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Joint Position Bounds in
Resolved-Acceleration Control: a
Comparison

Andrea Testa, Luigi Raiano, Marco Laghi, Arash Ajoudani, and Enrico
Mingo Hoffman⋆

Abstract The implementation of human-friendly robots is based on the de-
ployment of robots that can safely and effectively work with humans in vari-
ous environments. To this end, enforcing joint limits in planning and control
play a fundamental role in avoiding the robot to exceed its physical constraint
and preventing joint damages or failures that could lead to unpredictable
behavior or compromised safety. However, the implementation of such limi-
tations in instantaneous controllers is not trivial when position, velocity, and
acceleration limits are all considered together. In this work, we compare three
State-of-the-Art methods, namely the P-Step Ahead Predictor, the Control
Barrier Function, and Invariance. Finally, we select the most performing one
applied in a real use case based on a UR5e manipulator for a picking task
where hitting joint limits may represent an issue.

Key words: Quadratic Programming, Optimization, Collaborative Robots

1 Introduction

In recent years, the use of optimization tools for controlling robotics sys-
tems has become well-established in both academic research and industry
practice [10, 11].One commonly used approach is Quadratic Programming
(QP) optimization, which enables the solution of differential inverse control
problems. In this approach, tasks are typically specified as least squares, and
constraints, including equalities and inequalities, are linear.
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Researchers have utilized constraints to model a range of limitations, in-
cluding those associated with the robotic hardware [4], safety [5], and balanc-
ing in floating-based systems [3]. Constraints that apply to the integrals of
optimization variables, such as limiting joint positions or end-effector poses,
are of significant importance in numerous practical applications, particularly
those related to human-robot coexistence and collaboration. However, sim-
ply constraining the integrals of the controlled variables is insufficient to
guarantee that the integral’s outcome remains within acceptable limits. This
approach can ensure feasibility between control bounds and imposed integral
constraints only when they have a relative degree of 1. Resolved rate control,
which focuses on joint positions and velocities, exemplifies this point. When
a joint is at maximum velocity, it can reach its limits with zero speed in one
step, assuming arbitrary deceleration. However, if we include constraints on
joint accelerations, one step is insufficient to achieve zero speed unless the
joint velocity is restricted to allow for a single deceleration step. This issue
is typical in resolved-acceleration control, also known as acceleration-based
control, in which joint acceleration/torques are usually limited. This implies
a pitfall in instantaneous controllers, requiring reasoning in terms of control
horizon and not on a single control step.

The literature presents several methods to solve this issue. In [12], a
method to early detect the joint position limits is presented, named P-Step-
Ahead Predictor (PSAP), based on a rescaling of the time by a scalar con-
stant p ≥ 1. While this method is very simple to implement, it requires
hand-tuning and results in highly conservative behavior. A more advanced
approach is based on Control Barrier Functions (CBF) applied to generic
types of geometric constraints other than joint limits, e.g. self-collision [8]
and Cartesian box constraints [14]. However, CBF-based techniques require
a certain level of tuning as well. Other interesting methods are based on
viability and invariance control approach [4, 13, 16]. These methods do not
require tuning at all. However, they present chattering at the boundaries due
to the digital implementation of the switching control law [14].

This paper conducts a comprehensive comparison of the three aforemen-
tioned method families to identify the most suitable approach for implement-
ing joint limits in QP-based resolved-acceleration controllers. The evaluation
focuses on assessing the qualitative and quantitative behavior of the resulting
control input. The effectiveness of the chosen method is demonstrated in a
practical scenario where a collaborative robot is tasked with picking up a
box positioned significantly below the base link. This task presents poten-
tial challenges related to joint limits, which could lead to robot failures and
jeopardize task execution. However, with the selected method, the task is
successfully and safely executed, overcoming potential joint limit issues.
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2 Background

In this section, we shortly introduce the methods we intend to compare. We
consider a manipulator with n Degrees of Freedom (DoFs) with q ∈ Rn its
generalized coordinates, and q̇, q̈ ∈ Rn the joint velocities and accelerations,
respectively. We assume that joint positions, velocities, and accelerations are
bounded with given compatible bounds [qm,qM ], [q̇m, q̇M ], and [q̈m, q̈M ].

