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Abstract

The classical optimal trading problem is the closure of an initial position in a financial
asset over a fixed time interval; the trader tries to maximize an expected utility under the
constraint that the position be fully closed by terminal time. Given that the asset price is
stochastic, the liquidation constraint may be too restrictive; the trader may want to relax
the full liquidation constraint or slow down/stop trading depending on price behavior.
We consider two additional parameters that serve these purposes within the Almgren-
Chriss liquidation framework: a binary valued process I that prescribes when trading
takes place and a measurable set S that prescribes when full liquidation is required. We
give four examples for S and I which are all based on a lower bound specified for the
price process. The terminal cost of the stochastic optimal control problem is 8 over
S; this represents the liquidation constraint. The permanent price impact defines the
negative part of the terminal cost over the complement of S. The I parameter enters
the stochastic optimal control problem as a multiplier of the running cost. Except for
quadratic liquidation costs the problem turns out to be non-convex. A terminal cost that
can take negative values implies 1) the backward stochastic differential equation (BSDE)
associated with the value function of the control problem can explode to ´8 backward
in time and 2) the existence results on minimal supersolutions of BSDE with singular
terminal values and monotone drivers are not directly applicable. To tackle these we
introduce an assumption that balances the market volume process and the permanent
price impact in the model over the trading horizon. In the quadratic case, assuming
only that the noise driving the asset price is a martingale, we show that the minimal
supersolution of the BSDE gives both the value function and the optimal control of the
stochastic optimal control problem. A key point in our arguments is that the negative
part of the terminal value of the BSDE (arising from permanent price impact) is bounded.
For the non-quadratic case, we assume a Brownian motion driven stochastic volatility
model and focus on choices of I and S that are either Markovian or can be broken
into Markovian pieces. These assumptions allow us to represent the value functions as
solutions of PDE or PDE systems. The PDE arguments are based on the smoothness of
the value functions and do not require convexity.

We quantify the financial performance of the resulting liquidation algorithms by the
percentage difference between the initial stock price and the average price at which the
position is (partially) closed in the time interval r0, T s. We note that this difference
can be divided into three pieces: one corresponding to permanent price impact (A1),
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one corresponding to random fluctuations in the price (A2) and one corresponding to
transaction/bid-ask spread costs (A3). A1 turns out to be a linear function of the portion
of the portfolio that is closed; therefore, its distribution is fully determined by the dis-
tribution of that portion. We provide a numerical study of the distribution of the closed
portion and the conditional distributions of A2 and A3 given the closed portion under
the assumption that the price process is Brownian for I “ 1 and a S corresponding to a
lowerbound on terminal price.

Keywords: liquidation, non-convex optimal control, backward stochastic differential equa-
tions, Hamilton Jacobi Bellman equation.
MSC 2020: 35K57, 49K45, 49L25, 60H30, 60H99, 93E20.
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1 Introduction

There is a range of order types available to an investor to close a position on an asset; the book
[14] presents the following: implementation shortfall (IS), target close and volume weighted
average price. Given a trading horizon r0, T s, all of these order types are constrained to close
an initial position at a terminal time T . Mathematically this is expressed as the constraint
QT “ 0, where Qt denotes the position of the investor at time t (we assume Q0 ą 0, i.e.,
an initial long position, for a more brief presentation; everything below applies to a short
position Q0 ă 0). Given that the price process is stochastic, this constraint can be too
restrictive. For example, in IS orders the goal is to close an initial position near the initial
price S0; it may happen that the price drops substantially during the trading interval and the
investor holding the position may no longer wish to be strict about closing the position. The
present work studies algorithms that offer this type of flexibility in execution. We focus on IS
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type orders targeting the initial price S0 because this is the most basic and most commonly
studied order in the current literature but similar ideas can be considered for other types of
orders and pursued in future research. The work [16] already presents an optimal liquidation
algorithm in which the full liquidation constraint is relaxed; the algorithms presented in the
current work extend those in [16] in two directions: 1) the model in the present work involves
a permanent market impact component and 2) we allow the model to impose constraints on
when trading takes place (for example, the model can be set up so that trading is allowed
only when the current price is above a given threshold). The resulting stochastic optimal
control problem leads to a backward stochastic differential equation of the form

dYt “ volt|Yt|
p ` dMt, YT “ ξ, p ą 1,

with a singular terminal condition (i.e., ξ can take the value 8). When compared to BSDE
with singular terminal values arising from optimal liquidation problems studied in [16] and
other works on optimal liquidation, this BSDE has three new features: its generator/driver
is not monotone in Y (see below for the precise definition), vol is allowed to be 0, and its
terminal value can take negative values. For several versions of the problem with a Markovian
formulation we also treat the partial differential equation (PDE) versions of this equation.
As we discuss in detail below, the new features have nontrivial implications for the analysis
of the BSDE and the PDE.

The IS order is commonly formulated as a stochastic optimal control problem optimizing
the expected utility of the cash position that the order generates [14, Chapter 4]. Section
2 presents the stochastic optimal control formulation of the modified IS orders that the
present work focuses on. A great deal of the literature on optimal liquidation, including
the model presented in section 2, is based on a model proposed by Almgren and Chriss
in [3]. This model assumes that the price consists of three pieces: a random fluctuations
term S̄, a transaction cost term and a permanent market impact term. The permanent
price impact is a term κpQ1

tqdt added to dS̄t where Q
1
t is the time derivative of Q at time

t; together with the random fluctuation term they make up the midprice process S. The
transaction cost term corresponds to trading commissions and the bid-ask spread; this is
modeled using a so-called execution cost function L. The common choice for L is a power
function Lpρq “ η|ρ|p̂, p̂ ą 1 (we reserve the letter p for the Hölder conjugate of p̂, which
arises in the solution of the problem). In most liquidation models the permanent price impact
is assumed to be linear in Q1

t (see [12] for more comments on this assumption). This and the
constraint QT “ 0 of the standard IS order lead to an interesting situation for this type of
order: the permanent price impact ends up having no role in the stochastic optimal control
formulation of the standard IS order (see (5) and (7)). These assumptions have another
important mathematical implication for the standard IS order: the position variable can be
factored out of the value function and out of the backward stochastic differential and partial
differential equations that the value function satisfies (see Proposition 3.3)- we will refer to
this property of the value function as homogeneity. When we relax the constraint QT “ 0
the permanent price impact enters directly into the stochastic optimal control problem as
a part of the terminal cost. In the modifications of the IS order we treat in the present
work we would like to keep the homogeneity property of the value function as this greatly
influences the analysis of the problem. This turns out to be possible if the permanent price
price impact function is chosen compatible with the execution cost function L as follows:

κpQ1
t, Qtq “ kQ1

t|Qt|
p̂´2, k ą 0,
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κ remains linear in Q1
t; for p̂ ą 2 (p̂ ă 2) decays (increases) with the size of the remaining

position.
As we have already noted, the permanent price impact has no role in the continuous

time stochastic optimal control formulation of the standard IS order in the Almgren-Chriss
framework. We see a reflection of this fact in the optimal liquidation literature that is based
on this framework, as follows: some works introduce a permanent price impact parameter
in the model (see e.g., [10, 24] and [14, Chapter 3]), but it ends up having no role in the
stochastic optimal control problem, while others drop the permanent price impact parameter
altogether from the model assumptions, see, e.g., [4, 16]. The seminal work [3] includes a
permanent price impact parameter in a discrete time framework, which ends up having a
role in the optimal controls but this role disappears as the discrete time step size converges
to 0. A key feature of the problem and the analysis presented in the current work is how the
permanent price impact enters and changes the analysis when the full liquidation constraint
is relaxed. We discuss this in detail below.

The output of the standard IS order is the cash position generated by the trading algo-
rithm. When full liquidation is no longer required, i.e., when we don’t have the constraint
QT “ 0, the output of the trading process at time T will be pXT , QT q where XT is the cash
generated by the trading process and QT is the position remaining in the asset being traded.
There are several choices available to formulate an expected utility maximization problem
based on this output. One option is to use a general utility function whose input is the pair
pXT , QT q; a simpler option is to first assign a monetary value mpQT q to the position QT ,
use a utility function whose only input is a monetary value and apply it to XT ` mpQT q.
In the present work we use the latter approach. For mpQT q the present work focuses on
mpQT q “ QTST ; this is the market value of the position at terminal time T ignoring trading
costs. The technical advantage of this choice is that it preserves the homogeneity of the value
function; a |q|pp term can also be added that preserves homogeneity. For the utility function
we focus on the identity function, i.e., we consider the problem of maximizing expected ter-
minal position; an additional risk term can be included in the final stochastic optimal control
problem with minor modifications to the analysis. We further comment on these points in
the conclusion (Section 7).

In subsection 2.1 we discuss two ways the stochastic optimal control problem modeling
the IS order can be modified to delay/stop liquidation depending on price behavior 1) by
relaxing the full liquidation constraint if the price is too low (which was first proposed in [16])
2) stopping/pausing trade if the price is too low (proposed in the present work). These two
modifications are parameterized in the stochastic optimal control problem by a measurable
set S and a process I taking values in t0, 1u. The set S prescribes when full liquidation is
required and enters the stochastic optimal control problem as a part of the terminal cost;
the process I prescribes when trading takes place and enters the stochastic optimal control
problem by multiplying the volume process (see (13)). We give four examples for S and
I in subsection 2.1 which are all based on a lower bound specified for the price process:
pIp1q,Sp1qq puts no constraints on trading, the position is constrained to be fully closed if the
closing price is above a given threshold; pIp2q,Sp2qq allows trading until the price goes below
a given threshold, the position is constrained to be fully closed if the price remains above the
given threshold across the whole trading interval; pIp3q,Sp3qq allows trading only when the
price is above a given threshold, the position is constrained to be fully closed if the closing
price is above the given threshold; pIp4q,Sp4qq is the same as previous except that for trading
to restart the price process first has to upcross a higher threshold. The resulting stochastic
optimal control problem for the modified IS order is given in (13). This problem has the
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same structure as the one studied in [16] except for the following differences: 1) inclusion of
the permanent market impact in the model implies that the terminal cost can take negative
values 2) the presence of the It term in the running cost (for k “ 0 and It “ 1 the problem
in fact reduces to the one studied in [16]). The solution method in [16] is the derivation and
the analysis of a BSDE associated with the value function of the control problem. This is
also one of the solutions approaches we will pursue in the present work. We next discuss
how the above new features of the problem impact the associated BSDE and its analysis.

The set S (specifying conditions for full liquidation) defines the singular component
8 ¨ 1S of the terminal condition of the BSDE; allowing a nontrivial permanent price impact
term introduces an additional negative term ´k

p̂1Sc in the terminal condition of the BSDE.
The driver y ÞÑ ftpyq, y P R of a BSDE is said to be monotone if there exists χ P R such
that pfpt, y, ωq ´ fpt, y1, ωqqpy ´ y1q ď χpy ´ y1q2 for any t ě 0 and y, y1 P R almost surely.
The monotonicity of the driver is a key property in establishing the existence of solutions
to BSDE. The work [16] focuses on non-negative terminal costs; a non-negative terminal
cost corresponds to a nonnegative terminal condition for the associated BSDE. This and
the dynamics and cost structure of the control problem lead in [16] to a BSDE with the
monotone driver pt, yq ÞÑ ´λty|y|p´1 (for y ě 0, y|y|p´1 “ |y|p “ yp). In the case of the
stochastic optimal control problem (13), the terminal condition is allowed to take negative
values and this forces us to work with the non-monotone convex driver pt, yq ÞÑ ItVolt|y|p.
Finally, as already noted, the process I (specifying when trading is allowed) enters the BSDE
by multiplying the driver of the BSDE. The resulting BSDE is given in (25) and (23).

Note that although the terminal condition (23) can take negative values, the negative
component is bounded above by a constant. For this reason we focus on terminal conditions
with bounded negative parts. The challenges/new points that arise in the analysis of (25),
(23) as a result of these new features are as follows: the currently available literature doesn’t
contain existence results on the minimal supersolution of a BSDE such as (25) with a singular
terminal condition (23) and with a driver involving the function y ÞÑ |y|p. Secondly, a
terminal condition that can take negative values and the superlinearity of the driver imply
that the solution of the BSDE can explode to ´8 backwards in time.

We handle both of these issues in Section 3 by deriving an apriori lower bound process z
on any supersolution of the BSDE with a terminal condition whose negative part is bounded
by a constant K ; z is obtained by solving (25) with the terminal condition ξ “ ´K (for
which (25) reduces to an ordinary differential equation). The interval over which z is defined
depends on model parameters. We introduce an assumption on the permanent price impact
parameter and market volume that guarantees the existence and boundedness of the lower
bound process over the interval r0, T s (Assumption 1). The lower bound process is increasing
in t; therefore, the value z0 provides a lower bound on supersolutions on the whole interval
r0, T s. We then deal with the non-monotonicity of the driver by replacing the portion of
y ÞÑ |y|p over p´8, z0s with its linear approximation over the same interval, which results in
a monotone driver. Hence existence and uniqueness of the solution for BSDE for integrable
terminal condition is obtained in Proposition 3.1. The only way the I term impacts the
analysis of the BSDE is by entering Assumption 2 that guarantees that the supersolution
can attain the singular value 8 at terminal time T ; in particular Assumption 2 requires
It “ 1 for t P rT ´ ϵ, T s for some ϵ ą 0. Under these conditions, Proposition 3.2 provides a
minimal supersolution for the BSDE with singular terminal condition.

The verification argument presented in subsection 3.1 connects the minimal supersolution
of the BSDE (25), (22) to the value function and optimal control of the stochastic optimal
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control problem (13) (Proposition 3.3). This argument is based on the convexity of the cost
in Q1; under Assumption 2, this turns out to be the case only for the quadratic case (Lemma
2), therefore this verification argument assumes pp “ p “ 2.

Assumption 2 is a stringent condition and Ipjq, j “ 2, 3, 4, proposed in subsection 2.1
(see (15), (16) and (17)) which depend on price behavior don’t satisfy it. In subsections 3.2
and 3.3, we break up the stochastic optimal control problem and the BSDE corresponding
to these choices of I into pieces where each piece involving a singular terminal condition
satisfies Assumption 2 (Proposition 3.5 and Lemma 4).

The main advantage of the BSDE arguments in Section 3 is that we can work with a
general filtration, without any further assumption except the standard ones (completeness
and right-continuity) and the left-continuity at time T . The drawback is the restriction to
the quadratic case pp “ p “ 2.

We call the problem Markovian if the price process is Markovian and the cost structure
of the problem is a function of the price process. In Section 4 we explore the case p ‰ 2
and a PDE representation of the value function and the optimal control when the problem
is Markovian or can be broken into Markovian pieces. A popular choice for price dynamics
in finance applications is the stochastic volatility model. To the best of our knowledge it is
rarely treated in the context of optimal liquidation; in Section 4 we assume the price dynam-
ics to follow this model. For a direct PDE representation (i.e., identifying the value function
as a supersolution of a related PDE), the process I and the measurable set S must also be
functions of the price process. Of the four possible choices for I and S given in (14)-(17),
only pIp1q,Sp1qq is given as a function of the price process. In subsection 4.1 we present the
PDE representation of this case. For pIpjq,Spjqq, j “ 2, 3, 4, the decompositions/reductions
given in subsections 3.2 and 3.3 yield Markovian subproblems. The resulting PDE problems
are treated in subsections 4.2-4.4. The PDE representation of pIp4q,Sp4qq involves two cou-
pled PDE (one for active trading and one when trading is paused). To compute a solution
we introduce an additional parameter n, which is the number of switches allowed between
trading and no trading. We solve this problem recursively, letting N Ñ 8 gives the solution
to the coupled PDE. To the best of our knowledge, there exists no readily available results
in the current literature for the existence and smoothness of solutions of PDE that arise in
the analysis presented in Section 4. We obtain solutions to these PDE as follows: we use the
BSDE results of Section 3 to first obtain viscosity supersolutions. We then use regularization
bootstrapping, parameter smoothing and the regularity of the underlying price process to
obtain the smoothness of these supersolutions. Once smoothness is proved classical verifi-
cation arguments from stochastic optimal control can be constructed to relate the solutions
to the stochastic optimal control problems. These arguments do not require p “ 2 as op-
posed to the verification arguments given in Section 3 which are directly based on the BSDE
representation.

The output of the standard IS order is the cash position XT at time T generated by
the trading algorithm; under the assumption that the price process is a Brownian motion,
XT turns out to be normally distributed whose mean and variance have simple formulas
in terms of the model parameters. When we relax the IS order so that full liquidation is
no longer required at terminal time, the output of the IS order consists of the pair of real
random variables pQT , XT q where XT is, as before, the total cash generated by the trading
process and QT is the remaining position at terminal time in the asset being traded. For the
relaxed/modified IS orders, XT is not normally distributed even when the price process is
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taken to be Brownian and the joint distribution of pXT , QT q doesn’t have an explicit form.
Define

A “
XT ´ pQ0 ´QT qS0

pQ0 ´QT qS0
(1)

A is the percentage deviation from the target price S0 of the average price at which the
position is (partially) closed in the time interval r0, T s. In Section 5 we study the joint
distribution of pQT {Q0, Aq. We note that A can be divided into three pieces: one corre-
sponding to permanent price impact (A1), one corresponding to transaction/bid-ask spread
costs (A2) and one corresponding to random fluctuations in the price (A3). A1 turns out
to be a linear function of 1 ´ QT {Q0; therefore, its distribution is fully determined by that
of QT {Q0. We provide a numerical study of the distribution of QT {Q0 and the conditional
distributions of A2 and A3 given QT {Q0 under the assumption that S̄t “ σWt for the case
pI “ 1,S “ tWT ě ℓuq. The same section also provides numerical examples of the sample
path behavior of the optimal controls of this modified IS order. Section 7 comments further
on the models presented in this work and on possible future research.

