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Abstract

Causal random forests provide efficient estimates of heterogeneous treatment effects.

However, forest algorithms are also well-known for their black-box nature, and therefore,

do not characterize how input variables are involved in treatment effect heterogeneity,

which is a strong practical limitation. In this article, we develop a new importance vari-

able algorithm for causal forests, to quantify the impact of each input on the heterogeneity

of treatment effects. The proposed approach is inspired from the drop and relearn princi-

ple, widely used for regression problems. Importantly, we show how to handle the forest

retrain without a confounding variable. If the confounder is not involved in the treatment

effect heterogeneity, the local centering step enforces consistency of the importance mea-

sure. Otherwise, when a confounder also impacts heterogeneity, we introduce a corrective

term in the retrained causal forest to recover consistency. Additionally, experiments on

simulated, semi-synthetic, and real data show the good performance of our importance

measure, which outperforms competitors on several test cases. Experiments also show that

our approach can be efficiently extended to groups of variables, providing key insights in

practice.

1 Introduction

1.1 Context and Objectives

Estimating heterogeneous treatment effects has recently attracted a great deal of interest in the
machine learning community, particularly for medical applications (Obermeyer and Emanuel,
2016) and in the social sciences. Over the past few years, numerous efficient algorithms
have been developed to estimate such effects, including double robust methods (Kennedy,
2020), R-learners (Nie and Wager, 2021), X-learners (Künzel et al., 2019), causal forests
(Wager and Athey, 2018; Athey et al., 2019), the lasso (Kosuke and Marc, 2013), BART (Hill,
2011), or neural networks (Shalit et al., 2017). However, most of these methods remain
black boxes, and it is therefore difficult to grasp how input variables impact treatment ef-
fects. This understanding is crucial for optimizing treatment policies, for instance. While
the accuracy of treatment effect estimates has significantly improved recently, little effort
has been dedicated to improve their interpretability, and quantifying the impact of variables
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involved in treatment effect heterogeneity. In this regard, we can mention the importance mea-
sure of the causal forest package grf (Tibshirani et al., 2023), the double robust approach of
(Hines et al., 2022), and the algorithm from (Boileau et al., 2022) for high dimensional linear
cases. Besides, let us also mention policy learning, which aims at selecting relevant individuals
to treat (Zhao et al., 2012; Swaminathan and Joachims, 2015; Kitagawa and Tetenov, 2018;
Athey and Wager, 2021). However, these policy procedures are also black boxes, which limits
their practical use. The main purpose of this article is to introduce a variable importance
measure for heterogeneous treatment effects, improving over the existing algorithms, to better
identify the sources of heterogeneity. We focus on causal random forests, defined as a specific
case of generalized forests (Athey et al., 2019), and well-known to be one of most accurate
algorithm to estimate heterogeneous treatment effects.

Contributions. Our main contribution is thus the introduction of a variable importance
algorithm for causal random forests, following the drop and retrain principle, which is well-
established for regression problems (Lei et al., 2018; Williamson et al., 2021; Hooker et al.,
2021; Bénard et al., 2022). The main idea is to retrain the learning algorithm without a
given input variable, and measure the drop of accuracy to get its importance. In particu-
lar, such approach ensures that irrelevant variables get a null importance asymptotically. In
the context of causal inference, the main obstacle is to retrain the causal forest without a
confounding variable, since the unconfoundedness assumption can be violated, leading to in-
consistent forest estimates and biased importance values, as explained in Section 2. However,
we will see that the local centering of the outcome and treatment assignment leads to con-
sistent estimates, provided that the removed variable is not involved in the treatment effect
heterogeneity. Otherwise, to handle a confounder involved in heterogeneity, we introduce a
corrective term in the retrained causal forest. Overall, we will show in Section 3, that our
proposed variable importance algorithm is consistent, under standard assumptions in the lit-
erature about the theoretical analysis of random forests. Next, in Section 4, we run several
batches of experiments on simulated, semi-synthetic, and real data to show the good perfor-
mance of the introduced method compared to the existing competitors. Additionally, we take
advantage of the experimental section to illustrate that the extension of our approach to group
of variables is straightforward and provides powerful insights in practice. The remaining of
this first section is dedicated to the mathematical formalization of the problem.

1.2 Definitions

To define heterogeneous treatment effects, we first introduce a standard causal setting with
an input vector X = (X(1), . . . ,X(p)) ∈ R

p with p ∈ N
⋆, the binary treatment assignment

W ∈ {0, 1}, the potential outcome Y (1) ∈ R for the subject receiving the treatment, and the
potential outcome without treatment Y (0) ∈ R. We denote by X(H) the subvector with only
the components in H ⊂ {1, . . . , p}, and X(−j) the vector X with the j-th component removed.
The observed outcome is given by Y = WY (1)+ (1−W )Y (0), which is known as the SUTVA
assumption in the literature. More precisely, the potential outcomes are defined by

Y (0) = µ(X) + ε(0),

Y (1) = µ(X) + τ(X(H)) + ε(1),
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where µ(X) is a baseline function, τ(X(H)) is the conditional average treatment effect (CATE)
only depending on variables in H ⊂ {1, . . . , p}, and ε(0), ε(1) are some noise variables sat-
isfying E[ε(0) | X] = E[ε(1) | X] = 0. Notice that the CATE is also defined as the mean
difference between potential outcomes, conditional on X, i.e., E[Y (1) − Y (0) | X] = τ(X(H)),
by construction. Overall, the observed outcome Y also writes

Y = µ(X) + τ(X(H))×W + ε(W ).

The cornerstone of causal treatment effect identifiability is the assumption of unconfound-
edness given below, which states that all confounding variables are observed in the data. By
definition, the responses Y (0), Y (1), and the treatment assignment W simultaneously depend
on the confounding variables. If all confounding variables are observed, then the responses
and the treatment assignment are independent conditional on the inputs. Consequently, the
treatment effect is identifiable, as stated in the following proposition—all proofs of proposi-
tions and theorems stated throughout the article are gathered in Appendix A. Notice that
Assumption 1 below enforces that the input vector X contains all confounding variables, but
X may also contain non-confounding variables. Consequently, X(H) can also be a mix of con-
founding and non-confounding variables, or contain only variables of one type. Ideally, all
variables impacting the treatment effect heterogeneity should be involved in the analysis, even
if they are not confounding variables, to better estimate and interpret the treatment effect.

Assumption 1. Potential outcomes are independent of the treatment assignment conditional
on the observed input variables, i.e., Y (0), Y (1) ⊥⊥ W | X.

Proposition 1. If the unconfoundedness Assumption 1 is satisfied, then we have

τ(X(H)) = E[Y | X,W = 1]− E[Y | X,W = 0].

Note that we define above the treatment effect as the expected difference between potential
outcomes, conditioned on input variables. However, the heterogeneity properties strongly
depend on how we define the treatment effect (VanderWeele and Robins, 2007; Rothman,
2012; Colnet et al., 2023). The ratio between the means of potential outcomes may also define
a treatment effect, leading to potential heterogeneity while our original outcome difference
remains constant. A thorough discussion of this topic is out of scope of this article, and
we take the difference of potential outcomes as treatment effect, the widely used metric for
many applications (VanderWeele and Robins, 2007). We refer to Colnet et al. (2023) for a
comparison of treatment effect measures.

VanderWeele and Robins (2007) defined treatment effect heterogeneity as follows.

Definition 1 (VanderWeele and Robins (2007)). The treatment effect τ is said to be hetero-
geneous with respect to X if it exists x,x′ ∈ R

p such that τ(x(H)) 6= τ(x′(H)).

We strengthen this definition in two directions, formalized in Definition 2 below. First, we
require τ to be heterogeneous with respect to each variable in H, to enforce H to be the subset
of variables impacting treatment effect heterogeneity. Secondly, notice that Definition 1 can
be satisfied while having an homogeneous treatment effect in probability, i.e., P(τ(X(H)) =
τ(X′(H))) = 1, with X′(H) an independent copy of X(H). In such cases, heterogeneity is not
detectable from a data sample, and has a negligible impact in practice. Therefore, we enforce τ
to take distinct values with respect to all variables in H on sets of non-null Lebesgue measure.
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Definition 2. The treatment effect τ is said to be heterogeneous with respect to all variables
in H, if for all j ∈ H, it exists Xp−1 ⊂ R

p−1 and X1,X
′
1 ⊂ R, such that for all x

(−j) ∈ Xp−1,
x(j) ∈ X1, x

′(j) ∈ X ′
1, we have

τ(x(H)) 6= τ(x′(H)),

with x
′(−j) = x

(−j), and Xp−1, X1, and X ′
1 have a non-null Lebesgue measure.