In QP-based resolved-acceleration control, the variables of the optimiza-
tion problem are the joint accelerations, therefore constraints and cost func-
tions are expressed at the acceleration level. The controller is discretized and
at the generic control loop k, the resolution of the QP returns the optimal
solution q̈k. Given the control loop time as dt, for which q̈k is constant, with
backward Euler it is possible to compute the joint velocities and positions:

q̇k = q̇k−1 + dtq̈k; (1)

qk = qk−1 + dtq̇k−1 +
1

2
dt2q̈k. (2)

Using (1) and (2), it is possible to derive a naive version of joint velocity and
position limits:

q̇m − q̇k−1

dt
≤ q̈k ≤ q̇M − q̇k−1

dt
; (3)

2
qm − qk−1 − dtq̇k−1

dt2
≤ q̈k ≤ 2

qM − qk−1 − dtq̇k−1

dt2
. (4)

However, by imposing (3) and (4), together with

q̈m ≤ q̈k ≤ q̈M , (5)

it is not possible to ensure the feasibility of all the imposed constraints, due
to the instantaneous nature of the controller.

2.1 P-Steps Ahead Predictor (PSAP)

The main idea of the PSAP method is based on activating the preventive
motion in advance by p− steps by approximating:

q̇p+k ≈ q̇k−1 + p dtq̈k; (6)

qp+k ≈ qk−1 + p dtq̇k−1 +
1

2
(p dt)2q̈k, (7)

with p ≥ 1 [12]. The constraints in (3) and (4) are modified such that:
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q̇m − q̇k−1

p dt
≤ q̈k ≤ q̇M − q̇k−1

p dt
; (8)

2
qm − qk−1 − p dtq̇k−1

(p dt)2
≤ q̈k ≤ 2

qM − qk−1 − p dtq̇k−1

(p dt)2
. (9)

The pseudo-code in Algorithm 1 presents a simple implementation of the
PSAP constraint using (9) and (8), taking into account the maximum joint
accelerations [q̈m, q̈M ] as well. The function checkFlippingBounds() depicted

Algorithm 1 Joint-Limits-PSAP

1: function JLPSAP(qk−1, q̇k−1,qm,qM , q̇m, q̇M , q̈m, q̈M , p, dt)

2: p > 1, dt > 0

3: [q̈m,p, q̈M,p] = (9)
4: [q̈m,v , q̈M,v ] = (8)

5: bl = max([q̈m,p, q̈m,v , q̈m])

6: bu = min(
[
q̈M,p, q̈M,v , q̈M

]
)

7: for i = 0, . . . , n− 1:

8:
[
bl,i, bu,i

]
= checkFlippingBounds(bl,i, bu,i, q̈m,i, q̈M,i)

9: return [bl,bu]

in Algorithm 2 flips the bounds if not compatible, which is a situation ap-
pearing when the constraints are not respected. By employing this approach,
it is possible to ensure that the algorithm generates constraints that maintain
the problem’s feasibility and swiftly bring the joint positions back within the
permissible range.

Algorithm 2 Check-Flipping-Bounds

1: function checkFlippingBounds(v1, v2, vm, vM )
2: if v1 ≥ v2 then

3: bu = v1, bl = v2
4: else
5: bu = v2, bl = v1
6: return [max(bl, vm),min(bu, vM )]

2.2 Control Barrier Functions (CBF)

CBFs provide a general framework for guaranteeing the safety of robotic
systems, leveraging its non-linear dynamics to constrain the robot’s state
and prevent it from leaving a safe set [2]. Safety is ensured through forward
invariance, which relies on a continuously differentiable scalar function h(q) ≥
0. This is done by imposing the following constraint on ḣ(q, q̇):

ḣ(q, q̇) ≥ −α1h(q), (10)
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with ḣ(q, q̇) = ∂h(q)
∂q q̇, and α1 ∈ R+. However, CBF constraints are typi-

cally applied only at the velocity level. To overcome this limitation, a solu-
tion called Exponential-CBFs (E-CBFs) is introduced in [7]. E-CBFs enable
the imposition of acceleration constraints by introducing a new barrier func-
tion, represented as hE(q, q̇) = ḣ(q, q̇) + α1h(q). Therefore ḣE(q, q̇, q̈) =