2 Definitions

The following model is based on the Almgren Chriss framework for liquidation with price
impact (see, e.g., [14, Chapter 3]). Everything is assumed to be defined on a probability
space pΩ,F ,Pq equipped with a filtration F “ tFt, t P r0,8qu, which satisfies the usual
assumptions: completeness and right-continuity. The market volume at time t is denoted by
Volt, which is a positive process adapted to the filtration F. The initial position is denoted
by q0 ą 0. The position of the investor at time t is Qt, in particular Q0 “ q0. The process Q
is assumed to be absolutely continuous in the time variable, let Q1

t denote its derivative at
time t; Q and Q1 are adapted to F.

We will be working with two positive real numbers p and pp that are Hölder conjugates of
each other 1{p ` 1{pp “ 1; we use p̂ in the problem formulation, p appears in the associated
backward stochastic and partial differential equations.

We suppose that the permanent price impact function κ is

κ : R2 ÞÑ R, κpq1, qq “ k |q|
pp´2 q1; (2)

where k ą 0 is a real constant. For pp ą 2 (pp ă 2), κ decreases (increases) with position
size and for pp “ 2 it is independent of position size. For pp “ 2, κ reduces to kq1 which is
the standard choice for permanent price impact (see [12] or [14, Chapter 3]). The midprice
process S is

St “ S0 ` S̄t `

ż t

0
κpQ1

s, Qsqds (3)

where S̄ is a martingale adapted to F.
The actual trading price at time t is St ` gtpQ

1
t{Voltq where gt models transaction costs

and the bid-ask spread (g depends on t, ω and Q1
t{Volt). The process g is often specified via

the so-called execution cost function lt: ltpρq “ ρgtpρq. The actual trading price at time t,
expressed in terms of l is

St `
Volt
Q1

t

Lt

ˆ

Q1
t

Volt

˙

.
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The cash position that Q generates is

XT “ ´

ż T

0

ˆ

St `
Volt
Q1

t

Lt

ˆ

Q1
t

Volt

˙˙

Q1
tdt “ ´

ż T

0
StQ

1
tdt´

ż T

0
VoltLt

ˆ

Q1
t

Volt

˙

dt (4)

(Q1
t ă 0 corresponds to selling, hence an increase in X, and Q1

t ą 0 corresponds to buying, a
decrease in X). Note that dp|x|ppq{dx “ ppx|x|pp´2; this and integrating the first term by parts
give:

ż T

0
StQ

1
tdt “ STQT ´ S0Q0 ´

ż T

0
QtdSt

“ STQT ´ S0Q0 ´

ż T

0
QtdS̄t ´

ż T

0
kQtQ

1
t|Qt|

pp´2dt

“ STQT ´ S0Q0 ´

ż T

0
QtdS̄t ´

k

pp
p|QT |pp ´ |Q0|ppq

Then

XT “ Q0S0 ´QTST `K
´

|QT |pp ´ |Q0|pp
¯

`

ż T

0
QtdS̄t ´

ż T

0
VoltLt

ˆ

Q1
t

Volt

˙

dt,

where

K “
k

pp
.

Let us first review the classical IS order, in which the position is required to be closed fully
at terminal time, i.e., we impose the constraint QT “ 0 on the problem. The terminal cash
position under this constraint is

XT “ Q0S0 ´KQpp
0 `

ż T

0
QtdS̄t ´

ż T

0
VoltL

ˆ

Q1
t

Volt

˙

dt. (5)

To identify the optimal liquidation strategyQ˚ one maximizes the expected utility ErUpXT qs,
over the admissible strategies Q, where U is the utility function of the trader. The standard
choice for the utility function in optimal liquidation literature is

Upxq “ ´e´γx, (6)

where γ is the risk aversion parameter of the investor [14]. In the current work we will be
focusing on the case γ Ñ 0, for which the problem becomes1

sup
QPA1,Ω

ErXT s, (7)

with

A1,Ω “

#

Q : absolutely continuous, Q1 progressively measurable,

E
„

ż T

0
VoltL

ˆ

Q1
t

Volt

˙

dt

ȷ

ă `8 and Q0 “ q0, QT “ 0 a.s.

+

,

1Using p´e´γx
` 1q{γ « x when γ goes to zero.
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see Definition 2.1 below. The term
ş¨

0QtdS̄t is a martingale2 ; taking the expectation of XT

in (5), (7) reduces to

inf
QPA1,Ω

E
„

ż T

0
VoltL

ˆ

Q1
t

Volt

˙

dt

ȷ

.

This is the standard version of the stochastic optimal control formulation of the IS order in
the Almgren Chriss framework for γ “ 0. This problem and its generalization where γ ą 0 is
a well studied problem in the current literature, as in [13, 24, 25]. In the next subsection we
propose several modifications to this problem relaxing the constraint QT “ 0 and introducing
constraints on when trading takes place.

2.1 Modifications

When full liquidation is no longer required, i.e., when we don’t have the constraint QT “ 0,
the output of the trading process at time T will be pXT , QT q where XT is the cash generated
by the trading process and QT is the position remaining in the asset being traded. As
discussed in the introduction, to formulate a utility maximization problem similar to (7), we
assign a monetary value mpQT q to the position QT and add it to XT . In the present work
we mainly focus on the following simple choice for m: the market value of the position at
terminal time T ignoring trading costs, i.e., QTST . With this choice, the monetary value of
the position pXT , QT q is

X̃T “ XT `QTST “ Q0S0 ´K|Q0|pp `K|QT |pp `

ż T

0
QtdS̄t ´

ż T

0
VoltLt

ˆ

Q1
t

Volt

˙

dt. (8)

Recall that our goal is to modify the IS order to not liquidate depending on price be-
havior in two ways 1) by relaxing the full liquidation constraint if the price is too low 2)
stopping/pausing trade if the price is too low. The following formulation allows both of
these possibilities. Let t ÞÑ It be an adapted process taking values in t0, 1u. Let S P FT be
a measurable set. The trading set is defined by

I “ tt P r0, T s, It “ 1u.

Definition 2.1. Define AI,S as the set of processes Q that satisfy:

• Q is absolutely continuous in t and t ÞÑ Q1
t is progressively measurable ;

• Q0 “ q0 ;

• QT pωq “ 0 if ω P S (liquidation constraint) ;

• for λb P-almost every pt, ωq P r0, T s ˆ Ω, Itpωq “ 0 ñ Q1
tpωq “ 0 (if t R I, Q1

t “ 0) ;

• the cost
ż T

0
VoltL

ˆ

Q1
t

Volt

˙

dt´K|QT |pp

belongs to LϱpΩq for some ϱ ą 1.

2In general it is only a local martingale. However we will show that for the optimal strategy, Q is bounded.
Hence there is no harm in assuming that this process is indeed a martingale.
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For ease of notation set
A “ A1,H, (9)

i.e., when I “ 1 and S “ H we simply write A instead of AI,S .
We modify (7) to

sup
QPAI,S

ErX̃T s.

The formula (8) implies that this control problem is equivalent to:

inf
QPAI,S

E
„

ż T

0
VoltL

ˆ

Q1
t

Volt

˙

dt´K|QT |pp

ȷ

As noted in the introduction we work with the execution cost function

Ltpρq “ ηt|ρ|pp,

where η is an adapted and positive valued process. This choice of L reduces the problem to

inf
QPAI,S

E

«

ż T

0

ηt

Volpp´1
t

|Q1
t|

ppdt´K|QT |pp

ff

. (10)

Let us next note that ηt can always be assumed to be 1 by appropriately modifying the
volume process, i.e., if we set

ĄVolt “
Volt

η
1

pp´1

t

“
Volt

ηp´1
t

(11)

(10) can be written as

inf
QPAI,S

E

«

ż T

0

1

ĄVol
pp´1

t

|Q1
t|

ppdt´K|QT |pp

ff

;

in what follows we always assume ηt “ 1 and that Vol is modified to ĄVol if the original η
process is not identically 1. A commonly used convention in the prior literature is

8 ¨ 0 “ 0,8 ¨ c “

#

8, if c ą 0,

´8, if c ă 0.
(12)

In addition to this we will also set 0{0 “ 1 and c{0 “ 8 for c ą 0. With these conventions
(10) can be written as

inf
QPA

E

«

ż T

0

1

ItVol
pp´1
t

|Q1
t|

ppdt` p´K1Sc ` 8 ¨ 1Sq |QT |pp

ff

, (13)

where we use the convention (9). Note that the I process controls when trading takes place
(by effectively switching the volume process on and off) and the event S controls when full
liquidation is required.

In the next section we obtain a representation of the value function and the optimal
control of the problem (13) via the minimal supersolution of an associated BSDE. Before
that let us give several examples for the process I and the event S. The midprice process S
consists of two components: S̄t and

ş¨

0 κpQ1
s, Qsqds. The first component, S̄, is the random
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component of the change in the midprice; a large and unpredictable drop in price that the
investor may fear can only arise from this component. Given this observation, a reasonable
approach in choosing I and S is by putting a lower bound ℓ on this component. For this,
define:

τℓ “ infts ě 0 : S̄s ă ℓu,

τt,ℓ “ infts ě t : S̄s ă ℓu.

Then some possible choices for I and S are:

It “ I
p1q

t
.
“ 1,S “ Sp1q .

“ tS̄T ě ℓu : (14)

trading is allowed at all times, full liquidation is forced only when the terminal price S̄T is
above ℓ.

It “ I
p2q

t
.
“ 1ttďτℓu,S “ Sp2q .

“ tτℓ ą T u : (15)

trading stops once S̄ hits the lower bound ℓ; full liquidation takes place if S̄ remains above
ℓ throughout r0, T s.

It “ I
p3q

t
.
“ 1rℓ,8qpS̄tq1ttďτT´δ,ℓu,S “ Sp3q “ tτT´δ,ℓ ě T u : (16)

trading pauses when the price S̄ is below ℓ, full liquidation takes place if the price process
S̄ remains above ℓ in the time interval rT ´ δ, T s and trading stops if S̄ goes below ℓ in the
same interval; δ ą 0 is a small fixed constant.

Let us comment on the δ ą 0 parameter in this formulation: essentially we would like
to continue with the liquidation when the price is not too below our target price S0 and
close the position fully if the terminal price is also near our target price. However, allowing
trading (re)start arbitrarily close to T and forcing a full liquidation implies high transaction
costs (in fact, 8 transaction costs under the current model). This is the reason for the δ ą 0
parameter: full liquidation is forced only if the price remains above ℓ in the time interval
rT ´ δ, T s.

In the last formulation trading pauses once S̄ hits ℓ; if S̄ is a continuous diffusion process,
once it hits ℓ, it will hit ℓ infinitely often and the trading process will switch on and off
infinitely often as S̄ crosses ℓ. One can get a discrete sequence of on and off trading intervals
by putting a buffer of size b ą 0 above ℓ between trading and no trading; once trading pauses,
it is turned back on once S̄ goes above b`ℓ. The corresponding I and S are expressed through
the following sequence of hitting times:

τℓ,0 “ τℓ, τb,´1 “ 0

τb,0 “ inftt : t ą τℓ,0, S̄t ě b` ℓu,

τℓ,k “ inftt : t ą τb,k´1, S̄t ă ℓu,

τb,k “ inftt : t ą τℓ,k, S̄t ě b` ℓu.

τ̄b,k “

#

τb,k, if τb,k ` δ ă T,

T, otherwise.

Adding a buffer of size b ą 0 between no-trading and trading in (16) amounts to the following
definitions:

It “ I
p4q

t
.
“

8
ÿ

k“´1

1rτb,k,τℓ,k`1sptq, S “ Sp4q .
“ tIT “ 1u. (17)
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3 BSDE Analysis

In our arguments the concepts of monotonicity (of the driver of a BSDE) and the minimal
supersolution of a BSDE play a key role, let us begin by giving a precise definition of these
terms.

Definition 3.1. The function pt, y, ωq ÞÑ fpt, y, ωq is said to be monotone if there exists
χ P R such that a.s. and for any t ě 0 and y, y1 P R,

pfpt, y, ωq ´ fpt, y1, ωqqpy ´ y1q ď χpy ´ y1q2.

Let ξ be an FT -measurable real valued random variable. A pair pY,Mq is said to be a
supersolution of the BSDE

dYt “ ´fpt, Ytqdt` dMt, YT “ ξ,

if

1. Y is adapted to F ;

2. M is a martingale3 ;

3. Ys “ Yt `
şt
s fpu, Yuqdu` pMt ´Msq for 0 ď s ă t ă T ;

4. the inequality
lim inf
tÑT

Yt ě ξ (18)

holds a.s..

It is said to be minimal if a.s. for any t, Y 1
t ě Yt for any other supersolution pY 1,M 1q.

The work [16] studies the following stochastic optimal control problem:

Qt “ QC
t `QJ

t , min
QPA1

E

«

ż T

0

˜

ηt

ˇ

ˇ

ˇ

ˇ

dQC
t

dt

ˇ

ˇ

ˇ

ˇ

p̂

` γt|Qt|
p̂ ` CpQJqt

¸

dt` ξ|QT |pp

ff

, (19)

where: ξ P FT is a non-negative random variable that is allowed to take the value `8, QC

is the absolutely continuous part of Q, QJ is the jumping part of Q, CpQJq a running cost
associated with QJ , and A1 an appropriate modification of A. On the set tξ “ `8u, the
constraint QT “ 0 is necessary to ensure a finite cost. Compared to (13) this problem has
an additional term QJ in its dynamics and two additional terms (γt|Qt|

p̂ and CpQJqt) in its
cost structure. To focus on the novelties associated with the terminal cost we will assume
these terms to be 0. The work [16] identifies the value function of (19) as Yt|Qt|

p̂ where Y
is the minimal supersolution of the BSDE

dYt “ pp̂´ 1q
Yt|Yt|

p´1

ηp´1
t

` dMt, YT “ ξ ě 0. (20)

The generator of this BSDE is monotone and establishing the existence of the minimal
supersolution makes use of this property of the generator. The reason that [16] is able to
use this monotone generator is the assumption ξ ě 0. In the present work we allow ξ to

3In this paper, we always consider a right-continuous with left limits modification of the martingale
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take negative values therefore it is no longer possible to work with a generator involving the
function y ÞÑ y|y|p´1. The BSDE corresponding to the stochastic optimal control problem
(13) turns out to be

dYt “ pp̂´ 1qItVolt|Yt|
pdt` dMt (21)

with terminal condition
YT “ ξ, (22)

ξ “ ´K1Sc ` 8 ¨ 1S (23)

(a rigorous link between this BSDE and (13) will be established in subsection 3.1 via a
verification argument).

Define
volt “ pp̂´ 1qItVolt; (24)

vol is the restricted volume process available to the trader (up to some constant). Then we
can write (21) also as

dYt “ volt|Yt|
pdt` dMt. (25)

Compared to (20) the novel features of (25), (22) are the following: its terminal condition
is allowed to take negative values, its driver is convex in Y and not monotone and its
generator can take the value 0 (because of the presence of the I term). We introduce several
assumptions to deal with these new features when obtaining the existence of a minimal
supersolution to this BSDE. First, note that the terminal condition ξ of (23) is bounded
below by ´K; for this reason for our purposes it suffices to focus on terminal conditions
whose negative parts are bounded above by a constant, i.e., all of the terminal conditions
we consider satisfy

ξ´ ď K.

The generator of (25) is defined in terms of the function y ÞÑ |y|p and its terminal value
can take negative values: a consequence of these facts is that any solution to (25) and (22)
can explode to ´8 backward in time (see Lemma 1 below). To deal with this, we introduce
the following assumption that ensures that an explosion doesn’t happen in r0, T s:

Assumption 1. vol is non-negative and one of the next two conditions holds:

• vol is deterministic and satisfies

Kp´1

ż T

0
voltdt ă

1

p´ 1
, (26)

• vol is bounded by a constant vol ą 0 such that

Kp´1Tvol ă
1

p´ 1
. (27)

We will assume throughout that either (26) or (27) holds. Note that when pp̂ ´ 1qVol
satisfies one of these, vol “ pp̂ ´ 1qI Vol also does because I P t0, 1u. This assumption
balances the negative part of the terminal condition (determined by the permanent price
impact parameter k) with the trading volume available to the trader.

If PpSq ą 0, ξ can take the value 8 with positive probability and the terminal condition
is said to be singular (terminal condition is said to be singular also when ξ doesn’t belong
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to LϱpΩq for some ϱ). We need a further assumption to deal with this possible singularity.
To ensure that there exists a solution which is finite on r0, T q, the generator should not be
equal to zero close to time T . The corresponding assumption in [16] is [16, (A.6)], which is:

E
şT
0 ηsds ă `8. In the present work, to guarantee the existence of a minimal supersolution,

we make the following assumption on vol “ I Vol:

Assumption 2. There exists some ς ą 1 and some ϵ ą 0 such that

E
„

ż T

T´ϵ

1

pvolsqppp´1qς
ds

ȷ

ă `8. (28)

Evoke that pp is the Hölder conjugate of p.

Assumption 2 can be interpreted as the availability of liquidity (through Vol and I) at
terminal time. In particular it means that It “ 1 on rT ´ ϵ, T s.

We begin our analysis by deriving a lower bound process z which we will use to guarantee
that the minimal supersolution to (20) doesn’t explode to ´8 in r0, T s. Under Assumption
1 the lower bound process z is defined as follows:

zt “ ´

˜

1

K1´p ´ pp´ 1q
şT
t volsds

¸
1

p´1

, (29)

if (26) holds; and

zt “ ´

ˆ

1

K1´p ´ pp´ 1qvolpT ´ tq

˙
1

p´1

, (30)

if (27) holds.