In the sequel, we assume that the treatment effect τ is heterogeneous in the sense of
Definition 2, and that X admits a strictly positive density, to enforce heterogeneity with a
positive probability, as stated in the proposition below. Our objective is to quantify the in-
fluence of the input variables X on the treatment heterogeneity using an available sample
Dn = {(Xi, Yi,Wi)}

n
i=1, made of n ∈ N

⋆ independent and identically distributed (iid) observa-
tions.

Assumption 2. The treatment effect τ is heterogeneous according to Definition 2, and X

admits a strictly positive density.

Proposition 2. If Assumption 2 is satisfied, and X
′ is an independent copy of X, then

P(τ(X(H)) 6= τ(X′(H))) > 0.

2 Variable Importance for Heterogeneous Treatment Effects

2.1 Theoretical Definition

To propose a variable importance measure, we build on Sobol (1993) and Williamson et al.
(2021), which define variable importance in the case of regression as the proportion of output
explained variance lost when a given input variable is removed. Hines et al. (2022) extend
this idea to treatment effects, and introduce the theoretical importance measure I(j) of X(j),
defined by

I(j) =
V[τ(X(H))]− V[E[τ(X(H))|X(−j)]]

V[τ(X(H))]
=

E[(τ(X(H))− E[τ(X(H))|X(−j)])2]

V[τ(X(H))]
, (1)

which is well-defined under Assumption 2, since V[τ(X(H))] > 0. Otherwise, when
V[τ(X(H))] = 0, the treatment is homogeneous, i.e. constant with respect to all input variables,
and does not satisfy Definition 2. This importance measure gives the proportion of treatment
effect variance lost when a given input variable is removed. Additionally, the following propo-
sition shows that I(j) properly identifies variables in H, which have an impact on treatment
heterogeneity, where the proof in Appendix A is a consequence of Assumption 2.

Proposition 3. Let Assumption 2 be satisfied. If j /∈ H, then we have I(j) = 0. Otherwise, if
j ∈ H, we have 0 < I(j) ≤ 1.
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Note that by definition of I(j), a variable strongly correlated to the other inputs, has a
low importance value. This is due to the fact that, owing to this strong dependence, there is
minimal loss of information regarding the treatment effect heterogeneity when such a variable is
removed. As suggested by both Williamson et al. (2021) and Hines et al. (2022), one possible
approach involves extending the importance measure to a group of variables, where strongly
dependent variables are grouped together. For the sake of clarity, we focus on the case of
a single variable in the following sections. However, extending this approach to groups of
variables is straightforward, and we will present such examples in the experimental section.

More importantly, Hines et al. (2022) highlight that a key problem to estimate the above
quantity I(j), is that the unconfoundedness Assumption 1 does not imply unconfoundedness for
the reduce set of input variables X(−j), i.e., we may have Y (0), Y (1) 6⊥⊥ W | X(−j). Hines et al.
(2022) overcome this issue using double robust approaches (Kennedy, 2020; Nie and Wager,
2021) to estimate τ with all input variables in a first step, and then regress the obtained
treatment effect on X(−j) to estimate E[τ(X(H))|X(−j)]. Actually, the generalized random
forest framework from Athey et al. (2019) enables to get closer to the original proposal of
Williamson et al. (2021) by retraining the causal forest without variable X(j) and still get
consistent estimates of E[τ(X(H))|X(−j)], as we will see. Therefore, we focus on causal forests
(Wager and Athey, 2018; Athey et al., 2019), one of the state-of-the-art algorithm to estimate
heterogeneous treatment effects, to propose efficient estimates of I(j).

2.2 Causal Random Forests

Generalized random forests (Athey et al., 2019) are a generic framework to build efficient
estimates of quantities defined as solutions of local moment equations. As opposed to original
Breiman’s forests, generalized forests are not the average of tree outputs. Instead, trees are
aggregated to generate weights for each observation of the training data, used in a second
step to build a weighted estimate of the target quantity. Causal forests are a specific case of
generalized forest, where the following local moment equation identifies the treatment effect
under the unconfoundedness Assumption 1,

τ(X(H))× V[W | X]− Cov[W,Y | X] = 0. (2)

The local moment equation (2) is thus used to define the causal forest estimate τM,n(x) at
a new query point x, built from the data Dn with M ∈ N

⋆ trees, and formally defined in
Athey et al. (2019, Section 6.1) by

τM,n(x) =

∑n
i=1 αi(x)WiYi −WαY α

∑n
i=1 αi(x)(Wi −Wα)2

, (3)

where Y α =
∑n

i=1 αi(x)Yi, Wα =
∑n

i=1 αi(x)Wi, and the weights αi(x) are generated by
the forest to quantify the frequency of x and the training observation Xi both falling in the
same terminal leaves of trees. Notice that the ℓ-th tree of the forest is randomized by Θℓ,
which defines the resampling of the data prior to the tree growing, as well as the random
variable selection at each node for the split optimization. We write the causal forest estimate
τM,n(x,ΘM ) when it improves clarity, where ΘM = (Θ1, . . . ,ΘM ). Besides, notice that the
local moment equation (2) is also used to define an efficient splitting criterion of the tree nodes.
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Finally, the causal forest algorithm first performs a local centering step in practice, by
regressing Y and W on X using regression forests, fit with Dn. The obtained out-of-bag
forest estimates of m(Xi) = E[Yi | Xi] and π(Xi) = E[Wi | Xi] are denoted by m̂n(Xi) and
π̂n(Xi). Then, these quantities are subtracted to get the centered outcome Ỹi = Yi − m̂n(Xi),
and centered treatment W̃i = Wi − π̂n(Xi), used to fit the causal forest τM,n(x).

2.3 Variable Importance Algorithm

We take advantage of causal forests to build an estimate of our variable importance measure
I(j), defined in equation (1). The forest estimate τM,n(x), described in the previous subsection,
provides a plug-in estimate for the first term τ(X(H)) of I(j). Next, we need to estimate the
second term E[τ(X(H))|X(−j)] involved in I(j), and then, a Monte-Carlo method will provide
an efficient algorithm for our importance measure. Hence, a natural approach is to drop the
j-th variable and retrain the forest to estimate E[τ(X(H))|X(−j)]. As we deepen below and
summarize in Algorithm 1, a critical feature of this procedure is that all input variables are
used in the local centering of Yi and Wi, before the j-th variable is dropped to build τ

(−j)
M,n (x).

Therefore, the causal forest is retrain using the observations {(X
(−j)
i , Ỹi, W̃i)}

n
i=1 to generate

new weights α′(x(−j)) and build τ
(−j)
M,n (x) through equation (3).

Identifiability of treatment effect. When a variable X(j) is removed from the input
variables, the moment equation (2) does not necessarely hold anymore, since unconfoundedness
Assumption (1) may be violated with a reduced set of inputs. However, an important feature of
causal forests is the preliminary step of local centering of the observed outcome and treatment
assignment, explained above. The following proposition shows that the treatment effect is
well identified by the local moment equation of causal forests including only variables in H,
provided that the data is centered with all inputs. We recall that m(X) = E[Y | X] and
π(X) = E[W | X].

Proposition 4. If Assumption 1 is satisfied, we have

τ(X(H))× V[W − π(X) | X(H)]− Cov[W − π(X), Y −m(X) | X(H)] = 0,

which is the local moment equation defining causal forests, with input variables X
(H), centered

outcome Y −m(X), and centered treatment assignment W − π(X).

On the other hand, removing an influential variable j ∈ H to learn a causal forest is more
delicate. Indeed, a local moment equation to identify the mean CATE over X(j) exists if the
treatment effect is uncorrelated to the squared centered treatment assignment.

Proposition 5. If Assumption 1 is satisfied, then we have for j ∈ H

E[τ(X(H)) | X(−j)]× V[W − π(X) |X(−j)]− Cov[W − π(X), Y −m(X) | X(−j)]

+ Cov[τ(X(H)), π(X)(1− π(X)) | X(−j)] = 0.

Then, for a query point x
(−j) ∈ [0, 1]p−1, if Cov[τ(X(H)), π(X)(1−π(X)) | X(−j) = x

(−j)] = 0,
E[τ(X(H)) | X(−j) = x

(−j)] is identified by the original local moment equation of causal forests,
with X

(−j) as input variables, centered outcome Y −m(X), and centered treatment assignment
W − π(X).
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Athey and Wager (2019, Footnote 5, page 42) conduct an empirical analysis using causal
forests, and state in a footnote, that local centering “eliminates confounding effects. Thus, we
do not need to give the causal forest all features X(j) that may be confounders. Rather, we can
focus on features that we believe may be treatment modifiers”. However, Propositions 4 and
5 show that this statement must be completed. Indeed, Proposition 4 states that confounders
not involved in the heterogeneity of the treatment effect, i.e. confounders that do no belong
to H, may be dropped without hurting the identifiability of τ , thanks the the local centering
step. On the other hand, Proposition 5 shows that this is clearly not the case for confounders
involved in heterogeneity, as the treatment effect is not properly identified by the local moment
equation of causal forests, even with local centering. To overcome this problem, we introduce
a corrective term in the retrained forest.