ḧ(q, q̇, q̈) + α1ḣ(q, q̇), with ḧ(q, q̇, q̈) = ∂ḣ(q,q̇)
∂q̇ q̈, and the final constraint

become:
ḣE(q, q̇, q̈) ≥ −α2hE(q, q̇). (11)

Following the methodology in [8], joint position constraints can be imposed
using E-CBF by choosing the following functions for the i− th joint2:

hm(qi) = qi − qm,i ≥ 0;

hM (qi) = qM,i − qi ≥ 0,
(12)

with the following the time derivatives:

ḣm(qi, q̇i) = q̇i, ḧm(qi, q̇i, q̈i) = q̈i;

ḣM (qi, q̇i) = −q̇i, ḧM (qi, q̇i, q̈i) = −q̈i.
(13)

Therefore by imposing

hE,m(qi, q̇i) = q̇i + α1(qi − qm,i);

hE,M (qi, q̇i) = −q̇i + α1(qM,i − qi),
(14)

and
ḣE,m(qi, q̇i, q̈i) = q̈i + α1q̇i;

ḣE,M (qi, q̇i, q̈i) = −q̈i − α1q̇i,
(15)

is possible to derive the constraint:

q̈i ≥ −(α1 + α2)q̇i − α1α2(qi − qm,i);

q̈i ≤ −(α1 + α2)q̇i + α1α2(qM,i − qi),
(16)

which in vector form for the k step become:

−(α1+α2)q̇k−1−α1α2(qk−1−qm) ≤ q̈k ≤ −(α1+α2)q̇k−1+α1α2(qM−qk−1).
(17)

It is worth noticing that the bounds in (17) have the exact same form of
the bounds in (9) with:

(α1 + α2) =
2

p dt
, α1α2 =

2

(p dt)2
. (18)

2 For the seek of clarity, we here remove the subscript k − 1, which is applied to joint
positions and velocities, and k which is applied to joint accelerations
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However, the system of equations in (18) does not have solutions in R because

solving for α1 results in a second-order polynomial α2
2 − α2

2p
dt + 2p2

dt2 with

discriminant ∆ = − 4p2

dt2 < 0. Therefore, it is not possible to simplify the CBF
constraint to the PSAP constraint.

A constraint on the joint velocities, based on (10) can be computed by
simply choosing h(q̇i) = q̇i − q̇m,i ≥ 0. Consequently, ḣ(q̇i, q̈i) = q̈i, leading
to the constraint3:

α3(q̇m − q̇k) ≤ q̈k ≤ α3(q̇M − q̇k). (19)

By imposing α3 = 1
p dt , the constraint (19) is equivalent to (8). Algorithm 3

reports the pseudo-code for the CBF-based constraint.

Algorithm 3 Joint-Limits-CBF

1: procedure JLCBF(qm,qM , q̇m, q̇M , q̈m, q̈M , α1, α2, α3)

2: α1 > 0, α2 > 0, α3 > 0
3: [q̈m,p, q̈M,p] = (17)

4: [q̈m,v , q̈M,v ] = (19)
5: bl = max([q̈m,p, q̈m,v , q̈m])

6: bu = min(
[
q̈M,p, q̈M,v , q̈M

]
)

7: for i = 0, . . . , n− 1:
8:

[
bl,i, bu,i

]
= checkFlippingBounds(bl,i, bu,i, q̈m,i, q̈M,i)

9: return [bl,bu]

2.3 Invariance

The invariance or viability control approach [4,13,16] permits an acceleration
constraint that guarantees the respect of joint position and velocity limits.
As a result, the feasible space L defined by the constraints:

qm,i ≤ qi ≤ qM,i, q̇m,i ≤ q̇i ≤ q̇M,i, (20)

for the ith joint becomes a positive invariance region, i.e.,

if ξi,0 ∈ L =⇒ ξi(t) ∈ L ∀ t > 0. (21)

