for EB



transmissions, each node needs one shared cell. Hence, the
total number of shared cells is finally:

Num shared cell = Non EB cell+Node number (3)

V. RESOURCE ALLOCATION AND CONFIGURATION OF
CONTROL PLANE

We may allocate a large number of dedicated cells and
flow-ids to create a reliable control plane. However, the more
cells we allocate, the more we increase energy consumption.
Indeed, unused cells consume a fixed amount of energy [16]:
a receiver has to stay awake during a fixed offset from the
beginning of the timeslot to accommodate clock drifts.

We investigate here three different methods to implement
the control plane:
shared: all the control packets use the shared cells, that

are mutualized in the network to reduce the amount of
resource allocated to the control plane;

dedicated: each node maintains one dedicated cell to send
control packets to its parent, and another one to its
children. While no collision can arise among control
packets, more resources are allocated to the control plane;

hybrid: each node maintains one dedicated cell to send
control packets to its parent and sends other control
packets through shared cells. Downward transmissions
may be adjusted by a controller, and we may expect a
low volume of collision in downlink.

The cost of these different architectures for the control plane
will be evaluated in the following section.

A. Dedicated control plane

We propose in this variant to use only dedicated cells when
the node has joined the network. Thus, control packets are
protected against collisions, and we can upper-bound the delay
to reconfigure a network (that depends on the size of each
subtree rooted at the sink). When admitting a novel node, a
controller allocates two dedicated cells:
dedicated-up: is reserved for the control traffic sent to the

parent (for the flow-id ”to-controller”);
dedicated-down: is reserved for the control traffic sent to

any child (for the flow-id ”from-controller”). Practically,
all the children have to stay awake for this dedicated
cell. Only the link-layer destination will acknowledge the
control packet.

However, exploiting dedicated cells has a cost: each node
has to stay awake during 4 dedicated cells (i.e., to and from
children, to and from parent) per slotframe, even if no control
traffic is transmitted. In particular, the cells corresponding
to the flow-id ”from controller” are uniquely unused for
config packets and are thus unused after the network has
converged.

B. Shared control plane

It may be energy efficient to exploit only the shared cells
to handle all the control traffic [17]. We face to a burst
of control packets when the network bootstraps, and all the
shared cells are mutualized to send all the control traffic. We

could expect statistical multiplexing to make the number of
collisions reasonable. However, using shared cells impacts the
convergence time of the network: collisions may delay or
even prevent nodes to exchange admission request/response
packets.

Moreover, a shared control plane may affect the recovery
time of critical applications. In particular, an event may occur
locally that triggers flow reconfiguration. For instance, the
decrease in the quality of a critical link may force a controller
to reconfigure all the flows that pass through this faulty
link, changing the paths, or rescheduling the whole flow
to respect deadline constraints. A shared control plane may
jeopardize the re-convergence of the network. Thus, a shared
control plane is likely to be not agile enough to deliver the
reconfiguration request in a timely manner.

C. Hybrid control plane

We propose a hybrid variant to combine dedicated cells in
uplink and shared cells in downlink. Indeed, report pack-
ets are only transmitted uplink, through the ”to controller”
flow-id. The rest of the control packets that may compete
correspond to i) config packets from a controller, ii) keep-
alive packets to maintain the synchronization, iii) report
packets from novel nodes. It is worth noting that the EBs
cannot collide with other control packets, since shared cells
allocated by a controller to EBs are protected.

Keepalive packets are only used when the network boot-
straps. Indeed, nodes use any packet (including the data ones)
for re-synchronization. Thus, when the network has converged
and when each node forwards or generates data packets,
the network is maintained synchronized. Keepalive packets
are only required to maintain the synchronization before the
arrival of the config packet from a controller.

In conclusion, we would expect a lower amount of col-
lisions compared with the full share control plane, but the
convergence delay has to be finely measured to quantify the
cost of using shared cells in the downlink.

VI. PERFORMANCE EVALUATION

We first assess the accuracy of our link quality estimation
solution and compare it with SDN-TSCH. Then, we evaluate
the performance of our three different control plane architec-
tures. We consider here a single controller that allocates all
the resources.