Corrected causal forests. The additional covariance term in Proposition 5 can be esti-
mated using the original causal forest fit with all inputs. Therefore, we propose the corrected
causal forest estimate when removing a confounding variable X(j) with j ∈ H. Recall that the
weights α′(x(−j)) are generated by the causal forest using centered data and dropping variable
X(j), to define τ

(−j)
M,n (x). We define the corrected causal forest estimate θ

(−j)
M,n (x) as

θ
(−j)
M,n (x) = τ

(−j)
M,n (x)−

∑n
i=1 α

′
i(x

(−j))W̃ 2
i τM,n(Xi)−W 2

α′τα′

W 2
α′ − (Wα′)2

, (4)

where W 2
α′ =

∑n
i=1 α

′
i(x

(−j))W̃ 2
i , Wα′ =

∑n
i=1 α

′
i(x

(−j))W̃i, and the mean treatment effect is
τα′ =

∑n
i=1 α

′
i(x

(−j))τM,n(Xi). With such correction, the causal forest retrained without a
confounding variable is consistent, as we will show in Section 3. Note however that, in practice,
the correction term can be small, as demonstrated in the experimental Section 4.

Variable importance estimate. Using D ′
n = {(X′

i, Y
′
i ,W

′
i )}

n
i=1 an independent copy of

Dn, we define

I(j)n =

∑n
i=1

[

τM,n(X
′
i)− θ

(−j)
M,n (X

′
i)
]2

∑n
i=1

[

τM,n(X
′
i)− τM,n

]2 − I(0)n , (5)

where τM,n =
∑n

i=1 τM,n(X
′
i)/n, and I

(0)
n is the mean squared difference between the initial

forest predictions and the predictions of the corrected forest θ
(0)
M,n(X

′
i,Θ

′
M ), retrained with still

all the inputs variables involved but a new randomization Θ′
M , i.e.,

I(0)n =

∑n
i=1

[

τM,n(X
′
i,ΘM )− θ

(0)
M,n(X

′
i,Θ

′
M )

]2

∑n
i=1

[

τM,n(X
′
i)− τM,n

]2 .

In fact, I
(0)
n partially removes the bias of the first term of I

(j)
n , due to the randomization of the

forest training, and vanishes as the sample size increases if the causal forest converges. Notice
that the above definition is formalized with D ′

n for the sake of clarity, but that such additional
data is usually not available in practice. Instead, out-of-bag causal forest estimates are rather
used to define I

(j)
n , as summarized in Algorithm 1 below.
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Algorithm 1 Variable importance algorithm for causal forests

Require: A dataset Dn = {(Xi, Yi,Wi)}
n
i=1 containing all confounding variables.

1: Perform local centering of outputs Yi and treatment assignments Wi to get the centered
dataset {(Xi, Ỹi, W̃i)}

n
i=1, using regression forests and out-of-bag estimates.

2: Train a causal forest with the centered data {(X, Ỹi, W̃i)}
n
i=1 containing all variables.

3: for j ∈ {1, . . . , p} do

4: Train a corrected causal forest with the centered data {(X(−j), Ỹi, W̃i)}
n
i=1, where the

j-th variable is removed.

5: Compute I
(j)
n according to equation (5) and using the initial forest and the retrained

forest of the previous step.
6: end for

7: return
{

I
(j)
n

}p

j=1

3 Theoretical Properties

Propositions 4 and 5 are the cornerstones of the consistency of our variable importance algo-
rithm. This result relies on the asymptotic analysis of Athey et al. (2019), which states the
consistency of causal forests in Theorem 1. Several mild assumptions are required, mainly
about the input distribution, the regularity of the involved functions, and the forest growing.
Then, the core of our mathematical analysis is the extension to the case of a causal forest
fit without a given input variable. When the removed input is a confounding variable, con-
sistency is obtained thanks to the corrective term introduced in equation (4) of the previous
section. Then, the convergence of our variable importance algorithm follows using a standard
asymptotic analysis. We first formalize the required assumptions and specifications on the
tree growing from Athey et al. (2019), that are frequently used in the theoretical analysis of
random forests (Meinshausen, 2006; Scornet et al., 2015; Wager and Athey, 2018).

Assumption 3. The input X takes value in [0, 1]p, and admits a density bounded from above
and below by strictly positive constants.

Assumption 4. The functions π, m, and τ are Lipschitz, 0 < π(x) < 1 for x ∈ [0, 1]p, and µ
and τ are bounded.

Specification 1. Tree splits are constrained to put at least a fraction γ > 0 of the parent node
observations in each child node. The probability to split on each input variable at every tree
node is greater than δ > 0. The forest is honest, and built via subsampling with subsample size
an, satisfying an/n → 0 and an → ∞.

The first part of Specification 1 is originally introduced by Meinshausen (2006). The idea is
to enforce the diameter of each cell of the trees to vanish as the sample size increases, by adding
a constraint on the minimum size of children nodes, and slightly increasing the randomization
of the variable selection for the split at each node. Then, vanishing cell diameters combined to
Lipschitz functions lead to the forest convergence. Additionally, honesty is a key property of the
tree growing, extensively discussed in Wager and Athey (2018), where half of the data is used
to optimize the splits, and the other half to estimate the cell outputs. With these assumptions
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satisfied, we state below the causal forest consistency proved in Athey et al. (2019). Notice
that the original proof is conducted for generalized forests, for any local moment equations
satisfying regularity assumptions, automatically fulfilled for the moment equation (2) involved
in our analysis. In Appendix A, we give a specific proof of Theorem 1 in the case of causal
forests. We built on this proof to further extend the consistency result when a confounding
variable is removed.

Theorem 1 (Theorem 3 from Athey et al. (2019)). If Assumptions 1-4 and Specification 1
are satisfied, and the causal forest τM,n(x) is built with Dn without local centering, then we
have for x ∈ [0, 1]p,

τM,n(x)
p

−→ τ(x(H)).

Next, we need a slight simplification of our variable importance algorithm to alleviate the
mathematical analysis. We assume that a centered dataset D⋆

n = {(Xi,W
⋆
i , Y

⋆
i )} is directly

available, where W ⋆
i = Wi − π(Xi) and Y ⋆

i = Yi − m(Xi). A causal forest grown with this
dataset where a given input variable j ∈ {1, . . . , p} \ H is dropped, consistently estimates
the treatment effect as stated below. Consistency also holds for variables j ∈ H in specific
cases, whereas in the general case, the corrected term introduced in equation (4) is required.
Theorem 2 states the consistency of causal forests when an input variable is removed.

Theorem 2. If Assumptions 1-4 and Specification 1 are satisfied, and the causal forest τ
(−j)
M,n (x)

is fit with the centered data D
⋆(−j)
n without the j-th variable,

(i) for j ∈ {1, . . . , p} \ H and x ∈ [0, 1]p, we have

τ
(−j)
M,n (x)

p
−→ τ(x(H)),

(ii) for j ∈ H and x ∈ [0, 1]p, if Cov[τ(X(H)), π(X)(1 − π(X)) | X
(−j) = x

(−j)] = 0, we
have

τ
(−j)
M,n (x)

p
−→ E[τ(X(H)) | X(−j) = x

(−j)].

Theorem 2 is a direct consequence of Propositions 4 and 5 combined with Theorem 1.
Indeed, provided that the outcome and treatment assignment are centered, if the removed
variable j is not involved in the treatment heterogeneity, i.e. j /∈ H, consistency holds. On the
other hand, if j ∈ H, we need an additional assumption that τ(X(H)) and π(X)(1−π(X)) are
not correlated conditional on X(−j) = x(−j), where x(−j) is the new query point. Otherwise,
consistency is obtained with a corrective term defined in equation (4), as we will see. However,
we need an additional small modification of causal forests to enforce the generated estimates to
be bounded, and to limit the number of observations in each terminal leave of trees, as stated
in the specification below. Notice that such modifications are quite mild. Indeed, the true
treatment effect is bounded by assumption. For the second part, the number of observations
in each terminal leave may not be bounded in specific cases, because of honest tree growing.
Nevertheless, it is still possible to comply with this specification, by randomly splitting cells
that exceed the number of observation threshold.
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Specification 2. The causal forest estimates are truncated from below and above by −K and
K, where K ∈ R is an arbitrarily large constant. The number of observations in each terminal
leave of trees is smaller than a threshold t0 ∈ N

⋆.