Lemma 1. z of (29) satisfies
dz

dt
´ volt|z|p “ 0, (31)

and z of (30) satisfies
dz

dt
´ vol |z|p “ 0. (32)

Both z satisfy zT “ ´K. Under Assumption 1, z is increasing on r0, T s and satisfies
´8 ă z0 ď zt ď ´K for any t P r0, T s.

Proof. Assumption 1 implies

K1´p ´ pp´ 1q

ż T

t
volsds ą 0 or K1´p ´ pp´ 1qvolpT ´ tq ą 0,

for t P r0, T s. Therefore, zt ă 0 on r0, T s. Non-negativity of vol and vol imply that z
is increasing. One can check by differentiation that z of (29) satisfies (31) and z of (30)
satisfies (32).

The standard way to obtain the minimal supersolution of a BSDE with a singular terminal
condition is approximation from below, i.e., we truncate the terminal condition ξ to ξ ^ n,
solve the resulting BSDE and let n Õ 8. Therefore, the treatment of singular terminal
values requires the solution of the same BSDE with bounded/integrable terminal values.
The next proposition addresses such terminal values:
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Proposition 3.1. Suppose that Assumption 1 holds. Furthermore assume:

• ξ` P LϱpΩq for some ϱ ą 1,

• ξ´ ď K where K is the constant appearing in Assumption 1.

Then BSDE (25) has a unique solution pY,Mq such that Y ´ is bounded and

E

˜

sup
tPr0,T s

|Y `
t |ϱ ` rM s

ϱ{2
T

¸

ă `8.

Moreover if ξ` is bounded, Y is also bounded.

In the Brownian setting, M is replaced by
ş¨

0 ZsdWs and

rM sT “

ż T

0
|Zs|2ds.

Proof. Recall that the generator y ÞÑ ´volt|y|p is not monotone. However, if the negative
part Y ´ of the solution is bounded by some constant c1 ą 0, that is, if Y is bounded from
below by ´c1, then we can replace the generator pt, yq ÞÑ ´volt|y|p by a monotone continuous
generator defined as follows:

rf´c1ps, yq “ ´volt|y|p1yě´c1 ` voltc
p´1
1 ppy ` pp´ 1qc1q1yă´c1 . (33)

This generator is indeed monotone since

py ´ y1qp rf´c1pt, yq ´ rf´c1pt, y1qq ď pvoltc
p´1
1 py ´ y1q2

for any t, y, y1. Since Y ě ´c1,

Yt “ ξ `

ż T

t
fps, Ysqds´ pMT ´Mtq “ ξ `

ż T

t

rf´c1ps, Ysqds´ pMT ´Mtq.

Furthermore, by Assumption 1, vol belongs to L1p0, T q almost surely. These imply that
the uniqueness result for BSDE driven by a monotone generator ([19, Proposition 5.24] or
[15, Lemma 5]) apply in our current setting; therefore, if it exists and if its negative part is
bounded, the solution of (25) is unique.

We know from Lemma 1 that the process z is bounded from below by z0 ă 0. Consider
the generator rfz0 and the BSDE

Yt “ ξ `

ż T

t

rfz0ps, Ysqds´ pMT ´Mtq. (34)

Since rfz0 is monotone with respect to y and since vol P L1p0, T q, BSDE (34) has a unique
solution pY,Mq (see again [19, Proposition 5.24] or [15, Theorems 1 and 2]). Note that for
ξ “ ´K, the solution is pz, 0q. Since ξ ě ´K, the comparison principle ([15, Proposition 4]
or [19, Proposition 5.33]) states that Yt ě zt ě z0 a.s. for any t. In other words pY,Mq is a
solution of the BSDE (25), and this achieves the proof of the proposition.
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Remark 1 (On the negative part of Y ). Itô-Tanaka formula (applied to y ÞÑ y´ and Y )
implies that Y ´ is a subsolution of the BSDE

Ut “ ξ´ `

ż T

t
vols|Us|p1Usě0ds´

ż T

t
dNs (35)

The generator rf : pt, yq ÞÑ volty
p1yě0 is not monotone. However, it is increasing and

positive. From Lemma 1, pU˚, V ˚q “ p´z, 0q is a bounded supersolution of this BSDE.
Following [8], we deduce the existence of a minimal bounded supersolution pU,Nq which is
also bounded and non-negative (see [8, Theorems 3.3 and 4.1]). Using again rfz0, we deduce
that pU,Nq in fact is the unique solution of the BSDE (35). Therefore, assumptions in the
previous proposition can be replaced by the existence of a supersolution to the BSDE (35).
In other words, these assumptions are sufficient to obtain a supersolution, but not necessary.
As a by-product of these calculations, we obtain a better bound: 0 ď Y ´

t ď Ut ď ´zt. almost
surely for any t P r0, T s.

Remark 2 (On the positive part of Y ). Consider the BSDE

Υt “ ξ` `

ż T

t
vols r´pΥs ´ Usqp ` pUsqps1Υsě0ds´ pMT ´ Mtq

“ ξ` `

ż T

t
f̂ps,Υsqds´ pMT ´ Mtq,

where U is the solution of (35). U is bounded by K and Byf̂ps, yq ď pvolsK
p´1 imply that

the driver f̂ is monotone:

py ´ y1qpf̂pt, yq ´ f̂pt, y1qq ď pvoltK
p´1py ´ y1q2

and the existence and uniqueness of the solution holds, if ξ` belongs to some space LϱpΩq.
Define Y “ Υ ´ U and M “ M ´N :

Yt “ Υt ´ Ut “ ξ` ´ ξ´ `

ż T

t
pf̂ps,Υsq ´ rfps, Usqqds

´ pMT ´NT ´ Mt `Ntq

“ ξ ´

ż T

t
volspΥs ´ Usqpds´ pMT ´Mtq.

Hence, pY,Mq solves the BSDE (25) and 0 ď Y `
t ď Υt holds almost surely for t P r0, T s.

Another estimate can be obtained using the Itô-Tanaka formula since

pYtq
` “ ξ` ´

ż T

t
volspYsqp1Ysě0ds´

ż T

t
1Ysě0dMs ´

1

2

ż T

t
dLY

s .

If rΥ solves the BSDE with monotone generator

rΥt “ ξ` ´

ż T

t
volsprΥsqp1

rΥsě0
ds´

ż T

t
d ĂMs,

the comparison principle implies that a.s. for any t, Y `
t ď rΥt.
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Our main result on the BSDE (25) when its terminal condition is singular is the following:

Proposition 3.2. Suppose ξ´ ď K and Assumptions 1 and 2 hold. Assume that the filtration
F is left-continuous at time T . Then there exists a minimal4 supersolution pY min,Mminq to
the BSDE (25) with terminal condition ξ such that Y min has a left-limit at time T and the
negative part of this minimal supersolution is bounded.

Several points: there is no condition on ξ` , the only condition on ξ´ is ξ´ ď K, in
particular, the terminal condition (23) arising from the stochastic optimal control problem
satisfies the conditions of this proposition. Condition (28) implies that vol should remain
away from zero close to T .

Proof. The proof proceeds parallel to that of [16, Proposition 3]. Let us consider for any
n ě 0

ξn “ ξ ^ n.

The solution pY n,Mnq of

Y n
t “ ξn ´

ż T

t
vols|Y n

s |pds´ pMn
T ´Mn

t q,

has the same upper bound U “ ´z for the negative part pY nq´ for any n. Using the
comparison principle for monotone BSDE, arguing as in [16] gives

Y n Õ Y.

From Remark 2, Y n ď Υn with

Υn
t “ pξ` ^ nq ´

ż T

t
volspΥn

s qp1Υn
s ě0ds´ pNn

T ´Nn
t q.

From [16, Lemma 1], we have

Υn
t ď

1

pT ´ tqpp
E

«

ż T

t

ˆ

pp´ 1

vols

˙

pp´1

ds

ˇ

ˇ

ˇ

ˇ

Ft

ff

for any t P rT ´ ϵ, T s, almost surely. Therefore, from (28), Y n
t , T ´ ϵ ď t ă T , is finite and

bounded in LςpΩq uniformly with respect to n. In particular, for any ϵ1 ă ϵ, there exists a
constant C such that for any n,

E
`

|Y n
T´ϵ1 |

ς
˘

ď C.

Stability result for BSDE ([19, Theorem 5.10]) shows that pY n,Mnq converges to pY,Mq:

lim
nÑ`8

E

˜

sup
tPr0,T´ϵ1s

|Y n
t ´ Yt|

ς ` rMn ´M s
ς{2
T´ϵ1

¸

“ 0.

Thus pY,Mq solves (25): for any 0 ď t ď r ă T

Yt “ Yr ´

ż r

t
vols|Ys|pds´ pMr ´Mtq.

4among all supersolutions with bounded negative part
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Moreover Y ´ ď U . And since the filtration is left-continuous at time T , we obtain that a.s.

lim inf
tÑT

Yt ě ξ.

Finally, minimality can be obtained as in the proof of [16, Proposition 4]. If prY , ĂMq is
another supersolution, we add to both solutions rY and Y n the quantity ´z and the same
arguments on rY ´ z and Y n ´ z lead to a.s. rY ´ z ě Y n ´ z.

The only remaining problem is the existence of a limit at time T . Compared to [21,
Theorem 2.1], the novelty is the negative part of Y min or of Y n, which approximates Y min.
To deal with the negative part, we can apply the arguments of the proof of [21, Theorem
2.1] using the function

Θpyq “

ż 8

y

1

1 ` |w|p
dw

(Θ can be defined in terms of the hypergeometric functions):

ΘpYtq “ E rΘpξq|Fts ` ψ`
t ´ ψ´

t

where ψ` and ψ´ are two non-negative supermartingales such that ψ` converges a.s. to zero.
To obtain this result, we crucially use that the negative part of Y n is bounded uniformly
with respect to n and also that the martingale Nn “

ş

1Y nď0dM
n is uniformly bounded in

the sense that there exists a constant C such that for any n

E rNns
2
T ď C.

To obtain this last inequality, the Itô-Tanaka formula for pY nq´ is applied (see Remark 1
and Equation (35)). Since the negative part of ξ is bounded, a apriori estimate for BSDE
([19, Proposition 5.7] or [15, Proposition 2]) leads to this uniform estimate on Nn. The
other arguments can be copied from the proof of [21, Theorem 2.1] with straightforward
modifications. This achieves the proof.

Our next task is to relate the solution/minimal supersolution of the BSDE (25) to the
solution of the stochastic optimal control problem (13).

3.1 Solution of the quadratic stochastic optimal control problem

The goal of this subsection is to relate the minimal supersolution of the BSDE (25) with
terminal condition (22) to the solution of the stochastic optimal control problem (13). This
will be achieved through a verification argument based on the convexity of the cost structure
of (13). The convex structure holds only for pp “ 2, for this reason in this subsection we
assume pp “ p “ 2.We deal with the case pp ‰ 2 in the next section in a Markovian framework.

For ease of reference let us restate our stochastic optimal control problem (13):

inf
QPAI,S

E
„

ż T

0

|Q1
t|
2

volt
dt` ξ|QT |2

ȷ

“ inf
QPA

E
„

ż T

0

|Q1
t|
2

volt
dt` ξ|QT |2

ȷ

; (36)

we remind the reader that in the second formulation we are using the convention (12); the
definitions of AI,S , A and vol are given Definition (2.1), (9) and (24).
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Remark 3. Under Assumption 1 on vol (with p “ 2) the Cauchy-Schwarz inequality implies

sup
tPr0,T s

|Qt ´Q0|2 “ sup
tPr0,T s

ˇ

ˇ

ˇ

ˇ

ż t

0
Q1

sds

ˇ

ˇ

ˇ

ˇ

2

ď

ˆ
ż T

0
volsds

˙ ˆ
ż T

0

|Q1
s|2

vols
ds

˙

ď
1

K

ˆ
ż T

0

|Q1
s|2

vols
ds

˙

.

Hence if Q P AI,S, E suptPr0,T s |Qt ´Q0|2ϱ ă `8. In particular

|QT |2 ď 2|Q0|2 ` 2
1

K

ˆ
ż T

0

|Q1
s|2

vols
ds

˙

.

Hence for any bounded ξ, the integrability condition in Definition 2.1 is equivalent to

E

«

ˆ
ż T

0

|Q1
s|2

vols
ds

˙ϱ
ff

ă `8.

Our goal is to prove the following result:

Proposition 3.3. Suppose p “ pp “ 2. Suppose Assumptions 1 and 2 hold, suppose ξ´ ď K
and let pY min,Mminq be the minimal supersolution of (25), (22). Then

Q˚
t “ Q0 exp

ˆ

´

ż t

0
Y min
s volsds

˙

, t P r0, T q, (37)

(equivalently, pQ˚q1
t “ ´Y min

t voltQ
˚
t ) is the optimal state process for the stochastic optimal

control problem (36). Moreover the value function of (36) at time t, namely

inf
QPAI,Sptq

E
„

ż T

t

|Q1
s|2

vols
ds` ξ|QT |2

ˇ

ˇ

ˇ

ˇ

Ft

ȷ

,

is given by V pt, qq “ q2Y min
t (AI,Sptq is defined by Definition 2.1, but the process Q starts

at time t from the deterministic position q).

The proof directly follows from the next two lemmas and is given at the end of this
subsection. Let’s call J the expression inside the min in (36): for v “ Q1

Jpvq “

ż T

0

v2t
volt

dt` ξ

ˆ

Q0 `

ż T

0
vtdt

˙2

.

We start with the following observation:

Lemma 2. If

ξ´

ż T

0
voltdt ă 1 (38)

almost surely, then the functional v ÞÑ Jpvq is strictly convex. The Gâteaux derivative of J
at point v in direction w, is given by

xDJpvq, wy “ 2

ż T

0

vtwt

volt
dt` 2ξ

ˆ

Q0 `

ż T

0
vtdt

˙ ˆ
ż T

0
wtdt

˙

.
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Remark 4. Assumption 1 with p “ pp “ 2 and ξ´ ď K imply (38).

Proof. Taking v and rv and θ P r0, 1s, we have

Jpθv ` p1 ´ θqrvq ´ θJpvq ´ p1 ´ θqJprvq

“ ´θp1 ´ θq

«

ż T

0

pvt ´ rvtq
2

volt
dt` ξ

ˆ
ż T

0
pvt ´ rvtqdt

˙2
ff

ď ´θp1 ´ θq

«

ż T

0

pvt ´ rvtq
2

volt
dt´ ξ´

ˆ
ż T

0
pvt ´ rvtqdt

˙2
ff

ď θp1 ´ θq

„

´1 ` ξ´

ż T

0
voltdt

ȷ
ż T

0

pvt ´ rvtq
2

volt
dt ď 0.

We use the Cauchy-Schwarz inequality for the inequality. Now for any ϵ ą 0 and v and w

1

ϵ
pJpv ` ϵwq ´ Jpvqq

“ 2

ż T

0

vtwt

volt
dt` ϵ

ż T

0

w2
t

volt
dt

` 2ξ

ˆ

Q0 `

ż T

0
vtdt

˙ ˆ
ż T

0
wtdt

˙

´ ϵξ

ˆ
ż T

0
wtdt

˙2

.

Letting ϵ to zero gives the desired formula.

The last intermediate result we need is a version of Proposition 3.3 where ξ is bounded.

Lemma 3. Suppose ξ is bounded. If pY,Mq is the solution of (25) with terminal condition
YT “ ξ, then the optimal state process Q˚ (resp. optimal control v˚ “ pQ˚q1) of (36) is given
by

Q˚
t “ Q0 ´

ż t

0
pYsvolsqQ˚

sds presp. ´ YsvolsQ
˚
s q.

Moreover, Y0pQ0q2 is the value function of the control problem.

Proof. Note that for bounded ξ, the BSDE (25) with terminal condition YT “ ξ has a unique
solution and it equals the minimal supersolution: Y “ Y min,M “ Mmin. Since ξ is bounded,
from Proposition 3.1, Y is bounded and for any ϱ ą 1

E
ˆ

rM s

ϱ
ϱ´1

T

˙

ă `8.

Thus

Q˚
t “ Q0 exp

ˆ

´

ż t

0
Ysvolsds

˙

is also bounded and from Assumption 1

ż T

0

pv˚
s q2

vols
ds “

ż T

0
volspYsQ

˚
s q2ds

is bounded. Thus Q˚ is in AI,S .
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Let Q be in AI,S with Lϱ-integrability, and define v “ Q1, w “ v˚ ´ v and pQ “
ş

0wsds.
If

Nt
.
“ 2YtQ

˚
t “ ´2

v˚
t

volt
,

integration by parts gives:

Nt “ 2Y0Q0 ` 2

ż t

0
Q˚

svolspYsq2ds´

ż t

0
2YsYsvolsQ

˚
sds` 2

ż t

0
Q˚

sdMs “ 2

ż t

0
Q˚

sdMs.

Hence N and
ş

pQ˚q2dM are martingales (since Q˚ is bounded). Moreover

ż T

0
p pQsQ

˚
s q2drM ss ď C sup

tPr0,T s

p pQsq2rM sT ;

this and 3 imply

E
ż T

0
p pQsQ

˚
s qdrM ss ď C

«

E sup
tPr0,T s

p pQsq2ϱ

ff
1
ϱ „

E rM s

ϱ
ϱ´1

T

ȷ

ϱ´1
ϱ

ă `8.