A. Evaluation setup

We use the Contiki-ng operating system and the Cooja
simulator for our implementation. We simulate networks with
sizes of 10, 20, 30, 40, and 50 nodes. Each node has a critical
data flow to transmit to the sink node (i.e., convergecast
traffic). We consider critical applications that require an end-
to-end PDR larger than 99% and with a deadline of 2 seconds.
A controller allocates a novel flow-id and a set of cells to each
critical flow to meet the requirements. Table I represents our
different parameters.



TABLE I: Simulation parameters

Simulation
environ-
ment

OS: Contiki-ng (version 4.7)
Simulator: Cooja
https://github.com/Farzadv/Contiki-ng-SDN-TSCH.git
Simulation time: 2.2h
Propagation model: Unit Disk Graph Medium [18]
Tx range = 100 m
Interference range = 150 m
Rx success = proportional to distance (100% - 0%)
Initial energy = 2400 mAH (AAA battery)
Energy consumption model = Energest tool in Contiki-ng
(tx curr = 17.7mA, rx curr = 20mA)

Topology Network sizes: 10, 20, 30, 40, and 50 nodes

Application
Number of data flow: 1 flow per node
Traffic pattern: Convergecast
Traffic rate: Constant Bitrate, 1 packet every 5s

Applications Requested PDR: 99%
Requested deadline: 2s

SDN-
TSCH

TSCH EB period: 15s
SDN report period: 5 min
flow-request timeout: 50s
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Fig. 5: Link quality estimation

B. Accuracy of the link quality estimation

We measure the accuracy of our link quality estimation for
our scheduled EB approach and compare it with the original
approach described in [4]. We measured in particular the
normalized link quality, which is the ratio between the PDR
measured by the approach, and the actual PDR as modeled by
the simulator (Figure 3). An ideal estimation would always
return quality of 1. Values below 1 mean that the PDR is
under-estimated, and values above 1 mean that the PDR is
over-estimated.

We use the same number of shared cells for both scheduled
EB and unscheduled EB solutions. As shown in the scheduled
EB approach, link qualities are estimated with high accuracy
regardless of the network size. The error seems following a
normal distribution centered on the real value. The quality
is highly under-estimated when EBs are not scheduled: an
EB may not be received because of a low SNR value, or
because of a collision. Even worse, the error increases for
larger network sizes, with a normalized quality tending toward
zero for the largest network sizes. This misestimation leads
to high energy consumption: a controller allocates too much
resources for all the flows, wasting bandwidth and energy.
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Fig. 6: Network convergence time

Our scheduled-based solution is very efficient since we can
estimate very accurately the PDR of each link, that is reported
in report packets. Thus, we consider only the schedule-
based approach in the rest of the performance evaluation.

C. Efficiency of dedicated/shared/hybrid control planes

We compare the performance of different control planes:
shared, dedicated, and hybrid. In light of our previous results,
we use the scheduled EB transmission on separated shared
cells for all approaches.

We first focus on the convergence (Figure 6). We define
the convergence time as the time required from the bootstrap
of the network until the last node to join the control plane
(i.e., receives the config from a controller). With the shared
control plane, the convergence time increases exponentially
with the network size. The collision rate can explain this
observation: increasing the network size increases the volume
of control packets transmitted over shared cells, resulting
in numerous collisions. These collisions create a stream of
retransmissions, leading to other collisions with a domino
effect. With a network size of 50, some nodes are unable to
join the SDN network before the end of the simulation time
(8,000s). On the contrary, the dedicated and hybrid control
planes maintain a reasonable convergence time, with appears
to be linear with the number of nodes. Indeed, the density
is kept constant, and a larger network size means a larger
mean hop distance from the sink. Thus, the nodes need to
wait longer that the previous hops synchronize and join the
network.

Then, we measure in Figure 7 the time required to configure
a novel data flow in the network – the time between the
transmission of the flow-request and the reception of
the corresponding config packet. We compare here only
the hybrid and dedicated control plane since the shared one
does not converge in all the cases, because of collisions.