Theorem 3. Let the initial causal forest τM,n(x) fit with the centered data D⋆
n, and the cor-

rected causal forest θ
(−j)
M,n (x) fit using τM,n(x) and D

⋆(−j)
n , an independent copy of the centered

data with the j-th variable dropped. If Assumptions 1-4, and Specifications 1 and 2 are satisfied,
then for j ∈ {1, . . . , p} and x ∈ [0, 1]p, we have

θ
(−j)
M,n (x)

p
−→ E[τ(X(H)) | X(−j) = x

(−j)].

Since Theorems 1 and 3 give the consistency of causal forests respectively fit with all input
variables, and when a given variable is removed, we can deduce the consistency of our variable
importance algorithm from standard asymptotic arguments.

Theorem 4. Under the same assumptions than Theorem 3, we have for all j ∈ {1, . . . , p}

I(j)n

p
−→ I(j).

Theorem 4 states that the introduced variable importance algorithm gets arbitrarily close
to the true theoretical value, provided that the sample size is large enough. Combining this

result with Proposition 3, we get that, for j /∈ H, I
(j)
n

p
−→ 0, which means that the variables

not involved in the treatment heterogeneity by construction get a null importance. Finally, we
conclude our theoretical analysis with a focus on the corrective term of the retrained causal
forests. In particular, we quantify the positive asymptotic bias introduced in the importance
measure without this correction. We thus denote by I

(j)
n the estimated importance measure

following the same procedure as for I
(j)
n , except that the corrected forest θ

(−j)
M,n (x) is replaced

by the raw retrained forest τ
(−j)
M,n (x).

Theorem 5. Under the same assumptions than Theorem 3, with I
(j)
n the importance measure

estimated without the corrective term in the causal forests, we have for all j ∈ H,

I(j)
n

p
−→ I(j) +

1

V[τ(X(H))]
E

[Cov[τ(X(H)), π(X)(1− π(X)) | X(−j)]2

E[π(X)(1 − π(X)) | X(−j)]2

]

.

4 Experiments

We assess the performance of the introduced algorithm through three batches of experiments.
First, we use simulated data, where the theoretical importance values are known by construc-
tion, to compare our algorithm to the existing competitors. Secondly, we test our procedure
with the semi-synthetic cases of the ACIC data challenge 2019, where the variables involved
in the heterogeneity are known, but not the importance value. Finally, we present cases with
real data to show examples of an analysis conducted with our procedure. Our approach is
compared to the importance of the grf package and TE-VIM, the double robust approach of
Hines et al. (2022). For TE-VIM, any learning method can be used, and we report the per-
formance of GAM models, which outperform regression forests in the presented experiments.
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When reading the results, recall that TE-VIM targets the same theoretical quantities I(j) as
our algorithm, whereas the grf importance is the frequency of variable occurrence in tree
splits. Besides, the algorithm of Boileau et al. (2022) is designed for high dimensional cases
and linear treatment effects, and is thus not appropriate to our goal of precisely quantifying
variable importance in non-linear settings. The implementation of our variable importance al-
gorithm is available online at https://gitlab.com/cbenard/grf-vimp, along with the code
to reproduce experiments with simulated data.

4.1 Simulated Data

Experiment 1. We consider a first example of simulated data to highlight the good perfor-
mance of the proposed importance measure. The input is of dimension p = 8, and is defined by
X ∼ N (0,Σ), with Σ the identity matrix except that Cov(X(1),X(5)) = 0.9. The treatment
assignment is given by W ∼ Bernouilli(0.4 + 0.21X(1)>0), and the response Y follows

Y =
(

X(1)
1X(1)>0 + 0.6X(2)

1X(2)>0

)

×W + (X(3) ×X(4))2 + ε, (6)

where ε ∼ N (0, 0.1). In practice, we take a sample size n = 3000, and the causal forest
is fit with the default number of trees M = 2000. Notice that the ratio V[τ(X(H))]/V[Y ]
is about 5% in this setting, because of the high variance of the term (X(3) × X(4))2. Such
a quite small ratio is realistic, and makes the treatment effect quite difficult to estimate in
practice. Here, both X(1) and X(2) are involved in heterogeneity, i.e. H = {1, 2}, but only
X(1) is also a confounder. Results are averaged over 10 repetitions, and are reported in Table
1 (30 repetition for grf-vimp to stabilize the ranking). Additionally, the standard deviation
of the mean importance for each variable is displayed in brackets, except for negligible values
(< 0.005). The first column of Table 1 is the oracle importance value, precisely estimated
using equation (1), the closed-form of τ given by equation (6), and a Monte-Carlo method
with a large sample drawn from the joint distribution of (Y,W,X), known by construction.

I

X(2) 0.26

X(1) 0.18
X(3) 0
X(4) 0
X(5) 0

X(6) 0
X(7) 0
X(8) 0

In
X(2) 0.23 (0.02)

X(1) 0.19 (0.01)

X(4) 0.04 (0.01)

X(3) 0.03 (0.01)

X(5) 0.004

X(6) 0.001
X(7) 0.001
X(8) 0.001

TE-VIM

X(1) 0.42 (0.07)

X(2) 0.40 (0.08)

X(4) 0.19 (0.32)

X(8) 0.14 (0.16)

X(5) 0.14 (0.15)

X(3) 0.12 (0.19)

X(6) 0.05 (0.15)

X(7) -0.01 (0.17)

grf-vimp

X(1) 0.49 (0.02)

X(3) 0.13 (0.01)

X(4) 0.12 (0.01)

X(5) 0.11 (0.01)

X(2) 0.10 (0.01)

X(6) 0.02
X(7) 0.02
X(8) 0.02

Table 1: Variable importance ranking of Experiment 1 for I
(j)
n , the importance measure of grf

package, and TE-VIM. Standard deviations are displayed in brackets when greater than 0.005.

The results displayed in Table 1 show that our algorithm is the only one to provide the
accurate variable ranking, where X(2) is the most important variable, and X(1) the second
most important one. TE-VIM accurately identifies these two variables as the most influential,
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with a similar importance. On the other hand, the importance measure from the grf package
underestimates the importance of variable X(2), and identifies X(3), X(4), and X(5) as slightly
more important than X(2), although these three variables are not involved in the treatment
heterogeneity by construction. In particular, X(5) is not involved at all in the response Y , but is
strongly correlated to the influential input X(1). Because of this dependence, X(5) is frequently
used in the causal forests splits, leading to this quite high importance given by the grf package.
On the other hand, I

(j)
n gives an importance close to 0 for X(5). This result is expected, since the

removal of X(5) does not lead to any loss of information regarding the treatment heterogeneity,
by definition. An additional interesting phenomenon is the non-negligible importance for
variables X(3) and X(4) given by all procedures. In fact, the interaction term in the baseline
function µ, which takes the form of a squared product, is rather difficult to estimate by
regression forests. Then, the local centering of Y is only partial, and X(3) and X(4) still have
impact on the variance of treatment estimates. Besides, notice that the corrective term of
equation (4) is negligible in this experiment, and that using the original causal forest retrained
with one variable removed, gives the same result as in Table 1 for I

(j)
n , up to the displayed

digits.

Experiment 2. This second experiment has the same setting than Experiment 1, except
that variable X(1) is only a confounder and is not involved in the treatment effect heterogeneity
anymore. Now, the response writes

Y =
(

0.6X(2)
1X(2)>0

)

×W +X(1)
1X(1)>0 + (X(3) ×X(4))2 + ε.

The results are provided in Table 2. Clearly, I
(j)
n outperforms the competitors. Indeed, X(2)

is well-identified by I
(j)
n as responsible for most of the heterogeneity of the treatment effect,

whereas TE-VIM is strongly biased, and the importance procedure of the grf package outputs
quite close values for X(2), X(4), and X(3). As expected, the importance of these last two
variables is relatively larger than in Experiment 1, since the ratio V[τ(X(H))]/V[Y ] drops to
1% in this case.

I

X(2) 1

X(1) 0
X(3) 0
X(4) 0
X(5) 0

X(6) 0
X(7) 0
X(8) 0

In
X(2) 0.89 (0.04)

X(3) 0.13 (0.03)

X(4) 0.13 (0.03)

X(1) 0.003
X(5) 0.003

X(6) 0.004
X(7) 0.004
X(8) 0.006

TE-VIM

X(2) 1.76 (0.11)

X(4) 1.65 (0.04)

X(3) 1.03 (0.02)

X(8) 0.99
X(1) 0.96 (0.02)

X(5) 0.88 (0.02)

X(6) 0.71 (0.03)

X(7) 0.57 (0.04)

grf-vimp

X(2) 0.36 (0.01)

X(4) 0.24 (0.01)

X(3) 0.23 (0.01)

X(1) 0.03
X(5) 0.03

X(6) 0.03
X(7) 0.03
X(8) 0.03

Table 2: Variable importance ranking of Experiment 2 for I
(j)
n , the importance measure of grf

package, and TE-VIM. Standard deviations are displayed in brackets when greater than 0.005.

