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Abstract We explore the spatial spread of vector-borne infections with13

conditional vector preferences, meaning that vectors do not visit hosts at random.14

Vectors may be differentially attracted toward infected and uninfected hosts15

depending on whether they carry the pathogen or not. The model is expressed as a16

system of partial differential equations with vector diffusion. We first study the17

non-spatial model. We show that conditional vector preferences alone (in the18

absence of any epidemiological feedback on their population dynamics) may result19

in bistability between the disease-free equilibrium and an endemic equilibrium. A20

backward bifurcation may allow the disease to persist even though its basic21

reproductive number is less than one. Bistability can occur only if both infected and22

uninfected vectors prefer uninfected hosts. Back to the model with diffusion, we23

show that bistability in the local dynamics may generate travelling waves with24

either positive or negative spreading speeds, meaning that the disease either25

invades or retreats into space. In the monostable case, we show that the disease26

spreading speed depends on the preference of uninfected vectors for infected27

hosts, but also on the preference of infected vectors for uninfected hosts under28

some circumstances (when the spreading speed is not linearly determined). We29

discuss the implications of our results for vector-borne plant diseases, which are the30

main source of evidence for conditional vector preferences so far.31

32
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ing speed, front reversal, pushed and pulled waves.34

1 Introduction35

Vector-borne diseases are a major concern for human, animal and plant health. Since36

Ross’ seminal work (1911), most mathematical models of vector-borne infections37

consider that vectors visit hosts randomly, independent of their infection status (e.g.,38

Wonham et al., 2004; Martcheva, 2015). Spatially explicit models are no exception39

in this regard (e.g., Lewis et al., 2006). However, growing evidence shows that many40

vectors do not visit hosts randomly (e.g., Gandon, 2018).41

Vectors may be differentially attracted towards infected and uninfected hosts,42

independent of whether or not they carry the pathogen (e.g., Lacroix et al., 2005;43

Mauck et al., 2010; Cornet et al., 2013). This is termed a “vector bias” in the mod-44

elling literature (Chamchod and Britton, 2011). Kingsolver (1987) was probably the45

first to include such a vector bias in a model. He showed that vector preferences46

can induce bistability, meaning that the dynamics converge either to a disease-free47

state or to an endemic state depending on the initial conditions. However, bistability48

only occurred in somewhat special cases in which the vector bias was a function of49

the fraction of infected hosts in the population. Later studies generally assumed a50

constant vector bias and did not find bistability (Hosack et al., 2008; Chamchod and51

Britton, 2011; Wang and Zhao, 2017), except when disease-induced host mortality52

and immigration were included in the model (Buonomo and Vargas-De-León, 2013).53

Spatially explicit models have also been used to explore the consequences of a54

vector bias in space. Individual-based models were formulated to investigate the55

effect of spatial heterogeneity on the spread of vector-borne diseases with a vector56

bias (McElhany et al., 1995; Sisterson, 2008). Chamchod and Britton (2011) were57

probably the first to incorporate a vector bias into a partial differential equation (PDE)58

model. They numerically showed that travelling waves occur, and how their speed59

can be calculated. Later studies then also considered a vector bias in PDE models60

(e.g., Xu and Zhao, 2012; Bai et al., 2018). In particular, Xu and Zhang (2015) also61

showed the existence of travelling wave solutions. In these studies (Chamchod and62
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Britton, 2011; Xu and Zhang, 2015), the models did not exhibit bistability, and the63

travelling waves had positive speeds, meaning that the disease invades a disease-64

free spatial domain.65

Vector preferences, however, may depend on whether or not vectors carry the66

pathogen (Ingwell et al., 2012; Blanc and Michalakis, 2016; Gandon, 2018; Eigen-67

brode et al., 2018; Shoemaker et al., 2019; Carr et al., 2020). These are termed68

“conditional vector preferences”. Roosien et al. (2013) were probably the first to69

include conditional vector preferences in a model, but they did not fully analyse the70

model. In particular, whether or not bistability can occur was left implicit. In a more71

general version of the model (accounting for vector handling times), Gandon (2018)72

showed that conditional preferences (in particular a preference of uninfected vectors73

for infected hosts) can lead to bistability, provided vector fecundity depends on host74

infection status. Similarly, Cunniffe et al. (2021) observed multi-stability in a more75

complex model accounting for vector population dynamics that depend on the host76

infection status. However, whether conditional preferences can lead to bistability77

when the vector population dynamics are independent of the host infection status78

still remains to be clarified.79

Bistability may have important implications regarding the spatial spread of the80

disease in space. In particular, it is well known (Fife and McLeod, 1977; Lewis and81

Kareiva, 1993; Lewis and van den Driessche, 1993; Owen and Lewis, 2001; Fagan82

et al., 2002; Hilker et al., 2005, 2007) that bistability can give rise to negative wave83

speeds, meaning in our context that the disease retreats. This phenomenon is also84

termed “front reversal”.85

In this study, we analyse whether and how conditional vector preferences can86

give rise to bistability and front reversal in vector-borne diseases. The organisation87

of the paper is as follows. In Section 2, we present a spatio-temporal (reaction-88

diffusion) model with conditional vector preferences. In Section 3, we provide an89

analysis of the temporal (non-spatial) model with some numerical simulations. Then,90

in Section 4, we go back to the spatio-temporal model (with diffusion), showing91

existence of travelling wave solutions. Numerical simulations illustrate our findings.92

Lastly, Section 5 concludes the paper with a discussion.93
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2 Spatio-temporal model94

Let (, t) be the infected host density at time t and location  ∈ R. We adopt a uni-95

dimensional representation of space for simplicity. The total host density is assumed96

to be a constant N independent of . The local density of uninfected hosts at time97

t is therefore N − (, t). Let V(, t) and U(, t) be the infected (“viruliferous”) and98

uninfected vector densities, respectively. Let b be the vector “biting” rate. Let p99

and q be the probabilities of pathogen transmission and acquisition, respectively.100

Let r be the removal rate of infected hosts. Infected vectors lose the pathogen at101

rate  (Chapwanya and Dumont, 2018). Let m be the vector mortality rate. For102

simplicity, we assume that the vector birth rate exactly compensates the mortality103

rate. In addition, we assume that vectors are born uninfected. There is no vertical104

transmission in either the vector or the host. Let  be the preference (attraction) of105

infected vectors for uninfected hosts:  = 1 means no preference,  > 1 preference106

and 0 <  < 1 repulsion. Similarly, let  be the preference of uninfected vectors for107

infected hosts. As in Chamchod and Britton (2011), only the spatial movement of108

vectors is considered. Let D be the vector diffusion rate, independent of the vector109

infection status. The model is:110

t = bpV
(N − )

(N − ) + 
− r ,

Vt = bqU


 + (N − )
− (m + )V + DV , (1)

Ut = (m + )V − bqU


 + (N − )
+ DU ,

in which the subscripts denote differentiation with respect to t or , and in which the111

dependence of the state variables on t and  has been omitted.112

2.1 Model simplification113

Let W = U+ V be the total vector population density. We have Wt = DW. Assuming114

W(, 0) = K (the vector carrying capacity) for all  ∈ (−∞,+∞), Wt(, 0) = 0 for all115

, meaning that W = K for all t ≥ 0 and  ∈ (−∞,+∞). Therefore, we can substitute116
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U with K − V in model (1), which thus simplifies to a two-dimensional system:117

t = bpV
(N − )

(N − ) + 
− r ,

Vt = bq(K − V)


 + (N − )
− (m + )V + DV .