Hence
ş

pQQ˚dM is also a martingale.
Now integration by parts implies:

ż T

0
wt

2v˚
t

volt
dt “

ż T

0

pQtdNt ´NT
pQT “

ż T

0

pQtdNt ´ 2ξq˚
T

pQT .

This and Lemma 2 give

xDJpv˚q, wy “

ż T

0

pQtdNt “ 2

ż T

0

pQtQ
˚
t dMt,

which is a martingale. With the convexity of J we obtain

EpJpv˚q ´ Jpvqq ď ExDJpv˚q, v˚ ´ vy “ 0.

Therefore, v˚ is the optimal control (unique from the strict convexity of J). Itô’s formula
applied to YtpQ

˚
t q2 gives

dpYtpQ
˚
t q2q “ pQ˚

t q2voltpYtq
2dt` pQ˚

t q2dMt ` 2Ytq
˚
t p´Ytvoltq

˚
t qdt

“ ´voltpQ
˚
t Ytq

2dt` pQ˚
t q2dMt “ ´

pv˚
t q2

volt
dt` pQ˚

t q2dMt.

Since
ş

pQ˚q2dM is a martingale,

YtpQ
˚
t q2 “ E

„
ż T

t

pv˚
s q2

vols
ds` ξpQ˚

T q2
ˇ

ˇ

ˇ

ˇ

Ft

ȷ

.

In other words YtpQ
˚
t q2 is the value function of the control problem.

We now give
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Proof of Proposition 3.3. For N “ 2Y minQ˚, one can use arguments parallel to those in the
proof of the previous lemma to show that N is a martingale on r0, T q. Since pY minq´ is
bounded (by K) we have

exp

ˆ

´

ż t

0
Y min
s volsds

˙

ď exp

ˆ
ż t

0
pY min

s q´volsds

˙

ď exp

ˆ

K

ż t

0
volsds

˙

.

This and Assumption 1 imply that Q˚ is also bounded. Since pY minq´ is also bounded, the
martingale N is bounded from below. Therefore, the limit at time T of N exists in R and

Q˚
t “

Nt

2Y min
t

tends to zero a.s. on the set S “ tξ “ `8u, since limtÑT Y
min
t 1S “ `8.

Now we apply Itô’s formula to Y minpQ˚q2: for any 0 ď t ď r ă T

Y min
t pQ˚

t q2 “ Y min
r pQ˚

r q2 ´

ż r

t
pQ˚

s q2volspY min
s q2ds

´

ż r

t
Y min
s 2pQ˚

s qp´Y min
s volsQ

˚
s qds´

ż r

t
pQ˚

s q2dMmin
s

“ Y min
r pQ˚

r q2 `

ż r

t

pv˚
s q2

vols
ds´

ż r

t
pQ˚

s q2dMmin
s

with v˚
s “ ´volsY

min
s Q˚

s . Taking the conditional expectation we get

Y min
t pQ˚

t q2 “ E
„

Y min
r pQ˚

r q2 `

ż r

t

pv˚
s q2

vols
ds

ˇ

ˇ

ˇ

ˇ

Ft

ȷ

.

By the the monotone convergence theorem

lim inf
rÑT

E
„

ż r

t

pv˚
s q2

vols
ds

ˇ

ˇ

ˇ

ˇ

Ft

ȷ

“ E
„

ż T

t

pv˚
s q2

vols
ds

ˇ

ˇ

ˇ

ˇ

Ft

ȷ

.

And by Fatou’s lemma (pY minq´ is bounded)

lim inf
rÑT

E
„

Y min
r pQ˚

r q2
ˇ

ˇ

ˇ

ˇ

Ft

ȷ

ě E
„

lim inf
rÑT

pY min
r pQ˚

r q2q

ˇ

ˇ

ˇ

ˇ

Ft

ȷ

.

Recall the definition of N “ 2Y minQ˚ and that the limit of N at time T exists in R. Moreover
limrÑT Q

˚
r “ 0 “ Q˚

T , when limrÑT Y
min
r “ `8. Therefore, if limrÑT Y

min
r “ `8, then

lim inf
rÑT

pY min
r pQ˚

r q2q “ lim inf
rÑT

pNrq lim
rÑT

Q˚
r “ 0 “ ξpQ˚

T q2

(with the convention 8 ¨ 0 “ 0). If lim infrÑT Y
min
r ă `8, then

lim inf
rÑT

pY min
r pQ˚

r q2q ě ξpQ˚
T q2.

In both cases we obtain

Y min
t pQ˚

t q2 ě E
„

ż T

t

pv˚
s q2

vols
ds` ξpQ˚

T q2
ˇ

ˇ

ˇ

ˇ

Ft

ȷ

.
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Thus Y minq2 dominates the value function V p¨, qq of the constrained control problem.
Now if Q is in AI,S , it is in AI,H (no terminal constraint on QT ). Therefore, the value

function V dominates the value function of the unconstrained control problem with terminal
penalty ξ^n, for any n. Denote by Y n the solution of the BSDE (25) with bounded terminal
value Y n

T “ ξ^n. From Lemma (3), Y nq2 is the value function of the unconstrained control
problem. We deduce that for any n

Y n
t q

2 ď V pt, qq ď Y min
t q2.

Since Y n converges to Y min, we obtain that Y minq2 is the value function of the constrained
control problem and that Q˚ is the optimal state process.

Note that the value function is finite at time 0, that is

E
„

ż T

0

pv˚
s q2

vols
ds` ξpQ˚

T q2
ȷ

ď Y min
0 pQ˚

0q2 ă `8.

Using (28) and the proof of Proposition 3.2, for t ă T , Y min
t belongs to LςpΩq and we can

also deduce that

E

«

ˆ
ż T

0

pv˚
s q2

vols
ds` ξpQ˚

T q2
˙ς

ff

ă `8.

Therefore Q˚ belongs to AI,S and this achieves the proof.

3.2 Reduction to random time interval rr0, τℓ ^ T ss for It “ 1ttďτℓu

In general, PpT´ϵ ă τℓ ď T q ą 0 for any ϵ ą 0. therefore, for I “ Ip2q “ 1ttďτℓu, Assumption

2 in general doesn’t hold regardless of what Vol is. For Ip2q a natural way to deal with this
is to consider the problem on the random interval rr0, τℓ ^ T ss: for Q P AIp2q,S we have
Qt “ Qτℓ , Q

1
t “ 0 for t ą τℓ. Therefore, the stochastic optimal control problem (13) can also

be expressed as

min
QPA

E
„

ż τℓ^T

0

pQ1
tq

pp

Volt
dt`

`

´K1tτℓăT u ` 8 ¨ 1tτℓěT u

˘

Qpp
T

ȷ

. (39)

The corresponding BSDE is again (25) but with terminal condition

Yτl^T “ ξp2q “ ´K1tτℓăT u ` 8 ¨ 1tτℓěT u, (40)

and we have a BSDE with random terminal time τℓ ^ T . Note that now the dynamics of Y

is considered only on the random interval rr0, τℓ ^ T ss and I
p2q

t “ 1 on this random interval.
The next proposition (formulated in terms of a general stopping time τ) states that the

BSDE (25) has a minimal supersolution for terminal conditions of the form

Yτ^T “ ξ “ ζ1tτěT u ` ψτ1tτăT u, (41)

where τ is a stopping time and ζ, ψ are bounded from below by ´K and ψ is also bounded
from above; (40) is a special case of (41).

Proposition 3.4. Assumption 1 holds. Let ξ be as in (41). If for some ϱ ą 1

E
ż T

0
volspErζ|Fssqϱds ă `8, (42)

then the BSDE (25) with terminal condition (41) has a unique solution pY,Mq such that
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• P-a.s., on the set tt ě τ ^ T u, Yt “ ξ and Mt “ 0,

• P-a.s., for all 0 ď t ď r ď T ,

Yt^τ “ Yr^τ `

ż r^τ

t^τ
vols|Ys|pds´

ż r^τ

t^τ
dMs,

• and for some constant C depending on vol, K and ϱ

E
„

|Yτ^T |ϱ `

ż τ^T

0
|Ys|ϱds` rM s

ϱ{2
τ^T

ȷ

ď CE|ξ|ϱ.

If, instead of the integrability condition (42) on ζ, the following modified version of condition
(28) holds

E

«

ż τ^T

τ^pT´ϵq

1

pvolsqppp´1qς
ds

ff

ă `8, (43)

then there exists a minimal supersolution pY min, Zminq for the BSDE (25) with terminal
condition (41).

Proof. The first part of the claim comes from [15, Proposition 6] on BSDEs with random
terminal time. Note that our terminal time τ ^T is bounded. As in the proof of Proposition
3.1, since the negative part of the data is bounded, we can modify the generator in order to
have a monotone generator (see Equation (33)).

In the singular case, we proceed by truncation. For n sufficiently large:

ξ ^ n “ pζ ^ nq1τěT ` ψτ1τăT .

Again we construct a sequence of solutions pY n,Mnq, such that pY nq is non-decreasing. It
only remains to control Y n, uniformly in n.

We define p pU, pV q as the solution with terminal condition ψτ1τăT ´ ζ´1τěT . Note that
pU is bounded. Now for any t ď s ď T we have

Y n
t^τ ´ pUt^τ “ Y n

s^τ ´ pUs^τ ´

ż s^τ

t^τ
volr

”ˇ

ˇ

ˇ
Y n
r ´ pUr ` pUr

ˇ

ˇ

ˇ

p
´

ˇ

ˇ

ˇ

pUr

ˇ

ˇ

ˇ

pı

dr

´

ż s^τ

t^τ
pdMn

r ´ dpVrq.

Hence Υn “ Y n ´ pU solves the BSDE with terminal condition pζ` ^ Lq1τěT and generator

gps, yq “ ´vols

”
ˇ

ˇ

ˇ
y ` pUs

ˇ

ˇ

ˇ

p
´ | pUs|p

ı

.

Once again, the map y ÞÑ gps, yq is not monotone on R. But since the negative part of
the data is bounded, we can modify g on p´8,´c1q, such that g becomes monotone (see
Equation (33)). And again by the comparison principle, Υn is non-negative.

To control Υn, we again follow the arguments of [16, Lemma 1]. Young’s inequality
implies that for any y ě 0 and c ě 0

ˇ

ˇ

ˇ
y ` pUs

ˇ

ˇ

ˇ

p
ě

pp

pp´ 1
cp´1py ` pUsq ´

cp

pp´ 1
.
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Recall that pp is the Hölder conjugate of p. Thus with cp´1 “ ppp´ 1q{pvolspT ´ sqq

gps, yq ď ´
pp

T ´ s
y `

ˆ

pp´ 1

vols

˙

pp´1 ˆ

1

T ´ s

˙

pp

´
pp

T ´ s
pUs ` vols| pUs|p.

Since Υn
T^τ “ 0 if τ ă T , explicit solution for linear BSDE and comparison principle imply

that for t ă T

Υn
τ^t ď

1

pT ´ τ ^ tqpp
E

«

ż T^τ

t^τ

ˆ

pp´ 1

vols

˙

pp´1

ds

ˇ

ˇ

ˇ

ˇ

Fτ^t

ff

`
1

pT ´ τ ^ tqpp
E

„
ż T^τ

t^τ
pT ´ sqpp´1rvolspT ´ sq| pUs|p ´ pppUssds

ˇ

ˇ

ˇ

ˇ

Fτ^t

ȷ

.

This uniform bound on Υn, thus on Y n, allows us to define the solution of the BSDE with
terminal time τ ^ T and a singular terminal condition.

For τ “ τℓ we have vol “ Vol and for the existence of a minimal supersolution Vol
must satisfy (43). The next proposition connects the value function of (39) to the minimal
supersolution pY min,Mminq whose existence was derived above.

Proposition 3.5. Suppose Vol satisfies (43) with pp “ 2. Let pY min,Mminq be the minimal
supersolution of (25) and (40). For any t P r0, T q,

Q˚
t “ Q0 exp

ˆ

´

ż t

0
Y min
s volsds

˙

,

(equivalently, pQ˚q1
t “ ´Y min

t voltQ
˚
t ) is the optimal control for the stochastic optimal control

problem (39). Moreover the value function of the same control problem at time t equals
Y min
t q2.

Proof. Following the arguments of the proof of Proposition 3.3, we have that for any 0 ď

t ď r ă T :

Y min
τℓ^tpQ

˚
τℓ^tq

2 “ Y min
τℓ^rpQ˚

τℓ^rq2 `

ż τℓ^r

τℓ^t

pv˚
s q2

vols
ds´

ż τℓ^r

τℓ^t
pQ˚

s q2dMmin
s

with v˚ “ pQ˚q1. Taking the conditional expectation and passing to the limit on r, we obtain

Y min
τℓ^tpQ

˚
τℓ^tq

2 ě E
„

ż τℓ^T

τℓ^t

pv˚
s q2

vols
ds` ξpQ˚

τℓ^T q2
ˇ

ˇ

ˇ

ˇ

Ft

ȷ

.

The rest of the proof continues as that of Proposition 3.3.

3.3 Reduction to time interval r0, T ´δs for pI,Sq “ pIp3q,Sp3qq and pIp4q,Sp4qq

As already noted, for I “ Ip3q and I “ Ip4q, Assumption 2 doesn’t hold in general since both

I
p3q

t and I
p4q

t can be zero for t arbitrarily close to T . However, in both of these cases the
problem can be reduced to the time interval r0, T ´ δs where this assumption is no longer
needed.

Both pI,Sq “ pIp3q,Sp3qq and pI,Sq “ pIp4q,Sp4qq consist of two phases: before and after
time T ´ δ, the reason for this was explained in the paragraph following (16). In both cases
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the trading process for Ip3q and Ip4q proceeds exactly as in Ip2q after time T ´ δ: if the
algorithm is in trading mode at time T ´ δ, the position is fully closed only when the price
remains above ℓ throughout the interval rT ´ δ, T s; trading stops (and doesn’t restart) if the
price hits ℓ. This implies that the stochastic optimal control problem (36) can be written as

inf
QPA

E
„

ż T´δ

0

|Q1
t|

pp

volt
dt` I

pjq

T´δV
8
T´δ ´ p1 ´ I

pjq

T´δqK|QT´δ|pp

ȷ

(44)

where V 8
T´δ is the value function of the stochastic optimal control problem corresponding

to pI2,Sp2qq on the time interval rrT ´ δ, T ^ τT´δ,ℓss with initial position QT´δ. For p̂ “

2, we know by Proposition 3.5 that V 8
T´δ “ Qpp

T´δY
8,T´δ
T´δ where Y 8,T´δ is the minimal

supersolution of the BSDE (25) on the time interval rrT ´ δ, τT´δ,ℓ ^ T ss with terminal
condition

ζ “ ´K1tτT´δ,ℓăT u ` 8 ¨ 1tτT´δ,ℓěT u.

Existence of Y 8,T´δ follows from Proposition 3.4. Then for pp “ 2, (44) can be written as

inf
QPA

E
„

ż T´δ

0

|Q1
t|

pp

volt
dt` ξ|QT´δ|pp

ȷ

with terminal cost factor
ξ “ I

pjq

T´δY
8,T´δ
T´δ ´ p1 ´ I

pjq

T´δqK. (45)

Y 8,T´δ
T´δ is FT´δ-measurable and belongs to LςpΩq. Now consider the solution pY,Mq of

the BSDE (25) on the time interval r0, T ´ δs with the FT´δ-measurable terminal condition
ξ of (45). Define

Y min
t “

#

Yt if t ă T ´ δ

Y 8,T´δ
t IT´δ if t ě T ´ δ.

Lemma 4. Suppose pp “ p “ 2. For any t P r0, T q,

Q˚
t “ Q0 exp

ˆ

´

ż t

0
Y min
s volsds

˙

,

(equivalently, v˚
t “ ´Y min

t voltQ
˚
t ) is the optimal control for the stochastic optimal control

problem corresponding to pI, Sq “ pIp3q, Sp3qq or pI, Sq “ pIp4q, Sp4qq. Moreover, the value
function of the same control problem at time t equals q2Y min

t .

Proof. From our previous arguments, we know that if v˚
t “ ´YtvoltQ

˚
t is the derivative of

Q˚
t , with starting point Q0, then for any other strategy v we have

Y0pQ0q2 “ E
„

ż T´δ

0

pv˚
s q2

vols
ds` ξpQ˚

T´δq2
ȷ

ď E
„

ż T´δ

0

pvsq2

vols
ds` ξpQv

T´δq2
ȷ

. (46)

Now let us define for t ě T ´ δ

Q8,T´δ
t “ Q˚

T´δ ´

ż t

T´δ
Y 8,T´δ
s volsQ

8,T´δ
s ds
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and v8,T´δ “ ´Y 8,T´δvolQ8,T´δ. From Proposition 3.5, Y 8,T´δpQ8,T´δq2 is the value
function of the related control problem starting at time T ´ δ from Q˚

T´δ:

Y 8,T´δ
T´δ pQ˚

T´δq2 “ E

«

ż τT´δ,ℓ^T

T´δ

pv8,T´δ
s q2

vols
ds` ζpQ8,T´δ

τT´δ,ℓ^T q2
ˇ

ˇ

ˇ

ˇ

FT´δ

ff

ď E
„

ż τT´δ,ℓ^T

T´δ

pvT´δ
s q2

vols
ds` ζpQv,T´δ

τT´δ,ℓ^T q2
ˇ

ˇ

ˇ

ˇ

FT´δ

ȷ

(47)

for any process Qv,T´δ with derivative vT´δ starting at time T ´ δ from Q˚
T´δ. Multiplying

this equality by IT´δ, we obtain

ξpQ˚
T´δq2 “ IT´δY

8,T´δ
T´δ pQ˚

T´δq2 ´ p1 ´ IT´δqk{2pQ˚
T´δq2

“ E

«

ż τT´δ,ℓ^T

T´δ

pIT´δv
8,T´δ
s q2

vols
ds` IT´δζpQ8,T´δ

τT´δ,ℓ^T q2
ˇ

ˇ

ˇ

ˇ

FT´δ

ff

´Kp1 ´ IT´δqpQ˚
T´δq2.