Experiment 3. The goal of this third simulated experiment is to highlight a case where the
corrective term in the retrained causal forest has a strong influence, as opposed to Experiments
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1 and 2. We consider p = 5 inputs uniformly distributed over [0, 1], except X(1) defined as
X(1) = U3, where U ∼ U(0, 1). The treatment assignment W is a Bernoulli variable defined
from π(X) = X(1), and the response is given by

Y = 10X(1)(1−X(1))×W +X(2) + ε,

where ε ∼ N (0, 0.1). We still use n = 3000 and M = 2000 trees in the causal forests. Next,
we compute our importance measure I

(j)
n for all inputs, as well as its counterpart I

(j)
n , where

the corrective term is removed, and with 10 repetitions for uncertainties. Results are reported
in Table 3, and clearly show the high bias of the importance of X(1) when the corrective term
in the retrained forest is removed. Indeed, we get I

(1)
n = 1.57, whereas the target quantity is

I(1) = 1, since X(1) is the only variable involved in the treatment effect heterogeneity and X(1)

is independent of the other inputs. With the correction, we recover an importance value of 0.98
for X(1) as expected. Notice that the asymptotic bias exhibited in Theorem 5 takes values 0.72
for this case, which explains the empirical results. Importantly, this bias takes small values in
practice in most cases. Here, we take the treatment effect as τ(X(H)) = 10π(X)(1− π(X)) to
maximize the covariance term involved in the bias of Theorem 5.

In
X(1) 0.98 (0.002)

X(2) 0.0003

X(3) 0.001
X(4) 0.0002
X(5) 0.0002

In
X(1) 1.57 (0.01)

X(2) 0.001

X(3) 0.001
X(4) 0.002
X(5) 0.001

Table 3: Variable importance ranking of Experiment 3 for I
(j)
n and I

(j)
n . Standard deviations

are displayed in brackets when greater than 0.001.

4.2 ACIC Data Challenge 2019

We run a second batch of experiments using the data from the ACIC data challenge
2019 (https://sites.google.com/view/acic2019datachallenge/data-challenge), where
the goal was to estimate ATEs in various settings. The input data is taken from real datasets
available online on the UCI repository. Next, outcomes are simulated with different scenarios,
and the associated code scripts were released after the challenge. Since the data generating
mechanism is available, we have access to the variables involved in the heterogeneous treatment
effect. In each scenario, a hundred datasets were randomly sampled.

We first use the “student performance 2” data with 31 input variables, considering Scenario
4 defined in the ACIC challenge, involving heterogeneity of the treatment effect with respect
to X(3). Each dataset is of size n = 649, and we run 10 repetitions with independent datasets

for uncertainties. Table 4 gives the top 5 variables ranked by I
(j)
n , which accurately identifies

X(3) as the only variable involved in the treatment heterogeneity, since other variables all have
a negligible importance value. The grf importance measure also identifies X(3) as the most
important variable. However, the importance of many irrelevant variables is not negligible, as

opposed to I
(j)
n .
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I
(j)
n

X(3) 0.82 (0.04)

X(27) 0.009 (0.009)

X(29) 0.008 (0.003)

X(12) 0.007 (0.005)

X(14) 0.005 (0.004)

grf-vimp

X(3) 0.45 (0.04)

X(29) 0.06 (0.008)

X(27) 0.03 (0.008)

X(7) 0.03 (0.005)

X(28) 0.03 (0.002)

Table 4: Top 5 variables for “Student performance 2 (Scenario 4)” dataset using I
(j)
n and the

importance measure of grf package. Standard deviations are displayed in brackets.

Secondly, we use the “spam email” data, made of 22 input variables. We also consider
Scenario 4, where variables X(8) and X(19) are involved in the heterogeneous treatment effect.
In this case, we merge 20 datasets to get a quite large sample of size n = 10000, and run 5
repetitions to compute standard deviations. The two relevant variables are properly identified
as the most important ones by the two tested algorithms, as shown in Table 5. Again, the grf

importance gives slightly higher values to irrelevant variables than I
(j)
n . Notice that the impact

of X(19) on heterogeneity is really small, and if we use only few datasets of size n = 500 in the
forest training, X(19) is not identified as more important than noisy variables. Thus, a large
sample size is required to detect its influence, and therefore we use n = 10000.

In
X(8) 0.83 (0.001)

X(19) 0.011 (0.002)

X(22) 0.003 (4.10−4)

X(12) 0.002 (4.10−4)

X(15) 0.001 (3.10−4)

X(17) 0.0004 (< 10−4)

grf-vimp

X(8) 0.85 (4.10−3)

X(19) 0.064 (6.10−3)

X(1) 0.013 (3.10−3)

X(22) 0.013 (1.10−3)

X(15) 0.010 (8.10−4)

X(17) 0.009 (2.10−3)

Table 5: Top 6 variables for “Spam email (Scenario 4)” dataset using I
(j)
n and the importance

measure of grf package. Standard deviations are displayed in brackets.

4.3 Real data

Welfare data. For a first experiment with real data, we use the “Welfare”
dataset from a GSS survey, introduced in Green and Kern (2012) and available at
https://github.com/gsbDBI/ExperimentData. The goal of this survey is to analyze the im-
pact of question wording about the support of Americans to the government welfare spending.
Respondents are randomly assigned one of two possible questions, with the same introduction
and response options, but using the phrasing “welfare” or “assistance to the poor”. In fact,
this slight wording difference has a quite strong impact on the survey answers, and defines
the treatment. The output of interest indicates if respondents have answered that “too much”
is spent. Our objective is to identify the main characteristics of individuals that have an im-
pact on the heterogeneity of the treatment effect. We take the dataset from the tutorial
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available at https://gsbdbi.github.io/ml_tutorial/hte_tutorial/hte_tutorial.html,
of size n = 13198 and with p = 31 input variables, where basic data preparation steps were
used to drop rows with missing values. Notice that we consider the same data to enable com-
parisons, but that imputing missing values may improve estimates. We leave this topic for
future work, as handling missing values for variable importance is of high practical interest.

Table 6 displays the top 10 most important variables for Welfare data using our algorithm
In and also the importance from the grf package. The ranking provided by the two algorithms
are close, but In has a clear meaning as the variance proportion of the treatment effect lost
when a given variable is removed, whereas grf-vimp can only be used as a relative importance
between covariates, without an intrinsic meaning.

In
polviews 0.18
partyid 0.09
hrs1 0.04

indus80 0.03
maeduc 0.02
educ 0.02

marital 0.01
age 0.01

occ80 0.01
reg16 0.01

grf-vimp

polviews 0.31
partyid 0.17
educ 0.09

indus80 0.07
hrs1 0.07

marital 0.04
degree 0.04
maeduc 0.04
occ80 0.02
age 0.02

Table 6: Top 10 most important variables with respect to In and grf-vimp for Welfare data.

Notice that the sum of the importance of all input variables, i.e.
∑

j I
(j)
n , adds to 0.45,

which is far from 1. Indeed, when inputs are independent, we have
∑

j I
(j) ≥ 1. Such a

low value is explained by the correlation within input variables. We run a simple hierarchical
clustering of the input variables in 10 groups based on correlation, to enforce a small correlation
between these groups. Then, we run the group variable importance I

(J)
n for each group of

variables J ⊂ {1, . . . , p}. The results are displayed in the following Table 7, and are quite
straightforward to read. Indeed, half of the treatment heterogeneity is explained by political
orientations of individuals, almost a quarter of the heterogeneity is given by variables mostly
related to education and degrees. Then, several groups have a small impact, especially a group
about income and working status, and a second one about family information.