(2)

2.2 Non-dimensionalisation118

We rescale the state variables and parameters by letting119

τ = (m + )t , ξ = 

√

√

√m + 

D
,  =



N
,  =

V

K

and120

β =
bpK

(m + )N
, ρ =

r

m + 
, θ =

bq

m + 
.

A dimensionless version of model (2) is the following:121

τ = β
(1 − )

(1 − ) + 
− ρ ,

τ = θ(1 − )


 + (1 − )
−  + ξξ ,

(3)

in which the subscripts denote differentiation with respect to τ or ξ. Note that the122

two state variables are both disease prevalences, i.e. they are fractions of the host123

and the vector being infected, and take values in the unit interval.124

3 Analysis of the non-spatial system125

The non-spatial model is:126

′ = β
(1 − )

(1 − ) + 
− ρ =: ƒ1(,) ,

′ = θ(1 − )


 + (1 − )
−  =: ƒ2(,) .

(4)

We will also use the following notations: y = (,)T and ƒ = (ƒ1, ƒ2)T .127
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3.1 Basic reproductive number128

System (4) was previously explored in Roosien et al. (2013) and Cunniffe et al.129

(2021). It is known that the disease-free equilibrium (,) = (0, 0) is locally asymp-130

totically stable if and only if131

R2
0 :=

b2pq

rm

K

N
 =

βθ

ρ
 < 1 .

We refer to R2
0 as the basic reproductive number. Note that R0 depends on  (the132

preference of uninfected vectors for infected hosts) but does not depend on  (the133

preference of infected vectors for uninfected hosts). The results we present next are134

original. Let c be such that R2
0 = 1, i.e.,135

c =
ρ

βθ
.

136

3.2 The system is cooperative137

We have138

∂ƒ1

∂
≥ 0 and

∂ƒ2

∂
≥ 0 ,

since139

∂

∂

�



 + (1 − )

�

=


(1 + ( − 1))2
> 0 .

Therefore, system (4) is cooperative, meaning that the dynamics necessarily con-140

verge to an equilibrium (convergence to a limit cycle is impossible) (Smith, 2008).141

3.3 Endemic equilibrium142

Let us solve the system ƒ1(,) = ƒ2(,) = 0. An endemic equilibrium (∗,∗), with143

∗,∗ > 0, satisfies:144

Q (∗) = A∗2 + B∗ + C = 0 ,
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in which145

A = ( − 1)((1 + θ) − 1) ,

B =
�

(2 − (1 + θ)) −
βθ

ρ

�

 − 1 = −
�

((1 + θ) − 1) + (R2
0 − 1)

�

 − 1 ,

C = 
�

βθ

ρ
 − 1

�

= 
�

R2
0 − 1

�

.

Let ∗ be such that A = 0:146

∗ =
1

1 + θ
. (5)

Note that A has no reason to be zero in general (A = 0 only for  = 1 or  = ∗). The147

coefficient A can be also expressed as148

A = ( − 1)
� 

∗
− 1

�

.

First, we notice that149

Q(1) = −(1 + θ) < 0 . (6)

Next, we distinguish two cases: R2
0 > 1 and R2

0 < 1. (The boundary case R2
0 = 1 is150

addressed in Appendix A.1 for the sake of completeness.)151

3.4 Case R2
0 > 1152

If R2
0 > 1, then Q(0) = C > 0. Since Q(1) < 0 (Eq. 6), there is exactly one root ∗ in153

[0, 1], which is the endemic equilibrium. Appendix A.2 shows that154

∗ =











− C
B if  = 1 or  = ∗ (special cases implying A = 0) ,

1
2A (−B −

p
Δ) otherwise,

where Δ = B2 − 4AC is the discriminant.155

3.5 Case R2
0 < 1156

If R2
0 < 1, then C < 0.157

Since Q(0) = C < 0, and Q(1) < 0 (Eq. 6), either there is no root in between158

0 and 1 or there are two roots (unless the discriminant Δ is zero, in which case159
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there is a single root, of course). The existence of biologically feasible equilibria160

requires A < 0. Since this implies AC > 0, an additional necessary condition for161

the existence of endemic equilibria is that the discriminant Δ is non-negative. The162

additional conditions are Q′(0) = B > 0 and Q′(1) = 2A + B < 0.163

If these conditions (R2
0 < 1, A < 0, Δ ≥ 0, B > 0, and 2A+B < 0) are simultaneously164

satisfied, there are two positive equilibria with components165

∗1,2 =
1

2A

�

−B ±
p

Δ
�

, (7)

since A < 0 and B > 0. We set E1 = (∗1 ,
∗
1 ) and E2 = (∗2 ,

∗
2 ) and notice that the166

equilibria are ordered, i.e. E1 < E2, since ∗1 < ∗2 and ∗
1 = g(∗1 ) < ∗

2 = g(∗2 ), where167

g() =
ρ

β

�

1 +


(1 − )

�

 is an increasing function corresponding to ƒ1 = 0 in (4).168

3.5.1 Necessary conditions for two equilibria169

Here, we will derive two necessary conditions on the vector preferences, namely170

 > 1 and  < ∗ < 1 (since ∗ = 1/(1 + θ), as defined in Eq. (5)), for two positive171

equilibria to coexist.172

First, B can be expressed as173

B = −
�

1 + θ +
θβ

ρ

�

 + (2 − 1) .

Therefore, B > 0 is equivalent to174

 <
(2 − 1)

�

1 + θ + θβ
ρ

�


=: + .

Second, B + 2A < 0 can be expressed as175

�

(θ + 1)( − 2) −
θβ

ρ

�

 + 1 < 0 . (8)

A necessary condition for the inequality (8) to hold is176

θβ

ρ(θ + 1)
>
 − 2


=: R1 . (9)
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Assuming inequality (9) holds, B + 2A < 0 (inequality 8) is equivalent to177

 >
1

θβ
ρ  − (θ + 1)( − 2)

=: − .