Here, ξi,0 = (qi,0, q̇i,0) ∈ (R×R) is the initial point of the ith joint state tra-
jectory ξi(t) = (qi(t), q̇i(t)). Considering the maximum and minimum limits
[q̈m,i, q̈M,i] for the joint acceleration q̈i, it can be demonstrated that the joint
state (q̇i, qi) is also bounded for the entire time interval t ∈ [0, e] for some
e > 0 [16]. This can be achieved by utilizing the polynomials pM,r(t, ξi,0) and
pm,r(t, ξi,0), where r represents the number of integrators that relate q̈i to q̇i
and qi. The bounds can be defined as follows:

3 We skip the computation for the upper bound which is trivial
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Algorithm 4 Joint-Limits-Position-Invariance

1: function JLPINV(qm,i, qM,i, q̈m,i, q̈M,i, dt)

2: a = dt2

3: b = dt(2q̇i − q̈m,idt)
4: c = q̇2i + 2q̈m,i(qM,i − qi − dtq̇i)

5: ∆ = b2 − 4ac

6: if ∆ ≥ 0 then

7: b1u,i =
−b+

√
∆

2a
, b1l,i =

−b−
√
∆

2a
8: else
9: b1u,i =

−b
2a

, b1l,i =
−b
2a

10: b = dt(2q̇i + q̈m,idt)

11: c = q̇2i − 2q̈M,i(qm,i − qi − dtq̇i)
12: ∆ = b2 − 4ac

13: if ∆ ≥ 0 then

14: b2u,i =
−b+

√
∆

2a
, b2l,i =

−b−
√
∆

2a
15: else

16: b2u,i =
−b
2a

, b2l,i =
−b
2a

17: bl,i = max(
[
b1l,i, b2l,i

]
)

18: bu,i = min([b1u,i, b2u,i])
19: return

[
bl,i, bu,i

]
Algorithm 5 Joint-Limits-Invariance

1: procedure JLINV(qm,qM , q̇m, q̇M , q̈m, q̈M )
2: for i = 0, . . . , n− 1:

3:
[
q̈m,p, q̈M,p

]
= JLPINV(qm,i, qM,i, q̈m,i, q̈M,i, dt)

4: [q̈m,v , q̈M,v ] = (3)
5: bl = max([q̈m,p, q̈m,v , q̈m])

6: bu = min(
[
q̈M,p, q̈M,v , q̈M

]
)

7: for i = 0, . . . , n− 1:
8:

[
bl,i, bu,i

]
= checkFlippingBounds(bl,i, bu,i, q̈m,i, q̈M,i)

9: return [bl,bu]

q̈m,i ≤q̈i ≤ q̈M,i;

tq̈m,i + q̇i,0 = pm,1(t, ξi,0) ≤ q̇i ≤ pM,1(t, ξi,0) = tq̈M,i + q̇i,0;

t2

2
q̈m,i + tq̇i,0 + qi,0 = pm,2(t, ξi,0) ≤ qi ≤ pM,2(t, ξi,0) =

t2

2
q̈M,i + tq̇i,0 + qi,0.

(22)
The upper and lower admissible accelerations to ensure compliance with the
velocity limits are straightforward. The constraint takes the form (3). Con-
cerning the position bounds, let ΨM,2 and Ψm,2 denote the maximum and the
minimum of the bounding polynomials pM,2(t, ξi,0) and pm,2(t, ξi,0) for t ≥ 0,
i.e.,
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ΨM,2 := max
t≥0

|pM,2(t, ξi,0)| ⇒ ΨM,2 =

{
qi,0 if q̇i,0 < 0

− q̇20,i
2q̈M,i

+ qi,0 if q̇i,0 > 0
;

Ψm,2 := min
t≥0

|pm,2(t, ξi,0)| ⇒ Ψm,2 =

{
qi,0 if q̇i,0 > 0

− q̇20,i
2q̈m,i

+ qi,0 if q̇i,0 < 0
.