NHEFS health data. For the second case study, we use the NHEFS real data about body
weight gain following a smoking cessation, extensively described in the causal inference book
of Hernan and Robins (2020). As highlighted in the introduction of Chapter 12, these data
help to answer the question “what is the average causal effect of smoking cessation on body
weight gain?”. According to the authors, the unconfoundedness assumption holds. Here, we
go a step further to analyze the heterogeneity of this causal effect with respect to health and
personal data of individuals who have stopped smoking, using causal forests and our variable
importance algorithm. The data record the weight of individuals, first measured in 1971, and
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Variable group I
(J)
n

partyid, polviews 0.51
educ, sibs, occ80, prestg80, maeduc, degree 0.23

hrs1, income, rincome, wrkstat 0.07
age, marital, childs, babies 0.04

wrkslf, indus80, sex 0.03
reg16, mobile16 0.01

race, res16, parborn, born 0.00
family16 0.00

earnrs, hompop, adults 0.00
preteen, teens 0.00

Table 7: Group variable importance for Welfare data.

then in 1982. The treatment assignment W indicates whether people have stopped smoking
during this period, and the observed output Y is the weight difference between 1971 and 1982.
We take the dataset of size n = 1566 used in Hernan and Robins (2020, Chapter 12). Notice
that 63 rows with the output missing were removed, introducing a small bias, as discussed
by the authors. They include 9 variables in their analysis, sufficient for unconfoundedness.
To better estimate heterogeneity, we also include all variables of the original dataset, that
do not contain missing values and are not related to the response, and obtain p = 41 input
variables. As already mentioned, handling missing values is out of scope of this article, and is
left for future work. We run our variable importance algorithm and the grf importance, using
M = 4000 trees.

The results are displayed in Table 8. Clearly, the original weight of individuals in 1971 has
a strong causal effect on weight gain following smoking cessation, with half of the treatment
effect variance lost when this variable is removed. The intensity and duration of smoking,
as well as personal characteristics, such as height and age are also involved in treatment
heterogeneity, according to both algorithms. Notice that grf importance underestimates the
importance of wt71 with respect to other variables. Next, we group together variables that are
highly correlated, to compute group variable importance. Sex, height, and birth control are
highly correlated with the weight in 1971, and this group explains two third of the treatment
effect heterogeneity. In fact, age and smoke years also have a quite strong impact with a
quarter of heterogeneity explained.

5 Conclusion

We introduced a new variable importance algorithm for causal forests, based on the drop
and relearn principle, widely used for regression problems. The proposed method has both
theoretical and empirical solid groundings. Indeed, we show that our algorithm is consistent,
under standard assumptions in the mathematical analysis of random forests. Additionally, we
run extensive experiments on simulated, semi-synthetic, and real data, to show the practical
efficiency of the method. Notice that the implementation of our variable importance algorithm
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In
wt71 0.52

smokeyrs 0.09
smokeintensity 0.07

ht 0.06
age 0.05

alcoholfreq 0.01
active 0.01
tumor 0.01
asthma 0.01

alcoholtype 0.01

grf-vimp

wt71 0.26
smokeyrs 0.13

age 0.10
ht 0.10

smokeintensity 0.07
school 0.07
active 0.03

alcoholfreq 0.03
chroniccough 0.02

marital 0.02

Table 8: Top 10 most important variables with respect to In and grf-vimp for NHEFS data.

Variable group I
(J)
n

sex, ht, wt71, birthcontrol 0.67
age, smokeyrs 0.26

school, education 0.03
alcoholpy, alcoholfreq, alcoholtype 0.02

hbp, diabetes, pica, hbpmed, boweltrouble 0.02

Table 9: Group variable importance for NHEFS data.

is available online at https://gitlab.com/cbenard/grf-vimp.

Let us summarize the main guidelines for practitioners using our variable importance
algorithm. First, all confounders must be included in the initial data, as it is always necessary
to fulfill the unconfoundedness assumption to obtain consistent estimates. Secondly, it is also
recommended to include all variables impacting heterogeneity in the data as well. However,
leaving aside a non-confounding variable impacting heterogeneity, does not bias the analysis,
as opposed to a missing confounder. Thirdly, practitioners must also keep in mind that adding
a large number of irrelevant variables, i.e. non-confounding and not impacting heterogeneity,
may hurt the accuracy of causal forests. Finally, it is recommended to group correlated
variables together, and then compute group variable importance to get additional relevant
insights.

To conclude, we mention two topics of high interest for future work. First, handling missing
values in variable importance algorithms is barely discussed in the literature, but is strongly
useful in practice, since observational databases often have missing values, which should be
handled carefully to avoid misleading results. Secondly, developing a testing procedure to
detect significantly non-null importance values, would enable to identify the set H of variables
involved in heterogeneity, an insight of high practical value. The asymptotic normality of
causal forests is probably a promising starting point to develop such testing algorithms.
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A Proofs of Propositions 1-5 and Theorems 1-5

Proof of Proposition 1. Using the observed outcome definition with SUTVA (line 1), and the
unconfoundedness Assumption 1 (line 2 to 3), we have

E[Y | X,W ] = E[WY (1) + (1−W )Y (0) | X,W ]

= WE[Y (1) | X,W ] + (1−W )E[Y (0) | X,W ]

= WE[Y (1) | X] + (1−W )E[Y (0) | X]

= E[Y (0) | X] +W (E[Y (1) | X]− E[Y (0) | X])

= E[Y (0) | X] +WE[Y (1)− Y (0) | X])

= E[µ(X) + ε(0) | X] +WE[τ(X(H)) + ε(1)− ε(0) | X])

= µ(X) +Wτ(X(H)),

and the final result follows.

Proof of Proposition 2. From Assumption 2, X admits a strictly positive density, denoted by
f . Then, from Definition 2,

P(τ(X(H)) 6= τ(X′(H))) >

∫

X1×X ′

1×Xp−1

f(x(j),x(−j))f(x′(j),x(−j))dx(j)dx′(j)dx(−j),

which is strictly positive, since f is strictly positive and X1, X ′
1, and Xp−1 have a non-null

Lebesgue measure.

Proof of Proposition 3. Assumption 2 implies that V[τ(X(H))] > 0. By definition,

I(j) =
V[τ(X(H))]− V[E[τ(X(H))|X(−j)]]

V[τ(X(H))]
, (7)

which also writes using the law of total variance

I(j) =
E[V[τ(X(H))|X(−j)]]

V[τ(X(H))]
=

E[(τ(X(H))− E[τ(X(H))|X(−j)])2]

V[τ(X(H))]
. (8)

If j /∈ H, we clearly have E[τ(X(H))|X(−j)] = τ(X(H)), and then equation (8) gives that
I(j) = 0.

We now consider the case where j ∈ H. First, since V[E[τ(X(H))|X(−j)]] ≥ 0, we directly
get that I(j) ≤ 1 from equation (7). Secondly, from Definition 2, for x(−j) ∈ Xp−1, the
function x(j) → τ(x(j),x(−j)) takes different values over X1 and X ′

1, and therefore (τ(X(H))−
E[τ(X(H))|X(−j)])2 > 0 with a positive probability, since X1, X

′
1, and Xp−1 have a non-null

Lebesgue measure. It implies that I(j) > 0.

Proof of Proposition 4. We first expand the covariance term

Cov[W − π(X), Y −m(X) | X(H)]

= E[(W − π(X))(Y −m(X)) | X(H)]− E[W − π(X) | X(H)]E[Y −m(X) | X(H)].
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Notice that the second term is null since E[Y −m(X) | X(H)] = E[E[Y −m(X) | X] | X(H)] = 0.
Additionally, by definition,

m(X) = E[Y | X] = E[µ(X) + τ(X(H))×W + ε(W ) | X] = µ(X) + τ(X(H))π(X),

then Y −m(X) = (W − π(X))τ(X(H)) + ε(W ), and we get

Cov[W − π(X), Y −m(X) | X(H)]

= E[(W − π(X))((W − π(X))τ(X(H)) + ε(W )) | X(H)]

= τ(X(H))× E[(W − π(X))2 | X(H)] + E[ε(W )(W − π(X)) | X(H)]

= τ(X(H))× E[(W − π(X))2 | X(H)] + E[(W − π(X))E[ε(W ) | X,W ] | X(H)]]

= τ(X(H))× V[W − π(X) | X(H)],

which gives the final local moment equation in X(H).

Proof of Proposition 5. As in the proof of Proposition 4, we obtain

Cov[W − π(X), Y −m(X) | X(−j)] = E[τ(X(H))(W − π(X))2 | X(−j)].

Notice that

Cov[τ(X(H)), (W − π(X))2 | X(−j)] = E[τ(X(H))(W − π(X))2 | X(−j)]

− E[τ(X(H)) | X(−j)]E[(W − π(X))2 | X(−j)].

Combining the above two equations, we have

Cov[W − π(X), Y −m(X) | X(−j)] =Cov[τ(X(H)), (W − π(X))2 | X(−j)]

+ E[τ(X(H)) | X(−j)]× V[W − π(X) | X(−j)],

which gives the final result since

Cov[τ(X(H)), (W − π(X))2 | X(−j)] = Cov[τ(X(H)), π(X)(1− π(X)) | X(−j)].

Proof of Theorem 1. The result is obtained by applying Theorem 3 from Athey et al. (2019).
The first paragraph of section 3 of Athey et al. (2019) provides conditions to apply Theorem
3, that are satisfied by our Assumptions 3 and 4: X ∈ [0, 1]p, X admits a density bounded
from below and above by strictly positive constants, and µ and τ are bounded.

