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Abstract
In the treasure hunt problem, a team of mobile agents need to locate a single treasure that is
hidden in their environment. We consider the problem in the discrete setting of an oriented infinite
rectangular grid, where agents are modeled as synchronous identical deterministic time-limited
finite-state automata, originating at a rate of one agent per round from the origin. Agents perish
τ rounds after their creation, where τ ≥ 1 is a parameter of the model. An algorithm solves the
treasure hunt problem if every grid position at distance τ or less from the origin is visited by at
least one agent. Agents may communicate only by leaving indistinguishable traces (pheromone)
on the nodes of the grid, which can be sensed by agents in adjacent nodes and thus modify their
behavior. The novelty of our approach is that, in contrast to existing literature that uses permanent
pheromone markers, we assume that pheromone traces evaporate over µ rounds from the moment
they were placed on a node, where µ ≥ 1 is another parameter of the model. We look for uniform
algorithms that solve the problem without knowledge of the parameter values, and we investigate
the implications of this very weak communication mechanism to the treasure hunt problem. We
show that, if pheromone persists for at least two rounds (µ ≥ 2), then there exists a treasure hunt
algorithm for all values of agent lifetime. We also develop a more sophisticated algorithm that works
for all values of µ, hence also for the fastest possible pheromone evaporation of µ = 1, but only if
agent lifetime is at least 16.
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1 Introduction

Treasure hunt is the fundamental problem of employing a team of searchers to locate a
“treasure” that is hidden somewhere in their environment. It is one of the fundamental
primitives in swarm robotics and a natural abstraction of foraging behavior of animals.
Although various formulations of the problem exist at least since the 1960s, when Beck
introduced the linear search problem [14], treasure hunt as a group search problem was
first investigated from a distributed algorithms perspective by Feinerman et al. [41, 42, 43],
under the name ANTS (Ants Nearby Treasure Search). In the ANTS problem, the search is
performed by a team of randomized searchers, starting at the origin of an infinite 2-dimensional
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rectangular grid and having no means of communication once they start moving. Subsequent
works considered stronger communication models, such as local communication by exchanging
constant-size messages when two agents are located on the same node [40, 39, 25, 21, 54, 53],
or communication by leaving permanent markers on grid nodes [56, 1, 2], that can be detected
by other agents.

In this paper, we introduce a new model in which not only agents communicate indirectly,
by dropping and sensing markers on nodes, but also these markers gradually evaporate
and eventually disappear. This is directly inspired by the behavior of actual pheromone
trails in nature. A common feature of the papers that we mentioned above is that the team
of searchers is of constant size. However, with evaporating pheromones, we can no longer
expect a constant-size team of constant-memory agents to explore all the grid nodes up to
arbitrary distances.1 Therefore, we propose a new model taking into account pheromone
evaporation, in which a potentially infinite number of identical, synchronous, deterministic,
time-limited finite-state automata are created at a rate of one agent per round at the origin
of a 2-dimensional grid. Agents have a finite lifetime represented by the parameter τ , and the
treasure is guaranteed to be within reach, i.e., at distance ≤ τ from the origin. Pheromone
evaporation is controlled by a parameter µ, which determines the number of rounds it takes
for a pheromone marker to disappear from the system, assuming it is not refreshed in the
meantime by a new pheromone drop on the same node. Agents can sense the presence or
absence of pheromone in their neighboring nodes, and they can compare pheromone values,
i.e., they know, for any pair of directions, which neighbor has the freshest pheromone. Agent
memory cannot depend on the parameters τ, µ.

1.1 Related work
Searching is a well-studied family of problems in which a group consisting of one or multiple
searchers (mobile agents) need to find a target placed at some unknown location. The
search is typically concluded when the first searcher finds the target. Numerous books
and research papers have been written on this subject, studying diverse models involving
stationary or mobile targets, graphs or geometric terrains, different types of knowledge about
the environment, one or many searchers, etc. [5, 6, 17, 23, 45, 47, 58].

Deterministic search on a line with a single robot was introduced in [14, 15]. In the
original formulation of [14], a probability distribution of treasure placements is known to
the agent. An optimal algorithm with competitive ratio 9, for an unknown probability
distribution, is proposed in [15]. The problem is further generalized in [8, 35], by introducing
a cost for turning, as well as a more general star topology. Further variants include searching
for multiple targets [9], maximizing the searched area with a given time budget [10], and
providing a hint to the searcher before it starts exploring [7].

Various maintenance and patrolling problems have also been formulated as linear group
search problems, under requirements and assumptions such as perpetual exploration [27, 50,
26] or distinct searcher speeds [29, 50, 13]. The closely related evacuation problem on the
line, in which the search is concluded when all searchers reach the target, has also been
studied in a series of papers [11, 22, 12, 20]. See also [30] for a survey of group search and

1 Indeed, intuitively, if they find themselves sufficiently far from each other, then they can no longer
communicate because pheromone will evaporate before it can be sensed by another agent, whereas if
they never find themselves more than a constant distance from each other, then their overall behavior
can be described by a single finite automaton, which fails to explore a sufficiently large grid due to state
repetition that forces it to explore at most a constant-width half-line (see, e.g., [39, Lemma 5]).
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evacuation in different domains.
Searching with advice (hints) is studied under various assumptions in several papers. The

size of advice that must be provided to a lone deterministic searcher in a polygonal terrain
with polygonal obstacles, in order to locate the treasure at a cost linear in the length of a
shortest path from the initial position of the agent to the treasure, is investigated in [59].
An algorithm that enables a deterministic agent to find an inert treasure in the Euclidean
plane, taking advantage of hints about the general direction of the treasure, is given in [18].
In [51, 57], they explore the tradeoff between advice size and search cost in graphs. In trees,
[19] explores the impact of different kinds of initial knowledge given to a lone searcher on
the time cost of treasure hunt, and [16] considers treasure hunt with faulty hints.

The speedup in search time obtained by multiple independent random walkers has been
studied for various graph families, such as expanders and random graphs [37, 4, 38, 48, 28].
Multiple searchers following Lévy walk processes, a type of random walk in which jump
lengths are drawn from a power-law distribution, and for which there is significant empirical
evidence that it models the movement patterns of various animal species [31], are investigated
in [24]. A further abstraction of multiple independent randomized searchers is studied in [46],
where a group of non-communicating agents need to find an adversarially placed treasure,
hidden in one of an infinite set of boxes indexed by the natural numbers. In this Bayesian
search setting, searchers have random access to the boxes. A game-theoretic perspective to
the Bayesian search framework of [46] is given in [52].

The ANTS (Ants Nearby Treasure Search) problem was introduced in [41, 42, 43] as a
natural abstraction of foraging behavior of ants around their nest. They explore the tradeoff
between searcher memory and the speedup obtained by using multiple probabilistic searchers
vs using a single searcher. Searchers may not communicate once they leave the nest. A
variant of the ANTS problem in the geometric plane, with searchers that are susceptible to
crash faults, is investigated in [3]. A notion of selection complexity, which measures how
likely a given ANTS algorithm is to arise in nature, is introduced in [55], where they study
the tradeoff between selection complexity and speedup in search time.

In follow-up work [40, 39, 25, 21, 54, 53] to the original ANTS formulation, searchers
are modeled as finite state machines and can communicate outside the nest, when they are
sufficiently close to each other, by exchanging messages of constant size. Under these assump-
tions, it is shown in [40] that the optimal search time can still be achieved by probabilistic
finite state machines, matching the lower bound of [42]. The minimum number of searchers
that can solve the ANTS problem, when they are controlled by randomized/deterministic
finite/push-down automata, is investigated in [39, 25, 21]. A probabilistic fault-tolerant
constant-memory algorithm is presented in [54], for the synchronous case. An algorithm that
tolerates obstacles is presented in [53].

A different communication mechanism is considered in [56, 1, 2], where it is assumed
that agents may communicate only by leaving permanent markers (pheromones) on nodes,
which can be sensed later by other agents. Note that, although these papers use the word
“pheromone” to describe the traces that agents leave on nodes, these are assumed permanent
and do not evaporate. The usual term in the mobile agent literature to describe this type of
movable or immovable marker that agents may choose to leave on nodes, and which can be
detected later by other agents, is “token” or “pebble” [34].

1.2 Our contributions
We study the treasure hunt problem in the model that we outlined above, and which is
developed in detail in Section 2. Thematically, our work is closest to the literature descending
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from the original ANTS problem formulation, and in particular to these papers that use
pheromone (or tokens) as a means of communication [56, 1, 2]. The novelty of our approach
is that we use evaporating pheromones as an agent communication mechanism. Indeed, in
our model, a pheromone trace disappears µ rounds after it was dropped, unless it is refreshed
by a new pheromone drop on the same node. Tokens that may disappear instantly from
the system have actually been considered before in the literature, but only in the context of
faults [44, 33, 32, 36].

To our knowledge, evaporating pheromone markers have never been considered before as
a communication mechanism, from an algorithmic point of view. We study the impact of
this weak agent communication model on the treasure hunt problem.

Our first result is a treasure hunt algorithm that works for all τ ≥ 1, assuming that the
pheromone markers persist for at least two rounds (µ ≥ 2). This algorithm is optimal in
terms of search time, number of pheromone drops, and number of agents used. Intuitively,
the algorithm dispatches agents to the North and to the South of the origin by means of
pheromone patterns around the nest. An agent knows when to leave the vertical axis in
order to explore a horizontal half-line by detecting pheromone markers that were dropped by
previous agents when they left the vertical axis. Because of the North-South dispatching
at the origin, successive agents on the same side of the origin are at distance 2 from each
other, therefore it is crucial that µ ≥ 2 for an agent to be able to detect pheromone that was
dropped by the previous agent.

Our second result is a more complex algorithm that works for all µ ≥ 1. This algorithm
is also based on a North-South dispatching of agents at the origin. The challenge here is
that, since pheromone may be detectable for only one round after being dropped, we can
no longer use the same approach as in the first algorithm. We resolve this by introducing
differentiation of agent roles as a result of observing different pheromone patterns as they
walk along the vertical axis. Now, some agents become signaling agents that stop moving at
key positions and start dropping pheromone according to a predetermined pattern, whereas
other agents become explorers that are dispatched to different horizontal half-lines according
to these signals. This algorithm works for all τ ≥ 16.

Both algorithms are deterministic and uniform, i.e., they do not assume knowledge of
the values of the parameters τ, µ. They solve the problem for all parameter values in the
specified ranges, and the required memory per agent is constant.

2 Model and problem setting

The environment in which the agents operate is an infinite two-dimensional rectangular grid
graph, equipped with a Cartesian coordinate system. Each node of the grid is identified by a
pair of integer coordinates (x, y) ∈ Z2. The node (0, 0) is called nest, as newly created agents
appear at (0, 0). We assume that the grid is oriented, with the four outgoing edges from each
node receiving globally consistent distinct local port labels from {N,E, S,W}. Each node
stores a nonnegative integer that represents the amount of pheromone present on that node.
This value is decremented by 1 at each round and a value of zero represents the absence of
pheromone.

Given natural numbers a, b, we use the notation a ·− b for proper subtraction: a ·− b =
max(a − b, 0). Moreover, if x is a nonnegative integer, we use Bx for the set of nodes at
distance at most x from the nest, and Lx for the set of nodes at distance exactly x from the
nest. We have |Bx| = 2x2 + 2x+ 1 and |Lx| = 4x.
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2.1 Agent model
Agents are modeled as identical copies of a deterministic finite-state machine (FSM). An
agent can move from node to node along the edges of the grid graph, and it may decide to
drop pheromone before or after each move (but not both on the origin and on the destination
node). It computes its next move based on the relative pheromone values of the neighboring
nodes. More precisely, the agent does not have access to the actual stored pheromone values,
but it can detect the presence or absence of pheromone in any direction, as well as whether
one direction has equal, less, or more pheromone than another.

I Definition 1 (Agents). An agent is a finite-state machine A = (Q, q0, In,Out, δ) where:
Q is a finite set of states and q0 ∈ Q is the initial state.
In is the input alphabet. A symbol of In encodes the presence or absence of pheromone in
the four cardinal directions, as well as the result of the comparison of pheromone levels
for any pair of directions. This is clearly a finite amount of information, hence In is a
finite set.
Out = {N,S,E,W,⊥} × {before, after,⊥} is the output alphabet, where the first element
of an output symbol is the local port label through which the agent will exit the current
node (⊥ for no movement), and the second element indicates whether pheromone will be
dropped before or after the move (⊥ for no pheromone drop).
δ : Q× In→ Q× Out is the transition function.

I Note 2. By definition, an agent does not perceive other agents that may be present on
the same node or on neighboring nodes. Moreover, an agent does not perceive and therefore
cannot compare the pheromone level of its current node to those of neighboring nodes.

2.2 Model parameters
Agents have limited life, which is a parameter of the model and is represented by a positive
integer τ . An agent “dies” upon having performed τ state transitions, meaning that it
essentially disappears from the system.2 We will call this parameter lifetime.

We also assume that every node has a maximum amount of pheromone that it can store,
which is a second parameter of the model and is represented by a positive integer µ, which
we will call pheromone duration. Whenever any number of agents decide to drop pheromone
on a node at the same time, the pheromone value of that node is updated to µ. If an agent
drops pheromone on some node, the pheromone value of that node will decrease from µ to 0
over the following µ rounds (assuming it is not refreshed in the meantime).

2.3 Execution
Given a protocol A (FSM) and an assignment of values to the parameters (τ, µ), the execution
of the system proceeds deterministically in synchronous rounds.

I Definition 3 (Execution). The execution of an FSM A for parameter values (τ, µ) is an
infinite sequence of system configurations defined as follows: In the initial configuration,
there are no agents and no pheromone present on the grid. In each round i (i ≥ 1), the

2 Perhaps less fatally, we may assume that after τ transitions, an agent is so tired that it cannot continue
executing the protocol before returning to the nest for a brief nap. It may re-emerge from the nest at a
later round without retaining its state.
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next configuration is obtained from the current configuration by synchronously executing the
following steps in the given order:
1. A new agent (copy of A) is created on node (0, 0), in the initial state q0.
2. All agents read their inputs.
3. At each node, the quantity of pheromone is decreased by 1, if not already zero (pheromone

evaporation).
4. All agents compute their transition function based on the input from step 2 and change

their state accordingly.
5. All agents that computed in step 4 a pheromone drop action “before” drop pheromone

on their current nodes. For each node on which at least one agent drops pheromone, the
pheromone quantity of that node is updated to µ.

6. All agent moves (as computed in step 4) are executed.
7. All agents that computed in step 4 a pheromone drop action “after” drop pheromone on

their current nodes. For each node on which at least one agent drops pheromone, the
pheromone quantity of that node is updated to µ.

8. If this is round i ≥ τ , the agent that was created at the beginning of round i− τ + 1 “dies”
as it has now performed τ state transitions.

I Note 4. As agents are anonymous and deterministic, and because pheromone does not
accumulate higher than µ on a single node, if two (or more) agents ever find themselves at
the same node and in the same state, then they will effectively continue moving as one agent
from that point on. In particular, agents do not appear simultaneously at the nest, but they
are created at a rate of one agent per round.

I Definition 5. For i ≥ 1, we denote by Ai the agent that is created at the beginning of
round i.