If for t ě T ´ δ

Q˚
t “ Q˚

T´δ ´

ż t

T´δ
IT´δY

8,T´δ
s volsQ

˚
sds,

we have

Q˚
t “

#

Q8,T´δ
t if IT´δ “ 1

Q˚
T´δ if IT´δ “ 0

and therefore

ξpQ˚
T´δq2 “ E

„
ż τT´δ,ℓ^T

T´δ

pv˚
s q2

vols
ds` ζpQ˚

τT´δ,ℓ^T q2
ˇ

ˇ

ˇ

ˇ

FT´δ

ȷ

.

From (46) and (47), we deduce the optimality of the defined process Q˚.

4 PDE Analysis

In this section, we will assume the price process to be Markovian and the cost structure to
be a function of the price process; under these assumptions, our goal is to relate the value
function of the stochastic optimal control problem (13) to a PDE version of the BSDE for
the four choices of I and S given in (14)-(17).

As noted in the introduction, we assume the price process S̄ to be driven by a stochastic
volatility model:

S̄t “

ż t

0

?
νtdW

p1q

t ,

where νt is the stochastic volatility process:

dνt “ αpθ ´ νtqdt` c
?
νtdW

p2q

t ; (48)

W “ pW p1q,W p2qq is a Brownian motion in R2 (W
piq
1 , i “ 1, 2, have unit variance, but they

are correlated with coefficient ρ). We assume that the Feller condition, 2αθ ą c2, ensuring a
positive process ν holds. Let L denote the second-order differential operator corresponding
to these dynamics:

Lu “
1

2
νB2

ssu`
1

2
νc2B2

ννu` αpθ ´ νqBνu` cνρB2
sνu. (49)
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The variables pν, sq belong to D “ p0,`8q ˆ R.
To get a PDE representation we take η and Vol processes to be functions of pν, S̄q. With

a slight abuse of notation, we assume the market volume process to be t ÞÑ Volpt, νt, S̄tq
where Vol : r0, T s ˆ D Ñ R` is a non negative valued function; similarly the transaction
cost process is t ÞÑ ηpt, νt, S̄tq where η : r0, T s ˆ D Ñ p0,`8q is a strictly positive valued

function. In this section we still use (11) and (24), we denote by Vol the quantity ĄVol, and
will use the assumption (27) on vol:

0 ď volpt, s, νq ď vol, Kp´1Tvol ă
1

p´ 1
(50)

where K “ k{pp and k is the constant in the permanent impact given by (2).

4.1 PDE representation for I “ 1,S “ tS̄T ě ℓu

In this subsection we assume I “ 1, i.e., volt “ ppp ´ 1qVolt. Let us consider terminal values
of the form

ξ “ ΦpνT , S̄T q; (51)

where
Φ : D Ñ r´K,8s (52)

is a measurable function. By (23), the choice S “ tS̄T ě ℓu corresponds to the Φ function

Φ “ Φp1qpsq “ ´
k

pp
1p´8,ℓqpsq ` 8 ¨ 1rℓ,8qpsq.

Under the Markovian assumptions of the present section, and for I “ 1 the BSDE (25) and
the terminal condition (51) correspond to the following PDE: for any pν, sq P D and t P r0, T q

Btu` Lu´ volt|u|p “ 0. (53)

with the terminal constraint
upT, ¨, ¨q “ Φ. (54)

Our goal, under the Markovian assumptions of the present section, is to prove that the value
function of the stochastic optimal control problem (13) with I “ 1 and S “ Sp1q can be
expressed as a multiple of the unique solution of this PDE with terminal condition Φ “ Φp1q.
To express the value function as a solution to the above PDE, we first extend the stochastic
optimal control problem (13) to allow it to start from any time point t. Accordingly, we
define

S̄t,ν,s
r “ s`

ż r

t

b

νt,ν,su dW p1q
u ,

νt,ν,sr “ ν `

ż r

t
αpθ ´ νt,ν,su qdu`

ż r

t
c

b

νt,ν,su dW p2q
u ,

ξ “ Φpνt,ν,sT , S̄t,ν,s
T q, volt,ν,su “ volpu, νt,ν,su , S̄t,ν,s

u q.

Under our assumptions on Vol and Φ, Proposition 3.2 implies that the following BSDE has
a unique minimal supersolution:

Y t,ν,s
r “ ξ ´

ż T

r
volt,ν,sv

ˇ

ˇY t,ν,s
v

ˇ

ˇ

p
dv ´

ż T

r
Zt,ν,s
v dWv;
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set
uΦpt, ν, sq :“ Y t,ν,s

t . (55)

As we already noted, our goal in this subsection is to prove that uΦ is the minimal
supersolution (or the unique solution if Φ is finite) of the PDE (53) for any Φ of the form
(52) (and in particular for Φ “ Φp1q). Our first step in this direction is the following:

Lemma 5. If Φ is continuous and with polynomial growth on D and if vol is also continuous
on r0, T s ˆ D, then uΦ is a continuous function of pt, ν, sq P r0, T s ˆ D and is the unique
viscosity solution of the PDE (53) with polynomial growth on D.

Proof. See [19, Theorem 5.37] or [5, Theorems 3.4 and 3.5] (see also [22]). If Φ is bounded,
the solution Y t,ν,s and thus u are also bounded. Hence our generator is Lipschitz continuous.

If Φ satisfies ´k{pp “ ´K ď Φps, νq ď Kp1 ` |ν|m ` |s|mq, then ξ` satisfies the condition
imposed in Proposition 3.1. Thus Y t,ν,s and thus u are bounded from below, and we can
modify our generator such that it becomes monotone (see the proof of Proposition 3.1). Then
existence and uniqueness follow from [19, Theorem 5.37] (this result is stated for pν, sq P R2

in [19] but all arguments continue to work when pν, sq P D).

Now suppose that Φ is a continuous function from D to r´k{pp,`8s. We use the proof
of Proposition 3.2. For any n ě 0, we consider the bounded function Φn “ Φ ^ n. By the
previous lemma there exists a unique bounded viscosity solution uΦ^n and by comparison
principle,

uΦpt, ν, sq “ lim
nÑ`8

uΦ^npt, ν, sq

is well-defined with a bounded negative part. Suppose now that for some m ě 1 and some
ϵ ą 0:

@pt, ν, sq P rT ´ ϵ, T s ˆD,
1

volpt, ν, sq
ď Cp1 ` |ν|m ` |s|mq.

Then Condition (28) holds and we have on rT ´ ϵ, T s ˆD,

uΦ^npt, ν, sq ď
1

pT ´ tqpp
E

»

–

ż T

t

˜

pp´ 1

volt,ν,sρ

¸

pp´1

dρ

fi

fl

ď
C

pT ´ tqpp´1
p1 ` |ν|m ` |s|mqpp´1. (56)

On the rest of the interval r0, T s, the bound of the solution uΦ^n is controlled by the previous
estimate with t “ T ´ ϵ. In other words we have a bound on uΦ^n which does not depend
on n. Hence u is lower semi-continuous on r0, T s ˆ D and finite (even locally bounded) on
r0, T q ˆD. These considerations give us the following result:

Lemma 6. Suppose Φ is a continuous function from D to r´k{pp,`8s; then uΦ is the
minimal viscosity solution of the PDE (53) on r0, T q ˆD (among all viscosity solutions with
bounded negative part).

Proof. See [22, Theorem 1].

The concept of a viscosity solution allows even a discontinuous solution and doesn’t
address the issue of smoothness/regularity of the solution; therefore the previous result
doesn’t say anything about the regularity of uΦ. The properties of the operator L (and
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smoothness assumptions on Vol and η) allow us to establish the smoothness of uΦ, with
a regularization bootstrap argument for parabolic PDE. (see [26, Lemma 5] for a similar
argument).

Lemma 7. Suppose that vol is continuously differentiable with respect to all of its argu-
ments. Assume that Φn is a sequence of continuous functions, converging to Φ, such that
the related (viscosity) solutions un of the PDE (53) converge pointwise to u. Then u belongs
to C1,2pr0, T q ˆDq and is a classical solution of the PDE (53).

Proof. Fix some ϵ ą 0 and K a compact subset of D. First note that from (56), the bound
of un on r0, T ´ ϵs ˆ K does not depend on the terminal value, that is on n, but only on ϵ
and K.

Moreover, the operator L can be written as follows:

Lu “
1

2
νB2

ssu`
1

2
νc2B2

ννu` αpθ ´ νqBνu` cνρB2
sνu

“
1

2
div papν, sq∇uq ` bpν, sq∇u,

with

∇upν, sq “

ˆ

Bsu
Bνu

˙

and

apν, sq “ ν

ˆ

1 cρ
cρ c2

˙

, bpν, sq “

¨

˚

˝

1

2
`
cρ

2

αpθ ´ νq `
c2

2
`
cρ

2

˛

‹

‚

.

Our coefficients a and b are bounded on K, and a is uniformly elliptic on K. Since vol is also
continuously differentiable with respect to all of their arguments, then we can easily check
that all conditions called a) (uniform ellipticity and boundedness condition), b) (growth
condition on the derivatives, take m “ 2) and c) (regularity condition) of [17, Theorem
VI.4.4] hold. From this theorem, if there exists a function ψ continuous on r0, T ´ ϵs ˆ K

and is of class H1`β{2,2`βps0, T ´ ϵrˆ
˝

Kq for some β ą 0 (space of functions which are C2

with β-Hölder continuous second derivatives in the space variable x and C1 with β{2-Hölder
continuous in the times variable t), then the PDE

Btv ` Lv ´ volt|v|p “ 0

with the boundary condition u “ ψ, has a unique solution v with the same regularity as ψ.
Now our viscosity solutions un are continuous and bounded on r0, T ´ ϵsˆK. Let us consider
a sequence of smooth mollifiers ζm and define ψm “ un ‹ ζm. There exists a classical smooth
solution un,m of the PDE (53) with boundary condition ψm and pointwise un,m converges to
un as m goes to `8. As un, the bound of un,m on r0, T ´ ϵs ˆ K does not depend on n and
m.

In the next step, we prove that un,m belongs to Hβ{2,βpr0, T ´ ϵs ˆKq (space of functions
which β-Hölder continuous in the space variable x and β{2-Hölder continuous in the times
variable t) and that the norm of un,m in this space does not depend on n and m. Note
that Conditions (1.2) and (7.1) of [17, Chapter 3] are satisfied. Suppose that v is a smooth
solution of the PDE (53) on r0, T q ˆD: for any pt, ν, sq P r0, T q ˆD

Btv ` Lv ´ volt|v|p “ 0,
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such that for any ϵ ą 0 and any compact subset K of D , v is bounded on r0, T ´ ϵs ˆ K.
Thus v solves on r0, T ´ ϵs ˆ K the PDE

Btv ` Lv “ volt|v|p “ f,

where f is a bounded function. We can apply [17, Theorem III.10.1]. Hence v is in
Hβ{2,βpr0, T ´ ϵs ˆ Kq. The value of β ą 0 and the Hölder norm of v depend on ϵ, K
and the bound on v. In other words β does not depend on the terminal value.

In the last step, we get the desired regularity. Now we know that un,m belongs to
Hβ{2,βpr0, T ´ ϵs ˆ Kq and solves the PDE

Btv ` Lv “ volt|un,m|p “ fn,m.

Since vol is also in C1pDq, then from [17, Theorem IV.10.1], un,m is in H1`β{2,2`βpr0, T ´

ϵ1s ˆ K1q for any ϵ1 ą ϵ and K1 Ă K, and the norm depends only on the Hβ-norm of fn,m.
Therefore, un, and thus u, belong to the same space5, that is on any subset r0, T ´ ϵs ˆ K,
un and u are in C1,2.

The proof also shows that the regularity of any solution does not depend on the terminal
value. In other words, far from t “ T and ν “ 0, the solutions are smooth and classical
solutions.

Let us summarize the foregoing results:

Proposition 4.1. Suppose that vol is continuously differentiable on r0, T s ˆ D, that Φ is
bounded from below by ´k{pp and that (27) holds. If one of the next conditions holds:

• Φ is continuous and with polynomial growth on D,

• Φ is continuous from D to r´k{pp,`8s and for some m ě 1 and ϵ ą 0

@pt, ν, sq P rT ´ ϵ, T s ˆD,
1

volpt, ν, sq
ď Cp1 ` |ν|m ` |s|mq,

then there exists a viscosity solution u of the PDE (53) with terminal value Φp¨, ¨q. Moreover
u is of class C1,2pr0, T q ˆ Dq and is the minimal viscosity solution (among all viscosity
solutions with bounded negative part).

Remark 5. The particular dynamics for S̄ is not important, as soon as the related operator
L regularizes the solution of the PDE.

Remark 6. Here we use the existence of a solution for the BSDE to deduce the existence of a
viscosity solution for the PDE and then we prove the regularity of the solution. The existence
of a solution for the PDE could be directly proved (without probabilistic arguments) starting
from [17, Theorem V.8.1]. The proof would involve arguments similar to those given above
because of the lack of monotonicity (see Assumption b) in [17, Theorem V.8.1] or Condition
(4.17) in [11, Chapter 7]). Hence the proof of existence of solutions using PDE arguments
will be as involved as the BSDE based approach given above.

5The Arzela-Ascoli theorem implies that un,m (up to a subsequence) converges to some function run P

Hβ{2,β
pr0, T ´ ϵs ˆ Kq. Here run “ un since pointwise convergence has been proved before.
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Let us next comment on the smoothness of u on the boundary ν “ 0, called the hyperbolic
part of the boundary. Recall that our operator L is defined by (49) and that the dynamics
of ν is given by (48). The Feller condition ensuring a positive process ν is 2αθ ą c2. Under
this condition, the Fichera function

bpνq “ αpθ ´ νq ´
1

2
c2

is positive when ν goes to zero. Hence no boundary condition has to be supplied on ν “ 0
(see for example [6]).

For the control problem, we have to consider the terminal condition

ΦℓpT, ν, ¨q “ Φℓp¨q “ 8 ¨ 1rℓ,8qp¨q ´
k

pp
1p´8,ℓqp¨q.

Note that we cannot directly apply Proposition 4.1, since Φℓ is not continuous. Nonetheless

Lemma 8. There exists a minimal viscosity solution uℓ, which is of class C1,2 on r0, T qˆD.

Proof. Indeed let us define

Φnp¨q “ n ¨ 1rℓ,8qp¨q ´
k

pp
1p´8,ℓqp¨q

and

Φn,mp¨q “ n ¨ 1rℓ,8qp¨q ´
k

pp
1p´8,ℓ´1{msp¨q

` rpn` k{ppqmp¨ ´ ℓ` 1{mq ´ k{pps1pℓ´1{m,ℓqp¨q.

Φn,m is continuous and non-decreasing with respect to m and converges to Φn. Therefore,
the related continuous viscosity solutions un,m converge to un. Arguing as in the proof of
Proposition 4.1, we obtain a uniform norm of un in the space H1`β,2`βpr0, T ´ ϵs ˆ Kq, for
any compact subset K of D. Then we pass on the limit on n to obtain the desired result.
Minimality can be obtained as for Proposition 4.1.

Next we connect the solutions of PDE obtained above to the value function of the control
problem.

Extended control problem

The L function corresponding to the permanent impact κ given by (2) is Ltpρq “ ηt|ρ|pp and
the control problem (13) is

inf
QPAI,S

E

«

ż T

0

1

Volpp´1
t

|Q1
t|

ppdt` ΦpνT , S̄T q|QT |pp

ff

. (57)

Here I ” 1 on r0, T s, with (11) and (24) with the notation Vol “ ĄVol.
For p “ 2, by Proposition 3.3, uΦpt, ν, sqq2 is the value function of the extended version

of the stochastic optimal control problem. With a slight abuse of language, we will refer
to uΦ simply as the value function of the extended stochastic optimal control problem with
terminal cost Φ|QT |pp.

These give us the main result of this subsection:
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Proposition 4.2. Suppose (50) and the conditions of Proposition 4.1 hold. uΦ is the solution
of the PDE (53) with terminal condition (54). If Φ is bounded and continuous or if Φ “ Φp1q,
then the value function of (57) is given by |q|ppuΦ and an optimal control is given by:

vpr, ν, s, qq “ ´pp´ 1qvolpr, ν, sq|upr, ν, sq|p´1sgnpupr, ν, sqqq. (58)

Proof. Since the proof is quite standard, let us provide an outline of the main arguments.
First standard computations show that for any x:

inf
v

«

xv `
1

Volpp´1
t

|v|pp

ff

“ ´ppp´ 1qVolt

ˆ

|x|

pp

˙p

and that the infimum is attained at

v˚ “ ´
Volt

pppqp´1
|x|p´1sgn pxq.