So far, we have shown that conditions B > 0 and B+ 2A < 0 are equivalent to  < +178

and  > − (provided inequality 8 holds), respectively. A necessary condition for179

these conditions to hold is therefore − < + . The latter inequality can be equiva-180

lently expressed as181

1
θβ
ρ  − (θ + 1)( − 2)

<
2 − 1

��

1 + β
ρ

�

θ + 1
�


,

which is equivalent to182

�

1 +
β

ρ

�

θ + 1 <
�

2 −
1



��

θβ

ρ
 − (θ + 1)( − 2)

�

.

After rearrangement, the above inequality can be equivalently expressed as183

(θ + 1)( − 1)2 < ( − 1)
θβ

ρ
.

A necessary condition for the above inequality to hold is  > 1. Assuming  > 1, this184

inequality can be equivalently expressed as185

θβ

ρ(1 + θ)
>
 − 1


=: R2 .

Since R2 > R1, the above inequality guarantees that inequality (9) is satisfied.186

We were not able to get more results from this preliminary analysis, but we have187

shown that  > 1 is a necessary condition for two endemic equilibria to coexist.188

Assuming  > 1, the condition A < 0 is equivalent to189

 <
1

1 + θ
= ∗ .

Hence,  > 1 and  < ∗ < 1 are necessary conditions for two positive equilibria to190

coexist.191
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3.5.2 Numerical example of bistability192
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Figure 1: Phase portraits of the non-spatial model (4) with - and -nullclines (blue and red curves,
respectively). Stable (unstable) equilibria are shown as filled (empty) circles. The basins of attraction to
the endemic (disease-free) equilibrium are shown in light red (light blue). (A) The endemic equilibrium
is the only attractor. Parameter value:  = 0.3, so R2

0 = 1.44 > 1. (B) Bistable case. The black line is
the separatrix of the two basins of attraction. The dashed rectangles indicate analytically obtained sets
of initial conditions that are known to approach the disease-free (blue) or endemic (red) equilibrium.
They are part of the actual basins of attraction, see Sect. 3.6 for more details. Parameter value:
 = 0.15, so R2

0 = 0.72 < 1. All other parameter values:  = 15,β = 2.4,ρ = 1,θ = 2.

Since necessary and sufficient conditions were hardly expressible with pen and193

paper, we used symbolic calculation software (Maple 2022) to disentangle the con-194

ditions for two positive equilibria to coexist. To simplify things, we let195

X = (1 + θ) − 1 and Y = R2
0 − 1 . (10)

This way,196

A = ( − 1)X , B = −(X + Y) − 1 and C = Y .

Since R2
0 < 1, Y < 0. Since  > 0, C < 0. The previous section showed that A < 0,197

 > 1, and therefore X < 0 are necessary conditions for two positive equilibria to198

coexist. We thus used the function “solve” in Maple to solve the following system of199

inequalities,200

A < 0 , B > 0 , (2A + B) < 0 , B2 − 4AC > 0 , Y < 0 ,  > 1 , X < 0

10
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Figure 2: Bifurcation diagram of the non-spatial model (4). Stable (unstable) steady states are shown
in solid (dashed) line. There is a backward bifurcation at = c ≈ 0.2083 and a fold bifurcation at
 ≈ 0.1425. Other parameter values as in Fig. 1.

uc0.10 0.15 0.20 0.25

ac

0

5

10

15

20

Preference of uninfected vectors for infected hosts, u

P
re
fe
re
n
c
e
o
f
in
fe
c
te
d
v
e
c
to
rs

fo
r
u
n
in
fe
c
te
d
h
o
s
ts
,
a

disease-free

bistability

endemic

i

v

i

v

i

v

Figure 3: Two-parameter bifurcation diagram of the non-spatial model (4). The fold bifurcation
where two endemic equilibria coalesce is shown in blue. The vertical line marks the transcritical
bifurcation curve, which occurs at R2

0 = 1. When the vertical line is solid (dashed), there is a
standard transcritical (backward) bifurcation. The fold and transcritical bifurcation curves meet at
(c ≈ 0.2083,c ≈ 2.6666). The insets are nullcline examples of parameter values leading to different
dynamical regimes. Other parameter values as in Fig. 1.
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with respect to X ,Y and . Letting201

h(Y,) :=
Y2 − (2Y + 1) − 2

Æ

−Y2( − 1)(Y + 1)

2
,

we obtained the following set of conditions:202

� If 1 <  < 2,203

Y + 1

 − 2
< X < h(Y,) , and Y > −

 − 1


.

� If  = 2,204

X < −
1

2
−
Æ

−Y(Y − 1) = h(Y, 2) , and Y > −
1

2
.

� If  > 2:














































X < h(Y,) if Y > −
1


,

X < −4
 − 1

2
= h

�

1


,
�

if Y = −
1


,

impossible if Y ∈
�

−
 − 1


,−

1



�

,

X <
Y + 1

 − 2
if Y < −

 − 1


.

This condition set allowed us to find parameter values for which bistability occurs;205

see Figs. 1–3 for phase portraits, one-parameter, and two-parameter bifurcation di-206

agrams, respectively.207

3.6 Local and global asymptotic stability208

The system being monotone cooperative, proving global asymptotic stability (GAS)209

relies on local asymptotic stability (LAS) and the use of some appropriate theorems.210

The Jacobian of system (4) is

J(,) =











−β


((1 − ) + )2
− ρ β

(1 − )

(1 − ) + 

θ(1 − )


( + (1 − ))2
−θ



 + (1 − )
− 1











.
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Notice that J(,) is irreducible for all (,) ∈ [0, 1)2. At equilibrium (0, 0), we have

J(0, 0) =







−ρ β

θ −1






,

from which we deduce that 0 = (0, 0)T is LAS when R2
0 = βθ/ρ < 1 and unstable211

when R2
0 > 1.212

When R2
0 > 1, only one positive endemic equilibrium, E, exists in [0, 1]2. Thus,213

when R2
0 > 1, using Theorem 6 in Anguelov et al. (2012) (see also Smith, 2008),214

with  = (0, 0) and b = (1, 1) such that ƒ (b) ≤ 0 ≤ ƒ (), we deduce that the endemic215

equilibrium E is GAS on [0, 1]2. Similarly, when R2
0 < 1, in the case when no endemic216

equilibrium exists, we can show, using the same approach, that 0 is GAS.217

Assume R2
0 < 1. In the case where 0, E1, and E2 co-exist such that 0≪ E1 ≪ E2,218

we already know that 0 is LAS. We can check (at least numerically) that E1 is unstable219

and E2 is LAS. Following Smith (2008, Theorem 2.2.2), it is straightforward to show220

that the set {y ∈ R2 : 0 ≤ y < E1} is in the basin of attraction of 0, while the set221

{y ∈ R2 : E1 < y ≤ 1}, where 1 = (1, 1)T , is in the basin of attraction of E2 (Fig. 1B).222

4 Back to the system with diffusion223

In this section, we get back to the system with diffusion, i.e., system (3).224

4.1 Existence and uniqueness of a solution225

System (3), with non-negative initial conditions and appropriate boundary condi-

tions, is a partly dissipative or a partially degenerate system. We consider the fol-

lowing spaces

S =
�

(,)| ∈ L2(R);  ∈ L∞(R)
	

,

and

S1,1 = {(,) ∈ S |0 ≤  ≤ 1; 0 ≤  ≤ 1} .