2.4 The treasure hunt problem
In the treasure hunt problem, a treasure is placed at an unknown location in the grid and the
goal is for at least one agent to visit that node. In that case, we say that the agent locates
the treasure. Locating the treasure for any (unknown) treasure location up to distance d
from the nest is trivially equivalent to exploring all nodes up to distance d from the nest.
We recast, then, the treasure hunt problem as an exploration problem:

I Definition 6 (Treasure hunt problem). A given FSM A solves the treasure hunt problem
for the pair of parameters (τ, µ) if, with lifetime τ and pheromone duration µ, every node at
distance τ or less is visited by at least one agent. In this case, we will also say that the FSM
is correct for (τ, µ).

We will seek a uniform algorithm that solves the problem without knowledge of the model
parameters, i.e., a single FSM that is correct for arbitrarily large values of τ and µ (ideally,
for all τ ≥ τ0 and µ ≥ µ0, for some constants τ0, µ0).

For a given FSM, we will consider the following measures of efficiency as functions of τ
and µ:

Completion time: the number of rounds until the treasure is located.
Pheromone utilization: the total number of times that any agent decides to drop
pheromone at its destination node until the treasure is located.
Agent utilization: the number of agents effectively used by the algorithm, i.e., the
smallest r such that the algorithm remains correct even if the system stops creating new
agents after round r.
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ℎInit

Vert-seek

Vert-bypass

Horiz

Figure 1 Illustration of the sequence of states for a typical agent with signature [v;h] executing
Algorithm 1.

3 A treasure hunt algorithm for τ ≥ 1 and µ ≥ 2

We propose a deterministic and uniform algorithm that solves the treasure hunt problem for
all combinations of parameters (τ, µ) with τ ≥ 1 and µ ≥ 2. We give a compact representation
of the algorithm as a hybrid state transition diagram in Appendix A, and the full pseudocode
in Section 3.1.

Before we give an informal description of the algorithm, we define the notion of agent
signature:

I Definition 7 (Agent signature). Let v, h ∈ Z with |v|+ |h| = τ . We say that an agent has
signature [v;h] if it starts (from the nest) by moving |v| steps to the North (resp. South), up
to node (0, v), if v ≥ 0 (resp. v < 0), followed by |h| steps to the East (resp. West), up to
node (h, v), if h ≥ 0 (resp. h < 0).

The algorithm creates agents of all possible signatures [v;h], thus ensuring correctness by
visiting all nodes at distance ≤ τ from the nest. Each agent drops pheromone once upon
leaving the nest on its first move, and once more if and when it leaves the vertical axis.
Figure 1 shows the sequence of states of a typical agent executing the algorithm.

The first two agents use pheromone information to the East and to the West of the nest
to take signatures [0,−τ ] and [0, τ ] (state Init, lines 2-5). Subsequently created agents use
pheromone information to the North and to the South of the nest to alternate between the
two vertical directions: If there is more pheromone to the North of the nest then they start
moving South, otherwise they start moving North (state Init, lines 7-9).

A northbound agent (southbound agents behave symmetrically) starts moving to the
North in state Vert-seek. In this state, it checks horizontally adjacent nodes for the presence
of pheromone previously dropped by agents leaving the vertical axis. Once it finds such
pheromone traces, it switches to state Vert-bypass and keeps moving to the North until it
reaches the first node (0, v) whose East and West neighbors do not both have pheromone.

At that point, if no horizontal neighbor has pheromone then it turns East, taking
signature [v, τ − v], whereas if only the East neighbor has pheromone then it turns West,
taking signature [v, v− τ ] (state Vert-bypass). Once it leaves the vertical axis, an agent keeps
moving horizontally until the end of its lifetime in state Horiz.

3.1 Pseudocode
We give the transition function executed by each agent during step 4 of each round (cf. Defi-
nition 3) in Algorithm 1. We denote by ϕx, for x ∈ {N,E, S,W}, the pheromone value of the
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neighboring node in direction x. These represent the input to the FSM. In accordance with
Definition 1, the pheromone values are never used directly but only as part of comparisons
to each other and to the value 0. The output of the FSM is composed of the pair of values
(dir, drop) at the end of the transition function computation.

3.2 Correctness

I Theorem 8. Algorithm 1 correctly solves the treasure hunt problem for all combinations
of parameters (τ, µ) with τ ≥ 1 and µ ≥ 2.

The complete proof of Theorem 8 is available in Appendix B. The proof is based on the
following simple properties of Algorithm 1: (Propositions 19, 20, 24, and 28 in Appendix B)

Whenever an agent switches to state Horiz it moves horizontally (East or West) and
drops pheromone. Subsequently, it keeps moving in the same direction in the same state
without dropping pheromone until the end of its lifetime.
Whenever an agent switches to state Vert-seek it moves vertically (North or South) and
drops pheromone. Subsequently, it keeps moving in the same direction in the same state
without dropping pheromone until one of the following happens: it reaches the end of its
lifetime, or it switches to state Vert-bypass moving in the same direction as before, or it
switches to state Horiz moving West.
Whenever an agent switches to state Vert-bypass it moves vertically, and it drops
pheromone only if it switches from state Init to Vert-bypass. Subsequently, it keeps
moving in the same direction in the same state without dropping pheromone until one of
the following happens: it reaches the end of its lifetime, or it switches to state Horiz.
During its first transition, every agent switches to one of the states Horiz, Vert-seek, or
Vert-bypass.

Based on these, we conclude that every agent has a signature as per Definition 7. The
rest of the proof is devoted to showing that the first 4τ agents pick up distinct signatures,
and thus they explore all nodes at distance τ or less from the nest. This is accomplished
by a series of lemmas, where we show first (as part of Lemma 33 in Appendix B) that
agents A1 and A2 have signatures [0; τ ] and [0;−τ ], respectively, and that subsequent agents
are alternately dispatched to the North and to the South half-planes. Then, the following
two technical lemmas describe completely the state transitions of agents on the vertical axis:

I Lemma 9. For all odd i with 3 ≤ i ≤ 4τ − 1, and for all y with 1 ≤ y ≤
⌈
i−1

4
⌉
, Ai is at

node (0, y) at the beginning of round i+ y and:
1. It senses pheromone µ ·− (i− 4y) to the East and µ ·− (i− 2− 4y) to the West.
2. If y = 1, it is in state Vert-seek if i− 3 ≥ µ, otherwise it is in state Vert-bypass.
3. If y ≥ 2, it is in state Vert-seek if i− 4y + 2 ≥ µ, otherwise it is in state Vert-bypass.

I Lemma 10. For all even i with 4 ≤ i ≤ 4τ , and for all y with 1 ≤ y ≤
⌈
i−2

4
⌉
, Ai is at

node (0,−y) at the beginning of round i+ y and:
1. It senses pheromone µ ·− (i− 4y − 1) to the East and µ ·− (i− 3− 4y) to the West.
2. If y = 1, it is in state Vert-seek if i− 4 ≥ µ, otherwise it is in state Vert-bypass.
3. If y ≥ 2, it is in state Vert-seek if i− 4y + 1 ≥ µ, otherwise it is in state Vert-bypass.

From Lemmas 9 and 10, we deduce the signatures of the first 4τ agents and conclude the
proof of Theorem 8.
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Algorithm 1 A treasure hunt algorithm for τ ≥ 1, µ ≥ 2.

Variables
state ∈ {Init,Vert-seek,Vert-bypass,Horiz} . Initial value: Init
dir ∈ {N,E, S,W,⊥} . Initial value: ⊥
drop ∈ {before, after,⊥} . Initial value: ⊥

Transition function
1: if state = Init then
2: if ϕN = ϕW = ϕS = ϕE = 0 then
3: state← Horiz; dir← E; drop← after
4: else if ϕE > ϕW then
5: state← Horiz; dir←W ; drop← after
6: else
7: state← Vert-bypass if ϕW > 0 else Vert-seek
8: dir← S if ϕN > ϕS else N
9: drop← after
10: end if
11: else if state = Vert-seek then
12: if ϕW = ϕE = 0 then
13: state← Vert-seek; drop← ⊥ . keep searching
14: else
15: Interpret-Signals
16: end if
17: else if state = Vert-bypass then
18: if ϕW = ϕE = 0 then
19: state← Horiz; dir← E; drop← after
20: else
21: Interpret-Signals
22: end if
23: else if state = Horiz then
24: drop← ⊥
25: end if

26: procedure Interpret-Signals
27: if ϕW = 0 and ϕE > 0 then
28: state← Horiz; dir←W ; drop← after
29: else if ϕW > 0 then
30: state← Vert-bypass; drop← ⊥
31: end if
32: end procedure
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3.3 Complexity
Recall the definitions of Bx (ball of radius x around the nest) and Lx (layer of nodes at
distance x from the nest) from Section 2.

I Theorem 11. If the treasure is located at distance at most d, where 1 ≤ d ≤ τ , then
Algorithm 1 locates the treasure in time at most 5d− 1.

Proof. By Lemmas 33 and 41, agents A1, . . . , A4d have all possible signatures with vertical
component at most d (in absolute value). Moreover, by Corollary 30, each agent Ai reaches
distance d from the nest in round i+ d− 1. It follows that, by the time agent A4d reaches
distance d from the nest, hence by round 5d− 1, all nodes at distance d or less from the nest
have been explored. J

I Theorem 12. If the treasure is located at distance d = τ , then any treasure hunt algorithm
needs at least 5τ − 1 rounds to locate the treasure in the worst case.

Proof. A given agent can explore at most one node at distance τ within its lifetime. Since
Lτ contains 4τ nodes, a correct algorithm must create at least 4τ agents, the last of which
reaches distance τ in round 4τ + τ − 1 = 5τ − 1. It follows that, in the worst case, the
treasure cannot be located before round 5τ − 1. J

I Theorem 13. Let A be any treasure hunt algorithm that is correct for a pair of param-
eters (τ, µ). For every d ≤ τ , A needs at least

√
5d rounds to explore all nodes up to

distance d.

Proof. Fix a d ≤ τ and let T be the first round at the end of which A explores all nodes up
to distance d. Clearly, T ≥ d because otherwise no agent can reach any node at distance d.
We also assume that T <

√
5d, and we will show a contradiction.

Consider Bx, for x ≤ d to be determined below. Among the agents A1, . . . , AT , those with
i ≥ T −x+1 have moved at most x times by the end of round T , therefore they are unable to
explore any node outside of Bx. For every i ≤ T − x, agent Ai moves at most T − i+ 1 times
by the end of round T , and it needs at least x moves before it can exit Bx. Therefore, Ai
explores at most T − i+ 1− x nodes outside of Bx. Summing over all agents with i ≤ T − x
and taking also into account Bx itself, we conclude that, by the end of round T , algorithm A
can explore at most

|Bx|+
T−x∑
i=1

(
T − i+ 1− x

)
= 2x2 + 2x+ 1 + (T − x)(T − x+ 1)

2

nodes. The above expression is minimized for x = T
5 −

3
10 < d, whence we obtain that A

explores at most

2T 2

5 + 4T
5 + 31

40

nodes. By definition of T , at that round A has explored at least Bd, therefore:

2T 2

5 + 4T
5 + 31

40 ≥ 2d2 + 2d+ 1

whence it follows that T >
√

5d, a contradiction. J

I Theorem 14. Algorithm 1 effectively uses 4τ agents, and that is optimal.
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Proof. By Lemmas 33 and 41, agents A1, . . . , A4τ have all possible signatures with vertical
component at most τ (in absolute value). Moreover, by Lemmas 33, 34, and 40, every
agent Ai only senses pheromone left by some earlier agent Aj , j < i. It follows that, even
if no agents are generated after round 4τ , the above agents A1, . . . , A4τ will still perform
the same trajectories and explore all nodes up to distance τ . Therefore, the effective agent
utilization of Algorithm 1 is 4τ . This is optimal because there exist 4τ nodes at distance τ ,
and an agent can only visit at most one node at distance τ during its lifetime. J

I Theorem 15. The pheromone utilization of Algorithm 1 is at most O(d), and this is
asymptotically optimal.

Proof. By Theorem 11, the treasure is located in time O(d), and each of the O(d) agents that
are created until then drops pheromone at most 2 times: once when it leaves the nest, and
once if and when it leaves the vertical axis. Hence, the pheromone utilization of Algorithm 1
is O(d).

To prove optimality, consider a treasure hunt algorithm A that uses asymptotically less
than d pheromone, i.e., its pheromone utilization is bounded by some function f(d) such
that limd→∞

f(d)
d = 0. Let N be the number of states of the FSM A.

By our assumption on f(d), for every ε > 0 there exists a dε such that for all d > dε,
f(d) < ε · d. Let us fix, then, a d0 > N + 1 such that f(d0) < d0

N+1 . Moreover, it is well
known and has been observed several times in the literature (see, e.g., [39, Lemma 5]) that
a deterministic FSM that moves in a grid and does not interact with its environment can
explore at most a constant-width band, infinite in one direction. Let W be the constant that
bounds the number of nodes of any particular layer that are visited by such an agent.

Now, consider the execution of A in a system with parameters (τ, µ), where τ ≥WNd0 +1
and the treasure is located at distance d0. The number of layers on which at least one
agent drops pheromone is clearly bounded by the pheromone utilization of A, and hence by
f(d0) < d0

N+1 . It follows that there exists at least one layer d1 ≤ d0 − (N + 1), such that no
agent drops pheromone on any of the layers d1, d1 + 1, . . . , d1 + N . Therefore, any agent
that arrives at layer d0 is already repeating a sequence of states during which it drops no
pheromone.

Consider, now, the execution of A in the same system but with the treasure placed at
distance d? = WNd0 + 1. As agents do not perceive the presence of treasure, they will
behave as in the previous case. In particular, even though there is an infinite number of
agents coming out of layer d0, their trajectories are contained in at most most 4d0 ·N distinct
bands of constant width W , infinite in one direction. This is because the trajectory of an
agent that is coming out of d0 is completely determined by the node from which it exits
layer d0 and the state in which it leaves the layer.

It follows that algorithm A explores at most 4WNd0 nodes of layer d?, but layer d?
contains 4d? > 4WNd0 nodes. Therefore, the adversary can place the treasure at a node
that will not be explored by A. J

4 A treasure hunt algorithm for µ ≥ 1 and τ ≥ 16

Similarly to Algorithm 1, the algorithm that we present in this section creates agents of all
possible signatures [v;h], as per Definition 7.

The main difficulty here is that the dropped pheromone can evaporate in one round
only, in the case of µ = 1. To explore a grid up to an unknown distance τ , where τ is also
the lifetime of an agent, every node at distance τ has to be visited by at least one agent
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(Definition 6). This agent cannot stop even for one round and has to follow a shortest path to
the node at distance τ . At the same time, agents have to be sent alternatively exploring each
half of the grid (north and south, in our case), and so the shortest time interval between two
following agents (moving to the positions to explore) is two rounds. This makes it difficult
to solve the problem with pheromone evaporating in one round. It disappears too fast to
provide any information to the next arriving agent.

In order to overcome this challenge, we use in Algorithm 2 two types of agents: signaling
agents, that stop moving at key positions and start dropping pheromone according to some
predetermined pattern, and explorer agents, that read these patterns on their way to the
extreme grid positions without stopping even for a single round. Since signaling consumes
rounds from the lifetime of signaling agents, these agents must stop at a sufficient distance
away from the extreme positions, to still have enough lifetime to signal the required pattern.
This distance is expressed by the parameter s of our algorithm. This also has an impact on
the minimum agent lifetime that is required for the algorithm to operate correctly, as the
furthest signaling agents must have enough lifetime to reach their signaling positions and
complete the required pattern. Algorithm 2 works for all values of µ, but only for τ ≥ 16.