If Φ is continuous and bounded, by Proposition 4.1, u “ uΦ is of class C1,2pr0, T q ˆ Dq

and bounded and continuous on r0, T s ˆ D. Now define V pt, ν, s, qq “ |q|ppupt, ν, sq. This
function has the same regularity as u with respect to pt, ν, sq and is of class C1 with respect
to q P R. Take Q “ Qw P AI,S and w “ pQwq1 is its derivative. Then Itô’s formula leads to:
for any t ă T

V p0, ν, s,Q0q “ V pt, νt, S̄t, Q
w
t q ´

ż t

0
pBtV ` LV q pr, νr, S̄r, Q

w
r q ` BqV pr, νr, S̄r, Q

w
r qwrdr

´

ż t

0

?
νr

”

BsV pr, νr, S̄r, Q
w
r qdW p1q

r ` BνV pr, νrS̄r, Q
w
r qcdW p2q

r

ı

“ V pt, νt, S̄t, Q
w
t q `

ż t

0

”

´volr|upr, νrS̄rq|p|Qw
r |pp ´ BqV pr, νr, S̄r, Q

w
r qwr

ı

dr

´

ż t

0

?
νr

”

BsV pr, νr, S̄r, Q
w
r qdW p1q

r ` BνV pr, νrS̄r, Q
w
r qcdW p2q

r

ı

.

Note that BqV pr, ν, s, qq “ upr, ν, sqpp|q|pp´1sgn pqq. Thus

´volr|upr, νrS̄rq|p|Qw
r |pp “ ´

volr
pppqp

ˇ

ˇBqV pr, νrS̄r, Q
w
r q

ˇ

ˇ

p

“ ´ppp´ 1qVolr
|BqV pr, νrS̄r, Q

w
r q|p

pppqp

“ inf
v

«

BqV pr, νrS̄r, Q
w
r qv `

1

Volpp´1
t

|v|pp

ff

ď BqV pr, νrS̄r, Q
w
r qv `

1

Volpp´1
t

|v|pp.

Hence we obtain

V p0, ν, s,Q0q ď V pt, νt, S̄t, Q
w
t q `

ż t

0

1

Volpp´1
t

|wr|ppdr

´

ż t

0

?
νr

”

BsV pr, νr, S̄r, Q
w
r qdW p1q

r ` BνV pr, νrS̄r, Q
w
r qcdW p2q

r

ı

.
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Letting t tend to T and taking the expectation, we have

V p0, ν, s,Q0q ď E

«

|Qw
T |ppΦpνT , S̄T q `

ż T

0

1

Volpp´1
t

|wr|ppdr

ff

.

Moreover if we take

v˚
r “ ´pp´ 1qvolr|upr, ν, sq|p´1sgn pupr, ν, sqqQ˚

r ,

we have an equality. The first part of the proposition is proved.
If Φ “ Φp1q, then u “ uΦ

p1q

is not continuous at time T , but C1,2 on r0, T q ˆ D. Hence
for any t ă T :

V p0, ν, s,Q0q “ V pt, νt, S̄t, Q
˚
t q `

ż t

0

1

Volpp´1
t

|v˚
r |ppdr

´

ż t

0

?
νr

”

BsV pr, νr, S̄r, Q
˚
r qdW p1q

r ` BνV pr, νrS̄r, Q
˚
r qcdW p2q

r

ı

.

We take the expectation and we use Fatou’s lemma:

V p0, ν, s,Q0q ě E

«

lim inf
tÑT

V pt, νt, S̄t, Q
˚
t q `

ż T

0

1

Volpp´1
t

|v˚
r |ppdr

ff

“ E

«

lim inf
tÑT

´

upt, νt, S̄tq|Q˚
t |pp

¯

`

ż T

0

1

Volpp´1
t

|v˚
r |ppdr

ff

.

A direct computation shows that Nt “ Y min
t |Q˚

t |pp´1 “ upt, νt, S̄tq|Q˚
t |pp´1 is a martingale on

r0, T q. This martingale being bounded from below, it has a limit at time T . Arguing as at
the end of the proof of Proposition 3.3, we deduce that

V p0, ν, s,Q0q ě E

«

ΦpνT , S̄T q|Q˚
T |pp `

ż T

0

1

Volpp´1
t

|v˚
r |ppdr

ff

.

Using the proof of Lemma 8, we obtain a sequence of smooth functions un,m such that
|q|ppun,m is the value function of (57) with Φn,m as terminal condition. Hence

|Q0|ppun,mp0, ν, sq ď inf
QPAI,S

E

«

ΦpνT , S̄T q|QT |pp `

ż T

0

1

Volpp´1
t

|Q1
r|ppdr

ff

ď V p0, ν, s,Q0q “ |Q0|pp´1up0, ν, sq.

Passing through the limit on m Ñ `8 and then on n Ñ `8 achieves the proof of this
proposition.

An optimal state process Q˚ given by (58) can be written:

pQ˚
r q1 “ v˚

r “ ´pp´ 1qvolr|Y min
r |p´1sgn pY min

r qQ˚
r .

And our proof shows that this control is admissible and

inf
QPAI,S

E

«

ξ|QT |pp `

ż T

0

1

Volpp´1
t

|Q1
r|ppdr

ff

ď |Q0|ppY min
0 .

However, even for bounded ξ, and except in the case p “ pp “ 2, the lack of convexity prevents
us proving equality. Therefore the Markovian setting and the fact that the solution u of the
HJB equation is smooth, are crucial to extend our result to any pp ą 1.
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4.2 PDE representation for It “ 1ttďτℓu and S “ tτℓ ě T u

To get a PDE representation of the BSDE (25), (22) for It “ I
p2q

t “ 1ttďτℓu, we consider the
problem in the interval rr0, τℓ ^T ss. As discussed in subsection 3.2, the corresponding BSDE
is again (25) but with terminal condition (40). This reduced formulation of the problem
is indeed Markovian. The PDE is the same as before (53) but solved over the domain
D “ p0,8q ˆ rℓ,8q and with boundary conditions

u|r0,T qˆp0,8qˆtℓu “ ´k{pp, u|tT uˆp0,8qˆrℓ,8q “ 8. (59)

The value function up2q of the extended version of the stochastic control problem is again
defined through (55) and we have:

Proposition 4.3. up2q is the minimal viscosity solution of (53) and boundary conditions
(59). Moreover up2q is of class C1,2 on r0, T q ˆ p0,8q ˆ pℓ,8q.

The proof proceeds parallel to the arguments given in the previous section. We therefore
provide an outline. We begin by considering the case where the boundary condition is given
by

u|r0,T qˆp0,8qˆtℓu “ ψ, u|tT uˆp0,8qˆrℓ,8q “ Φ (60)

where ψ is a continuous and bounded function. If Φ is bounded and if the compatibility
constraint Φpν, ℓq “ ψpT, νq is verified, we can directly apply [19, Theorem 5.41] to obtain
the existence of a unique viscosity bounded and continuous solution u of the PDE (53) with
the boundary condition (60). The regularity inside the domain can be obtained by the
arguments of Lemma 7. If the compatibility condition does not hold, the solution still exists
but is not continuous up to the boundary. Finally, the 8 terminal condition can be handled
via approximation from below (as was done in the previous section as well as in Section 3 in
the treatment of the BSDE (25) and the singular terminal condition (22)).

Using Proposition 3.5, the value function of the control problem (39) is: V pt, ν, s, qq “

|q|2upt, ν, sq for any s ě ℓ. But the regularity of up2q also allows us to solve the control
problem (57) up to τℓ ^ T :

|Q0|ppup0, ν, sq “ min
QPAI,S

E

«

ż τℓ^T

0

1

Volpp´1
t

|Q1
t|

ppdt` Φpντℓ^T , S̄τℓ^T q|Qτℓ^T |pp

ff

.

The arguments are the same as in the proof of Proposition (4.2), where T is replaced by
τℓ ^ T .

4.3 PDE representation for It “ 1tS̄těℓu and S “ tτT´δ,ℓ ě T u

In Section 3.3, we already explain how to reduce the problem on the interval r0, T ´ δs. Let
us consider the PDE

Btu` Lu´ volt|u|p “ 0

on the set r0, T s ˆ p0,`8q ˆ rℓ,`8q, with terminal condition `8 at time T and ´k{pp on
the lateral boundary ts “ ℓu. From the previous section, there exists a unique solution u8

defined on r0, T q ˆ p0,`8q ˆ rℓ,`8q.
Following the representation given by (45), we define

rpt, s, vq “ |v|pvolt1sąℓ,

35



and solve
Btu` Lu´ rpt, s, uq “ 0 (61)

over r0, T ´ δs ˆ p0,`8q ˆ R with terminal boundary condition

gpν, sq “ u8pT ´ δ, ν, sq1sąℓ ´ pk{ppq1sďℓ.

Note that the terminal boundary condition g is bounded and continuous. Nonetheless the
free term r is not continuous at s “ ℓ.

Lemma 9. There exists a function v such that v is bounded and continuous on r0, T ´ δs ˆ

p0,`8qˆR and is a solution of class C1,2 of the PDE (61) on r0, T ´δqˆp0,`8qˆpRztℓuq.

Proof. To circumvent the discontinuity of r, let us introduce

ϕϵpsq “

ˆ

1sąℓ`ϵ `
ps´ ℓq

ϵ
1ℓăsďℓ`ϵ

˙

, rϵpt, s, vq “ |v|pvoltϕ
ϵpsq.

This function is Lipschitz continuous with respect to s, satisfies rϵ ď r and converges in-
creasingly and pointwise to r when ϵ tends to zero.

From standard arguments (see [19, Theorem 5.37]), there exists a unique bounded and
continuous viscosity solution vϵ of the PDE

Btu` Lu´ rϵpt, s, uq “ 0

with the same terminal condition g as v. Note that the bounds on vϵ do not depend on ϵ. Thus
arguing as in Lemma 7, we can prove that vϵ is of class C1,2 on r0, T ´δq ˆ p0,`8q ˆ pRztℓuq

with a norm independent of ϵ.
The comparison principle shows that vϵ is a decreasing sequence and thus we can define

v‹ as the decreasing limit of vϵ as ϵ tends to zero. We obtain immediately that v‹ is bounded
and upper semi-continuous and is a viscosity subsolution of PDE (61) (well-known result on
stability for viscosity solutions [7]).

The only remaining point concerns the continuity of v‹ on the set ts “ ℓu. Let us define
another approximating sequence wϵ defined as the solution of PDE (61) where r is replaced
by rrϵ:

ψϵpsq “

ˆ

1sąℓ `
ps´ ℓq

ϵ
1ℓ´ϵăsďℓ

˙

, rrϵpt, s, vq “ |v|pvoltψ
ϵpsq.

As vϵ, wϵ converges to v‹, which is lower semi-continuous and is a viscosity supersolution
of PDE (61). Moreover by comparison principle, wϵ ď v‹ ď v‹ ď vϵ. Comparing sub- and
supersolution implies that v‹ “ v‹ (standard result for viscosity solution). Let us prove this
statement in our case. For any pν, sq we have

vϵpt, ν, sq ´ wϵpt, ν, sq “ Y ϵ,t,ν,s
t ´ rY ϵ,t,ν,s

t

“ Y ϵ,t,ν,s
T´δ ´ rY ϵ,t,ν,s

T´δ ´

ż T´δ

t
rϵpu, S̄t,ν,s

u , Y ϵ,t,ν,s
u q ´ rrϵpu, S̄t,ν,s

u , rY ϵ,t,ν,s
u qdu

´

ż T´δ

t
pZϵ,t,ν,s

u ´ rZϵ,t,ν,s
u qdWu

“ ´

ż T´δ

t
volpu, νt,ν,su , S̄t,ν,s

u qϕϵpS̄t,ν,s
u qpY ϵ,t,ν,s

u ´ rY ϵ,t,ν,s
u qhpY ϵ,t,ν,s

u , rY ϵ,t,ν,s
u qdu

´

ż T´δ

t
volpu, νt,ν,su , S̄t,ν,s

u q

ˇ

ˇ

ˇ

rY ϵ,t,ν,s
u

ˇ

ˇ

ˇ

p ´

ϕϵpS̄t,ν,s
u q ´ rϕϵpS̄t,ν,s

u q

¯

du

´

ż T´δ

t
pZϵ,t,ν,s

u ´ rZϵ,t,ν,s
u qdWu.
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Here

hpy, ryq “ p

ż 1

0
|ry ` αpy ´ ryq|p´1sgn pry ` αpy ´ ryqqdα.

Using the boundedness of Y ϵ,¨,¨,¨ and rY ϵ,¨,¨,¨ (uniformly with respect to ϵ) and standard
stability result for BSDEs, we obtain the existence of a constant C independent of ϵ such
that

|vϵpt, ν, sq ´ wϵpt, ν, sq|2 ď CE
„

ż T´δ

t

´

ϕϵpS̄t,ν,s
u q ´ rϕϵpS̄t,ν,s

u q

¯2
du

ȷ

ď 2C

ż T´δ

t
P

`

ℓ´ ϵ ď S̄t,ν,s
u ď ℓ` ϵ

˘

du

Fix some η ą 0. The uniform ellipticity of L implies that there exists ϵ0 such that for any
ϵ ă ϵ0,

P
`

ℓ´ ϵ ď S̄t,ν,s
u ď ℓ` ϵ

˘

ď η2{p2Cq.

Hence letting ϵ go to zero, we get for any η ą 0

|v‹pt, ν, sq ´ v‹pt, ν, sq| ď η.

Thus v‹ “ v‹ and thus v is continuous.
Finally, by a regularization argument, it is a classical solution of the PDE (61) on r0, T ´

δq ˆ p0,`8q ˆ pRztℓuq.

If we define Yt “ vpt, νt, S̄tq, using Itô’s formula (allowed since S̄t ‰ ℓ a.s.) we check that
Y “ Y min is the solution of BSDE (25) with terminal condition (45).

Now since v is a smooth function, |q|ppvpt, ν, sq is the value function of the control problem
(57) with It “ 1tS̄těℓu and S “ tτT´δ,ℓ ě T u and

Q˚
t “ Q0 exp

ˆ

´

ż t

0
pp´ 1qvolps, νs, S̄sq|vps, νs, S̄sq|p´1sgn pvps, νs, S̄sqqds

˙

“ Q0 exp

ˆ

´

ż t

0
pp´ 1qvolps, νs, S̄sq|Y min

s |p´1sgn pY min
s qds

˙

.

The proof is a direct adaptation of the proof of Proposition 4.2 to the current setting.

4.4 PDE representation for Ip4q and Sp4q

Finally, let us derive a PDE representation for the control problem (57) with I “ Ip4q and
S “ Sp4q. From Section 3.3, we know that the problem can be reduced to the time interval
r0, T ´ δs; as opposed to what happens with I “ Ip3q and S “ Sp3q, the problem is not
Markovian after this reduction. This is because, the choice I “ Ip4q and S “ Sp4q introduces
an additional state variable, which is Ip4q itself; Ip4q keeps track of whether the system is in

the trading state or in the waiting state (for It “ I
p3q

t “ 1rℓ,8qpWtq I is directly a function of
W and W serves as the state of the system). Correspondingly, we expect a value function
of the form V “ uipt, ν, sq|q|pp where the additional variable i (shown as a subscript) takes
values in t1, 0u (1 for the trading state and 0 for no trading) and u satisfies the coupled PDE
system

Btu0 ` Lu0 “ 0 (62)
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where L is defined by (49) solved in the region r0, T ´δsˆp0,8qˆp´8, ℓ`bq with boundary
conditions

u0pT ´ δ, ν, sq “ ´
k

pp
, u0pt, ν, ℓ` bq “ u1pt, ν, ℓ` bq

and
Btu1 ` Lu1 ´ volt|u1|p “ 0, (63)

solved in the region r0, T s ˆ p0,8q ˆ pℓ,8q with boundary conditions

u1pT, ν, sq “ 8,

u1pt, ν, ℓq “ u0pt, ν, ℓq, t ă T ´ δ,

u1pt, ν, ℓq “ ´
k

pp
, t ě T ´ δ.

Note that the first equation (corresponding to the waiting state) is linear since in this state
no control is applied and the PDE is determined only by the underlying diffusion. We
think that a solution to this system can be obtained from the minimal supersolution of the
corresponding BSDE as we did in earlier sections. In the following subsection we provide
an alternative solution based on the number of switches between trading and waiting states.
The sequence of control problems where N is bounded by n can be solved recursively, letting
n Ñ 8 gives a solution to the above system. An advantage of this approach is that it
also gives a numerical algorithm to compute the value function. The difficulty in trying to
numerically solve the above system directly is that u1 and u0 appear as boundary conditions
in the equations that the other satisfies.

Finite trading approximation

Define
Nt

.
“ psuptk : τ̄b,k ă tu _ p´1qq ` 1τℓą0

The number of trading intervals realized up to terminal time t is equal to Nt ` 1. Recall
that for I “ Ip4q the set of all trading times before terminal time T is

I “ tt P r0, T s, It “ 1u “

NT `1
ď

k“1

rrρ
k
, ρkss,

and Sp4q “ tT P Iu. Define

In “

n
ď

k“1

rrρ
k
, ρkss, ϖn “ sup In, n “ 1, 2, 3, ...

Note that ϖn is one of the stopping times τℓ,k. The control problem with a limit on the
number of active intervals is:

VnpQ0, ν, sq “ inf
QPAn

I,S

E
„

ż T

0

|Q1
s|pp

vols
ds´

k

pp
|QT |pp

ȷ

,

where

An
I,S “ tQ : F-adapted, absolutely continuous,

QT “ 0 if T P In, Q1
t “ 0, if t R I or t ą ϖnu.
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Lemma 10. The sequence VnpQ0, ν, sq is non-increasing and tends to V pQ0, ν, sq, the value
function of the control problem (57) with pI,Sq “ pIp4q,Sp4qq, as n tends to 8.