Following Rothe (1984, Theorem 1, page 111), or Rauch and Smoller (1978, The-226

orem 2.1), we can show local existence and uniqueness. Then, using a priori L∞227

13
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estimates, the fact that the right-hand side of (3) is quasi-positive and the maximum228

principle lead to229

Theorem 1 (Existence and uniqueness). For any initial values (0,0) ∈ S1,1, sys-

tem (3) admits a unique non-negative bounded solution such that

 ∈ C ([0,∞) ; L∞(R)) ∩ C1 ([0,∞) ; L∞(R))

and

 ∈ C ([0,∞) ; L∞(R)) ∩ C
�

[0,∞) ;H2(R)
�

∩ C1
�

[0,∞) ; L2(R)
�

.

Since the study of the non-spatial system showed us that, depending on parame-230

ter values, it can be monostable or bistable, it seems relevant to study the existence231

(or non-existence) of travelling wave solutions.232

4.2 Monostable case233

In this section, we assume R2
0 > 1. We know from the non-spatial system that the234

disease-free equilibrium 0 is unstable and the endemic equilibrium E is GAS. Does a235

travelling wave solution connecting 0 to E exist?236

4.2.1 Existence of a travelling wave237

In the monostable case, the existence of a travelling wave should derive from the238

fact that the system is cooperative (Li et al., 2005); the problem is that the system239

is partially degenerate (Fang and Zhao, 2009; Li, 2012). However, for this situation240

powerful theorems exist (Fang and Zhao, 2014; Li, 2012), see also Doli (2017).241

Here, we will use Theorem 4.2 in Li (2012) for the following system:

∂y

∂t
= D

∂2y

∂2
+ f(y(t,)),

with y = (y1(t,), ...,yk(t,)), D = dig(d1, ...,dk) ≥ 0 and f = (ƒ1, ..., ƒk). According242

to Li (2012), the following hypotheses have to be checked (Hypotheses 2.1 in Li,243

2012):244

1. There is a proper subset 0 of {1, ...,k} such that d = 0 for  ∈ 0 and d > 0245

for  /∈ 0.246
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2. f(0) = 0, there is a constant γ ≫ 0 such that f(γ) = 0 which is minimal in the247

sense that there is no constant ν other than γ such that f(ν) = 0 and 0≪ ν≪ γ,248

and the equation f(α) = 0 has a finite number of constant roots.249

3. The system is cooperative.250

4. f(α) is uniformly Lipschitz in α such that there is η > 0 such that for any α,251

 = 1, 2, ∥(α1) − f(α2)∥ ≤ η∥α1 − α2∥.252

5. f has the Jacobian f′(0) at 0 with the property that f′(0) has a positive eigen-253

value whose eigenvector has positive components.254

Assuming R2
0 > 1, and k = 2, it is straightforward to check the first three hypotheses

for system (3), where γ = E. The fourth hypothesis requires long computations for

 ̸= 1 and  ̸= 1 to be checked. Lastly, we have

f′(0) =







−ρ β

θ −1






.

Since R2
0 > 1, it is straightforward to show that f′(0) has a positive eigenvalue,255

λ =
1

2

�Ç

(1−ρ)2 + 4ρR2
0 − (1 + ρ)

�

, associated with the positive eigenvector
�

1,
λ + ρ

β

�T

.256

Thus, according to Theorem 4.2 in Li (2012), we deduce the existence of a travelling257

wave connecting 0 to γ = E. See, for instance, Fig. 4.258

4.2.2 Derivation of the linear spreading speed259

Still assuming R2
0 > 1, we consider a travelling front connecting the disease-free260

equilibrium, 0 to the endemic equilibrium, E. We posit that, in some circumstances,261

the front speed is linearly determined by the minimum possible wave speed based262

on the linearisation at the leading edge of the wave. We apply the minimum wave263

speed approach (Lewis and Schmitz, 1996; Hadeler and Lewis, 2002; Bampfylde and264

Lewis, 2007; Hilker and Lewis, 2010; Hamelin et al., 2022) to the linearised model to265

find the linear spreading speed as a critical point. However, we stress that the linear266

spreading speed may be only a lower bound of the actual spreading speed in some267

cases (see Fig. 11 in Appendix B.2).268

15



Accepted manuscript

0 10 20 30 40 50 60 70 80 90 100
0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50 60 70 80 90 100
0

0.2

0.4

0.6

0.8

1

Figure 4: Monostable travelling wave solution of model (3) connecting the disease-free and endemic
equilibria 0 and E when R2

0 = 1.44 > 1. Here  = 0.3, other parameter values as in Fig. 1.

At the leading edge of the front invading the disease-free equilibrium,  and 269

have small positive values. We linearise system (3) at the leading edge:270

τ = β − ρ ,

τ = θ −  + ξξ .

We are interested in travelling wave solutions such that271

y =
















= k exp(−s(ξ − cτ)) ,

in which k is an implicit column vector, c is the linear wave speed, and s is the272

exponential decay rate of the wave profile at leading edge.273

Plugging the previous expression in the system, we obtain274

scy =







−ρ β

θ −1 + s2







︸ ︷︷ ︸

Ms

y , (11)
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which implies that275

det







−ρ − sc β

θ −1 + s2 − sc







︸ ︷︷ ︸

Ms−scI

= 0 ,

in which I is the identity matrix. This yields276

0 = (−ρ − sc)(−1 + s2 − sc) − θβ ,

= Fc2 + Gc + H ,
(12)

with277

F = s2 , G = s(ρ + 1 − s2) , H = ρ(1 − s2) − θβ .

Next, we follow the approach of using Eq. (12) to calculate the minimum linear wave278

speed as outlined in Hadeler and Lewis (2002).279

The discriminant of the quadratic in Eq. (12) is280

Λ = G2 − 4FH ,

= s2
�

�

ρ + 1 − s2
�2 − 4ρ(1 − s2) + 4θβ

�

,

= s2
�

�

ρ − 1 + s2
�2
+ 4θβ

�

> 0 .

Since Λ > 0, there are two real roots:281

z =
−G −

p
Λ

2F
and c =

−G +
p
Λ

2F
.