Binary word notations: Let us define some finite binary word notations that we will use in
order to present the algorithm. The empty word is denoted by ε and the length of a word w
by |w|. For any word w and integer j ∈ {1, . . . , |w|}, w[j] denotes the jth most significant
bit of w. Let shiftleft(w) return a word obtained by removing the most significant bit (w[1])
from w.

We now present Algorithm 2 by refering to the pseudocode that we give in this section,
and to the technical lemmas that are proved in Appendix C. Algorithm 2 uses a constant
number of special states, as follows: Given a binary word w of length at most 9, Pattern(w)
is the first of a sequence of |w| states, during which the agent stays on the same node
and drops (or not) pheromone according to the bit pattern w. Forward(s)-Explore(E) (resp.
Forward(s)-Explore(W )) is the first of a sequence of states during which the agent moves s
steps forward (north or south, in the same direction as it was moving before entering this
state) and then turns east (resp. west) and keeps moving in that direction until the end of
its lifetime.

In the main part of the algorithm, agents leave the nest alternatively moving either north
or south, on the vertical axis, until arriving s steps away from a non-explored yet line where
they either stop for signaling (moving to state Pattern(w)) or continue moving to reach this
non-explored yet line to turn there either east (state Forward(s)-Explore(E)) or west (state
Forward(s)-Explore(W )) for exploring each half of the line, s steps away. This is proven in
Lemma 54.

Such a signaling, for exploring each next line at distance h, is achieved by using three
agents. One is placed s lines before, and at one cell east from the vertical axis, i.e. at
(1, h−s) if heading north (resp. (1,−(h−s)), if heading south). The second one is also s lines
before, but at one cell west from the vertical axis, i.e. at (−1, h− s) (resp. (−1,−(h− s))).
The third agent, is at (0, h − s + 1) (resp. (0,−(h − s + 1))) . A newly arrived agent (at
(0, h − s) (resp. (0,−(h − s)))) senses the pheromone dropped by these three agents and
performs actions according to the parsing of the sensed pattern. This part of the algorithm
is controlled mainly by the Interpret-Signals-phase2() procedure (see Alg. 2).

Operating in this way, with agents “jumping” each time s steps vertically, for exploring a
line there, leaves at least the s first horizontal lines of each half of the grid unexplored. Hence,
we need a special procedure for exploring these lines. For that, up to horizontal lines at
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Algorithm 2 A treasure hunt algorithm for τ ≥ 16, µ ≥ 1 and s = 6

Variables
state ∈ {Init,Vert-seek,Vert-bypass,Horiz,Pattern(w),Forward(k)-Explore(E)

Forward(k)-Explore(W )}, w ∈ {0, 1}9, k ∈ [0, s] . Initial value: Init
dir ∈ {N,E, S,W,⊥} . Initial value: ⊥
drop ∈ {before, after,⊥} . Initial value: ⊥
moves ∈ [0, s+ 1] . Initial value: 0

Transition function
1: if state = Init then
2: if ϕN = ϕW = ϕS = ϕE = 0 then
3: state← Pattern(11001); dir← E; drop← after . Start signaling E
4: else if ϕN = ϕW = ϕS = 0 and ϕE > 0 then
5: state← Pattern(111); dir←W ; drop← after . Start signaling W
6: else if ϕN = ϕS = 0 and ϕW = ϕE > 0 then
7: state← Pattern(01); dir← N ; drop← after . Start signaling N
8: else if ϕS = 0 and ϕN = ϕW = ϕE > 0 then
9: state← Horiz; dir← E; drop← ⊥ . Explore E
10: else if ϕS = 0 and ϕN = ϕE < ϕW then
11: state← Horiz; dir←W ; drop← ⊥ . Explore W
12: else if ϕS = 0 and ϕN = ϕW > ϕE then
13: state← Vert-bypass; dir← N ; drop← after . Go signaling E on line (0, 1)
14: else if ϕS = 0 and ϕN = ϕE > ϕW then
15: state← Vert-bypass; dir← S; drop← after . Go signaling E on line (0,−1)
16: else if ϕS > ϕN and ϕS > ϕE and ϕS > ϕW then
17: state← Vert-seek; dir← N ; drop← after . Go signaling W on line (0, 1)
18: else if ϕN > ϕS and ϕN > ϕE and ϕN > ϕW then
19: state← Vert-seek; dir← S; drop← after . Go signaling W on line (0,−1)
20: end if
21: else if state = Vert-seek then
22: if ϕdir = ϕE = ϕW = 0 then
23: drop← ⊥ . keep searching
24: else if moves < s+ 1 then
25: state← Vert-bypass; Interpret-Signals-phase1
26: else
27: state← Vert-bypass; Interpret-Signals-phase2
28: end if
29: else if state = Vert-bypass then
30: if moves < s+ 1 then
31: Interpret-Signals-phase1
32: else
33: Interpret-Signals-phase2
34: end if
35: else if state = Horiz then
36: drop← ⊥
37: else if state = Forward(k)-Explore(d) then
38: if k > 1 then
39: state← Forward(k − 1)-Explore(d)
40: else
41: state← Horiz; dir← d

42: end if
43: drop← ⊥
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I Algorithm 2 (continued)
44: else if state = Pattern(w) then
45: dir← ⊥
46: if |w| > 1 ∧ w[1] = 1 then . w[1] returns the first bit of the binary word w
47: drop← after
48: else
49: drop← ⊥
50: end if
51: if w 6= ε then
52: state← Pattern(shiftleft(w)) . shiftleft(w) removes the first bit of w
53: end if
54: end if
55: if dir 6= ⊥ ∧moves < s+ 1 then
56: moves← moves + 1
57: end if
58: procedure Interpret-Signals-phase1
59: if ϕdir = ϕE = ϕW = 0 then
60: state← Pattern(1 01 01 01); dir← E; drop← ⊥ . Start signaling E
61: else if ϕdir = ϕW = 0 and ϕE > 0 then
62: state← Pattern(1 01 00 01 01); dir←W ; drop← ⊥ . Start signaling W
63: else if ϕdir = 0 and ϕE = ϕW > 0 then
64: state← Pattern(1 01 00 01 01); drop← ⊥ . Start signaling N or S
65: else if ϕdir = ϕE = ϕW > 0 then
66: state← Horiz; dir← E; drop← ⊥ . Explore E
67: else if ϕdir = ϕE > ϕW then
68: state← Horiz; dir←W ; drop← ⊥ . Explore W
69: else if ϕdir = ϕE < ϕW then
70: state← Forward(s)-Explore(E); drop← ⊥ . Move forward s steps and explore E
71: else if ϕdir = ϕW > ϕE then
72: state← Forward(s)-Explore(W ); drop← ⊥ . Move forward s steps and explore W
73: else if ϕdir > ϕE and ϕdir > ϕW then
74: drop← ⊥ . Continue to bypass pheromone traces
75: end if
76: end procedure
77: procedure Interpret-Signals-phase2
78: if ϕdir = ϕE = ϕW = 0 then
79: state← Pattern(1 01 01); dir← E; drop← ⊥ . Start signaling E
80: else if ϕdir = ϕW = 0 and ϕE > 0 then
81: state← Pattern(1 01 01); dir←W ; drop← ⊥ . Start signaling W
82: else if ϕdir = 0 and ϕE = ϕW > 0 then
83: state← Pattern(1 01 01); drop← ⊥ . Start signaling N or S
84: else if ϕdir = ϕE = ϕW > 0 then
85: state← Forward(s)-Explore(E); drop← ⊥ . Move forward s steps and explore E
86: else if ϕdir = ϕW > ϕE then
87: state← Forward(s)-Explore(W ); drop← ⊥ . Move forward s steps and explore W
88: else if ϕdir > ϕE and ϕdir > ϕW then
89: drop← ⊥ . Continue to bypass pheromone traces
90: end if
91: end procedure
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distance s, the signaling agents stay longer for guiding some of the incoming agents to explore
these lines (some other agents are still guided to “jump” for exploring the lines s steps fur-
ther). This part of the algorithm is controlled mainly by the Interpret-Signals-phase1()
procedure (see Alg. 2) and proven in Lemma 52.

I Remark 16. The technical analysis shows that the algorithm works with s = 6. We give a
short intuition for this value. As briefly explained above, the point is that signaling patterns
cannot be established too far from the nest, because agents do not have enough remaining
lifetime to complete the pattern. As such, the exploration of horizontal lines that are far
from the nest must be signaled by patterns that are set up closer to the nest. In fact, s
depends on the longest such signaling pattern, dropped by a signaling agent (at a distance
further than s from the nest). This in turn establishes the closest position of such agent to
the grid extremity (at distance τ), where it can complete the signaling before it dies. In
our algorithm, to explore lines after distance s, only 6 rounds are used by a signaling agent,
which explains why s = 6. We actually need to encode 6 actions (3 for signaling agents and
3 for exploring). This requires 12 rounds of signaling due to the N/S dispatching at the nest,
but we can get away with s being only 6 because the agents arrive at different times. Still,
signaling agents have to stay alive there only for 6 rounds each.

Regarding the minimal τ which is 16, it is due to the transition from operation in the
s first lines to the next ones. During this transition, signaling agents should have enough
remaining lifetime to reach line s and to signal the required pattern (in these lines, the
signaling pattern of each agent requires 10 rounds; there are 3 + 5 actions to signal here). So
10 rounds for signaling and 6 rounds to reach the line at distance 6 gives τ ≥ 16 rounds.

Let us detail now the operation of the algorithm during the first rounds intended to
explore the x-axis (this differs from the exploration of other lines). Agents start at the nest
in state Init. Each of the first three agents are placed respectively east, west and north
to the nest and start signaling according to the predetermined pattern (lines 3, 5 and 7,
Alg. 2). This signaling instructs the 4th agent (A4) to explore the east half of the x-axis
(line 9) and the 5th agent (A5), to explore the remaining (west) half of the x-axis (line 11).
This is proven in Lemma 46. The next four agents are instructed to move to lines (0, 1)
and (0,−1) (lines 13 - 19), two agents on each line, to stop on the East and West from the
vertical axis (cells (1, 1), (−1, 1), (1,−1), (−1,−1)). This is for instructing to explore lines
(0, 1), (0,−1), (0, s + 1) and (0,−s − 1) (as explained in the previous paragraph). This is
proven in Lemmas 47 and 48.

Notice that starting from round 8, every even round, an agent in Vert-seek leaves the
nest to the North, and every odd round, an agent in Vert-seek leaves the nest to the South
(Lemma 48). This alternation allows to explore both the north and the south halves of the
grid, without knowing its size.

States Vert-seek and Vert-bypass are used in a similar way as in the previous algorithm,
to overcome the difficulty caused by the pheromone traces left from previous drops in case
of µ > 1. An agent has to bypass (in state Vert-bypass) these traces (lines 74 and 89) until
arriving to a line with either no pheromone or with “fresh” pheromones, just dropped in
the previous round (treated in all other lines of the Interpret-Signals-phase1() and
Interpret-Signals-phase2() procedures). Starting with the 8th agent, agents leave the
nest in state Vert-seek and move vertically in this state until sensing some dropped pheromone,
moving then to Vert-bypass (lines 22 - 27).

I Theorem 17. Algorithm 2 solves the treasure hunt problem for µ ≥ 1, τ ≥ 16 and s = 6 in
11τ − 6s+ 2 rounds, using 10τ − 6s+ 3 agents and 28τ +O(s) + 8 pheromone drops.
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The complete proof of Theorem 17 is available in Appendix C.

5 Concluding remarks

We have presented the first algorithms for the treasure hunt problem under the weak commu-
nication mechanism of evaporating pheromone markers. In Algorithm 1, the assumption that
pheromone lasts for at least two rounds (µ ≥ 2) leads to a fairly simple algorithm design
with very few states. By contrast, Algorithm 2 is significantly more complicated, as it needs
to be able to handle both an extremely fast evaporation rate (µ = 1) and larger values of µ.

Algorithm 2 covers all values of the evaporation parameter µ ≥ 1, but it requires a lifetime
of τ ≥ 16. It would be interesting to determine the smallest τ0 such that there exists a
treasure hunt algorithm that works for all µ ≥ 1 and for all τ ≥ τ0. With ad-hoc arguments,
it can be seen that τ0 > 2. However, it is far from obvious how to generalize these arguments
to larger values of τ0. On the other hand, there may be room to improve the upper bound
of τ0 ≤ 16, with some fine-tuning of the signaling patterns.

Another interesting direction for future work is improving on the complexities of Algo-
rithm 2, or studying tradeoffs between completion time, pheromone utilization, and agent
utilization. Since both of our algorithms use only a constant number of pheromone drops
per agent, one idea would be to increase the frequency of pheromone drops. It seems that
this would not help to reduce agent utilization or the completion time. Indeed, the limiting
factor in Algorithm 2 seems to be not the amount of pheromone that is dropped or that
might be dropped, but indeed the number of grid positions that are available in order to set
up an efficient pattern, i.e., a pattern that resides in the neighborhood of the main axis so
that it can be immediately sensed by agents.

The assumption of detecting pheromones only in adjacent nodes to the agent, although
natural, could be relaxed. However, if the sensing range is increased even to 2 while
maintaining the principle that the agent can pinpoint exactly the position of the pheromone
and compare pheromone levels between all nodes in its 2-neighborhood, then Algorithm 1
resolves the problem for all values of the parameters. Indeed, the only reason why Algorithm 1
fails for µ = 1 is that, due to the North-South dispatching at the nest, agents are dispatched
into the same half-plane every two rounds, and therefore any pheromone dropped by an
agent evaporates before the next agent can sense it. Consequently, in order to study a
meaningful problem with an increased sensing range, some loss of information would have to
be introduced at distance 2 or more.

Our algorithms are quite far from modeling natural ant foraging patterns. Indeed,
depending on species, ants in nature tend to employ a wide range of communication methods,
including multiple types of pheromone of various degrees of volatility, repellent pheromones,
contact, or sounds [49]. However, our proposed solutions are more appropriate for artificial
agent systems, where the parameter τ might correspond to agents with limited energy, and
evaporating markers could be useful to prevent area pollution. The appropriate parameter
values will depend on the specific application.

As a general remark, we believe that the communication model of evaporating pheromone
markers is inherently interesting and we would like to study other agent coordination problems
in this model. Orthogonally, one may consider less predictable evaporation mechanisms, such
as evaporation governed by a random process, or controlled by an adversary.
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A State transition diagram of Algorithm 1

Vert-bypass

Horiz

Vert-seekInit

iW = iE = 0 ∧ (iN > 0 ∨ iS > 0)
dir← S if iN > iS else N
move-drop

iE ≤ iW ∧ iW > 0
dir← S if iN > iS else N
move-drop

iW > 0
move-no-drop

iE = iW = 0
move-no-drop

iW > 0
move-no-drop

iE > iW

dir←W
move-drop

iN = iE = iS = iW = 0
dir← E
move-drop

iW = 0
dir←W if iE > 0 else E
move-drop

iW = 0 ∧ iE > 0
dir←W
move-drop

true
move-no-drop

Figure 2 A hybrid state transition diagram representing Algorithm 1. On each transition, the
guard condition is given above the horizontal line. The actions that are executed if the transition
is triggered are given below the horizontal line. The values ϕx, for x ∈ {N,E, S,W}, represent
the pheromone values in neighboring nodes at the beginning of the round. dir ∈ {N,E, S,W} is a
variable whose value persists between transitions. The statement move-drop instructs the agent
to move in the direction indicated by the variable dir, dropping pheromone on the destination
node. The statement move-no-drop instructs the agent to move in the direction indicated by the
variable dir, without dropping pheromone on the destination node. Exactly one guarded transition
is enabled from each state.
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B Proof of Theorem 8 from Section 3

In this section, we show the correctness of Algorithm 1 under the assumption that τ ≥ 1
and µ ≥ 2. We start by introducing some notation.