Proof. Note that An
I,S is included in An`1

I,S . Hence Vn is a non-increasing sequence. Moreover

taking Q P AI,S and defining rQ equal to Q on the random interval rr0, ϖnss and rQ1 equal to

zero after ϖn, the strategy rQ belongs to An
I,S and

ż T

0

|Q1
s|pp

vols
ds´

k

pp
|QT |pp “

ż ϖn

0

|Q1
s|pp

vols
ds`

ż T

ϖn

|Q1
s|pp

vols
ds´

k

pp
|QT |pp

“

ż ϖn

0

| rQ1
s|pp

vols
ds´

k

pp
| rQT |pp `

ż T

ϖn

|Q1
s|pp

vols
ds´

k

pp
p|QT |pp ´ | rQT |ppq.

Taking the expectation, we have

E
„

ż T

0

|Q1
s|pp

vols
ds´

k

pp
|QT |pp

ȷ

“ E

«

ż ϖn

0

| rQ1
s|pp

vols
ds´

k

pp
| rQT |pp

ff

` E
„

ż T

ϖn

|Q1
s|pp

vols
ds´

k

pp
p|QT |pp ´ | rQT |ppq

ȷ

ě VnpQ0, ν, sq ` E
„

ż T

ϖn

|Q1
s|pp

vols
ds´

k

pp
p|QT |pp ´ | rQT |ppq

ȷ

.

Since rQT “ Qϖn , we have

E
”

|QT |pp ´ | rQT |pp
ı

“ E
„ˆ

ż T

ϖn

Q1
sds

˙
ż 1

0
pp| rQT ` αpQT ´ rQT q|pp´1sgn p rQT ` αpQT ´ rqT qqdα

ȷ

ď

„

E
ˆ

ż 1

0
pp| rQT ` αpQT ´ rQT q|pp´1dα

˙pȷ

1
p

«

E
ˆ

ż T

ϖn

Q1
sds

˙

pp
ff

1
pp

ď CT
1
pp

”

E
´

| rQT |pp ` |QT |pp
¯ı

1
p

„

E
ˆ

ż T

ϖn

|Q1
s|pp

vols
ds

˙ȷ

1
pp

under Assumption 1 on vol. Let us notice that

E
´

| rQT |pp ` |QT |pp
¯

ď 2ppE
ˆ

|Q0|pp `

ż T

0
|Q1

s|ppds

˙

.

Thereby we obtain for any strategy Q P AI,S and any n:

E
„

ż T

0

|Q1
s|pp

vols
ds´

k

pp
|QT |pp

ȷ

ě VnpQ0, ν, sq ` E
„

ż T

ϖn

|Q1
s|pp

vols
ds

ȷ

´ kCT
1
pp

„

E
ˆ

|Q0|pp `

ż T

0
|Q1

s|ppds

˙ȷ

1
p

„

E
ˆ

ż T

ϖn

|Q1
s|pp

vols
ds

˙ȷ

1
pp

ě V pQ0, ν, sq ` E
„

ż T

ϖn

|Q1
s|pp

vols
ds

ȷ

´ kCT
1
pp

„

E
ˆ

|Q0|pp `

ż T

0
|Q1

s|ppds

˙ȷ

1
p

„

E
ˆ

ż T

ϖn

|Q1
s|pp

vols
ds

˙ȷ

1
pp

.
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From the monotone convergence theorem we deduce

E
„

ż T

0

|Q1
s|pp

vols
ds´

k

pp
|QT |pp

ȷ

ě lim
n
VnpQ0, ν, sq ě V pQ0, ν, sq.

Since this holds for any Q P AI,S , we obtain the desired result.

Now we consider the dynamical version of the control problem with n trading intervals:
for any t P r0, T s:

Vi,npt, q, ν, sq “ inf
QPAn,t

I,S

E
„

ż T

t

|Q1
s|pp

vols
ds´

k

pp
|QT |pp

ȷ

,

the value function of the control problem starting at an arbitrary time t ă T . The additional
variable i indicates the starting value of the process I; It “ 1 means that the problem starts
from a trading state and It “ 0 means that the problem starts from a waiting state. The
definition of An,t is the same as An: there are at most n trading intervals during the time
interval rt, T s.

Considering the problem until the first transition from one state to the other (from trading
to no trading or vice versa) we can write the above optimal control problems recursively as
follows:

V0,npt, q, ν, sq “ E
ˆ

V1,npτ̄b,jt , q, ντ̄b,jt , ℓ` bq1tτ̄b,jtăT u ´
k

pp
|q|pp1tτ̄b,jtěT u

˙

(64)

where jt “ inftj, τ̄b,j ą tu and

V1,npt, q, ν, sq “ inf
QPAn,t

I,S

E
ˆ

ż τℓ,jt^T

t

|Q1
s|pp

vols
ds´

k

pp
|QT |pp1tτℓ,jtěT u

`V0,n´1pτℓ,jt , Qτℓ,jt
, ντℓ,jt , ℓq1tτℓ,jtăT u

¯

(65)

where τℓ,jt is the first time after t when the price S̄ goes below ℓ. In (64) the problem starts
in a waiting interval; the controller waits until the first time after t when S̄ goes above ℓ` b
(τ̄b,jt) or T , whichever comes first. If it is τ̄b,jt , trading starts; if it is T , the controller pays the
terminal cost. Note that the recursion (64) involves no control since the liquidation process
starts in the waiting state (i.e., no trading, Q1 “ 0) and remains in that state until τ̄b,jt . In
(65) the agent already uses one trading possibility, after τℓ,jt , there are at most n´1 trading
intervals.

As before the homogeneous cost structure suggests

Vi,npt, q, ν, sq “ |q|ppui,npt, ν, sq,

and we define u0,0 to be the constant function ´k
pp : there is no trading (i.e., no control and

Q1 “ 0) and at terminal time the trader pays the terminal cost. The above recursions imply
the following sequence of PDE to compute u0,n and u1,n for n ě 1:

Btu0,n ` Lu0,n “ 0, (66)

where L is defined by (49) solved in the region r0, T ´δsˆp0,8qˆp´8, ℓ`bq with boundary
conditions

u0,npT ´ δ, ν, sq “ ´
k

pp
, u0,npt, ν, ℓ` bq “ u1,npt, ν, ℓ` bq. (67)
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And
Btu1,n ` Lu1,n ´ volt|u1,n|p “ 0, (68)

solved in the region r0, T s ˆ p0,8q ˆ pℓ,8q with boundary conditions

u1,npT, ν, sq “ 8,

u1,npt, ν, ℓq “ u0,n´1pt, ν, ℓq, t ă T ´ δ,

u1,npt, ν, ℓq “ ´
k

pp
, t ě T ´ δ.

The PDE for u1,n and its boundary conditions on the set rT ´ δ, T s ˆ p0,`8q ˆ rℓ,8q do
not depend on n. Hence on this set, we have u1,n “ u8 (see Section 3.2 and the beginning
of Section 4.3).

For n “ 1 we have: u1,1 “ up2q where up2q is the value function in Section 4.2, Proposition
4.3. The arguments of Lemma 7 show that u1,1 is of class C1,2 on r0, T ´ δs ˆ p0,8q ˆ pℓ,8q

and continuous on r0, T ´ δs ˆ p0,8q ˆ rℓ,8q. Once u1,1 is available, the rest of the value
functions can be computed recursively by solving (66) and (68) in the following order:

u1,1 Ñ u0,1 Ñ u1,2 Ñ u0,2 ¨ ¨ ¨

Note that u0,1 solves the linear PDE (66) with smooth and bounded boundary conditions
´k{pp and u1,1p¨, ¨, ℓ`bq. Therefore, u0,1 is also of class C1,2 on r0, T ´δsˆp0,8qˆp´8, ℓ`bq
and continuous on r0, T´δqˆp0,8qˆp´8, ℓ`bs. In particular u0,1pT´δ, ν, ℓq “ ´k{pp. Hence
the boundary condition for u1,2 is continuous. Recursively all functions u1,n (resp. u0,n) are
well-defined and bounded on r0, T´δsˆp0,8qˆrℓ,8q (resp. r0, T´δsˆp0,8qˆp´8, ℓ`bs),
continuous on r0, T ´ δs ˆ p0,8q ˆ rℓ,8q (resp. r0, T ´ δq ˆ p0,8q ˆ p´8, ℓ` bs) and of class
C1,2 on r0, T ´ δs ˆ p0,8q ˆ pℓ,8q (resp. r0, T ´ δs ˆ p0,8q ˆ p´8, ℓ` bq).

Recall from (24) that
volt “ ppp´ 1qItVolt.

To conclude we give

Lemma 11 (Verification). For n ě 1, the representation Vi,npq, ν, sq “ |q|ppui,np0, ν, sq,
i P t0, 1u holds, and the optimal strategy is given by

Q˚
t “ Q0 exp

ˆ

´

ż t

0
Ip4,nq
s Vols|Y min

s |p´1sgn pY min
s qds

˙

, t P r0, T s,

where
Y min
t “ uIt,pn´Ntq`pt, νt, S̄tq, I

p4,nq

t “ I
p4q

t 1p´8,nspNt ` 1q

Note that pn´Ntq
` is the number of remaining trading intervals at time t and 1p´8,nspNt`

1q indicates whether n trading intervals have been used by time t.

Proof. The definition of vol implies volps, νs, S̄sq “ 0 when s R I. Hence the optimal control
pQ˚q1 is equal to zero when I “ 0. For n “ 0, there is no trading, ϖ0 “ 0, Qt “ Q0 and

V0,0pQ0, 0, ν, sq “ ´pk{ppq|Q0|pp “ |Q0|ppu0,0p0, ν, sq.

For n “ 1, there are two cases. For τℓ ą 0 (I0 “ 1) and ϖ1 “ τℓ: the control prob-
lem starts from the trading state and the result follows from Section 4.2: V1,1pq, t, ν, sq “

u1,1pt, ν, sq|q|pp. Moreover for any n ě 2, V1,npq, t, ν, sq ď u1,1pt, ν, sq|q|pp: indeed after ϖ1,
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there could be some opportunity for trading. The second case is when the trader starts from
a waiting state (I0 “ 0): the trader has to wait until τb,0 before trading and ϖ1 “ τℓ,1. Hence
for any strategy,

Qt “ Q0, t P rr0, τb,0ss.

Then due to the Markovian structure, for t P rrτb,0, ϖ1ss

Qt “ Q0 exp

˜

´

ż t^ϖ1

τb,0

pp´ 1qvolps, νs, S̄sq|u1,1ps, νs, S̄sq|p´1sgn pu1,1ps, νs, S̄sqqds

¸

,

is the optimal state process on the interval rrτb,0, T ss and

V1,1pQ0, τb,0, ντb,0 , S̄τb,0q “ |Q0|ppu1,1pτb,0, ντb,0 , S̄τb,0q

“ |Q0|ppu1,1pτb,0, ντb,0 , ℓ` bq

“ |Q0|ppu0,1pτb,0, ντb,0 , ℓ` bq,

where the last equality comes from the boundary condition (67) of u0,n. The value function
at time 0 is thus given by:

V0,1pQ0, 0, ν, sq “ EV1,1pQ0, τb,0, ντb,0 , S̄τb,0q “ |Q0|ppEu0,1pτb,0, ντb,0 , ℓ` bq.

The PDE that u0,1 satisfies and Itô’s formula give

Eu0,1pτb,0, ντb,0 , ℓ` bq “ Eu0,1pτb,0, ντb,0 , S̄τb,0q “ u0,1p0, ν, sq.

Thus we get for any n ě 2

V0,1pQ0, 0, ν, sq “ |Q0|ppu0,1p0, ν, sq,

which achieves the proof for the case n “ 1.
The rest of the proof proceeds by induction on n. Let us detail the case n “ 2 when

I0 “ 1. The trader starts by following the strategy u1,2. Itô’s formula gives:

|Qτℓ |
ppu1,2pτℓ, ντℓ , S̄τℓq “ |Q0|ppu1,2p0, ν, sq `

ż τℓ

0
ppQ1

r|Qr|pp´1sgn pQrqu1,2pr, νr, S̄rqdr

`

ż τℓ

0
|Qr|pp

ˆ

B

Bt
` L

˙

pu1,2pr, νr, S̄rqdr `

ż τℓ

0
|Qr|pp∇u1,2pr, νr, S̄rqdWr

“ |Q0|ppu1,2p0, ν, sq `

ż τℓ

0
|Qr|pp∇u1,2pr, νr, S̄rqdWr

`

ż τℓ

0

”

ppQ1
r|Qr|pp´1sgn pQrqu1,2pr, νr, S̄rq ` |Qr|ppvolr|u1,2pr, νr, S̄rq|p

ı

dr.

If Q1
r “ ´pp´ 1qvolrQr|u1,2pr, νr, S̄rq|p´1sgn pu1,2pr, νr, S̄rqq, we obtain that

|Qτℓ |
ppu1,2pτℓ, ντℓ , S̄τℓq “ |Q0|ppu1,2p0, ν, sq `

ż τℓ

0
|Qr|pp∇u1,2pr, νr, S̄rqdWr

´

ż τℓ

0

ppp´ 1qpp´1

pvolrqpp´1
|Q1

r|ppdr

“ |Q0|ppu1,2p0, ν, sq ´

ż τℓ

0

1

Volpp´1
r

|Q1
r|ppdr

`

ż τℓ

0
|Qr|pp?

νr

”

Bsu1,2pr, νr, S̄rqdW p1q
r ` cBνu1,2pr, νr, S̄rqdW p2q

r

ı
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from the definition of vol.
If τℓ ě T , the problem stops and since the used strategy has the same dynamics as u1,1

with the same terminal condition at time T , from the case n “ 1, we know that it is the best
strategy on r0, T s.

If τℓ ă T , then the boundary condition connecting u1,2 and u0,1 over S̄ “ ℓ, the PDE
satisfied by u0,1 and Itô’s formula give

u1,2pτℓ, ντℓ , S̄τℓq “ u0,1pτℓ, ντℓ , S̄τℓq

“ u0,1pτb,0, ντb,0 , S̄τb,0q ´

ż τb,0

τℓ

?
νr

”

Bsu0,1pr, νr, S̄rqdW p1q
r ` cBνu0,1pr, νr, S̄rqdW p2q

r

ı

.

And since there is no trading between the times τℓ and τb,0, Qt “ Qτℓ for any t P rrτℓ, τb,0ss.
The boundary conditions and Q1

t “ 0 for t P rrτl, τb,0ss imply

|Qτb,0 |ppu1,1pτb,0, ντb,0 , S̄τb,0q “ |Qτℓ |
ppu0,1pτb,0, ντb,0 , S̄τb,0q

“ |Qτℓ |
ppu1,2pτℓ, ντℓ , S̄τℓq

`

ż τb,0

τℓ

|Qτℓ |
pp?
νr

”

Bsu0,1pr, νr, S̄rqdW p1q
r ` cBνu0,1pr, νr, S̄rqdW p2q

r

ı

.

Again the strategy is optimal and there are again two cases. If τb,0 ě T , the trading is
finished and the agent has traded only one time. If τb,0 ă T , then the agent starts again to
trade until τℓ,1 ^ T “ ϖ2. We use the step n “ 1, starting at time τb,0 from the value Qτb,0 .
The best strategy is to follow u1,1 and the value function of the trader is given by:

V1,1pQτb,0 , τb,0, ντb,0 , S̄τb,0q “ |Qτb,0 |ppu1,1pτb,0, ντb,0 , S̄τb,0q.

Gathering all steps together leads to

|Q0|ppu1,2p0, ν, sq “ |Qτℓ |
ppu1,2pτℓ, ντℓ , S̄τℓq `

ż τℓ

0

1

Volpp´1
r

|Q1
r|ppdr

`

ż τℓ

0
|Qr|pp?

νr

”

Bsu1,2pr, νr, S̄rqdW p1q
r ` cBνu1,2pr, νr, S̄rqdW p2q

r

ı

“

„

|Qτℓ |
ppu1,2pτℓ, ντℓ , S̄τℓq `

ż τℓ

0

1

Volpp´1
r

|Q1
r|ppdr

ȷ

1τℓěT

`

„
ż τℓ

0

1

Volpp´1
r

|Q1
r|ppdr

ȷ

1τℓăT ` |Qτb,0 |ppu0,1pτb,0, ντb,0 , S̄τb,0q1τℓăT,τb,0ěT

` V1,1pQτb,0 , τb,0, ντb,0 , S̄τb,0q1τℓďτb,0ăT

`

ż τℓ^T

0
|Qr|pp?

νr

”

Bsu1,2pr, νr, S̄rqdW p1q
r ` cBνu1,2pr, νr, S̄rqdW p2q

r

ı

´

ż τb,0^T

τℓ^T
|Qτℓ |

pp?
νr

”

Bsu0,1pr, νr, S̄rqdW p1q
r ` cBνu0,1pr, νr, S̄rqdW p2q

r

ı

.

Since we cover all possible scenarios and since the strategies are optimal on each (random)
time intervals, taking the expectation, we conclude that

V1,2p0, Q0, ν, sq “ |Q0|ppu1,2p0, ν, sq,

and that the optimal strategy is u1,2 Ñ u0,1 Ñ u1,1, which achieves the proof of this particular
case.

The proof for the other scenarios uses very similar arguments.
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Remark 7. Our sequence of solutions u1,n and u0,n satisfies for any b ą 0 and n

@s ă ℓ, u0,npT ´ δ, ν, sq “ ´k{pp, @t ą T ´ δ, u1,npt, ν, ℓq “ ´k{pp.

The boundary condition imposed on v in (61) is coherent with these previous properties.
Moreover u0,n (resp. u1,n) solves the PDE (66) on r0, T ´ δq ˆ p0,`8q ˆ p´8, ℓq (resp. (68)
on r0, T ´ δq ˆ p0,`8q ˆ pℓ,`8q). In other words they solve (61) on their own domain of
definition.

A natural but non-trivial question is: do u1,n and u0,n provide some approximation of
v given by Lemma 9, when b tends to zero and n to 8 ? This question is left for further
research.