First, we show that z < 0. If G > 0, then z < 0 since F > 0. Otherwise (if G < 0),282

then −G−
p
Λ > 0 is equivalent to 0 > −4FH, which is impossible since H < 0 (this is283

because G < 0 implies 1 − s2 < 0).284

Second, we show that c > 0 for all s > 0. If G < 0, then c > 0 since F > 0.285

Otherwise (if G > 0), then −G+
p
Λ > 0⇔Λ > G2 is equivalent to R2

0 > 1− s2, which286

is satisfied since we assume R2
0 > 1 in this section.287

The relevant root is therefore c. Since Eq. (12) only depends on three additional288
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parameters, s, ρ and βθ, we express c as a function of these parameters:289

c(s,ρ,βθ) =
−(ρ + 1 − s2) +

r

�

ρ − 1 + s2
�2 + 4θβ

2s
.

Since c is a convex function of s (Appendix B.1), lims→0 c(s,ρ,βθ) = +∞, and290

lims→+∞ c(s,ρ,βθ) = +∞, there exists a minimum to c with respect to s > 0.291

Equation (12) can also be written to include the dependency of c on s, ρ, and βθ292

as293

P(c(s,ρ,βθ), s) := (−ρ − sc)(−1 + s2 − sc) − θβ .

Differentiating with respect to s, we have, for all s,294

dP

ds
=
∂P

∂c

∂c

∂s
+
∂P

∂s
= 0 . (13)

We are interested in the minimum possible linear wave speed. Let295

s⋆(ρ,βθ) = rgmin
s

c(s,ρ,βθ) ,

and296

c⋆(ρ,βθ) = c(s⋆(ρ,βθ),ρ,βθ) .

Since c⋆ is such that ∂c/∂s = 0, Eq. (13) yields297

∂P

∂s
(c⋆(ρ,βθ), s⋆(ρ,βθ)) = 0 . (14)

Since P is cubic in s, ∂P/∂s is quadratic in s. We are interested in the conditions298

on the coefficients that allow both polynomials to have a common root, s⋆. They are299

given by cancelling the resultant of the two polynomials. Letting P = es3+ ƒ s2+gs+h300

yields ∂P/∂s = 3es2 + 2ƒ s + g. The coefficients are identified as301

e = −c , ƒ = c2 − ρ , g = (ρ + 1)c , h = −θβ + ρ .

The resultant is r(e, ƒ ,g,h) = −e(ƒ2g2 − 4eg3 − 4ƒ3h + 18eƒgh − 27e2h2), as de-302

scribed in Janson (2010, Eq. (4.3)). The equality r(e, ƒ ,g,h) = 0 can be equivalently303
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Figure 5: Linear speed of the monostable travelling wave as a function of  (the preference of unin-
fected vectors for infected hosts). The inset zooms on small values of  and compares the linear and
actual (numerically computed) spreading speeds in model (3). The spreading speed is not linearly de-
termined in the bistable case ( < c) and in the monostable case ( > c) for  close to c. However,
the actual speed quickly converges to the linear speed as  increases. Other parameter values as in
Fig. 1.

expressed as a cubic with respect to c2:304

c3(c2)3 + c2(c2)2 + c1(c2)1 + c0 = 0 , (15)

with305

c3 = 4βθ + (ρ − 1)2 ,

c2 = 2ρ3 + 2ρ2 + (6βθ − 8)ρ + 18θβ + 4 ,

c1 = ρ4 + 8ρ3 − (6βθ + 8)ρ2 + 36ρβθ − 272β2θ2 ,

c0 = −4ρ3(βθ − ρ) = −4ρ4(R2
0 − 1) .

Since we assume R2
0 > 1, we have that c0 is negative and c3 is positive, which306

means that we are in the same configuration as Hadeler and Lewis (2002). This307

implies that c⋆(ρ,βθ) is uniquely defined as the square root of the largest root of308

the above cubic.309
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Although it is possible to write down the formula for the largest root of a cu-310

bic polynomial, we have no simple expression of c⋆(ρ,βθ). Figure 5 shows the311

minimum linear speed of the monostable travelling wave solution as a function of ,312

as obtained by solving the cubic equation (15).313

4.3 Bistable case314

In this section, we assume R2
0 < 1.315

4.3.1 Existence of a travelling wave316

To show the existence of a bistable travelling wave solution, we will consider The-317

orem 4.2 in Fang and Zhao (2009). We have to verify that assumption (L): ƒ ∈318

C1(R2,R2) satisfies the following conditions:319

1. ƒ (0) = ƒ (E2) = ƒ (E1) = 0, with 0≪ E1 ≪ E2. There is no η other than 0, E1 and E2320

such that ƒ (η) = 0, with 0 ≤ η ≤ E2.321

2. System (3) is cooperative.322

3. y ≡ 0 and y ≡ E2 are stable while y ≡ E1 is unstable, that is

λ0 := s(ƒ ′(0)) < 0, λE2 := s(ƒ
′(E2)) < 0, λE1 = s(ƒ

′(E1)) > 0.

4. ƒ ′(0), ƒ ′(E1), and ƒ ′(E2) are irreducible.323

Assuming that assumption (L) holds, then according to Theorem 4.2 in Fang and324

Zhao (2009), system (3) admits a monotone wavefront (U, c) with U(−∞) = 0 and325

U(+∞) = E2.326

Since R2
0 < 1, two positive endemic equilibria, E1 and E2, exist. Equilibrium E1 is327

unstable while E2 is LAS. Thanks to the results obtained in Section 3, it is straight-328

forward to check that assumption (L) holds and to conclude that a travelling wave329

solution connecting 0 and E2 exists. See, for instance, Fig. 6.330

In Fig. 7, we show that for  sufficiently small, the sign of the spreading speed331

can change. Thus, in the bistable case, for a given  ≫ 1, there exist † and ∗,†332

such that for † <  < ∗ the disease travelling wave moves forward, while for333
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Figure 6: Bistable travelling wave solution of model (3) connecting the disease-free and endemic equi-
libria 0 and E2 when R2

0 = 0.96 < 1. Here  = 0.2, other parameter values as in Fig. 1. The disease is
invading, c∗ > 0.
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Figure 7: Bistable travelling wave solution of model (3) connecting the disease-free and endemic equi-
libria 0 and E2 when R2

0 = 0.72 < 1. Here  = 0.15, other parameter values as in Fig. 1. Starting at
t = 200 with the solution from Fig. 6 as initial condition, the spread is reversing, c∗ < 0. This shows
that a small variation of the parameter  (switching from  = 0.2 in Fig. 6 to  = 0.15 in this figure) can
make the spreading speed switch from positive to negative. This is why the equilibrium prevalences
decrease compared to initial conditions (at t = 200).
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Figure 8: Within the bistable parameter domain (light grey), travelling waves connecting the disease-
free and endemic equilibria can reverse or advance. The parameter domains of reversal and advance
are separated by a curve corresponding to stalled waves with zero wave speed. Here, the zero-wave
speed curve is obtained, on the one hand, by numerical integration of the PDE system (3) with ρ =
1,β = 2.4,θ = 2 and identifying parameter values to result in zero wave speed, accurate to at least the
third decimal place (grey squares). On the other hand, the zero wave speed curve was indicated by
Eq. (25) in Appendix B.2 using a quasi-steady-state assumption (red points). Other curves as in Fig. 3.