I Definition 18. For i, r satisfying 1 ≤ i ≤ r < i + τ , let statei(r), diri(r), and dropi(r)
be the values of variables state, dir, and drop, respectively, of agent Ai at the end of the
execution of its transition function during round r. For convenience, let statei(i− 1) = Init.

The output symbol (diri(r), dropi(r)) encodes the actions of agent i in round r, as described
in steps 5-7 of Definition 3.

In Propositions 19, 20, 24, and 28 below, we prove some basic properties of the four states:
Horiz, Vert-seek, Vert-bypass, and Init, respectively. Proposition 19 states that whenever an
agent switches to state Horiz it moves horizontally (East or West) and drops pheromone.
Subsequently, it keeps moving in the same direction in the same state without dropping
pheromone until the end of its lifetime.

Proposition 20 states that whenever an agent switches to state Vert-seek it moves vertically
(North or South) and drops pheromone. Subsequently, it keeps moving in the same direction
in the same state without dropping pheromone until one of the following happens: it reaches
the end of its lifetime, or it switches to state Vert-bypass moving in the same direction as
before, or it switches to state Horiz moving West.

Proposition 24 states that whenever an agent switches to state Vert-bypass it moves verti-
cally, and it drops pheromone only if it switches from state Init to Vert-bypass. Subsequently,
it keeps moving in the same direction in the same state without dropping pheromone until
one of the following happens: it reaches the end of its lifetime, or it switches to state Horiz.

Finally, Proposition 28 states that during its first transition, every agent switches to one
of the states Horiz, Vert-seek, or Vert-bypass.

I Proposition 19. Let r ≥ i be such that statei(r) = Horiz 6= statei(r − 1). Then diri(r) ∈
{E,W}, dropi(r) = after, and, for all r′ ∈ (r, i + τ), we have statei(r′) = Horiz, diri(r′) =
diri(r), and dropi(r′) = ⊥.

Proof. Because statei(r − 1) 6= Horiz, statei(r) must have been assigned the value Horiz in
line 3, 5, 19, or 28. In any case, this is followed by an assignment to dir of a value from {E,W}
and by an assignment drop← after. Therefore diri(r) ∈ {E,W} and dropi(r) = after. The
claim follows by induction on r′. Assuming that statei(r′) = Horiz and diri(r′) = diri(r) for
a particular r′ ≥ r, in the following round agent Ai executes the conditional in lines 23-24,
which sets drop ← ⊥ and does not modify the other variables. Therefore, statei(r′ + 1) =
statei(r′) = Horiz, diri(r′ + 1) = diri(r′) = diri(r), and dropi(r′ + 1) = ⊥. J

I Proposition 20. Let r ≥ i be such that statei(r) = Vert-seek 6= statei(r − 1). Then
diri(r) ∈ {N,S}, dropi(r) = after, and there exists a unique t ∈ (r, i + τ ] such that for
all r′ ∈ (r, t) we have statei(r′) = Vert-seek, diri(r′) = diri(r), and dropi(r′) = ⊥, and one of
the following holds:
1. statei(t) = Horiz and diri(t) = W .
2. statei(t) = Vert-bypass and diri(t) = diri(r).
3. t = i+ τ .

Proof. Because statei(r−1) 6= Vert-seek, statei(r) must have been assigned the value Vert-seek
in line 7. This is followed by an assignment to dir of a value from {N,S} and by an
assignment drop← after, therefore diri(r) ∈ {N,S} and dropi(r) = after.
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Let t? be the largest t such that for all r′ ∈ [r, t), statei(r′) = Vert-seek and diri(r′) =
diri(r). It must be that r + 1 ≤ t? ≤ i+ τ , since statei(r) = Vert-seek and statei(r′), diri(r′)
are undefined for r′ ≥ i+ τ .

By definition of t?, in order to conclude the proof, we need to show that for all r′ ∈ (r, t?)
we have dropi(r′) = ⊥, that t? satisfies one of the properties 1-3 in the statement of the
Proposition, and that t? is unique. We prove these in Claims 21, 22, and 23 below.

B Claim 21. For all r′ ∈ (r, t?), dropi(r′) = ⊥.

Proof. By definition of t?, we have statei(r′) = statei(r′ − 1) = Vert-seek for all r′ ∈ (r, t?).
It follows that agent Ai executes line 13 in round r′, therefore dropi(r′) = ⊥. J

B Claim 22. If t? < i+ τ , then either statei(t?) = Horiz and diri(t?) = W , or statei(t?) =
Vert-bypass and diri(t?) = diri(r).

Proof. By definition of t?, if t? < i + τ , then we must have statei(t?) 6= statei(t? − 1) =
Vert-seek, or diri(t?) 6= diri(t? − 1) = diri(r).

In the first case, during round t?, Ai must have executed procedure Interpret-Signals
in line 15, therefore either the conditional in lines 27-28, or the one in lines 29-30. Lines 27-28
result in statei(t?) = Horiz and diri(t?) = W . Lines 29-30 result in statei(t?) = Vert-bypass
and diri(t?) = diri(t? − 1) = diri(r).

In the second case, during round t?, Ai must have executed procedure Interpret-
Signals in line 15, and within the procedure the conditional in lines 27-28, which results in
statei(t?) = Horiz and diri(t?) = W . J

B Claim 23. t? is the unique t ∈ (r, i+ τ ] that satisfies the statement of the proposition.

Proof. For any t′ ∈ (r, t?) we have t′ < t? ≤ i + τ and statei(t′) = Vert-seek by definition
of t?. Therefore, t′ cannot satisfy any of the properties 1-3.

For any t′ ∈ (t?, i + τ ], the interval (r, t′) contains t?. Moreover, since t? < i + τ in
this case, by Claim 22 we have statei(t?) 6= Vert-seek. Therefore, it is not true that for
all r′ ∈ (r, t′) we have statei(r′) = Vert-seek. J

This concludes the proof of Proposition 20. J

I Proposition 24. Let r ≥ i be such that statei(r) = Vert-bypass 6= statei(r − 1). Then
diri(r) ∈ {N,S}, dropi(r) = after if and only if statei(r− 1) = Init, and there exists a unique
t ∈ (r, i + τ ] such that for all r′ ∈ (r, t) we have statei(r′) = Vert-bypass, diri(r′) = diri(r),
and dropi(r′) = ⊥, and one of the following holds:
1. statei(t) = Horiz.
2. t = i+ τ .

Proof. Because statei(r−1) 6= Vert-bypass, statei(r) must have been assigned the value Vert-bypass
in line 7 or in line 30 (following a call of Interpret-Signals from line 15). If it was in line 7,
then statei(r − 1) = Init and it was followed by an ssignment to dir of a value from {N,S}
and an assignment drop ← after. If it was in line 30 following a call of Interpret-
Signals from line 15, then statei(r − 1) = Vert-seek and dir is not changed, therefore
diri(r) = diri(r − 1) ∈ {N,S} by Proposition 20. Moreover, line 30 contains an assign-
ment drop← ⊥, therefore dropi(r) = ⊥.

Let t? be the largest t such that for all r′ ∈ [r, t), statei(r′) = Vert-bypass and diri(r′) =
diri(r). It must be that r+ 1 ≤ t? ≤ i+ τ , since statei(r) = Vert-bypass and statei(r′), diri(r′)
are undefined for r′ ≥ i+ τ .
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By definition of t?, in order to conclude the proof, we need to show that for all r′ ∈ (r, t?)
we have dropi(r′) = ⊥, that t? satisfies one of the properties 1-2 in the statement of the
Proposition, and that t? is unique. We prove these in Claims 25, 26, and 27 below.

B Claim 25. For all r′ ∈ (r, t?), dropi(r′) = ⊥.

Proof. By definition of t?, we have statei(r′) = statei(r′− 1) = Vert-bypass for all r′ ∈ (r, t?).
It follows that agent Ai executes line 30 following a call of Interpret-Signals from line 21
in round r′, therefore dropi(r′) = ⊥. J

B Claim 26. If t? < i+ τ , then statei(t?) = Horiz.

Proof. By definition of t?, if t? < i + τ , then we must have statei(t?) 6= statei(t? − 1) =
Vert-bypass, or diri(t?) 6= diri(t? − 1) = diri(r).

In both cases, in order to change either state or direction, Ai must have executed during
round t? line 19 or line 28 following a call of procedure Interpret-Signals in line 21. Both
possibilities result in statei(t?) = Horiz. J

B Claim 27. t? is the unique t ∈ (r, i+ τ ] that satisfies the statement of the proposition.

Proof. For any t′ ∈ (r, t?) we have t′ < t? ≤ i+ τ and statei(t′) = Vert-bypass by definition
of t?. Therefore, t′ cannot satisfy any of the properties 1-2.

For any t′ ∈ (t?, i+ τ ], the interval (r, t′) contains t?. Moreover, since t? < i+ τ in this
case, by Claim 26 we have statei(t?) = Horiz. Therefore, it is not true that for all r′ ∈ (r, t′)
we have statei(r′) = Vert-bypass. J

This concludes the proof of Proposition 24. J

I Proposition 28. For all i ≥ 1, statei(i) ∈ {Horiz,Vert-seek,Vert-bypass}.

Proof. In its first round, agent Ai starts in state Init and it enters one of the conditionals in
lines 2-10. This results in statei(i) ∈ {Horiz,Vert-seek,Vert-bypass}. J

By Propositions 19, 20, 24, and 28, it follows immediately that the trajectory of every
agent Ai is of one of the following types:

τ horizontal moves in the same direction diri(i) ∈ {W,E}, dropping pheromone only on
the first horizontal move.
For some t? < τ , t? vertical moves in the same direction diri(i) ∈ {N,S}, dropping
pheromone only on the first vertical move, followed by τ − t? horizontal moves in the
same direction diri(t?) ∈ {E,W}, dropping pheromone only on its first horizontal move.
τ vertical moves in the same direction diri(i) ∈ {N,S}, dropping pheromone only on the
first vertical move.

We have, therefore, the following two corollaries:

I Corollary 29. Every agent Ai, i ≥ 1, has a signature [vi;hi] and it drops pheromone only
on its first vertical move (if |vi| > 0) and on its first horizontal move (if |hi| > 0).

I Corollary 30. The distance of every agent from the nest strictly increases at each round.

I Definition 31. For i ≥ 1 and x, y ∈ Z, let ϕ(x, y, i) denote the amount of pheromone at
node (x, y) at the end of round i. For convenience, let ϕ(x, y, 0) = 0.

In particular for the nodes around the nest, for i ≥ 0, let ϕN (i) = ϕ(0, 1, i), ϕE(i) =
ϕ(1, 0, i), ϕS(i) = ϕ(0,−1, i), and ϕW (i) = ϕ(0,−1, i). Let Φi =

(
ϕN (i), ϕE(i), ϕS(i), ϕW (i)

)
.
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I Lemma 32. For all i ≥ 1, ϕdiri(i)(i) = µ. Moreover, for all d ∈ {N,E, S,W} \ {diri(i)},
ϕd(i) = ϕd(i− 1) ·− 1.

Proof. By Corollary 29, every agent drops pheromone on its first move. Therefore, ϕdiri(i)(i) =
µ. Moreover, since all agents other than Ai that are present in the system in round i have
started their signature trajectory strictly before round i, and because the distance of an agent
from the nest strictly increases at each round (Corollary 30), it follows that they cannot
arrive at a node neighboring the nest in round i. The pheromone on neighbors of the nest in
any direction d 6= diri(i) is, therefore, subject only to evaporation: ϕd(i) = ϕd(i− 1) ·− 1. J

I Lemma 33. All of the following hold:
A1 has signature [0; τ ] and Φ1 = (0, µ, 0, 0).
A2 has signature [0;−τ ] and Φ2 = (0, µ ·− 1, 0, µ).
dir3(3) = N , state3(3) = Vert-bypass, and Φ3 = (µ, µ ·− 2, 0, µ ·− 1).
For all even i ≥ 4, diri(i) = S and Φi = (µ ·− 1, µ ·− (i− 1), µ, µ ·− (i− 2)).
For all odd i ≥ 5, diri(i) = N and Φi = (µ, µ ·− (i− 1), µ ·− 1, µ ·− (i− 2)).

Proof. We have Φ0 = (0, 0, 0, 0), hence in round 1 agent A1 executes line 3. This results
in state1(1) = Horiz and dir1(1) = E. The signature of A1 is [0; τ ]. By Lemma 32, Φ1 =
(0, µ, 0, 0).

In round 2, agent A2 senses pheromone ϕE(1) = µ > 0 = ϕW (1), so it executes line 5.
This results in state2(2) = Horiz and dir2(2) = W . Its signature is [0;−τ ]. By Lemma 32,
Φ2 = (0, µ ·− 1, 0, µ).

In round 3, agent A3 senses pheromone ϕE(2) = µ ·−1 < µ = ϕW (2), where the inequality
holds because µ ≥ 2, and ϕN (2) = ϕS(2) = 0, so it executes lines 7-9, hence dir3(3) = N and
state3(3) = Vert-bypass. By Lemma 32, Φ3 = (µ, µ ·− 2, 0, µ ·− 1).

We prove the rest of the claim by induction on i. For even i ≥ 4, either i = 4 and thus in
round i agent Ai senses pheromone ϕE(3) = µ ·− 2 < µ ·− 1 = ϕW (3) and ϕN (3) = µ > 0 =
ϕS(3), or i ≥ 6 and thus in round i agent Ai senses pheromone ϕE(i− 1) = µ ·− (i− 2) ≤
µ ·− (i− 3) = ϕW (i− 1) and ϕN (i− 1) = µ > µ ·− 1 = ϕS(i− 1) by the inductive hypothesis,
where the last inequality holds because µ ≥ 2. In both cases, it executes lines 7-9 and
diri(i) = S. By Lemma 32, Φi = (µ ·− 1, µ ·− (i− 1), µ, µ ·− (i− 2)).

For odd i ≥ 5, in round i agent Ai senses pheromone ϕE(i−1) = µ ·−(i−2) ≤ µ ·−(i−3) =
ϕW (i− 1) and ϕN (i− 1) = µ ·− 1 < µ = ϕS(i− 1) by the inductive hypothesis, so it executes
lines 7-9 and diri(i) = N . By Lemma 32, Φi = (µ, µ ·− (i− 1), µ ·− 1, µ ·− (i− 2)). J

I Lemma 34. For every odd i ≥ 3 and r ≥ i+ 1, if agent Ai is on the positive part of the
y-axis at the beginning of round r, then it may only sense pheromone previously dropped by
some agent Aj with odd j, 3 ≤ j ≤ i.

Proof. Agents Aj with even j, j ≥ 4, remain in the South half-plane in view of Corollary 30
and because their first step is to the South (Lemma 33), so any pheromone that they may
drop cannot be sensed by Ai.

Agents Aj with odd j, j > i, are always at distance at least 2 behind agent Ai by
Corollary 30, so Ai cannot sense any pheromone that they may drop.