Next, Assumptions 1-6 from Athey et al. (2019) must be verified. As stated at the end
of Section 6.1, Assumptions 3-6 always hold for causal forests, the first assumption holds
because the functions m, µ, and τ are Lispschitz from our Assumption 4 (the product of
Lipschitz functions is Lipschitz), and Assumption 2 is satisfied because 0 < V[W | X] =
π(X)(1 − π(X)) < 1 from our Assumption 4.
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Finally, the forest is grown from Specification 1, and the treatment effect is identified by
equation (2) since Assumption 1 enforces unconfoundedness. Overall, we apply Theorem 3
from Athey et al. (2019) to get the consistency of the causal forest estimate, i.e., for x ∈ [0, 1]p

τM,n(x)
p

−→ τ(x(H)).

Notice that Theorem 3 from Athey et al. (2019) states the consistency of generalized forests.
As it will be useful for further results, we give below a proof of the weak consistency in the
specific case of causal forests, using arguments of Athey et al. (2019). In particular, we take
advantage of Specification 1, which enforces the honesty property, and that the diameters of
tree cells vanish as the sample size n increases. First, in our case of binary treatment W , the
causal forest estimate writes

τM,n(x) =

∑n
i=1 αi(x)WiYi − (

∑n
i=1 αi(x)Wi)(

∑n
i=1 αi(x)Yi)

∑n
i=1 αi(x)W 2

i − (
∑n

i=1 αi(x)Wi)2
,

where the weight αi(x) is defined by equation (3) of Athey et al. (2019), as the weight associ-
ated to training observation Xi to form an estimate at the new query point x. The weights
αi(x) sum to 1 over all observations, i.e.,

∑n
i=1 αi(x) = 1. Also notice that we alleviate

notations of αi(x) throughout the article, but the full expression with all dependencies is
αi(x,Xi,ΘM ,Dn), where the causal forest is built with data Dn, and trees are randomized
with ΘM . Now, we denote by ∆1,n(x) =

∑n
i=1 αi(x)WiYi the first term of the numerator of

τM,n(x), and derive its convergence. Since the weights sum to 1,

∆1,n(x)− E[WY | X = x] =

n
∑

i=1

αi(x)(WiYi − E[WY | X = x]),

and then,

E[∆1,n(x)− E[WY | X = x]] =

n
∑

i=1

E[E[αi(x)(WiYi − E[WY | X = x]) | Xi]].

Here, we use a key property of the forest growing given by Specification 1 : honesty. Indeed,
it enforces that Dn is randomly split in two halves for each tree, where one part is used to
build the splits, and the other half to compute the weights. Therefore, αi(x,Xi,ΘM ,Dn) and
WiYi are independent conditional on Xi, for all {i, . . . , n}. Then, we have

E[∆1,n(x)− E[WY | X = x]] =
n
∑

i=1

E[E[αi(x) | Xi]E[WiYi − E[WY | X = x] | Xi]]

=
n
∑

i=1

E[E[αi(x) | Xi](E[WiYi | Xi]− E[WY | X = x])].

Since W and Y are independent conditional on X from the unconfoundedness Assumption 1,
E[WiYi | Xi] = E[Wi | Xi]E[Yi | Xi]. Additionally, Assumption 4 states that the functions π
and m are Lipschitz, and since the product of two Lipschitz functions is Lipschitz, E[WiYi | Xi]
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is Lipschitz, with a constant C > 0. Therefore, we obtain

E[∆1,n(x)− E[WY | X = x]] ≤
n
∑

i=1

E[E[αi(x) | Xi]C‖Xi − x‖2]

≤CE
[

n
∑

i=1

αi(x)‖Xi − x‖2
]

≤CE
[

sup
i

‖Xi − x‖21αi(x)>0

n
∑

i=1

αi(x)
]

≤CE
[

sup
i

‖Xi − x‖21αi(x)>0

]

.

Since Assumptions 3 and 4 and Specification 1 are satisfied, equation (26) in the Supplementary
Material of Athey et al. (2019) states that

E
[

sup
i

‖Xi − x‖21αi(x)>0

]

−→ 0,

which gives that

E[∆1,n(x)] −→ E[WY | X = x]. (9)

Next, we use equation (24) in Lemma 7 of the Supplementary Material of Athey et al. (2019),
to get that V[∆1,n(x)] = O(an/n). Since an/n −→ 0 by Specification 1, we finally have
V[∆1,n(x)] −→ 0. Finally, this last limit combined with equation (9), states that ∆1,n(x) −
E[WY | X = x] is asymptotically unbiased and of null variance. Using the bias-variance
decomposition, we obtain the L

2-consistency of ∆1,n(x) towards E[WY | X = x], which
implies the weak consistency

n
∑

i=1

αi(x)WiYi
p

−→ E[WY | X = x].

Identically, we obtain the weak consistency of the other terms involved in τM,n(x), i.e.,
∑n

i=1 αi(x)Wi
p

−→ π(x),
∑n

i=1 αi(x)Yi
p

−→ m(x), and
∑n

i=1 αi(x)W
2
i

p
−→ E[W 2 | X = x].

The continuous mapping theorem gives for the last term that
(
∑n

i=1 αi(x)Wi

)2 p
−→ E[W |

X = x]2. Finally, using Slutsky’s Lemma, we obtain

τM,n(x)
p

−→
E[WY | X = x]− E[W | X = x]E[Y | X = x]

E[W 2 | X = x]− E[W | X = x]2

=
Cov[W,Y | X = x]

V[W | X = x]

= τ(x(H)),

where the last line is given by the local moment equation (2), which identifies the treatment
effect. Finally, notice that this proof applies to any linear local moment equation defining a
generalized random forest.
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Proof of Theorem 2. We consider j /∈ H, and follow the same proof as Theorem 1, to show

that the causal forest τ
(−j)
M,n (x) fit with D

⋆(−j)
n converges as

τ
(−j)
M,n (x)

p
−→ θ(x(−j)),

where θ(x(−j)) satisfies the following equation by definition of causal forests,

θ(x(−j))× V[W − π(X) | X(−j) = x(−j)]− Cov[W − π(X), Y −m(X) | X(−j) = x(−j)] = 0.

Then, according to Proposition 4, the above moment equation identifies the treatment effect
under Assumptions 1 and 2, and we obtain

θ(x(−j)) = τ(x(H)),

which gives (i). For (ii), we apply the same proof, except that the obtained local moment
equation identifies E[τ(X(H)) | X(−j) = x(−j)] according to Proposition 5.

Proof of Theorem 3. With j ∈ {1, . . . , p}, recall that the causal forest τM,n(x) is fit with a

centered dataset D⋆
n, and the corrected causal forest estimate θ

(−j)
M,n (x) is fit with D

⋆(−j)
n , an

independent copy of the centered dataset with the j-th variable dropped, and is formally
defined as

θ
(−j)
M,n (x) = τ

(−j)
M,n (x)−

∑n
i=1 α

′
i(x

(−j))(Wi − π(Xi))
2τM,n(Xi)−W 2

α′τα′

∑n
i=1 α

′
i(x

(−j))(Wi −Wα′)2
,

where W 2
α′ =

∑n
i=1 α

′
i(x

(−j))(Wi − π(Xi))
2, τα′ =

∑n
i=1 α

′
i(x

(−j))τM,n(Xi), and Wα′ =
∑n

i=1 α
′
i(x

(−j))(Wi−π(Xi)). We first prove the convergence of the first term of the numerator,

∆n =

n
∑

i=1

α′
i(x

(−j))(Wi − π(Xi))
2τM,n(Xi)

=

n
∑

i=1

α′
i(x

(−j))(Wi − π(Xi))
2τ(Xi) +

n
∑

i=1

α′
i(x

(−j))(Wi − π(Xi))
2(τM,n(Xi)− τ(Xi)).

Using the same proof as for Theorem 1, we get that

n
∑

i=1

α′
i(x

(−j))(Wi − π(Xi))
2τ(Xi)

p
−→ E[(W − π(X))2τ(X) | X = x(−j)].

For the second term involved in ∆n, we cannot directly apply the proof of Theorem 1 since the
output depends on n through the term τM,n(Xi). We first need to bound P(α′

1(x
(−j)) > 0).