(23)

Considering (20), (22) and (23), we can derive

Ψm,2 − qM,i ≤ qi − qM,i ≤ ΨM,2 − qM,i ≤ 0,

0 ≤ Ψm,2 − qm,i ≤ qi − qm,i ≤ ΨM,2 − qm,i.
(24)

To ensure the respect of the upper joint position limit, i.e., qi − qM,i ≤ 0,
the condition ΨM,2 − qM,i ≤ 0 is sufficient. It guarantees that even when
accelerating at the maximum rate q̈M,i, we remain within the feasible set
L. However, this condition is overly strict. In fact, when approaching the
upper limit qM,i, our primary concern is whether a feasible acceleration q̈i
exists that complies with the boundary. To address this, we can consider the
necessary condition Ψm,2−qM,i ≤ 0 to identify an acceleration q̈i that satisfies
this inequality even in the subsequent iteration, for the state (qi + dt q̇i +
dt2

2 q̈i, q̇i + dtq̈i), as described by (2) and (1) [13]. Assuming q̈m,i < 0, when

q̈i ≤ − q̇i
dt , the necessary condition Ψm,2 − qM,i ≤ 0 becomes

(q̇i + dtq̈i)
2 ≤ −2q̈m,i

(
qM,i − qi − dt q̇i −

dt2

2
q̈i

)
, (25)

which simplifies to aq̈2i + bq̈i + c ≤ 0. This quadratic inequality allows us to
determine both an upper and lower bound for q̈i. If q̈i ≥ − q̇i

dt , the necessary
condition is

qi + dt q̇i +
dt2

2
q̈i − qM,i ≤ 0, q̈i ≤

2(qM,i − qi − dtq̇i)

dt2
. (26)

For small sampling times dt, this case occurs for q̈i > 0, and the term
2(qM,i−qi−dtq̇i)

t2 is significantly larger than q̈M,i, making this limit uninter-
esting to be introduced. Similarly, for the lower position limit, we consider
the necessary condition ΨM,2−qm,i ≥ 0. Given q̈M,i > 0, when q̈i ≥ − q̇i

dt , this
condition can be expressed as

(q̇i + dtq̈i)
2 ≤ 2q̈M,i

(
qi + dt q̇i +

dt2

2
q̈i − qm,i

)
. (27)

This inequality leads to additional upper and lower bounds for q̈i. When
q̈i ≤ − q̇i

dt , equivalent considerations to the upper limit case apply. The exten-
sion of this approach to a larger sampling time is discussed in [4]. The imple-
mentation details can be found in Appendix 5. The pseudo-code Algorithm 4
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implements the computation of the bounds related to the position part. Com-
bining the position and velocity constraints, we obtain Algorithm 5.

3 Numerical Evaluation and Comparison

This section numerically evaluates and compare the constraints introduced in
Section 2 on the basis of the tracking of a reference joint position trajectory.
For a robot with n Degrees of Freedom (DoFs), we formulate a QP problem
to be solved in the following form:

min
q̈

∥q̈− q̈r∥22

s.t. bl ≤ q̈ ≤ bu,
(28)

with q̈ ∈ Rn the joint accelerations, and bl,bu ∈ Rn the lower and up-
per bounds, respectively, computed using one of the methods introduced in
Section 2. The acceleration references q̈r ∈ Rn are computed as

q̈r = K(qd − q)−Dq̇, (29)

with K = 5000I and D = 2
√
K. I ∈ Rn×n is the identity matrix.

The numerical comparison has been performed using the OpenSoT [15]
control framework. The resulting joint accelerations from the optimization
are integrated twice to compute joint velocities and positions. The QP solver
we use for the comparison is qpOASES [6] which uses an online active-set
strategy to handle constraints. For the seek of simplicity, we consider the
comparison taking into account a single joint with qm = −0.31 [rad], qM =
2.09 [rad], q̇M = 3.14 [ radsec ], and q̈M = 20. [ radsec2 ]. In this numerical example,
the reference is a sinusoidal position trajectory in the form:

qd = 3sin(kδt), (30)

with δt = 0.001 [s], forcing the amplitude to overcome the upper and lower
joint position limits.