Finally, agents A1 and A2 stay on the x-axis by Lemma 33, so Ai may only sense
pheromone dropped by those agents during round i. J

I Remark 35. In the following lemma and its proof, we will say that an agent Ai is at a
certain node at the beginning of a certain round j > i, when it would be more correct to
say that agent Ai arrives at that node during step 6 of round j − 1. The two wordings
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are equivalent except for the case j = i+ τ , because, by definition of the model, Ai is no
longer present in the system in round i+ τ . Slightly abusing terminology, we will use the
former wording even for the case j = i+ τ . Similarly, we will say that Ai is in state s at the
beginning of round j, if it switches to state s during step 4 of round j − 1. Finally, we will
say that Ai senses a certain amount of pheromone in a certain direction at the beginning of
round j, if that amount of pheromone is present in that direction after step 7 of round j − 1.

I Lemma 9. For all odd i with 3 ≤ i ≤ 4τ − 1, and for all y with 1 ≤ y ≤
⌈
i−1

4
⌉
, Ai is at

node (0, y) at the beginning of round i+ y and:
1. It senses pheromone µ ·− (i− 4y) to the East and µ ·− (i− 2− 4y) to the West.
2. If y = 1, it is in state Vert-seek if i− 3 ≥ µ, otherwise it is in state Vert-bypass.
3. If y ≥ 2, it is in state Vert-seek if i− 4y + 2 ≥ µ, otherwise it is in state Vert-bypass.

Proof. The proof is by induction on odd i. For i = 3, the statement boils down to the
following Claim.

B Claim 36. A3 is at node (0, 1) in state Vert-bypass at the beginning of round 4 and senses
no pheromone to the East or to the West.

Proof. By Lemma 33, the first step of A3 is to the North and it switches to state Vert-bypass.
Moreover, By Lemma 34, A3 senses no pheromone to the East or to the West at the beginning
of round 4. J

Now, given an odd i?, 3 ≤ i? ≤ 4τ − 3, we assume that the statement holds for all odd i,
3 ≤ i ≤ i?. We prove it for the case i = i? + 2, which we rewrite below as Claim 37. The
remainder of the proof of Lemma 9 is devoted to the proof of Claim 37.

B Claim 37. For all y with 1 ≤ y ≤
⌈
i?+1

4
⌉
, Ai?+2 is at node (0, y) at the beginning of

round i? + 2 + y and:
1. It senses pheromone µ ·− (i? + 2− 4y) to the East and µ ·− (i? − 4y) to the West.
2. If y = 1, it is in state Vert-seek if i? − 1 ≥ µ, otherwise it is in state Vert-bypass.
3. It y ≥ 2, it is in state Vert-seek if i? − 4y + 4 ≥ µ, otherwise it is in state Vert-bypass.

We prove Claim 37 by induction on y. We prove the base case y = 1 as Claim 38 below.

B Claim 38. Ai?+2 is at node (0, 1) at the beginning of round i? + 3 and:
1. It senses pheromone µ ·− (i? − 2) to the East and µ ·− (i? − 4) to the West.
2. It is in state Vert-seek if i? − 1 ≥ µ, otherwise it is in state Vert-bypass.

Proof. By Lemma 33, the first step of Ai?+2 in round i? + 2 is to the North, therefore Ai?+2
is at node (0, 1) at the beginning of the next round i? + 3.

At the beginning of round i? + 2, when it first appears at the nest in state Init, it senses
pheromone Φi?+1 around it. By Lemma 33 and because i? ≥ 3 is odd, hence i? + 1 ≥ 4 is
even, we have Φi?+1 = (µ ·− 1, µ ·− i?, µ, µ ·− (i? − 1)). Therefore, during its first transition, it
executes line 7 and switches to state Vert-seek if µ ·− (i? − 1) = 0, or equivalently i? − 1 ≥ µ.
Otherwise, it switches to state Vert-bypass.

It remains to show property 1 of the Claim. By inspection of Algorithm 1, an agent
that is in one of the states {Vert-seek,Vert-bypass} can only switch direction to the East if
it is in state Vert-bypass and senses no pheromone to the East or to the West (lines 18-19).
Therefore, by the inductive hypothesis for agents Ai with odd i, 3 ≤ i ≤ i?, agent Ai can only
turn East from node (0, 1) if i− 3 ≤ µ− 1 and µ ·− (i− 4) = µ ·− (i− 6) = 0. It can be easily
verified that i = 3 satisfies these conditions, whereas for any i ≥ 5 the conditions can only be
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satisfied if µ ≥ i− 2 and µ ≤ i− 4, which is impossible. We conclude that only A3 drops
pheromone at node (1, 1), and it does so during round 4, so the pheromone level at node (1, 1)
at the beginning of round 5 is µ. It follows that agent Ai?+2, which is at node (0, 1) at the
beginning of round i? + 3, senses a pheromone level of µ ·− (i? + 3− 5) = µ ·− (i? − 2) to the
East.

Similarly, by inspection of Algorithm 1, an agent that is in one of the states {Vert-seek,Vert-bypass}
can only switch direction to the West if it senses no pheromone to the West and strictly
positive pheromone to the East (lines 27-28). By the inductive hypothesis for agents Ai
with odd i, 3 ≤ i ≤ i?, agent Ai can only turn West from node (0, 1) if µ ·− (i− 4) > 0 and
µ ·− (i − 6) = 0. As can be easily verified, i = 3 does not satisfy the first condition, i = 5
satisfies both, and for any i ≥ 7 the conditions can only be satisfied if i−4 ≤ µ−1⇔ µ ≥ i−3
and µ ≤ i− 6, which is impossible. We conclude that if i? = 3, then no previous agent has
dropped pheromone at (−1, 1) and hence Ai?+2 senses a pheromone level of 0 = µ ·− (i? − 4)
to the West. If i? ≥ 5, then only A5 has previously dropped pheromone at (−1, 1), and it
did so during round 6, so the pheromone level at node (−1, 1) at the beginning of round 7
is µ. It follows that agent Ai?+2, which is at node (0, 1) at the beginning of round i? + 3,
senses a pheromone level of µ ·− (i? + 3− 7) = µ ·− (i? − 4) to the West. J

For the inductive step, we assume that Claim 37 holds for some y?, 1 ≤ y? ≤
⌈
i?+1

4
⌉
− 1,

and we prove it for the case y = y? + 1, which we rewrite below as Claim 39 for convenience.

B Claim 39. Ai?+2 is at node (0, y? + 1) at the beginning of round i? + 3 + y? and:
1. It senses pheromone µ ·− (i? − 2− 4y?) to the East and µ ·− (i? − 4y? − 4) to the West.
2. It is in state Vert-seek if i? − 4y? ≥ µ, otherwise it is in state Vert-bypass.

Proof. We first show that Ai?+2 is at node (0, y? + 1) at the beginning of round i? + 3 + y?.
By the inductive hypothesis, Ai?+2 is at node (0, y?) at the beginning of round i? + 2 + y?

and it senses pheromone µ ·− (i? + 2− 4y?) to the East and µ ·− (i? − 4y?) to the West. We
distinguish two cases:

If Ai?+2 is in state Vert-seek at the beginning of round i? + 2 + y?, then, to show that it
advances one step to the North, it suffices to show that if no pheromone is present to the West,
then no pheromone is present to the East either. Note that, by assumption, y? ≤

⌈
i?+1

4
⌉
− 1,

therefore 4y? ≤ i?. Therefore, if no pheromone is present to the West, it must mean that
µ ·− (i? − 4y?) = 0⇒ i? − 4y? ≥ µ⇒ i? + 2− 4y? ≥ µ⇒ µ ·− (i? + 2− 4y) = 0, which proves
that no pheromone is present to the East either.

If Ai?+2 is in state Vert-bypass at the beginning of round i? + 2 + y?, then to show
that it advances one step to the North it suffices to show that it senses strictly positive
pheromone to the West, or µ ·− (i? − 4y?) > 0⇔ 0 ≤ i? − 4y? ≤ µ− 1. The first inequality
holds because y? ≤

⌈
i?+1

4
⌉
− 1 by assumption. For the second inequality, note that by

the inductive hypothesis (Claim 37 holds for y?), since Ai?+2 is in state Vert-bypass at the
beginning of round i? + 2 + y?, we must have either y? = 1 and i?− 1 ≤ µ− 1, or y? ≥ 2 and
i? − 4y? + 4 ≤ µ− 1. In both cases, i? − 4y? is at most µ− 4, therefore the second inequality
is also satisfied.

Next, we show property 2. Assuming i? − 4y? ≤ µ− 1, and taking also into account the
fact that 4y? ≤ i?, we must have µ ·− (i? − 4y?) > 0. By Claim 37 for y = y? (inductive
hypothesis), Ai?+2 is at node (0, y?) at the beginning of round i? + y? + 2 and it senses
pheromone µ ·− (i? − 4y?) to the West, which we just showed is strictly positive. Therefore,
since it was in one of the states {Vert-seek,Vert-bypass}, its next state is Vert-bypass by
lines 29-30.



28 Treasure hunt with volatile pheromones

On the other hand, assuming i? − 4y? ≥ µ, we have µ ·− (i? − 4y?) = µ ·− (i? + 2− 4y?) =
0. Hence, Ai?+2 senses no pheromone to the East or to the West at the beginning of
round i? + y? + 2. To show that its next state is Vert-seek, it suffices to show that its state
at the beginning of round i? + y? + 2 is Vert-seek. This holds by the inductive hypothesis,
since if y? = 1 our assumption i? − 4y? ≥ µ becomes i? − 4 ≥ µ⇒ i? − 1 ≥ µ, and if y? ≥ 2
our assumption i? − 4y? ≥ µ implies i? − 4y? + 4 ≥ µ.

Finally, we show property 1. By the inductive hypothesis for agents Ai with odd i,
3 ≤ i ≤ i?, agent Ai goes up the y-axis as far as node (0,

⌈
i−1

4
⌉
), where it senses no

pheromone to the West. To the East, it senses µ− 1 if i = 4λ+ 1 for some λ ∈ N, or 0 if
i = 4λ+ 3 for some λ ∈ N.

By inspection of Algorithm 1, it follows that if i = 4λ+ 1, then agent Ai always turns
West at node (0,

⌈
i−1

4
⌉
). If i = 4λ + 3, Ai turns East at node (0,

⌈
i−1

4
⌉
) only if it is

in state Vert-bypass, which is equivalent, by the inductive hypothesis, to
⌈
i−1

4
⌉

= 1 and
i − 3 ≤ µ − 1, or

⌈
i−1

4
⌉
≥ 2 and i − 4

⌈
i−1

4
⌉

+ 2 ≤ µ − 1. It can be easily verified that the
first condition is satisfied for i = 3, while the second condition is satisfied for all i = 4λ+ 3
with λ ≥ 1. We conclude, then, that an agent Ai with i = 4λ + 3 always turns East at
node (0,

⌈
i−1

4
⌉
).

By the above analysis, it follows that the only agent that may turn East at node (0, y?+1) is
agent A4y?+3 in round 5y?+4. Thus, if i?+2 ≥ 4y?+5, agent Ai?+2, which is at node (0, y?+1)
at the beginning of round i? + y? + 3, senses pheromone µ ·− (i? + y? + 3 − (5y? + 5)) =
µ ·−(i?−4y?−2) to the East. If i?+2 ≤ 4y?+3, agent Ai?+2 senses no pheromone to the East
because it does not arrive after agent A4y?+3. And indeed, in this case µ ·− (i?− 4y?− 2) = 0,
because i? − 4y? − 2 ≤ 1− 2 = −1.

Moreover, the only agent that may turn West at node (0, y? + 1) is agent A4y?+5 in
round 5y? + 6. Thus, if i? + 2 ≥ 4y? + 7, agent Ai?+2, which is at node (0, y? + 1) at the
beginning of round i?+y?+3, senses pheromone µ ·−(i?+y?+3−(5y?+7)) = µ ·−(i?−4y?−4)
to the West. If i? + 2 ≤ 4y? + 5, agent Ai?+2 senses no pheromone to the West because it
does not arrive after agent A4y?+5. And indeed, in this case µ ·− (i? − 4y? − 4) = 0, because
i? − 4y? − 4 ≤ 3− 4 = −1. J

This concludes the proof of Claim 37, and hence the proof of Lemma 9. J

With completely symmetric arguments, which we omit here, we can prove Lemmas 40
and 10 below, which are analogous to Lemmas 34 and 9 for the South half-plane.

I Lemma 40. For every even i ≥ 4 and r ≥ i+ 1, if agent Ai is on the negative part of the
y-axis at the beginning of round r, then it may only sense pheromone previously dropped by
some agent Aj with even j, 4 ≤ j ≤ i.

I Lemma 10. For all even i with 4 ≤ i ≤ 4τ , and for all y with 1 ≤ y ≤
⌈
i−2

4
⌉
, Ai is at

node (0,−y) at the beginning of round i+ y and:
1. It senses pheromone µ ·− (i− 4y − 1) to the East and µ ·− (i− 3− 4y) to the West.
2. If y = 1, it is in state Vert-seek if i− 4 ≥ µ, otherwise it is in state Vert-bypass.
3. If y ≥ 2, it is in state Vert-seek if i− 4y + 1 ≥ µ, otherwise it is in state Vert-bypass.

I Lemma 41. For every y, 1 ≤ y ≤ τ − 1:
Agent A4y−1 has signature [y; τ − y].
Agent A4y has signature [−y; τ − y].
Agent A4y+1 has signature [y;−(τ − y)].
Agent A4y+2 has signature [−y;−(τ − y)].

Mooreover:
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Agent A4τ−1 has signature [τ ; 0].
Agent A4τ has signature [−τ ; 0].

Proof. For y in the given range, we apply Lemma 9 or Lemma 10 as follows:
By Lemma 9 for i = 4y − 1, agent A4y−1 is at node (0,

⌈ (4y−1)−1
4

⌉
) ≡ (0, y) at the

beginning of round 5y − 1 and senses pheromone µ ·− (4y − 1 − 4y) = 0 to the East and
µ ·− (4y−1−2−4y) = 0 to the West. Moreover, A4y−1 is in state Vert-bypass because if y = 1
we have i−3 = 4y−1−3 = 0 ≤ µ−1, and if y ≥ 2 we have i−4y+2 = 4y−1−4y+2 = 1 ≤ µ−1.
Therefore, it executes line 19, moving to the East and entering state Horiz. By Proposition 19,
it will keep moving to the East until the end of its lifetime, hence its signature is [y; τ − y].

By Lemma 10 for i = 4y, agent A4y is at node (0,−
⌈ 4y−2

4
⌉
) ≡ (0,−y) at the beginning of

round 5y and senses pheromone µ ·−(4y−4y−1) = 0 to the East and µ ·−(4y−3−4y) = 0 to the
West. Moreover, A4y is in state Vert-bypass because if y = 1 we have i−4 = 4y−4 = 0 ≤ µ−1,
and if y ≥ 2 we have i− 4y + 1 = 4y − 4y + 1 = 1 ≤ µ− 1. Therefore, it executes line 19,
moving to the East and entering state Horiz. By Proposition 19, it will keep moving to the
East until the end of its lifetime, hence its signature is [−y; τ − y].