∗,† <  < † the disease travelling wave moves backward. When  < ∗,† then the334

system converges to 0.335

4.3.2 Quasi-steady-state approximation336

For the case of a quasi-steady-state approximation (QSSA) (see Appendix B.2 for337

details), we can gain more information on the parameter domain for which the trav-338

elling wave moves forward or backward. The direction is given by the expression (25)339

in Appendix B.2.340

Figure 8 marks the boundary between wave advancement and reversal by red341

dots. This boundary corresponds to stalled traveling waves with speed zero. The342

QSSA results match very well with the zero wave speeds in the original system with-343

out a quasi-steady-state approximation (dark grey squares). This match may be344

particularly surprising because we have chosen a time scale parameter of ρ = 1 for345

the simulations, while the QSSA is based on the assumption ρ≫ 1. However, Fig. 9346
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in Appendix B.2 suggests that the wave speed approximations do not deviate much347

from the exact solutions for small spreading speeds and ρ ≥ 1. This behaviour might348

explain why the QSSA correctly locates the c = 0 curve in Fig. 8.349

In the monostable case, the QSSA allows us to derive an explicit expression for350

the linear wave speed (see Eq. (23) in Appendix B.2), which is simply c∗ = 2
q

R2
0 − 1.351

However, the linear spreading speed is only a lower bound of the actual spreading352

speed in somes cases (Fig. 11).353

5 Discussion354

We have shown that conditional vector preferences may result in bistability between355

the disease-free equilibrium and an endemic equilibrium. The novelty compared356

to Gandon (2018) and Cunniffe et al. (2021) is that bistability here occurs in the357

absence of any epidemiological feedback on vector population dynamics.358

More specifically, we have shown that conditional vector preferences can cause a359

“backward bifurcation” (Fig. 2), meaning that R2
0 < 1 is not a sufficient condition for360

the disease to go extinct (e.g., Hadeler and van den Driessche, 1997).361

5.1 Bistability conditions362

We have shown that for bistability to occur, the following necessary conditions must363

be satisfied: R2
0 < 1,  > 1 and  < ∗ < 1. The first condition (R2

0 < 1) means that364

the basic reproductive number of the pathogen is not large enough for the pathogen365

to invade a disease-free population. Hence, the disease-free equilibrium is locally366

stable. However, if the prevalence of the infection is initially high, and if infected367

vectors have a sufficiently strong preference for uninfected hosts ( > 1), we have368

shown that the pathogen may persist in the population (an endemic equilibrium369

is locally stable as well) even though R2
0 < 1. These two conditions ( > 1 and370

R2
0 < 1) are not too surprising. The third condition (implying  < 1) is less intuitive.371

To interpret it, we recall that R2
0 is proportional to . If R2

0 < 1 in spite of  > 1372

(uninfected vectors prefer infected hosts, which is advantageous for the pathogen),373

this means that the pathogen has poor reproductive abilities. Therefore, even if374

the prevalence of the infection is initially high, the pathogen still goes extinct. By375
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contrast, if R2
0 < 1 while  < 1 (uninfected vectors prefer uninfected hosts), it may376

be that the pathogen has strong enough reproductive abilities not to go extinct when377

its prevalence is initially high, and infected vectors prefer uninfected hosts ( > 1).378

5.2 Travelling waves379

5.2.1 Monostable case380

In the monostable case (R2
0 > 1), the disease invades the spatial domain. We have381

shown that the linear spreading speed depends only on ρ and βθ, meaning that it382

does not depend on , the preference of infected vectors for uninfected hosts. The383

interpretation is the same as for the basic reproductive number, R2
0 = βθ/ρ, which384

does not depend on  either (Roosien et al., 2013; Gandon, 2018; Cunniffe et al.,385

2021). In a situation close to the disease-free equilibrium, like at the leading edge386

of the front, there are so few infected hosts that the preference of infected vectors387

for uninfected hosts has a negligible effect on the dynamics. However, even in the388

monostable case, the spreading speed may not be linearly determined (Fig. 5), im-389

plying that it may depend on  (Fig. 12). This is due to the fact that disease spread390

is not driven by the leading edge of the invasion front (“pulled wave”). Instead, the391

disease invasion is driven by the whole of the front (“pushed wave”) (Stokes, 1976;392

Lewis and Kareiva, 1993). In particular, the disease spread may be maximum for393

intermediate prevalences because of the conditional preferences (similar to weak394

and strong Allee effects where population growth is strongest at intermediate densi-395

ties). By contrast, dynamics of pulled waves are independent from the nonlinearities396

behind the leading edge of the front.397

5.2.2 Bistable case398

In the bistable case (requiring R2
0 < 1), the disease either invades or retreats, de-399

pending on parameter values. More specifically, travelling waves may have negative400

speeds, meaning that the disease retreats.401

In an epidemiological context, such a “front reversal” has been shown to occur402

when host population dynamics in the absence of disease are bistable, due, for403

instance, to a strong Allee effect in the host (Hilker et al., 2005, 2007). However,404
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to our knowledge, such a phenomenon has seldom (Bocharov et al., 2016) been405

shown to occur when bistability is due solely to the epidemiological dynamics.406

5.3 Biological implications407

Although conditional vector preferences might occur in human and animal diseases,408

they have so far been shown mainly in plant diseases (Gandon, 2018). Therefore,409

we now discuss plant diseases more specifically.410

Plant diseases are a main threat to global food security (Ristaino et al., 2021).411

Many plant diseases are caused by pathogens (viruses, bacteria and others) that412

are transmitted by insect vectors such as aphids, whiteflies, and others (Eigenbrode413

et al., 2018). Infected vectors can be attracted to uninfected plants. This is for414

instance the case for aphids, Rhopalosiphum padi, infected by the Barley yellow415

dwarf virus (BYDV) (Ingwell et al., 2012). In his review of evidence for conditional416

vector preferences, Gandon (2018) identified the volatile compounds emitted by417

infected plants as an attraction mechanism for (uninfected) vectors. For instance,418

plants infected by the Cucumber mosaic virus (CMV) or the Tomato chlorosis virus419

(ToCV) produce volatiles that attract aphids or whiteflies (Fereres et al., 2016). Note420

also that vectors can be attracted to infected plants by visual cues, such as, for421

instance, yellow leaves.422

Since the basic reproductive number of the pathogen (R2
0) is proportional to 423

(the preference of uninfected vectors for infected hosts), a plant variety that emits424

fewer volatiles could be considered resistant to disease. When visual cues are re-425

sponsible for vector preferences, a plant variety that expresses fewer symptoms,426

and is therefore less attractive to uninfected vectors, could also be considered resis-427

tant. Deployment of such resistant hosts might make it possible to obtain R2
0 < 1.428