We first compare the PSAP approach with different values of the p pa-
rameter. As shown in Figure 1a, increasing the p value permits the reduction
of the oscillations which occur when the position bounds are exceeded, while
velocity and acceleration bounds are always kept. It is worth noticing that
unfeasibility in this situation is avoided thanks to the checkFlippingBounds()
function. Increasing the p parameter, however, leads to a deteriorated track-
ing of the position reference. We selected p = 100 as a value to compare with
the other methods, leading to a constraint satisfaction of 0.021 [rad].

The same comparison is made for the CBF approach, considering the fol-
lowing simplification over the parameters: α1 = α2 = α3 = α. Figure 1b
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reports the same numerical evaluation, according to different parameter α
values. It is worth noticing the different behavior of the velocity and accel-
eration in order to avoid oscillations when the position bound is exceeded
(yellow line in Figure 1b), while the similar behavior w.r.t. the PSAP, when
the bounds are kept. We selected α = 15 as a value to compare with the other
methods, leading to a constraint satisfaction ≤ 1e−4 [rad]. Finally, we evalu-
ate the Invariance approach. The basic implementation does not require any
tuning, however, chattering in the joint acceleration appears when hitting the
joint limits, as shown in Figure 1c. As reported in [4], such oscillations can
be reduced by applying the PSAP. It is enough to have p = 2 to make chat-
tering disappear entirely, leading to a constraint satisfaction of ≤ 1e−4 [rad].
In Figure 1d are reported the tracking errors of the compared approaches.
As expected, the PSAP approach shows the worst performance in tracking
the given trajectories, other than not being able to keep the joint position
constraints. The CBF performs slightly better in terms of tracking with the
advantage of being able to keep the constraint. Finally, the Invariance shows
the best performance in both tracking and the ability to keep the constraint.

4 Experimental Results

This section implements in a practical use case the best set of constraints that
emerged in Section 3, i.e., the PSAP-aided Invariance approach, with p = 2.
For this purpose, we implemented a QP controller to perform a pick-and-place
task using a UR5e4 cobot. The primary aim of the controller is to guide the
manipulator through a series of four sequential Cartesian poses. The initial
pose, referred to as the home position, is selected taking into account factors
such as the robot’s dimensions and workspace. Subsequently, the picking pose
is determined utilizing an artificial vision system [9] [1]. The selection of the
placing pose considers the location of a designated storage cell. Finally, the
task is concluded by returning the manipulator to the home position. The tra-
jectories followed interpolate the mentioned poses using splines. Additionally,
in the transition between the picking and placing positions, we incorporate
an intermediate state to facilitate the movement. The step-by-step process
involved in the pick and place task is shown in Figure 2.

In this experiment, we consider the following QP problem:

min
q̈

∥Jq̈− ẍr + J̇q̇∥22

s.t. binv
l ≤ q̈ ≤ binv

u .
(31)

As before, here q̈ ∈ R6 represents the joint accelerations, while binv
l ∈ R6 and

binv
u ∈ R6 correspond to the lower and upper bounds, respectively, computed

4 https://www.universal-robots.com/products/ur5-robot/

https://www.universal-robots.com/products/ur5-robot/
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using the Invariance approach described in Section 2. The computation of
the Cartesian acceleration reference ẍr ∈ R6 is expressed as follows:

ẍr = K(xd ⊖ x)−Dẋ, (32)

where K = 10I, D = 2
√
K, and I ∈ R6×6 denotes the identity matrix. The

difference operator ⊖ determines the algebraic difference between the trans-
lation components of the Cartesian poses xd and x. It also computes the
rotation error denoted as θϕ ∈ R3, where

{
ϕ θ

}
represents the axis-angle

representation of the quaternion difference ξdξ
∗. The joint accelerations ob-

tained from the optimization are integrated twice to compute joint velocities
and positions. These values are subsequently provided to the low-level posi-
tion controllers of the cobot. The robot has been equipped with a vacuum
gripper to ensure safe grasping of the target box. The box has intentionally
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(a) Comparison between different values
of parameter p using the PSAP.
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(b) Comparison between different values
of parameter α using the CBF.
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(c) Comparison between Invariance ap-
proach (p = 1) and PSAP-aided Invari-

ance (p = 2).
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Fig. 1: Comparison between methods for the joint position tracking. Dashed
lines highlight the joint position, velocity, and acceleration limits.
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(a) Initial pose. (b) Home position. (c) Pick position.