By Lemma 9 for i = 4y + 1, agent A4y+1 is at node (0,
⌈ (4y+1)−1

4
⌉
) ≡ (0, y) at the

beginning of round 5y+1 and senses pheromone µ ·− (4y+1−4y) = µ−1 > 0 to the East and
µ ·−(4y+1−2−4y) = 0 to the West. Therefore, whether it is in state Vert-seek or Vert-bypass,
it executes line 28, moving to the West and entering state Horiz. By Proposition 19, it will
keep moving to the West until the end of its lifetime, hence its signature is [y;−(τ − y)].

By Lemma 10 for i = 4y + 2, agent A4y+2 is at node (0,−
⌈ 4y+2−2

4
⌉
) ≡ (0,−y) at the

beginning of round 5y+2 and senses pheromone µ ·−(4y+2−4y−1) = µ−1 > 0 to the East and
µ ·−(4y+2−3−4y) = 0 to the West. Therefore, whether it is in state Vert-seek or Vert-bypass,
it executes line 28, moving to the West and entering state Horiz. By Proposition 19, it will
keep moving to the West until the end of its lifetime, hence its signature is [−y;−(τ − y)].

For the last two items, we apply Lemma 9 for i = 4τ − 1, and Lemma 10 for i = 4τ .
By Lemma 9 for i = 4τ − 1, agent A4τ−1 is at node (0,

⌈ (4τ−1)−1
4

⌉
) ≡ (0, τ) at the

beginning of round 5τ −1. In view of Remark 35, this means that A4τ−1 arrives at node (0, τ)
at the end of its lifetime, hence its signature is [τ ; 0].

By Lemma 10 for i = 4τ , agent A4τ is at node (0,−
⌈ (4τ)−2

4
⌉
) ≡ (0,−τ) at the beginning

of round 5τ . In view of Remark 35, this means that A4τ arrives at node (0,−τ) at the end
of its lifetime, hence its signature is [−τ ; 0]. J

I Theorem 8. Algorithm 1 correctly solves the treasure hunt problem for all combinations
of parameters (τ, µ) with τ ≥ 1 and µ ≥ 2.

Proof. By Lemmas 33 and 41, agents A1, . . . , A4τ have all possible signatures for the given
lifetime parameter τ . It follows that, by the end of the lifetime of agent A4τ , all nodes at
distance τ or less from the nest are explored. J

I Remark 42. It may be instructive to pinpoint exactly why Algorithm 1 fails for µ = 1.
In the proof of Lemma 41, we need agents A4y+1 and A4y+2 to detect a strictly positive
amount of pheromone to the East, at the point where they are supposed to turn West.
With µ = 1, they would detect a pheromone level of µ−1 = 0 to the East, which would break
the algorithm. Intuitively, because of the alternating North-South dispatching of agents at
the nest, the pheromone left by an agent in one half-plane needs to remain for at least two
rounds so that it can be detected by the next agent that is sent to the same half-plane.
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C Proof of Theorem 17 from Section 4

We prove next that Algorithm 2 solves the treasure hunt problem assuming that µ ≥ 1, τ ≥ 16
and s = 6. It does so in 11τ − 6s+ 2 rounds, using 10τ − 6s+ 3 agents and 28τ +O(s) + 8
pheromone drops. (Theorem 17).

In order to argue about the input of an agent at a node (i.e., the pheromone presence or
absence in the four neighboring nodes and the comparison between the pheromone levels) we
use the following definition of pheromone scheme.

I Definition 43. Let PheroScheme(x, y) denote the (absolute) pheromone scheme (of
the pheromone drops) at node (x, y) of the grid. It is defined as a binary word such
that if PheroScheme(x, y)[i] = 1, then at the beginning of round i, there is a quantity
µ of the pheromone at (x, y) (it had to be dropped during round i − 1). Otherwise, if
PheroScheme(x, y)[i] = 0, the quantity of the pheromone is less than µ. i.e. no drop were
done during the previous round.

PheroScheme(x, y)[r1, r2] denotes the pheromone scheme at node (x, y) for every round in
the given range, from round r1 up to round r2. Notice that, in particular, PheroScheme(0, 1)[1] =
PheroScheme(0,−1)[1] = PheroScheme(1, 0)[1] = PheroScheme(−1, 0)[1] = 0.

An absolute pheromone scheme PheroScheme(x, y) can be projected on the pheromone
drops of a particular agent A. In this case, we say PheroScheme(x, y) of (or for) A. In
particular, if no other agent (except A) drops pheromone in (x, y) during some interval of
rounds [r1, r2], then PheroScheme(x, y)[r1, r2] equals to PheroScheme(x, y)[r1, r2] of A.

The observations below argue about the basic properties of the different types of states
of an agent (defined by the value of variable state). States Init,Vert-seek,Vert-bypass and
Horiz have similar properties as in Algorithm 1. These and the properties of the new states
Pattern(w) and Forward(k)-Explore(E) can be easily verified from the pseudo-code.

I Observation 44.
At every next round after the change of state to Horiz, an agent does not change its direction
and drops no pheromone (lines 35 - 36).
At every next round after the change of state to Pattern(w), an agent does not move (dir = ⊥;
line 44 - 45).
During the next rounds after the change of state to either Forward(k)-Explore(E) or Forward(k)-Explore(W ),
an agent first does not change its direction during k rounds and then moves either east or
west, respectively, and never drops pheromone (lines 37-43).

I Observation 45. Whenever in Vert-seek, an agent can move only to Vert-bypass (lines
25 and 27). Whenever in Vert-bypass, no change to Vert-seek is possible. After mov-
ing to Vert-bypass, an agent can either never change its direction or turn only once and
only after moving to a new state: Horiz, Pattern(), Forward()-Explore() (by the code of
Interpret-Signals-phase1 and of Interpret-Signals-phase2, and Observation 44).

The next lemma proves that agents A1, A2 and A3 move from the nest to the adjacent
nodes where they stay forever in state Pattern() for signaling, as is precised by the given
pheromone schemes (lines 2 - 7). Agents A4 and A5 read these schemes in round 4 and 5
respectively and move accordingly to explore the x-axis (lines 8 - 11).

I Lemma 46. All the x-axis grid nodes at distance ≤ τ are visited, by agents A4 and A5
moving east and west (resp.) starting from the nest (and being in state Horiz, while never
dropping any pheromone).
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In their first round of life, agents A1, A2 and A3 move each from the nest to the adjacent
node, at the East, West and North, respectively, in state Pattern(), where they (first drop
pheromone and then) stay forever and contribute to the following pheromone schemes:

rounds: 1 2 3 4 5 6 7 8
PheroScheme(1, 0)[1, 7] = 0 1 1 1 0 0 1 0

PheroScheme(−1, 0)[1, 7] = 0 0 1 1 1 1 0 0
PheroScheme(0, 1)[1, 6] = 0 0 0 1 0 1

The overall number of pheromone drops by agents A1−A5 (during their whole lifetime) is 10.

Proof. In round 1, agent A1 senses no pheromone in the neighboring nodes and thus according
to the condition in line 2, it will move east and drop there pheromone. It will then drop
pheromone according to its state Pattern(11001), which will effect the pheromone quantity
in node (1, 0) starting from round 3. A1 is the only agent which drops pheromone on the
node (0, 1) (this can be easily checked from the pseudo-code and observations 44 and 45).
From all these claims, PheroScheme(1, 0)[1, 7] = 0111001.

In round 2, agent A2 senses pheromone at the East (node (1, 0)), and no pheromone
on the other cardinal directions. Only the condition at line 4 holds for A2. Thus, it
will move west and drop there pheromone. It will then drop pheromone according to its
state Pattern(111), which will effect the pheromone quantity at node (−1, 0) starting from
round 4. A2 is the only agent which drops pheromone on the node (−1, 0) (this can be
easily checked from the pseudo-code and observations 44 and 45). From all these claims,
PheroScheme(−1, 0)[1, 7] = 0011110.

In round 3, according to the pheromone schemes PheroScheme(1, 0) and PheroScheme(−1, 0),
agent A3 senses pheromone at the East and west (nodes (1, 0) and (−1, 0)), and no pheromone
at two other cardinal directions. Only the condition at line 6 holds for A3. Thus, it will
move north and drop there pheromone. It will then drop pheromone according to its state
Pattern(01), which will effect the pheromone quantity at node (1, 0) starting from round 5.
From all these claims, PheroScheme(0, 1)[1, 4] = 0001.

In round 4, according to the pheromone schemes PheroScheme(0, 1), PheroScheme(0,−1)
and PheroScheme(1, 0) up to round 4, agent A4 senses equal quantity of pheromone at each
of the East, west and north directions (there is µ pheromone on each of these nodes), and
no pheromone at the South. This corresponds only to the condition at line 8. So, A4 will
move east and to a new state Horiz, without dropping any pheromone. From the latter,
PheroScheme(1, 0)[1, 5] = 00010.

In round 5, according to the pheromone schemes PheroScheme(1, 0), PheroScheme(−1, 0)
and PheroScheme(0, 1) up to round 5, agent A5 senses more pheromone at the West (there
is µ pheromone) than at the East and at the North (there is µ− 1 pheromone at each node),
and still no pheromone at the South. This corresponds only to the condition at line 10. So,
A5 will move west and to a new state Horiz, without dropping any pheromone. From the
latter, PheroScheme(0, 1)[1, 6] = 000101.

Whenever in state Horiz, the agent does not changes its direction (and drops no pheromone),
by Observation 44. Thus, the x-axis is explored by agents A4 and A5 up to distance τ .

Agents A4 and A5 never drop any pheromone, while A1, A2 and A3 drop 4, 4 and 2 times,
respectively, according to the obtained pheromone schemes. This gives the stated 10 drops
by agents A1 −A5. J

After agents A4 and A5, which are sent to explore the x-axis, next agents are sent to
explore further lines (for signaling or actually exploring). According to the following lemmas
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47 and 48, these agents leave the nest, at the end of their first round of lifetime, alternating
either north or south, and either in state Vert-bypass (only for A6 and A7; Lemma 47) or
in state Vert-seek (rest of the agents; Lemma 48). Then, Lemma 49 proves that each such
agent keeps moving at each round in the direction adopted in the nest; without dropping
any pheromone, but once, when exiting the nest.

I Lemma 47. In round 6, agent A6 moves to state Vert-bypass and goes north (while dropping
pheromone there). A6 is the first agent moving to this state from Init and going north. In
round 7, agent A7 moves to state Vert-bypass and goes south (while dropping pheromone
there). A7 is the first agent moving to this state from Init and going south. Moreover,

rounds: 1 2 3 4 5 6 7 8
PheroScheme(1, 0)[1, 8] = 0 1 1 1 0 0 1 0

PheroScheme(−1, 0)[1, 8] = 0 0 1 1 1 1 0 0
PheroScheme(0, 1)[1, 8] = 0 0 0 1 0 1 1 0

PheroScheme(0,−1)[1, 8] = 0 0 0 0 0 0 0 1

Proof. According to the pheromone schemes of Lemma 46, in round 6, A6 in the nest (state
Init) senses equal quantity of pheromone at the West and at the North (there is µ pheromone)
and less pheromone on the East (there is µ− 1) and still no pheromone at the South. This
corresponds only to the condition at line 12. A6 will move north in a new state Vert-bypass
and drop pheromone there. That is why PheroScheme(0, 1)[1, 7] = 0 0 0 1 0 1 1 (while
Lemma 46 stated that PheroScheme(0, 1)[1, 6] = 0 0 0 1 0 1). By Lemma 46 again, this is
the first agent in state Vert-bypass.

According to the pheromone schemes up to round 7, in round 7, A7 in the nest (state Init)
senses equal quantity of pheromone at the East and at the North (there is µ pheromone)
and less pheromone on the West (there is µ− 1) and still no pheromone at the South. This
corresponds only to the condition at line 14. A7 will move south in a new state Vert-bypass
and drop pheromone there. That is why PheroScheme(0, 1)[1, 8] = 0 0 0 0 0 0 1. This is the
very first agent in state Vert-bypass going south.

All the above implies the pheromone schemes stated by the lemma. J

I Lemma 48. Starting from round 8, every even round, an agent in Vert-seek leaves the
nest to the North (and drops there pheromone), and every odd round, an agent in Vert-seek
leaves the nest to the South (and drops there pheromone). Before round 8, no agent ever
moves to state Vert-seek.

Proof. By lemmas 46 and 47, before round 8, no agent ever moves to state Vert-seek.
The rest of the lemma statement is proven by a simple induction on round numbers

starting from round 8. In round 8, by pheromone schemes obtained in Lemma 47, A8 in
the nest (state Init) senses that in the South there is more pheromone (there is µ) than in
any other direction. This corresponds only to the condition at line 16. A8 will move north
in a new state Vert-seek and drop pheromone there. In the next round 9 there will be µ
pheromone north to the nest. Thus, condition at line 18 is the only condition satisfied for A9
at the nest. It will move south in a new state Vert-seek and drop pheromone there. In the
next round 10 there will be µ pheromone south to the nest.

By a simple induction on even rounds (and the same arguments on the pseudo-code as
above), it follows that if agent Ak in Vert-seek leaves the nest to the North in an even round
k, it can do so only if the condition in line 16 holds. Ak drops pheromone on the North that
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is sensed by agent Ak+1 in the next round. This, together with the fact that condition in
line 16 holds in round k, the condition in line 18 holds for Ak+1 in and odd round k + 1.
So it moves to Vert-seek and leaves the nest to the South dropping pheromone there. This
implies, by similar arguments, that agent Ak+2 in Vert-seek leaves the nest to the North in
round k + 2, and Ak+3 to the South in round k + 3. This completes the induction. J

I Lemma 49. Any agent in Vert-bypass or in Vert-seek state keeps its direction (dir value)
and keeps moving at every round according to the direction adopted in the nest, which is
either north or south. Each such agent drops pheromone only after its first change to the
state (Vert-bypass or Vert-seek), and never does this after.

Proof. From lemmas 47 and 48, no agent is in state Vert-bypass or Vert-seek, before round 6.
Then, in the nest, A6 and A7 move to state Vert-bypass moving north and south respectively,
while dropping pheromone in the destination node. From Lemma 48, every agent exiting the
nest starting from round 8 is in Vert-seek state, moving either north or south, while dropping
pheromone in the destination node. Then, it does not change its direction and drops no
pheromone, if it keeps the same state (line 23). It can change its state only to Vert-bypass in
lines 25 and 27.

Vert-bypass state is treated only by the two procedures Interpret-Signals-phase1
and Interpret-Signals-phase2. In the procedures, the direction of the agent movement
changes only together with the state change. If an agent stays in Vert-bypass, dir stays
unchanged and no pheromone is dropped (lines 74 and 89), i.e, an agent continues its
movements either north or south according to the direction adopted in the nest (without
dropping any pheromone). J

Notice that by the analysis of pheromone drops until now (lemmas 46 and 49), agents
A1 −A5 drop 10 times and then each agent exiting the nest drops pheromone once. It drops
nothing afterword, if being still in either Vert-bypass or Vert-seek.

Next corollaries are obtained from the two previous lemmas and state that each agent in
either Vert-bypass or Vert-seek state never stops moving in the same direction (when it is still
in one of these states) and is followed by another such agent with a difference of two rounds.

I Corollary 50. Any agent in either Vert-bypass or Vert-seek state and which is located in
node (0, y) at the beginning of a round, performed |y| moves (during the first y rounds) on
the y-axis of the grid, and moves = |y| if |y| ≤ s and moves = s+ 1 otherwise.

