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Introduction

Background Well-to-well contamination
The gut microbiota plays a crucial role in human = Contamination refers to the presence of DNA that does not originate ~ Although well-to-well contamination is a common problem, it remains understudied. It can lead
health [1]. Metagenomic sequencing allowsadeep ~ from the biological sample under study. It can be due either to: to biased results (i.e. overestimation of a diversity, false strain sharing events) and eventually to
characterization of microbial communities without - DNA from an external source (environmental DNA [2]  false conclusions if not detected and it is also a serious impediment to studies reproducibility.
prior organism isolation or culture. or lab reagents)

We introduce CroCoDDeel, a deep-learning tool to automatically detect well-to-well
Several massive sequencing projects are now on contamination. Contrary to state-of-the-art approaches [3][4], CroCoDDeel works with related
the launchpad as Le French Gut which aims to samples that may naturally share strains (e.g.: mother/child), discriminates contamination
analyze 100 000 fecal samples to define the =~ Well-to-well contamination occurs during wet lab steps (DNA  sources from contaminated samples, estimates contamination rates and does not require costly
heterogeneity of healthy gut microbiota, the  extraction, sequencing library preparation). negative controls.

environmental and lifestyle factors impacting
them, and their deviations seen in chronic

- DNA from another sample processed on the same plate
(well-to-well /cross-sample contamination).
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In-house correlation-based method Deep Learning method : CroCoDDeel =»
Comparison of species abundance profiles reveals specific patterns associated with well-to-well contamination. Cross-sample Contamination Detection using Deep Learning
- taminated
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A subset of these shared species have a proportional abundance o ) vs-all comparisons sample: in contaminated cases, allows the selection of the
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The contamination line is used to detect contamination events, and le-0al il = Intelligent assistances are Outout
the contamination rate can be estimated from the value of the et _ ~ required to limit inspection time. P
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CroCoDDeel’s results
Learning datasets p, Performance
source sample reads
target sample R -«
— (Contaminated dataset — = - < Performance was evaluated on several real metagenomic datasets.
A semi-simulated training dataset was N _— Z‘V — Low correlated samples — — Medium correlated samples — — Highly correlated samples —
generatEd by ml).(mg reads from manuaI.Iy—cu.rated CtTt 20_/ e 15 samples from the Human Microbiome Project (PRINA48479) * 30 samples from the COVIDbiome Project (PRINA792726) * 13 samples from the Metachick projects
real metagenomic data of the MetaCardis project + human gut and oral microbiota *human gut microbiota * chicken gut microbiota
(PRJEB38742) . Method: = CroCoDDeelL = correlation method
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Part of the data uses sample pairs of the MetaCardis
oroject for which we simulated varying sequencing depth. The other part uses
nairs of samples from distinct cohorts (human and animal gut) that cannot be
contaminated because they have never been processed together.
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16K contaminated samples 4K contaminated samples Since the aim of CroCoDDeel is to detect as many contaminated pairs as possible, we are looking for the compromise that maximizes the number of
16K non-contaminated samples 4K non-contaminated samples true positives, without giving too many false positives to manually inspect.

Conclusion and future work

CroCoDDeel outperforms our in-house correlation-based method in terms of sensitivity. However, it still
produces many false positives without a contamination line, suggesting that the model uses its own
criteria beyond the ones used by humans. We anticipate opportunities for improvement through an
enhanced training dataset.

Next efforts will extend the use of this modeling approach in the way of identifying contamination levels
and working towards the automatic decontamination of samples.
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* Asthistime, we recommend CroCoDDeel as an aid for human inspection, rather than a fully autonomous approach.

* (roCoDDeel can deal with any metagenomic sequencing data without the need for negative or spike-in controls.

* (roCoDDeel can process species abundance tables generated by any taxonomic profiler.

* (roCoDDeel will be used to perform quality control of public cohorts and results will be integrated into the MIASSM
database [5] (poster B-167).
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