Let us consider a given tree ℓ ∈ {1, . . . ,M}, and the associated weights α′
iℓ(x

(−j)) for this tree
alone. From Specification 2, we have

n
∑

i=1

1α′

iℓ
(x(−j))>0 ≤ t0,
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where t0 is the maximum number of observations in each terminal leave. Since the weights are
identically distributed, we have nE[1α′

1ℓ(x
(−j))>0] ≤ t0, i.e., P(α′

1ℓ(x
(−j)) > 0) ≤ t0/n. Finally,

considering all trees, since α′
1(x

(−j)) =
∑M

ℓ=1 α
′
1ℓ(x

(−j))/M , we obtain

P(α′
1(x

(−j)) > 0) ≤
Mt0
n

. (10)

Next, for the second term of ∆n, we write

E[
[
∣

∣

n
∑

i=1

α′
i(x

(−j))(Wi − π(Xi))
2(τM,n(Xi)− τ(Xi))

∣

∣

]

≤E
[

n
∑

i=1

α′
i(x

(−j))|τM,n(Xi)− τ(Xi)|
]

≤nE
[

α′
1(x

(−j))|τM,n(X1)− τ(X1)|
]

.

The right hand side of this inequality writes

nE
[

α′
1(x

(−j))|τM,n(X1)− τ(X1)|
]

= nE
[

α′
1(x

(−j))|τM,n(X1)− τ(X1)| | α
′
1(x

(−j)) > 0
]

P(α′
1(x

(−j)) > 0)

≤ Mt0E
[

|τM,n(X1)− τ(X1)| | α
′
1(x

(−j)) > 0
]

,

where the last inequality is obtained using (10). Finally, since the original causal forest trained
with all inputs and the weights α′

1(x
(−j)) of the retrained forest are built using independent

data, the conditioning event in E
[

|τM,n(X1) − τ(X1)| | α
′
1(x

(−j)) > 0
]

only modifies the dis-
tribution of X1. Therefore, with Zn a random variable following this conditional distribution,
we have

E
[

|τM,n(X1)− τ(X1)| | α
′
1(x

(−j)) > 0
]

= E
[

|τM,n(Zn)− τ(Zn)|
]

.

Since Theorem 1 gives the convergence in probability towards 0 of τM,n(x)− τ(x) for all x ∈

[0, 1] and Zn is independent from τM,n(x), we get that τM,n(Zn)−τ(Zn)
p

−→ 0. Since the causal
forest is bounded from Specification 2, convergence in probability implies L1-convergence, and
we get that

E
[

|τM,n(X1)− τ(X1)| | α
′
1(x

(−j)) > 0
]

= E
[

|τM,n(Zn)− τ(Zn)|
]

−→ 0.

This implies the convergence of the second term of ∆n, and overall, we obtain that

∆n
p

−→ E[(W − π(X))2τ(X) | X = x(−j)].

Next, τα′ is handled similarly as ∆n, and we follow the same proof as for Theorem 1 to get

the weak consistency of the remaining terms involved in θ
(−j)
M,n (x), and using Slutsky’s lemma,

we obtain
∑n

i=1 α
′
i(x

(−j))(Wi − π(Xi))
2τM,n(Xi)−W 2

α′τα′

∑n
i=1 α

′
i(x

(−j))(Wi −Wα′)2
p

−→
Cov[τ(X(H)), π(X)(1− π(X)) | X(−j) = x(−j)]

V[W − π(X) | X(−j) = x(−j)]
.

Then, following the case (ii) of Theorem 2, we get

τ
(−j)
M,n (x)

p
−→

Cov[W − π(X), Y −m(X) | X(−j) = x(−j)]

V[W − π(X) | X(−j) = x(−j)]
,
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which gives the final result

θ
(−j)
M,n (x)

p
−→

Cov[W − π(X), Y −m(X) | X(−j) = x(−j)]

V[W − π(X) | X(−j) = x(−j)]

−
Cov[τ(X(H)), π(X)(1− π(X)) | X(−j) = x(−j)]

V[W − π(X) | X(−j) = x(−j)]

= E[τ(X(H)) | X(−j) = x(−j)],

where the last equality is given by Proposition 5.

Proof of Theorem 4. We first consider the case j ∈ {1, . . . , p} \ H for the sake of clarity. We
assume that Assumptions 1-4, and Specifications 1 and 2 are satisfied, and causal forests are
trained as specified in Theorem 3. Then, we can apply Theorems 1 and 3 to get that

τM,n(X)− θ
(−j)
M,n (X)

p
−→ 0.

According to Specification 2, τM,n(X) − θ
(−j)
M,n (X) is bounded, and therefore convergence in

probability implies L
2-convergence, i.e.,

E[(τM,n(X)− θ
(−j)
M,n (X))2] −→ 0. (11)

Next, recall that

I(j)n =

∑n
i=1

[

τM,n(X
′
i)− θ

(−j)
M,n (X

′
i)
]2

∑n
i=1

[

τM,n(X
′
i)− τM,n

]2 − I(0)n .

We first consider

∆n,1 =
1

n

n
∑

i=1

[

τM,n(X
′
i)− θ

(−j)
M,n (X

′
i)
]2
,

and then

E[∆n,1] = E
[(

τM,n(X
′

1)− θ
(−j)
M,n (X

′

1)
)2]

.

Since |∆n,1| = ∆n,1, according to equation (11), we have

E[|∆n,1|] −→ 0,

which also implies the convergence in probability of ∆n,1.

Similarly for the denominator, we write

∆n,2 =
1

n

n
∑

i=1

τM,n(X
′
i)
2 − τM,n

2
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We first show the convergence of τM,n. Hence,

E[τM,n] = E[
1

n

n
∑

i=1

τM,n(X
′
i)] = E[τM,n(X)] −→ E[τ(X(H))],

where the limit is obtained because Theorem 1 gives the weak consistency of τM,n(X), which
implies the convergence of the first moment since τM,n(X) is bounded from Specification 2.
Next, we show that the variance of τM,n vanishes. We use the law of total variance to get

V[τM,n] = V[E[τM,n | ΘM ,Dn]] + E[V[τM,n | ΘM ,Dn]].

For E[V[τM,n | ΘM ,Dn]], notice that τM,n(X
′
i) are iid conditional on ΘM and Dn. Therefore,

V[τM,n | ΘM ,Dn] =
V[τM,n(X) | ΘM ,Dn]

n
<

K2

n
,

since τM,n(X) is bounded by K from Specification 2. We thus obtain E[V[τM,n | ΘM ,Dn]] −→
0. For the first term, notice that

V[E[τM,n | ΘM ,Dn]] = V[E[τM,n(X) | ΘM ,Dn]] < V[τM,n(X)],

where this upper bound converges to 0, since τM,n(X) converges towards τ(X(H)) in L
2. Over-

all, τM,n is asymptotically unbiased and its variance vanishes, and therefore converges towards
0 in L

2, and the weak consistency follows, i.e.,

τM,n
p

−→ E[τ(X(H))].

Using the continuous mapping theorem, we conduct the same analysis to get that
1
n

∑n
i=1 τM,n(X

′
i)
2 p
−→ E[τ(X(H))2], and then

∆n,2
p

−→ V[τ(X(H))],

with V[τ(X(H))] > 0 from Assumption 2. Finally, both the numerator ∆n,1 and denominator
∆n,2 of I

(j)
n converge in probability, and we can apply Slutsky’s Lemma to obtain

I(j)n + I(0)n

p
−→ 0,

and following the same arguments, we get that I
(0)
n

p
−→ 0, which gives the final result. The

proof is similar for the case where j /∈ H.

Proof of Theorem 5. We can directly deduce from the proof of Theorem 3 that, for x ∈ (0, 1),

τ
(−j)
M,n (x)

p
−→ E[τ(X(H)) | X(−j) = x(−j)] +

Cov[τ(X(H)), π(X)(1 − π(X)) | X(−j) = x(−j)]

V[W − π(X) | X(−j) = x(−j)]
.

We denote by Cj(x
(−j)) the second term of the above limit to lighten notations. Next, we

follow the proof of Theorem 4 to get the convergence of I
(j)
n , given by

I(j)
n

p
−→

E[(τ(X(H))− E[τ(X(H)) | X(−j)]− Cj(X
(−j)))2]

V[τ(X(H)]
.
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The numerator writes

E[(τ(X(H))− E[τ(X(H)) | X(−j)]− Cj(X
(−j)))2]

=E[E[(τ(X(H))− E[τ(X(H)) | X(−j)]− Cj(X
(−j)))2 | X(−j)]]

=E[(τ(X(H))− E[τ(X(H)) | X(−j)])2 + Cj(X
(−j))2]

− 2E[E[τ(X(H))− E[τ(X(H)) | X(−j)] | X(−j)]E[Cj(X
(−j)))2 | X(−j)]]

=E[(τ(X(H))− E[τ(X(H)) | X(−j)])2] + E[Cj(X
(−j))2].

Then, we have

I(j)
n

p
−→ I(j) +

E[Cj(X
(−j))2]

V[τ(X(H)]
,

which gives the final result.
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