We have shown that  ≥ 1 (a preference of uninfected vectors for infected hosts)429

ensures disease extinction in this case (R2
0 < 1), since bistability requires  < 1.430

This means that breeding for varieties that emit, when infected, a concentration431

of volatiles that is lower than that of standard varieties is a possible strategy for432

the control of vector-borne diseases (in combination with other strategies such as433

roguing - i.e., removing - infected plants, for instance).434
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5.4 Mathematical prospects435

An alternative for modelling vector preference could be density-dependent advec-436

tion (in analogy to preytaxis, this could perhaps be called “hosttaxis”). It has been437

shown that preytaxis in the presence of disease, where predators are attracted to or438

repelled by infected prey, can speed up or even lead to irregularly fluctuating travel-439

ling waves (Bate and Hilker, 2019). While Chamchod and Britton (2011) considered440

a “hosttaxis” term in their model, it was only a vector bias towards infected hosts,441

regardless of whether the vector carries the pathogen or not. Modelling conditional442

vector preferences with a hosttaxis term is beyond the scope of this paper and is left443

for future research.444
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456

A Side results on the non-spatial model457

A.1 Case R2
0 = 1 (boundary case)458

If R2
0 = 1, or equivalently459

 =
ρ

βθ
,
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then C = 0 and ∗ = −B/A. Using the above expression of  yields

∗ = 1 −
1

( − 1)
�

βθ
(1+θ)ρ − 1

� .

If  = 1, the endemic equilibrium does not exist. In what follows, we assume  ̸= 1.460

Let the fraction of susceptible hosts at equilibrium be461

s∗ =
1

( − 1)
�

βθ
(1+θ)ρ − 1

� .

We have:462

s∗ > 0⇔











βθ
(1+θ)ρ > 1 if  > 1 ,

βθ
(1+θ)ρ < 1 if  < 1 .

Assuming s∗ > 0, s∗ < 1 is equivalent to463

( − 1)
�

βθ

(1 + θ)ρ
− 1

�

> 1 .

Two cases can then be distinguished:464

� If  > 1, s∗ < 1 is equivalent to465

βθ

(1 + θ)ρ
− 1 >

1

 − 1
⇔

βθ

(1 + θ)ρ
>



 − 1
.

� If  < 1, s∗ < 1 is equivalent to466

�

1 −
βθ

(1 + θ)ρ

�

(1 − ) > 1⇔ 1 −
βθ

(1 + θ)ρ
>

1

1 − 
⇔−

βθ

(1 + θ)ρ
>



1 − 
,

which is impossible.467

Therefore, 0 < s∗ < 1 if and only if468

 > 1 and
βθ

(1 + θ)ρ
>



 − 1
> 1 . (16)

A.2 Case R2
0 > 1469

To derive the expression of the endemic equilibrium, we consider three cases:  = 1,470

0 <  < 1 and  > 1.471
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Case  = 1. If  = 1, then A = 0 and472

∗ = −
C

B
.

Since R2
0 > 1,473

B = −
�

(1 + θ) + R2
0 − 1

�

< 0 .

Therefore,474

∗ =
R2
0 − 1

(1 + θ) + R2
0 − 1

.

We have 0 < ∗ < 1.475

Case 0 ≤  < 1. Since476

B = −
��

(1 + θ) + R2
0 − 1

�

 + (1 − )
�

,

we deduce that B < 0. Then, we have three sub-cases to consider:477

� If  > ∗, then A < 0. The relevant root is therefore the largest:478

1

2A

�

−B −
p

Δ
�

,

since the other root is negative.479

� If  = ∗, A = 0. We obtain480

∗ =
R2
0 − 1

R2
0 − 1 +

1



. (17)

We have 0 < ∗ < 1.481

� If  < ∗, then A > 0. The relevant root is therefore the smallest:482

1

2A

�

−B −
p

Δ
�

,

since both roots are positive.483

Case  > 1. We again distinguish three sub-cases:484
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Table 1: The component ∗ of the endemic equilibrium in the specific case R2
0 > 1, expressed as a

function of A, B, C and Δ = B2 − 4AC.

0 <  < 1  = 1  > 1

 < ∗ 1
2A

�

−B −
p
Δ
�

− C
B

1
2A

�

−B −
p
Δ
�

 = ∗ − C
B − C

B − C
B

 > ∗ 1
2A

�

−B −
p
Δ
�

− C
B

1
2A

�

−B −
p
Δ
�

� If  > ∗, then A > 0 and B < 0. The relevant root is therefore the smallest:485

1

2A

�

−B −
p

Δ
�

,

since both roots are positive.486

� If  = ∗, A = 0. We again find expression (17).487

� If  < ∗, then A < 0. The relevant root is therefore the largest:488

1

2A

�

−B −
p

Δ
�

,

since the other root is negative.489

These results are summarized in Tab. 1.490

491

A.3 Case R2
0 < 1492

We here focus on the necessary condition Δ = B2 − AC > 0 for the existence of493

two endemic equilibria in the case R2
0 < 1. Using the notations X = (1 + θ) − 1 and494

Y = R2
0 − 1 (Eq. (10)) yields the following expression of Δ as a quadratic function of495

:496

Δ = (X − Y)22 + 2(X(1 + Y) + Y(1 + X)) + 1 .

Since (X − Y)2 > 0, this parabola has a U-shape. We also have Δ(0) = 1 > 0. There-497

fore, either there are two positive roots, −c and +c , or there are none. In the latter498

case, Δ > 0 regardless of the value of . In case there are two roots, the largest one,499

+c =
−((X(1 + Y) + Y(1 + X)) + 2

p

XY(1 + X)(1 + Y)

(X − Y)2
,
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can also be expressed as500

+c =

�
p

−X(1 + Y) +
p

−Y(1 + X)

X − Y

�2

.

Similarly, −c can be expressed as501

−c =

�
p

−X(1 + Y) −
p

−Y(1 + X)

X − Y

�2

.

Since 1 + X = (1 + θ) > 0, 1 + Y = R2
0 > 0, and Y = R2

0 − 1 < 0, the existence of two502

conjugate roots requires X = (1 + θ) − 1 < 0, or equivalently  < ∗.503

We now focus on the condition  > +c (implying Δ > 0) since it happens to co-504

incide with the separatrix we numerically obtained in the parameter space (Fig. 3).505

Let us express +c as a function of the original parameters:506

+c =

 
q

−((1 + θ) − 1)R2
0 +

q

−(R2
0 − 1)(1 + θ)

(1 + θ) − R2
0

!2

, (18)

or equivalently:507

+c () :=





Ç

�

1 − 
∗
�

R2
0 +

Ç

(1 − R2
0)


∗

R2
0

∗ (c − 
∗)





2

.