I Corollary 51. Let B be an agent in either Vert-bypass or Vert-seek state located in node
(0, y) at the beginning of round r, for |y| ≥ 1. Then, at the beginning of round r + 2, there is
agent B′ in (0, y) in either Vert-bypass or Vert-seek state, and there is no agent beforehand.

In the next lemma, we focus only on the lines at distance 1 to s from the nest. For each
such, not yet explored, line at distance y, three agents are used for signaling. Moving on
the y-axis, they arrive to this line, node (0, y), in either Vert-bypass or Vert-seek state, in
round r. Those arriving in Vert-seek state, move first to Vert-bypass (line 25). Then, they act
according to the Interpret-Signals-phase1 procedure (lines 25 and 31). One moves east
(line 60), the second one (arriving in 2 rounds later; round r + 2) moves west (line 62) and
the third one (in another 2 rounds; round r + 4) moves north, resp. south (line 64). In these
locations the three agents stay forever, being in state Pattern(w) and dropping pheromone
according to the binary word w (Pattern(1 01 01 01) for the first agent, Pattern(1 01 00 01 01)
for the second and third). We prove that these agents contribute to the following (absolute)



34 Treasure hunt with volatile pheromones

pheromone schemes:

rounds: r + 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
PheroScheme(1, y)[r, r + 14] = 0 0 1 0 1 0 1 0 1 0 0 0 0 0 0

PheroScheme(−1, y)[r, r + 14] = 0 0 0 0 1 0 1 0 0 0 1 0 1 0 0

PheroScheme(0, y + y

|y|
)[r, r + 14] = 0 0 0 0 0 0 1 0 1 0 0 0 1 0 1

Different three bit patterns formed by these schemes at each round allow agents to
deduce the actions to perform. Every second round, another agent arrives at (0, y). It
senses pheromone in one of the neighboring nodes, while it is in Vert-bypass state and thus
Interpret-Signals-phase1 is applied (by the same arguments as for the first three agents).
In round r + 6, according to the pheromone schemes above and lines 59 - 60, the arriving
agent turns east in state Horiz to explore the east half of the line. In round r+ 8, the arriving
agent turns west to explore the west half of the line (lines 61 - 62). In round r + 10 (resp.
r + 12), the arriving agent changes to Forward(s)-Explore(E) (resp. Forward(s)-Explore(W ))
to explore the east (resp. west) half of the line, s steps farther (lines 69 - 72). Finally, in
round r + 14, the agent continues moving in the same direction and arrives to the next
unexplored line y + y

|y| , where the lemma conditions hold for it, as for agent B1.
What concerns the complexities, for each line at distance 1 to s from the nest (north and

south, i.e. 2s lines), the three signaling agents drop pheromone 12 times in overall. The
exploring agents drop no pheromone.

I Lemma 52. Let B1 be an agent in state Vert-bypass located in node (0, y) at round r such
that 1 ≤ |y| ≤ s and ϕdir = ϕE = ϕW = 0 (no pheromone on the East, West and in front
of the agent). Moreover, any agent located farther from the nest than B1 at round r, never
drops any pheromone. Then:
1. By round r + 8, there is an agent that starts moving horizontally (in state Horiz) to the

East (resp. West) from node (0, y).
2. By round r+ 12, there is also an agent that moves to state Forward(s)-Explore(E) and an

agent moving to Forward(s)-Explore(W ), both in node (0, y).
3. In round r + 15, there is an agent in node (0, y + y

|y| ) in state Vert-bypass, for which the
conditions of the lemma also hold (as for B1), i.e., ϕdir = ϕE = ϕW = 0 and any agent
located farther (than node (0, y + y

|y| )), never drops any pheromone.
4. Moreover, each of these agents, including B1, enters node (0, y), exactly |y| rounds since

exiting the nest.
5. The pheromone utilization (number of drops) during the time period [r + 1, r + 15], on

the nodes (0, y), (1, y), (−1, y) and (0, y + y
|y| ) is 12 drops in overall. (These drops are

done uniquely on nodes (1, y), (−1, y) and (0, y + y
|y| ).)

Proof. First, let us assume that the agents have enough lifetime to satisfy the lemma
claims. We will prove here later that this is indeed the case. By Corollary 50 and the
lemma assumption 1 ≤ |y| ≤ s, in round r, B1 either executes line 25 or line 31, i.e.,
Interpret-Signals-phase1. Notice that all the conditions in Interpret-Signals-phase1
are mutually exclusive (only one can hold at a time).

Then, since ϕdir = ϕE = ϕW = 0, B1 moves east in state Pattern(1 01 01 01) and drops
no pheromone (line 60). Hence, there is still no pheromone at node (1, y) up to round
r + 1. Pheromone appears in this node starting from round r + 2, dropped by B1 according
to Pattern(1 01 01 01). Thus, PheroScheme(1, y)[r, r + 8] of B1 is 0 01 01 01 01. (In the
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following, we show that no other agent arrives at node (1, y) before round r+ 6, and no other
agent ever drops pheromone in this node.)

By Corollary 51, the next agentB2 arrives at node (0, y) in round r+2, in either Vert-bypass
or Vert-seek state (and there is no any agent beforehand). B2 senses pheromone on the East,
and no pheromone on the West and on the North, according to the pheromone scheme for node
(1, y) obtained above. Thus, if it is in Vert-seek state, it moves to Vert-bypass in line 25 and
calls Interpret-Signals-phase1. Otherwise, it also calls Interpret-Signals-phase1 in
line 31. Inside the procedure, the condition in line 61 holds for B2 and so it moves west in
state Pattern(1 01 00 01 01), dropping no pheromone (line 62).

This proves that:

rounds: r + 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
PheroScheme(1, y)[r, r + 14] = 0 0 1 0 1 0 1 0 1 0 0 0 0 0 0 for B1

PheroScheme(−1, y)[r, r + 14] = 0 0 0 0 1 0 1 0 0 0 1 0 1 0 0 for B2

PheroScheme(0, y + y

|y|
)[r, r + 4] = 0 0 0 0

By Corollary 51 again, the next agent B3 arrives at node (0, y) in round r + 4, in either
Vert-bypass or Vert-seek state. According to the pheromone schemes obtained above, B3

senses pheromone on the East (node (1, y)) and on the West (node (−1, y)) and no pheromone
in node (0, y + y

|y| ). Thus, if it is in Vert-seek state, it moves to Vert-bypass in line 25 and
calls Interpret-Signals-phase1. Otherwise, it also calls Interpret-Signals-phase1 in
line 31. Inside the procedure, the condition in line 63 holds for B2 and so it moves forward
(to node (0, y + y

|y| )) in state Pattern(1 01 00 01 01), dropping no pheromone (line 64).
This proves that:

rounds: r + 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
PheroScheme(1, y)[r, r + 14] = 0 0 1 0 1 0 1 0 1 0 0 0 0 0 0 for B1

PheroScheme(−1, y)[r, r + 14] = 0 0 0 0 1 0 1 0 0 0 1 0 1 0 0 for B2

PheroScheme(0, y + y

|y|
)[r, r + 14] = 0 0 0 0 0 0 1 0 1 0 0 0 1 0 1 for B3

We show below that these schemes are absolute (and not only projected on agents B1, B2

and B3). As for now, they are absolute up to round r + 4 by the arguments above, and up
to (the beginning of) r + 6 by Corollary 51.

Again by Corollary 51, in each of the rounds r + 6, r + 8, r + 10, r + 12, r + 14, there is
an agent at node (0, y) either in Vert-bypass or in Vert-seek state (and no agents in between).
Moreover, according to the pheromone schemes above, each two rounds starting from round
r+ 2, the condition ϕdir = ϕE = ϕW = 0 in line 22 is false. Thus, if the agent arrived at (0, y)
is in Vert-seek state, it moves to Vert-bypass in line 25 and calls Interpret-Signals-phase1.
Otherwise (it is in Vert-bypass state), it also calls Interpret-Signals-phase1 in line 31.
We analyze below the actions of the agent inside this procedure in the aforementioned rounds:

In round r + 6, the condition in line 65 holds for the arriving agent B4, so it moves east
in state Horiz, dropping no pheromone (line 66). By Obs. 44, at every next round after,
starting from node (1, y), this agent does not change its direction (it continues moving
east) and drops no pheromone.
In round r + 8, the condition in line 67 holds for the arriving agent B5, so it moves
west in state Horiz, dropping no pheromone (line 68). By Obs. 44, starting from node
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(−1, y), this agent does not change its direction (it continues moving west) and drops no
pheromone. This and the previous item prove claim (1) of the lemma.
In round r + 10, the condition in line 69 holds for the arriving agent B6, so it changes to
state Forward(s)-Explore(E), moves in the original direction from node (0, y), and drops
no pheromone (line 70).
In round r + 12, the condition in line 71 holds for the arriving agent B7, so it changes to
state Forward(s)-Explore(W ), moves in the original direction from node (0, y), and drops
no pheromone (line 72). This and the previous item prove claim (2) of the lemma.
In round r + 14, the condition in line 73 holds for the arriving agent B8, so it does not
change its state, neither the direction of movement, and drops no pheromone (line 74).
In round r + 15, the agent is in node (0, y + y

|y| ), still in state Vert-bypass. This is the
first agent arriving to this line that far from the nest in state Vert-bypass.
By the lemma conditions, any agent located farther than B1 at round r, never drops any
pheromone. Earlier arrived agents B1, B2 and B3 dropped pheromone in line (0, y), and
in (0, y + y

|y| ) (for B3). The four agents B4 - B7 that arrived after, moved to Horiz or
Forward(s)-Explore(d) states, in which an agent never drops pheromone. Hence, any agent
located farther than (0, y+ y

|y| ) in round r+15 (this can be an agent in Forward(s)-Explore(d)
state), never drops any pheromone. In particular, ϕdir = ϕE = ϕW = 0 holds. This
proves claim (3) of the lemma.

It follows now that the pheromone schemes above are indeed absolute. This is because
the four agents B4 - B7 drop no pheromone, at least after arriving at (0, y) and till the end
of their lifetime, and the fifth agent B8 arriving in round r + 14 cannot change the schemes
by this time.

We show now that claim (5) of the lemma holds. First, no two agents drop twice on
the nodes (1, y), (−1, y) and (0, y + y

|y| ), so the schemes reflect also the actual number of
pheromone drops. In addition, by the above-mentioned arguments for agent B8, no additional
pheromone is dropped on these nodes by the end of r + 15. As for node (0, y), no drop is
done there at least during [r + 1, r + 15]. Thus, the overall number of pheromone drops on
(0, y), (1, y), (−1, y) and (0, y + y

|y| ) is 12 during [r + 1, r + 15]. This proves claim (5).
Also notice that claim (4) of the lemma holds, by Corollary 50, since all the considered

agents in this claim (B1 and B4 - B8) are either in Vert-bypass or in Vert-seek state when
entering node (0, y).

Now let us show that τ ≥ 16 is indeed large enough to satisfy the lemma claims:
By the lemma claim (4), for every agent considered by the lemma, to arrive to node (0, y),
takes |y| ≤ s = 6 rounds. Then, for agents B4 - B7 to perform the actions described by the
lemma claims (1) and (2) and to make a move for the agent B8 in claim (3) (from node (0, y)
to (0, y + y

|y| )), agents B
1, B2 and B3 should keep alive up to the last pheromone drop they

are instructed to do according to the binary word w in their Pattern(w) state. It is easy to
see from the pheromone schemes obtained above that B1 has to stay alive for at least |y|+ 8
rounds, B2 and B3 has to stay alive for at least |y|+ 10 = 16 ≤ τ . J

The following lemma proves that the lines at distance 1 to 2 · s from the nest are visited.
It also gives the time, agent and pheromone utilization complexities required for that. The
proof is based on a simple induction proving Lemma 52 for every 1 ≤ |y| ≤ s. For the basis,
we show that Lemma 52 holds for y = 1 and A6, and for y = −1 and A7 (by lemmas 47 and
48). Then the induction step is obtained directly from the Lemma 52 itself, claim (3). Then,
by the same claim (3), claim (2) of the following lemma is easily obtained too. We get also
claim (1) below, using claims (1), (2) and (4) of Lemma 52. Claims (1) and (4) ensure that,
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for 1 ≤ |y| ≤ s, every node on line (0, y) at distance τ from the nest is visited (by agents
in state Horiz). Claims (2) and (4) imply the same but for s+ 1 ≤ |y| ≤ 2 · s (by agents in
states Forward()-Explore()).

I Lemma 53.
1. For every 1 ≤ |y| ≤ 2 · s, every node on line (0, y) at distance ≤ τ from the nest is visited

by at least one agent, in 7 + 15 · s− 2 + τ − s rounds, and using 38s pheromone drops
and 14s agents.

2. In round 6+15 ·s, there is an agent Bs+1 in node (0, s+1) and in round 7+15 ·s an agent
B−s−1 in node (0,−s−1), both in state Vert-bypass. For each of them ϕdir = ϕE = ϕW = 0
and any agent located farther than B and B′, never drops any pheromone. (B and B′
satisfy Lemma 54 condition.)

Proof. We use Lemma 52 and an induction on 1 ≤ |y| ≤ s to prove the current result. We
should first show that there exist two agents satisfying Lemma 52 conditions for |y| = 1,
i.e one agent for y = 1 in round 7, and another agent for y = −1 in round 8 (the base of
induction). Assume that this is true (we show this later below). Then, claim (3) of the same
lemma and a simple induction imply that there is an agent By on (0, y) every 15 rounds
satisfying the lemma conditions for every 1 ≤ |y| ≤ s. Hence, Lemma 52 holds for every
1 ≤ |y| ≤ s. We show that this implies the current lemma claim (1).

For 1 ≤ |y| ≤ s: By claims (1) and (4) of Lemma 52 and the fact that an agent in state
Horiz moves at every round (lines 35 - 36), every node on line (0, y) at distance τ from
the nest is visited.
For s+ 1 ≤ |y| ≤ 2 · s: By claims (2) and (4) of Lemma 52 and the fact that an agent in
state Forward(k)-Explore(d) moves at every round (lines 37 - 43), every node at distance τ
from the nest on every line (0, y) is visited. Finally, by claim (2) of Lemma 52, 13 rounds
(instead of 15, starting from round r in the lemma) are enough for sending an agent to
explore line (0, 2s) or (0,−2s). Hence, the overall time complexity is 7 + 15 · s− 2 + τ − s
rounds. This is the round when an agent visits node (τ − 2s,−2s).
By claim (2) of Lemma 52, up to round r + 12, agents arriving at (0, y) are used to
explore lines at distance y and y + s (resp. y − s, on the southern half of the grid) from
the nest. By Corollary 51, during these rounds, 7 agents arrive (one agent every second
round). Thus the overall agent utilization complexity (to explore these lines, in both
halves of the grid) is 2 · 7s.
To compute the pheromone utilization to explore all the lines at distance 1 ≤ |y| ≤ 2 · s,
first note that every agent used for this, drops pheromone when exiting the nest (lemmas
47 and 48). To this we have to add the pheromone utilization of 2 · 12s due to claim (5)
of Lemma 52. This gives the claimed 38s = 2 · 7s+ 2 · 12s drops.

In particular, Lemma 52 claim (3) holds for |y| = s in round 6 + 15 · s (by the calculations
above) for agent Bs+1 in node (0, s + 1) and in round 7 + 15 · s for agent B−s−1 in node
(0,−s− 1), as is required by the claim (2) of the current lemma.