The dedicated solutions provide the lowest configuration
time: resources are dedicated to send the flow-request
and the config packets without collisions. On average,
less than 5 seconds are required for the call-admission and
the configuration of the whole path, even with 50 nodes.
The hybrid control plane provides also a very reasonable
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Fig. 7: Data flow configuration time
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Fig. 8: End-to-end delay

configuration time for any network size. However, the worst-
cases may exhibit a large configuration duration. When many
devices send their flow-request in a short time window,
the sink is unable to transmit the corresponding config
packets in a timely fashion, due to the collision happening
between the config packets themselves or between the
config and keep-alive packets. Some nodes still have not
been configured yet, and send keep-alive packets to keep
synchronized with their parents. Also, in the burst of collision,
the sink node sometimes cannot dequeue all of its queued
config packets and drops some of them due to the queue
size limitation. This forces the source nodes to retransmit
another flow-request after the timeout (50s in the simu-
lations).

It is worth noting that we verified that the controller
configures accurately the network. In particular, all the flow
requirements are respected and in our simulations, 100%
of packets are received at the destination before the deadline.
Figure 8 illustrates the per-flow end-to-end delay. Both ded-
icated and hybrid solutions have the same end-to-end delay
because they have the same scheme in link quality estimation.
Also, by increasing the hop numbers in large networks, the
end-to-end delay slightly increases accordingly.

Then, we measure the power consumption of devices,
focusing specifically on the period before the network has

10 20 30 40 50
Network size

0.1

0.2

0.3

0.4

Po
w

er
 c

on
su

m
pt

io
n 

(m
W

)

Dedicated Hybrid

Fig. 9: Power consumption of nodes in joining period
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Fig. 10: Network lifetime

converged (Figure 9). Thus, we report the power consumption
for this period – the energy consumed divided by the time
elapsed before receiving the first config packet. Dedicated
and hybrid control planes have the same level of power
consumption. The power consumption linearly increases with
the network size. Indeed, based on the proposed model for the
estimation of shared cells, we increase the number of shared
cells by increasing the network size so that makes nodes wake
up in more timeslots and consume more power.

Finally, we measure the network lifetime (Figure 10). We
assume the lifetime is given by the first death. To extrapolate
our simulations, the lifetime is estimated as the initial energy
divided by the power consumption of the most constrained
node. Since the configuration is done once, we consider the
power consumption after the node has joined the network.
Thanks to the use of shared cells for downward control traffic,
the hybrid control plane provides a higher lifetime rather than
a dedicated control plane. However, the difference is not a
substantial value. For instance, in the network size of 50, the
hybrid control plane improves the lifetime by 7% on average.

While the hybrid control plane impacts the time of flow
admission, it also does not improve the lifetime impressively.
Moreover, we may later need to extend the control plane to
support more functionalities. Thus, the controller has more
control packets to send. From our point of view, the dedicated



control plane can provide a higher reliability to handle control
packets in a timely fashion, with a small increase in energy
consumption compared with the hybrid control plane.

VII. CONCLUSION & PERSPECTIVES

Link quality estimation is of crucial importance when
considering the SDN paradigm for industrial wireless sensor
networks. In this article, we extended SDN-TSCH, an effi-
cient implementation of an SDN architecture in a scheduled,
industrial wireless sensor network. To improve the accuracy of
the link quality estimation, we proposed here a scheduled EB
approach that reserves some of the shared cells for collision-
free EB transmission. The results show that such a strategy
allows an accurate link estimation while keeping the general
concept of shared cells. We compared an hybrid, dedicated and
shared control plane, and highlighted with our simulations the
strength of a dedicated control plan to provide high-reliability.

In our future work, we plan to enhance the capabilities of
the controller to enable continuous optimization in response
to changing network characteristics, such as varying traffic
volumes and link quality. A controller will be developed to de-
tect faulty links and automatically reconfigure the network to
utilize the most reliable routes. Additionally, a controller will
consistently update the link schedule to ensure compliance
with Service Level Agreements (SLAs). We described here
a proprietary protocol (with report and config packets)
for the Southbound API. Thus, we plan to explore how
these features can be integrated in an enhanced OpenFlow
version. Finally, we need to address the security aspects of
our solution: how devices can trust a controller (and vice-
versa), and how we can guarantee the integrity of the data
exchanges.
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