Assuming +c () is defined for all  ∈ [0,c] implies c < ∗.508

In particular, since c is such that R2
0 = 1, we have509

+c (c) =
1

1 − c
∗
=: c . (19)

The condition  > c (implying  > 1) is equivalent to the condition we obtained for510

the existence of an endemic equilibrium in the boundary case R2
0 = 1, see Eq. (16).511

This means that in Fig. 3, the line R2
0 = 1 and the separatrix between the “disease-512

free” and “bistability” regions meet at the point (c,c).513

514

B Side results on the spatial model515

516
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B.1 Existence of a minimum linear spreading speed517

The function of the form ξ 7→ exp(−ξs)y is a solution of system (3) linearised518

around the disease-free equilibrium if and only if scy = Msy, in which519

Ms =







−ρ β

θ −1 + s2






,

see Eq. (11). Since Ms is irreducible and, for all s > 0, essentially non-negative,520

the Perron-Frobenius theorem provides the existence of a unique eigenvalue κs of521

Ms associated to a positive eigenvector (Crooks, 1996)[Theorem 1.4]. Therefore,522

sc = κs. Since c = κs/s is the dominant eigenvalue of 1
sMs, c is a convex function of s523

(Cohen, 1981).524

B.2 Quasi-steady-state approximation525

In this section, we make a quasi-steady-state approximation to reduce our model to526

a single dimension (similarly to Hamelin et al., 2016).527

Model (3) can be equivalently expressed as:528

1

ρ
τ =

β

ρ


(1 − )

(1 − ) + 
−  ,

τ = θ(1 − )


 + 1 − 
−  + ξξ .

(20)

We consider the case where the infected vector removal rate (m + ) is much lower529

than the removal rate of infected hosts r, so ρ = r/(m+ )≫ 1. This might happen in530

plant viruses if roguing occurs frequently relative to the vector lifespan (r ≫m), and531

the virus is persistent in the vector ( = 0).532

We apply the quasi-steady-state approximation to the first equation of (20) to533

yield the fraction of infected hosts  directly in terms of the fraction of infected vec-534

tors  as535

0 < ♯() :=

�

β
ρ + 1

�

 −
√

√

�

�

β
ρ − 1

�2
 + 4β

ρ
�



2( − 1)
< 1 .

(It can be easily shown that the other root is greater than unity.)536
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A B C

Figure 9: Exact linear spreading speed (c⋆, in red), as given by numerically solving Eq. (15), and
approximated linear spreading speed (c∗, in blue), as given by Eq. (23) in the monostable case. Our
quasi-steady-state-approximation (QSSA) assumes ρ ≫ 1. It is therefore unsurprising that the QSSA
performs badly when ρ ≤ 10. However, the approximation does not seem to deviate much from the
exact solution for small spreading speeds and ρ ≥ 1. This might explain why the QSSA correctly locates
the c = 0 curve in Fig. 8. Here, β = 2.4ρ, other parameter values as in Fig. 1.

This yields537

t ≈ θ(1 − )
♯()

♯() + 1 − ♯()
−  + ξξ =:W() + ξξ . (21)

538

B.2.1 Monostable case (R2
0 > 1)539

It is useful to notice that in the monostable case (R2
0 > 1), W(0) = 0, W(∗) = 0,540

and W() > 0 for all  ∈ (0,∗). It is well known that if541

W()


< W′(0) for all  ∈ (0,∗) , (22)

the spreading speed of the wave is linearly determined (Stokes, 1976; Lewis and542

Kareiva, 1993):543

c∗ = 2
Æ

W′(0) = 2

√

√

√

β

ρ
θ − 1 = 2

Ç

R2
0 − 1 . (23)

544

Fig. 9 compares the linear speed under the QSSA (Eq. (21)) with the exact linear545

spreading speed given by Eq. (15). The QSSA performs well for large values of ρ, but546

performs increasingly badly for smaller values of ρ that do not meet the assumption547

ρ≫ 1 behind the QSSA.548

Note, however, that if condition (22) is not satisfied, the spreading speed may549
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not be linearly determined. A sufficient condition for condition (22) not to hold is550

W′′(0) > 0. We have551

W′′(0) = −
2β
ρθ

�

(1 + ( − 1))βρ + 
�


,

and so W′′(0) > 0 is equivalent to552

 <

β
ρ ( − 1) − 

β
ρ

.

Or equivalently,553

( − 1)
β

ρ
+ 1 < 0 and  >

β
ρ

−(( − 1)βρ + 1)
=: ̃() . (24)

We also have554

̃(c) =
β
ρ

β
ρ −

1
θ − 1

=
1

1 − c
∗
= c ,

see Eq. (19). This means that the curve separating pulled waves (linear speed)555

with pushed waves (nonlinear speed) in the parameter plane “originates” at (c,c)556

(Fig. 10).557

558

B.2.2 Bistable case (R2
0 < 1)559

In the bistable case (R2
0 < 1), the wave speed is not linearly determined. How-560

ever, it is well known (Fife and McLeod, 1977) that561

sign(c∗) = sign

�

∫ ∗2

0
W()d

�

, (25)

where ∗
2 is the stable nontrivial equilibrium of (21). Hence, the travelling wave has562

positive (negative) speed when the net area between the growth dynamics W()563

of the approximated system (21) and the horizontal axis in the range between the564

disease-free state and the stable endemic state is positive (negative, respectively).565

Figure 11 compares the linear spreading speed with the actual (numerically com-566

puted) spreading speed under the QSSA. It shows that in the bistable case ( < c),567

the spreading speed can be either negative or positive. In the monostable case568

33



Accepted manuscript

disease
free

bi
st

ab
ili

ty

monostable
pushed

wave

monostable
pulled wave
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Figure 10: Two-parameter bifurcation analysis under the quasi-steady-state approximation (QSSA), i.e.,
model (21). The black line connecting (c, 0) to (c,c) is the boundary between the monostable case
with linear speed and the disease-free region. The blue line separates the disease-free region from the
bistability region, as given by Eq. (18). The red line separates the monostable/pushed wave from the
monostable/pulled wave (linear speed) region, as given by Eq. (24). Note that Eq. (24) only depends
on β/ρ, while Eq. (18) only depends on θ and β/ρ through R2

0 = βθ/ρ. Parameter values: θ = 2 and
β/ρ = 2.4. Note, however, that ρ must be much greater than 1 for the QSSA to hold.

( > c), the actual spreading speed significantly deviates from the linear speed for569

 close to c, but the actual speed converges to the linear speed as  increases.570

Figure 12 shows that the actual spreading does not depend on  when it is well571

approximated by the linear speed (for  > 0.3), while it increasingly depends on  as572

 decreases from  = 0.3. The dependency is greater in the bistable case ( = 0.15)573

than in the monostable pushed case ( = 0.2). As expected, the spreading speed is574

non-decreasing with .575
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