It is left to prove Lemma 52 for |y| = 1:
By lemmas 47 and 48, the very first agent moving to the North (resp. South) from the nest
in state Vert-bypass is A6 (resp. A7). By Lemma 2, any other agent exiting the nest before
A6 cannot visit lines (y, 0) for |y| > 1. In fact, it can be easily checked from the pseudo-code
(lines 2 - 12) that all agents exited the nest before round 6, either moved east or west in state
Horiz, or moved east, west or north in state Pattern(). Thus, there is no pheromone and no
agents in the grid, except for the nodes adjacent to the nest and on the x-axis. Because of
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that, in round 7 (resp. 8), all the conditions of Lemma 52 hold for A6 (resp. A7) while it is
located in node (0, 1) (resp. (0,−1)). J

Next, we address the rest of the lines, at distance (y) further than s from the nest. The
exploration of the immediate line y being already accomplished, the algorithm here differs by
the fact that the signaling agents (still three such agents) instruct the exploring agents only
to change to either Forward(s)-Explore(E) or Forward(s)-Explore(W ), and so only to explore
the eastern or western half of the line which is s steps farther (claim (1) of the next lemma).
See Interpret-Signals-phase2 that implements this part of the algorithm.

Thus, similarly to lines at distance 1 to s, for each further line (at distance y from
s + 1 to τ − s), three agents are used for signaling. Moving on the y-axis, they arrive to
the line, node (0, y), in either Vert-bypass or Vert-seek state, in round r. Those arriving
in Vert-seek state, move first to Vert-bypass (line 27). Then, they act according to the
Interpret-Signals-phase2 procedure (lines 27 and 33). One moves east (line 79), the
second one (arriving in 2 rounds later; round r + 2) moves west (line 81) and the third one
(in another 2 rounds; round r + 4) moves north, resp. south (line 83). In these locations the
three agents stay forever, being in state Pattern(1 01 01) and dropping pheromone according
to the given binary word. We prove that these agents contribute to the following (absolute)
pheromone schemes:

rounds: r + 0 1 2 3 4 5 6 7 8 9 10
PheroScheme(1, y)[r, r + 14] = 0 0 1 0 1 0 1 0 0 0 0

PheroScheme(−1, y)[r, r + 14] = 0 0 0 0 1 0 1 0 1 0 0

PheroScheme(0, y + y

|y|
)[r, r + 14] = 0 0 0 0 0 0 1 0 1 0 1

Every second round, another agent arrives at (0, y). It senses pheromone in one of the
neighboring nodes, while it is in Vert-bypass state and thus Interpret-Signals-phase2 is
applied (by the same arguments as for the first three agents). In round r+6 (resp. r+8), the
arriving agent changes to Forward(s)-Explore(E) (resp. Forward(s)-Explore(W )) to explore
the east (resp. west) half of the line, s steps farther (lines 84 - 87). Finally, in round r + 10,
the agent continues moving in the same direction and arrives to the next line, at distance
y + y

|y| , where the lemma conditions hold for it, as for agent B1.
Concerning the complexities, for each line at distance y from s + 1 to τ − s, from the

nest (north and south), the three signaling agents drop pheromone 9 times in overall. The
exploring agents drop no pheromone.

I Lemma 54. Let B1 be an agent in state Vert-bypass located in node (0, y) at round r such
that s+ 1 ≤ |y| ≤ τ − s and ϕdir = ϕE = ϕW = 0 (no pheromone on the East, west and in
front of the agent). Moreover, any agent located farther from the nest than B1 at round r,
never drops any pheromone. Then:
1. By round r+6, there is an agent that starts moving according to the state Forward(s)-Explore(E)

and by round r+8, an agent that starts moving according to the state Forward(s)-Explore(W ),
both from node (0, y).

2. In round r + 11, there is an agent in node (0, y + y
|y| ) in state Vert-bypass, for which the

conditions of the lemma also hold (as for B1), i.e., ϕdir = ϕE = ϕW = 0 and any agent
located farther (than node (0, y + y

|y| )), never drops any pheromone.
3. Moreover, each of these agents, including B1, enters node (0, y), exactly |y| rounds since

exiting the nest.
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4. The pheromone utilization (number of drops) during the time period [r+ 1, r+ 11], on the
nodes (0, y), (1, y), (−1, y) and (0, y + y

|y| ) is 9 drops in overall. (These drops are done
uniquely on nodes (1, y), (−1, y) and (0, y + y

|y| ).)

Proof. First, let us assume that the agents have enough lifetime to satisfy the lemma claims.
We will prove here later that this is indeed the case. By Corollary 50, in round r, B1 either
executes line 27 or line 33, i.e., Interpret-Signals-phase2. Notice that all the conditions
in Interpret-Signals-phase2 are mutually exclusive (only one can hold at a time).

Then, since ϕdir = ϕE = ϕW = 0, B1 moves east in state Pattern(1 01 01 01) and drops
no pheromone (line 79). Hence, there is still no pheromone at node (1, y) up to round r + 1.
Pheromone appears in this node starting from round r + 2, dropped by B1 according to
Pattern(1 01 01). Thus, PheroScheme(1, y)[r, r+ 8] of B1 is 0 01 01 01. (In the following, we
show that no other agent ever drops pheromone in this node.)

By Corollary 51, the next agent B2 arrives at node (0, y) in round r + 2, in either
Vert-bypass or Vert-seek state (and there is no any agent beforehand). B2 senses pheromone
on the East, and no pheromone on the West and on the North, according to the pheromone
scheme for node (1, y) obtained above. Thus, if it is in Vert-seek state, it moves to Vert-bypass
in line 27 and calls Interpret-Signals-phase2. Otherwise (it is in state Vert-bypass), it
also calls Interpret-Signals-phase2 in line 33. Inside the procedure, the condition in
line 80 holds for B2 and so it moves west in state Pattern(1 01 01), dropping no pheromone
(line 81).

This proves that:

rounds: r + 0 1 2 3 4 5 6 7 8 9 10
PheroScheme(1, y)[r, r + 14] = 0 0 1 0 1 0 1 0 0 0 0 for B1

PheroScheme(−1, y)[r, r + 14] = 0 0 0 0 1 0 1 0 1 0 0 for B2

PheroScheme(0, y + y

|y|
)[r, r + 4] = 0 0 0 0

By Corollary 51 again, the next agent B3 arrives at node (0, y) in round r + 4, in
either Vert-bypass or Vert-seek state. According to the pheromone schemes obtained above,
B3 senses pheromone on the East (node (1, y)) and on the West (node (−1, y)) and no
pheromone in node (0, y + y

|y| ). Thus, if it is in Vert-seek state, it moves to Vert-bypass in
line 27 and calls Interpret-Signals-phase2. Otherwise (it is in state Vert-bypass), it also
calls Interpret-Signals-phase2 in line 33. Inside the procedure, the condition in line 82
holds for B2 and so it moves forward (to node (0, y+ y

|y| )) in state Pattern(1 01 01), dropping
no pheromone (line 83).

This proves that:

rounds: r + 0 1 2 3 4 5 6 7 8 9 10
PheroScheme(1, y)[r, r + 14] = 0 0 1 0 1 0 1 0 0 0 0 for B1

PheroScheme(−1, y)[r, r + 14] = 0 0 0 0 1 0 1 0 1 0 0 for B2

PheroScheme(0, y + y

|y|
)[r, r + 14] = 0 0 0 0 0 0 1 0 1 0 1 for B3

We show below that these schemes are absolute (and not only projected on agents B1, B2

and B3). As for now, they are absolute up to round r + 4 by the arguments above, and up
to r + 6 by Corollary 51.

Again by Corollary 51, in each of the rounds r + 6, r + 8 and r + 10, there is an agent at
node (0, y) either in Vert-bypass or in Vert-seek state (and no agents in between). Moreover,
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according to the pheromone schemes above, each two rounds starting from round r + 4, the
condition ϕdir = ϕE = ϕW = 0 in line 22 is false. Thus, if the agent arrived at (0, y) is in
Vert-seek state, it moves to Vert-bypass in line 27 and calls Interpret-Signals-phase2.
Otherwise (it is in Vert-bypass state), it also calls Interpret-Signals-phase2 in line 33.
We analyze below the actions of the agent inside this procedure in the aforementioned rounds:

In round r + 6, the condition in line 84 holds for the arriving agent B4, so it changes to
state Forward(s)-Explore(E), moves in the original direction from node (0, y), and drops
no pheromone (line 70).
In round r + 8, the condition in line 86 holds for the arriving agent B5, so it changes to
state Forward(s)-Explore(W ), moves in the original direction from node (0, y), and drops
no pheromone (line 87). This and the previous item prove claim (1) of the lemma.
In round r + 10, the condition in line 88 holds for the arriving agent B6, so it does not
change its state, neither the direction of movement, and drops no pheromone (line 89).
In round r + 11, the agent is in node (0, y + y

|y| ), still in state Vert-bypass. This is the
first agent arriving to this line that far from the nest in state Vert-bypass.
By the lemma conditions, any agent located farther than B1 at round r, never drops any
pheromone. Later arrived agents B1, B2 and B3 drop pheromone in line (0, y). Agents
B4 and B5 that arrived next moved to Horiz or Forward(s)-Explore(d) states in which an
agent never drops pheromone. Hence, any agent located farther than (0, y+ y

|y| ) in round
r + 11 (this can be an agent in Forward(s)-Explore(d) state), never drops any pheromone.
In particular, ϕdir = ϕE = ϕW = 0 holds. This proves claim (2) of the lemma.

It follows now that the pheromone schemes above are indeed absolute. This is because
agents B4 and B5 drop no pheromone, at least after arriving at (0, y) and till the end of
their lifetime, and B6 arriving in round r + 10 cannot change the schemes by this time.

We show now that claim (4) of the lemma holds. First, no two agents drop twice on
the nodes (1, y), (−1, y) and (0, y + y

|y| ), so the schemes reflect also the actual number of
pheromone drops. In addition, by the above-mentioned arguments for agent B6, no additional
pheromone is dropped on these nodes by the end of r + 11. As for node (0, y), no drop is
done there at least during [r + 1, r + 11]. Thus, the overall number of pheromone drops on
(0, y), (1, y), (−1, y) and (0, y + y

|y| ) is 9 during [r + 1, r + 11]. This proves claim (4).
Also notice that claim (3) of the lemma holds, by Corollary 50, since all the considered

agents in this claim (B1, B4, B5 and B6) are either in Vert-bypass or in Vert-seek state when
entering node (0, y).

Now let us show that τ ≥ 16 is indeed large enough to satisfy the lemma claims:
By the lemma claim (3), for every agent considered by the lemma, to arrive to node (0, y),
takes |y| rounds. Then, for B4, and B5 to perform the actions described by the lemma claim
(1) and to make a move for the agent in claim (2) (from node (0, y) to (0, y + y

|y| )), agents
B1, B2 and B3 should keep alive up to the last pheromone drop they are instructed to do
according to the binary word w in their Pattern(w) state. It is easy to see from the pheromone
schemes obtained above that each of them has to stay alive for at least |y|+ 6 ≤ τ − s+ 6 = τ

rounds. J

By a simple induction using Lemma 54, we prove the following lemma (in a way similar
to the one used to prove Lemma 53).

I Lemma 55. For every 2 ·s+1 ≤ |y| ≤ τ , every node on line (0, y) at distance ≤ τ from the
nest is visited by at least one agent, in 7 + 15s+ 11(τ −2s)−5 + s rounds, using 10τ −20s−2
agents and dropping pheromone 28τ − 2 +O(s) times.
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Proof. We use extensively Lemma 54. First, by Lemma 53, in round 6 + 15 · s, there is an
agent Bs+1 in node (0, s+ 1) and in round 7 + 15 · s an agent B−s−1 in node (0,−s− 1),
both in state Vert-bypass. For each of them ϕdir = ϕE = ϕW = 0 and any agent located
farther than B and B′, never drops any pheromone. B and B′ satisfy Lemma 54 condition.

Then, claim (2) of the same lemma and a simple induction imply that there is an agent
By every 15 rounds satisfying the lemma conditions for every s+ 1 ≤ |y| ≤ τ − s. Hence,
Lemma 54 holds for every s+ 1 ≤ |y| ≤ τ − s.

By claim (1) of Lemma 54 an agent in state Forward(s)-Explore(d) at node (0, y), for
s+ 1 ≤ |y| ≤ τ − s, explores the line that is s steps farther. By claim (3) of Lemma 54 and
the fact that an agent in state Forward(k)-Explore(d) moves at every round (lines 37 - 43),
every node on the line (0, y), for 2 · s+ 1 ≤ |y| ≤ τ , at distance τ from the nest is visited.
Finally, by claim (1) of Lemma 54, 6 rounds (instead of 11) are enough for exploring line −τ
(starting from the round satisfying Lemma 54 conditions for this line), because only one agent
has to be sent to (0,−τ). Hence, the overall time complexity is 7 + 15s+ 11(τ − 2s)− 5 + s

rounds. This is the round when an agent visits node (0,−τ).
By claim (1) of Lemma 54, up to round r+ 8, agents arriving at (0, y) are used to explore

lines at distance y + s (resp. y − s, on the southern half of the grid) from the nest. By
Corollary 51, during these rounds, 5 agents arrive (one agent every second round). Thus the
overall agent utilization complexity to explore lines at distance 2 · s+ 1 ≤ |y| ≤ τ , in both
halves of the grid, is 2(5(τ − 2s)− 1) = 10τ − 20s− 2 (−1 · 2 is because each of the two lines
at distance τ require only one agent to be explored).

To compute the pheromone utilization to explore all the lines at distance 2 ·s+1 ≤ |y| ≤ τ ,
first note that every agent used for this drops pheromone when exiting the nest (Lemma 49).
To this we have to add the pheromone utilization of 2 · 9(τ − 2s) due to claim (4) of Lemma
54. Then, there are additional possible drops in lines at distance τ − s+ 1 ≥ |y| ≤ τ , by the
agents entering these lines at most s rounds before the exploration completion of the same
half of the grid. There are at most s such agents (in both halves of the grid), having at most
s rounds to live. They either stay in state Vert-seek and thus drop no pheromone, or move
to Vert-bypass, applying Interpret-Signals-phase2 and possibly dropping some constant
number of pheromone before dying. Hence, the overall number of such drops is O(s). This
gives the claimed 28τ − 2 +O(s) = (10τ − 20s− 2) + 2 · 9(τ − 2s) +O(s) drops. J

The theorem below is obtained almost directly from Lemmas 46, 53 and 55.

I Theorem 17. Algorithm 2 solves the treasure hunt problem for µ ≥ 1, τ ≥ 16 and s = 6 in
11τ − 6s+ 2 rounds, using 10τ − 6s+ 3 agents and 28τ +O(s) + 8 pheromone drops.

Proof. The correctness of the algorithm follows directly from lemmas 46, 53 and 55. The
completion time holds from Lemma 55.

The agent complexity is obtained by summing 5 agents A1 − A5, used for signaling
and exploring the x-axis (Lemma 46), with 14s agents, used to explore lines at distance
1 ≤ |y| ≤ 2s (Lemma 53), with 10τ − 20s − 2 agents used to explore lines at distance
2 · s+ 1 ≤ |y| ≤ τ (Lemma 55). This gives 10τ − 6s+ 3 agents.

The pheromone complexity is obtained by summing 10 pheromones dropped by agents
A1 −A5 (Lemma 46) with the pheromone utilization computed in Lemmas 53 and 55. This
gives 28τ +O(s) + 8 pheromone drops. J
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