(d) Box transfer. (e) Box release (f) Return home.

Fig. 2: Picture sequence of the pick and place task.
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Fig. 3: The state of the second joint (left plots) and the third joint (right plots)
throughout the pick and place task. The dashed lines represent conservative
joint limits.

been placed in a location that is inconvenient and difficult to access. When
moving towards and away from the picking position, there is a risk of self-
collisions between the manipulator’s links, between the manipulator and the
base, or impacts with the picked box. To ensure the safety of the robot, we
have carefully adjusted the original joint position limits. The QP controller is
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capable of enforcing these limits, thereby preventing any collisions through-
out the entire task. During the experiment, the second and third joints reach
their upper position limits. The behavior of these joints is illustrated in Fig-
ure 3. It is worth noting that the joint boundaries are consistently satisfied
throughout the task, with the joints only experiencing slight acceleration
chattering during the initial moments when the limit is reached.

5 Conclusions and Future Works

In this work, we presented a comparison of methods for enforcing linear con-
straints with a relative degree greater than 1 in control problems based on QP
optimization. Specifically, we compare the P-Step Ahead Predictor, Control
Barrier Function, and Invariance methods. We benchmark these methods in
joint limit constraints, including position, velocity, and acceleration, that are
essential in tasks involving human-robot coexistence and cooperation. Based
on our study, we select the P-step Ahead Predictor-aided Invariance method
as the most effective in terms of tracking quality and constraint maintenance.
Furthermore, we demonstrate the use of this method in a pick-and-place task
performed with a UR5e robot. In future work, we plan to apply the selected
method to more complex types of constraints with a relative degree greater
than 1, such as virtual walls in Cartesian space and collision avoidance.

Appendix

In [4], the invariance or viability control approach is implemented, extending
the method to accommodate larger sampling times dt. In this case, the key
difference is that the velocity and position limits computed in Algorithm 5 in
Section 2.3 are no longer sufficient to ensure compliance with the joint lim-
its. To highlight this observation, we will derive the acceleration constraints
from the position limits stated in (20). It can be demonstrated that for large
sampling times dt, these constraints are more stringent compared to the ones
obtained using the viability/invariance approach presented in Algorithm 4.
Recalling (2), when considering t ∈ [0, dt], the joint position qi reaches its
extreme, such as the maximum qM,i, when its time derivative is zero. i.e.,
∂qi
∂t = q̇i + tq̈i = 0. The time instant tmax at which the maximum is reached
is given by

tmax = − q̇i
q̈i
, t ∈ [0, dt]. (33)

If

q̇i > 0 ∧ q̈i ≤ − q̇i
δt
, (34)
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then the maximum qM = qi + tmaxq̇i +
1
2 t

2
maxq̈i = qi − q̇2i

2q̈i
is reached inside

the time step [0, dt], leading to the constraint:

q̈i ≤ − q̇2i
2(qM,i − qi)

. (35)

Instead, if the conditions in (34) are not met, the maximum is reached at the
boundaries of the time step, in particular, the constraint needs to be enforced
in t = dt, therefore:

q̈i ≤
2

dt2
(qM,i − qi − dtq̇i). (36)

A similar analysis can be performed for the minimum position. The blue re-
gions in Figure 4a represent the areas in the state space where the acceleration
constraints take precedence over the ones derived from the viability/invari-
ance approach. The dashed black line corresponds to the upper joint limit
qM,i = 2.09. The orange region beyond the viability limit is infeasible due to
the viability/invariance constraints. The expansion of the blue region within
the feasible area indicates that the position limits defined in (20) cannot be
satisfied without imposing the conditions described by (35) and (36). Addi-
tionally, the acceleration constraints obtained from the alternative necessary
condition (26) cannot be disregarded anymore, and it is necessary to incorpo-
rate them into the implementation. As the sampling time dt decreases, this
region becomes progressively smaller, rendering the measures employed in [4]
less significant. Figure 4b provides an illustration of the number of states
sampled from the feasible region where the conditions (35) and (36) impose
stricter constraints compared to those computed using Algorithm 4.
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