When the numbers of active intervals tends to 8

With Lemma 10 we saw that the value function of the control problem with a finite number of
trading intervals converge to the value function of the same control problem with no bounds
on the number of trading intervals. We now argue that 1) a similar result holds for the un
2) the limit determines the value function of the control problem with unbounded number
of trading intervals and 3) the limit is a solution of the coupled PDE system (62) and (63).
Since the arguments follow the same lines as those above we only provide an outline.

The argument of the previous verification lemma gives

Vi,npt, q, ν, sq “ |q|ppui,npt, ν, sq.

Together with Lemma 10, this shows that ui,n is a non-increasing sequence. Hence it con-
verges pointwise to some function ui defined on r0, T ´ δs ˆ p0,8q ˆ p´8, ℓ ` bs for i “ 0
and r0, T ´ δs ˆ p0,8q ˆ rℓ,8q for i “ 1. Moreover we have the relation:

Vipt, q, ν, sq “ |q|ppuipt, ν, sq, i P t0, 1u.

Since ui is bounded from below and bounded from above by ui,1 and is upper semi-
continuous, u0 (resp. u1) is a viscosity subsolution of (66) (resp. (68)) with terminal con-
dition u0p¨, ¨, T ´ δq “ ´k{pp (resp. u1p¨, ¨, T ´ δq “ u8p¨, ¨, T ´ δq). Since the terminal
conditions are bounded and continuous, the arguments of Lemma 7 imply that u0 and u1
are smooth solution of the PDE (66) and (68) on the set r0, T ´ δs ˆ p0,8q ˆ p´8, ℓ ` bq
and r0, T ´ δs ˆ p0,8q ˆ pℓ,8q.

Let us consider the lateral boundary conditions. For s “ ℓ ` b, u0 is equal to ψ “

u1p¨, ¨, ℓ ` bq, which is a smooth function. From [17], the PDE (66) with terminal condition
´k{pp at time T´δ and lateral condition ψ has a unique smooth solution. A similar argument
shows that u1 is the unique smooth solution of (68) with terminal condition u8 at time T ´δ
and lateral condition ϕ “ u0p¨, ¨, ℓq. These results give us the required regularity to proceed
as in Lemma 11 and to prove that for t P r0, T s

Qt “ Q0 exp

ˆ

´

ż t

0
pp´ 1qvolps, νs, S̄sq|uItps, νs, S̄sq|p´1sgn puItps, νs, S̄sqqds

˙

is an optimal control for the control problem (57) with I “ Ip4q and S “ Sp4q.
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5 A partial analysis of the output of the algorithm and nu-
merical examples

Recall A of (1), which is the percentage deviation from the target price S0 of the average
price at which the position is (partially) closed in the time interval r0, T s. The actual output
of the trading algorithm defined by the optimal control Q˚ of (37) or (58), is the random
pair pQ˚

T , Aq, where A is computed for Q “ Q˚. An important question is the distribution
of this pair and the dependence of this distribution on model parameters. In this section
we would like to give a partial analysis of this question including some numerical examples.
Compared to the original IS order, the modified IS order considered in the present work has
two additional parameters: the process I that determines when trading takes place and the
event S that determines when full liquidation takes place. In the numerical examples we will
limit ourselves to I “ Ip1q “ 1, S “ Sp1q “ tS̄T ě ℓu. To further simplify the presentation
and the calculations we take p “ 2, S̄ “ σW , where W is a standard Brownian motion,
σ ą 0 a constant and Volt “ V ą 0; these are also the choices made for these parameters in
the standard Almgren-Chriss framework [14, Chapter 3]. Under these assumptions we will
compute Q˚ by discretizing and numerically solving the corresponding PDE, which becomes:

ut `
1

2
σ2uxx ´

V

η
Itu

2 “ 0, (69)

where the domain of the equation and its boundary conditions depend on S and I.
To better understand how Q˚ and pQ˚

T {q0, Aq change with the model parameters, we
factor out as many parameters as possible from the calculations. If we let

vpt, xq “
V

η
upt, σxq (70)

the equation (69) reduces to

vt `
1

2
vxx ´ Itv

2 “ 0. (71)

To see how A depends on model parameters let us reduce the expression (1) as much as
possible (remember that Q0 “ q0 is the initial position size):

A “
XT ´ pQ0 ´QT qS0

pQ0 ´QT qS0

By (4) (the expression for XT ) and the assumption Lpvq “ ηv2:

“
´

şT
0 StQ

1
tdt´

η
V

şT
0 pQ1

tq
2dt´ S0pQ0 ´QT q

S0pQ0 ´QT q

By the definition (3) of St and the assumptions κpvq “ kv, S̄t “ σWt:

“
´k{2pQT ´Q0q2 ´ σ

şT
0 WtQ

1
tdt´

η
V

şT
0 pQ1

tq
2dt

pQ0 ´QT qS0
.

Simplifying the last expression we get

A “ ´
kQ0

2S0

ˆ

1 ´
QT

Q0

˙

´
σ

S0

1

pQ0 ´QT q

ż T

0
WtQ

1
tdt´

η

V S0

1

pQ0 ´QT q

ż T

0
pQ1

tq
2dt. (72)
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From this expression we see that A consists of three components: 1) one due to the permanent
price impact 2) one due to random fluctuations in price and 3) one due to transaction costs.
All components consist of a coefficient term and a term depending on Q or its derivative Q1:

Permanent market impact term: A1 “ 1 ´
QT

Q0
, coefficient: ´

kQ0

2S0
,

Random fluctuations term: A2 “
1

pQ0 ´QT q

ż T

0
WtQ

1
tdt, coefficient:

σ

S0
,

Transaction costs term: A3 “
1

1 ´ qT

ż T

0
pQ1

t{Q0q2dt, coefficient:
ηQ0

V S0
,

where
qt “ Qt{Q0.

The permanent impact term 1 ´ QT {Q0 “ 1 ´ qT is the portion of the initial position that
is closed; A depends linearly on this portion with coefficient kQ0

2S0
. Secondly note that if S0,

k and η are parameterized as multiples of σ then none of the coefficients appearing in A
depend on σ. We will comment on the behavior of the other two terms below.

Before we move on let us note the following for comparison. The case I “ 1 and S “ Ω
corresponds to the standard Almgren Chriss liquidation algorithm for which the optimal
control is known to be

Q˚,S
t “ q0

T ´ t

T
, (73)

i.e., closing the position with uniform speed over the time interval r0, T s. Then pQ1q
˚,S
t {q0 “

´1{T and qT “ 0. These reduce A3 to

AS
3 “

1

T

for the standard IS algorithm. Similarly, for A2 we have

AS
2 “ ´

1

T

ż T

0
Wtdt, (74)

which is normally distributed with 0 mean by the iid normal increments of W .

We continue our analysis with the choices I “ Ip1q “ 1 and S “ Sp1q “ tS̄T ě ℓu for
I and S given in (14); these choices correspond to: no restriction on trading and closing
the position fully is required only when the terminal price S̄T is above a given threshold ℓ.
Parallel to the change of variable in (70) we assume ℓ is given as a multiple of σ ą 0; with
this convention and the assumption S̄t “ σWt, S becomes S “ tWT ě ℓu. For It “ 1, the
PDE (71) is

vt `
1

2
vxx ´ v2 “ 0; (75)

for S “ tWT ě ℓu the domain and the boundary conditions for this PDE are: pt, xq P

r0, T s ˆ R and

vpT, xq “ 8 ¨ 1rℓ,8qpxq ´
kV

2η
¨ 1p´8,ℓqpxq, (76)

x P R, where we again use the scaling (70).
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Recall our convention that k and η are specified as multiples of σ; it follows that PDE (75)
and its boundary condition (76) are independent of σ. The optimal control Q˚ is computed
from v via the formula (58)

Q˚
t “ q0qt “ q0 exp

ˆ

´

ż T

0
vpt,Wtqdt

˙

(77)

we note that Q˚ is independent of σ. We have already noted that the coefficients in (70) are
independent of σ. We have observed above that the same is true also for Q˚, therefore all of
A1, A2 and A3 are independent of σ as well. This gives us the following result:

Lemma 12. Suppose all of S0, k, η and ℓ are parameterized as multiples of σ. Then Q˚ and
A do not depend on σ.

Note that the same analysis in fact holds for all of I “ Ipiq, S “ Spiq, i “ 2, 3, 4 treated
in the previous sections.

As already noted Q˚ is computed via the solution of the PDE (75) which obviously
doesn’t have an explicit solution. To see how Q˚ behaves we will solve (75) numerically; for
the parameter values we begin by considering those used in [14, Chapter 3]: T “ 1, η “ 0.1,
V “ 4ˆ 106, S0 “ 45, σ “ 0.6. Recall that the permanent price impact parameter k doesn’t
appear in the control problem corresponding to the original IS order, so no value for k is
specified in [14, Chapter 3]. A k value of k “ 2ˆ10´7 accompanying these parameter values
is given in [14, Chapter 8] in the context of block trade pricing. The assumption (1) in the
present case reduces to

kV {2η ă 1;

for the above parameter values we have kV {2η “ 4, therefore the above parameter values
do not satisfy Assumption 1. To continue with our numerical example, we take η “ 0.3,
V “ 4 ˆ 106 and k “ 10´7 for these values we have kV {2η “ 2{3 which satisfies (1).
In addition to these, we need to provide a value for the ℓ parameter, which we choose as
ℓ “ 1.4 ˆ σ. The graph of u for the parameter values above are shown in Figures 1 and 2.

Figure 1: Graph of u for I “ 1 and S “ tWT ě ℓu
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Figure 2: Graph of upx, ¨q for x P t0, ℓ, 1.2ℓ, 5ℓu

We note that for x ą ℓ and x away from ℓ, upx, ¨q behaves like t ÞÑ yt “ 1{pT ´ tq (the
solution of (69) with terminal condition yT “ 8). and for x ă ℓ and x away from ℓ, upx, ¨q
behaves like t ÞÑ zt (given by (29)) The negative boundary condition for u means that upx, tq
takes negative values for x ă ℓ; (4) implies that whenever u is negative, the corresponding
Q˚ is actually buying the underlying stock.
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Figure 3: Sample paths of S̄ and Q˚ for I “ 1 and S “ tS̄T ě ℓu; the dashed line shows
ℓ “ ´1.4σ

Figure 3 shows four sample paths of S̄ and Q˚. In the first two examples S̄ stays above ℓ
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at all times and the corresponding Q˚ goes parallel to Q˚,S of (73), the optimal liquidation
path for the standard IS order. In the third example S̄ is below ℓ approximately in the time
interval r0.6, 0.8s when trading slows down, it goes above ℓ around 0.8 and closes above ℓ;
correspondingly Q˚ speeds up trading after 0.8 and closes the position at terminal time. In
the fourth example, S̄ hits ℓ around the middle of the trading interval and remains below
ℓ till the end; correspondingly Q˚ slows down and stops trading and the position is only
partially closed at terminal time. In the last example Q˚ is in fact slightly increasing near
t “ T “ 1 (i.e., Q˚ buying the underlying asset) ; this is due to the negative value that the
terminal value takes for x ă ℓ. These examples suggest that Q˚ behaves approximately as
follows: when S̄ is above ℓ, it behaves like the standard IS algorithm Q˚,S , linearly closing
the remaining position; when S̄ goes below ℓ, Q˚ slows down/ stops trading. The negative
boundary condition implies that the algorithm can in fact execute buy trades especially when
the price is below ℓ near terminal time T .

Distribution of pQ˚
T {q0, Aq

For S “ tS̄T ě ℓu, the position fully closes when the closing price is above the lower-bound
l, therefore, the probability that the algorithm closes the position at terminal time is:

PpQ˚
T “ 0q “ PpWT ě ℓq “ 1 ´N0,1pℓ{

?
T q

where N0,1 denotes the standard normal distribution.
A random variable E is said to be exponentially distributed with rate λ if PpE ą xq “

e´λx, i.e.,
´ logpPpE ą xqq “ λx; (78)

a well known fact is

ErEs “
1

λ
. (79)

The distribution of qT “ Q˚
T {q0 over p0,8q depends on u via (77) (or (58)) and it obviously

doesn’t have an explicit formula. Figure 4 shows graphs of x ÞÑ PpqT ą x|qT ą 0q, x ÞÑ

´ logpPpqT ą x|qT ą 0qq and x ÞÑ
xq0

ErQ˚
T |Q˚

T ą0s
(all estimated via simulating 104 sample

paths).
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Figure 4: On the left: graph of px “ PpQ˚
T {q0 ą x|Q˚

T ą 0q, on the right: graphs of ´ logppxq

and xq0
mT

, mT “ ErQ˚
T |Q˚

T ą 0s
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These graphs, (78) and (79) suggest that the exponential distribution provides a rough
approximation for the conditional distribution of Q˚

T {q0 given the event tQ˚
T ą 0u. An

exponentially distributed random variable satisfies ErEs “ 1
λ and varpEq “ 1

λ2 . In the case of
Q˚

T {q0 conditioned over tQ˚
T ą 0u we have the Monte Carlo estimates ErqT |qT ą 0s “ 0.1218

and varpqT |qT ą 0q1{2 “ 0.1387 for the parameter values specified above.
Q˚ depends on ℓ via the domain of the PDE (75) and on kV {2η via the terminal condition

(76). Figure 5 shows how ErqT |qT ą 0s and varpqT |qT ą 0q1{2 vary with these parameters.
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Figure 5: Graph of mT “ ErqT |qT ą 0s and
?
varT “ varpqT |qT ą 0q1{2 as a function of ℓ

We have already noted that the permanent impact factor term A1 of (72) is fully deter-
mined by qT . We now consider the joint distribution of pA2, qT q. This distribution consists of
two parts: the distribution of A2 conditioned on qT “ 0 (i.e., the cases where the algorithm
closes the initial position q0 fully) and the conditional distribution of A2 given qT for qT ą 0
(the cases where the algorithm closes the initial position q0 partially). If Q˚ were a deter-
ministic function (as in the case of the standard IS order), A2 would be normally distributed
by the normal and independent increments of W (see (74)). The q-q plot of the conditional
distribution of A2 given Q˚

T “ 0 and Q˚
T “ x for several values of x is shown Figure 6; (for

x ą 0 we approximate P pA2 P A|Q˚
T {q0 “ xq with P pA2 P A|Q˚

T {q0 P px, x` δqq where δ ą 0
is small and we estimate the latter by simulating 2ˆ105 sample paths of W and Q˚). These
plots suggest that the conditional distribution A2 given Q˚

T {q0 is approximately normal even
though Q˚ is random and a function of W .

Figure 6: q-q plots of the conditional distribution of A2 given qT “ x for x “ 0, x “

0.06 ` j0.07, j P t1, 2, 3, 4u
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Figure 7 shows the graphs of ErA2|qT “ xs and
a

varpA2|qT “ xq (using the same ap-
proximation as above and then simulation).
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Figure 7: Graphs of ErA2|qT “ xs and
a

varpA2|qT “ xq for x “ 0 and x “ 0.06 ` j0.07,
j P t1, ¨ ¨ ¨ , 8u

Figures 8 and 9 show how the distribution of A2 change with ℓ and kV {η.
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Lastly, we consider the distribution of A3. Like A2 this distribution consists of two parts:
over the event qT “ 0 and over the event qT ą 0.
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Figure 10: On the left: distribution of A3 conditioned on qT “ 0, on the right: graphs of
ErA3|qT “ xs (ˆ) and varpA3|qT “ xq1{2 (o)

The first part of Figure 10 shows the distribution of A2 over qt “ 0; this graphs suggests
that A3 behaves approximately like AS

3 “ 1 of the standard IS algorithm: most of the mass
is concentrated around a constant near 1. The second part of Figure 10 shows how the
conditional mean and variance of A3 change with qT for qT ą 0. This graph suggests that
the near constant behavior of A3 persists for qT ą 0. Finally Figures 11 and 12 show how
the distribution of A3 changes with model parameters ℓ and kV {η.
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Figure 11: Graphs of P pA3 ď xq|qT “ 0q and P pA3 ď xq|qT ą 0q for ℓ “ ´σ and ℓ “ ´1.4σ
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6 Comments on the continuity problem

Remember that the only condition on the terminal behavior of the minimal supersolution
Y min is (18):

lim inf
tÑT

Y min
t ě ξ.

For the class of stochastic optimal control problems studied in this paper, minimal super-
solutions suffice to characterize the value function; this is the reason for the focus of this
paper on minimal supersolutions. An interesting further question is whether Y min satisfies
the terminal condition with equality, i.e., whether

lim
tÑT

Y min
t “ ξ (80)

holds. We call this question “the continuity problem.” Recall the constraint tQT “ 0u over
the set S for the stochastic optimal control problem. Let Q˚ be the optimal control defined
by Y min. The relation (80) corresponds to tQ˚

T “ 0u Ą S, i.e., the constraint is satisfied
over S, but it may happen that it is satisfied beyond the event S. The relation (80) on the
other hand implies that the optimal control satisfies the constraint tightly: tQ˚

T “ 0u “ S.
This further information about the optimal control is the main significance of the continuity
problem from the control perspective.

In previous works [21, 26, 1, 23] we studied the continuity problem for a number of
BSDE with singular terminal conditions. The results in these works do not apply in the
current setting because they all assume monotone generators. We think that the continuity
problem can be resolved positively for the Markovian cases covered in Section 4 using the
ideas and methods presented in these prior works. The continuity problem for the general
BSDE studied in Section 3 is more challenging: results in all of the previously cited works
concern S of special forms such as S “ tτ ď T u where τ is a stopping time. We think that
results and methods in [1, 23] can be extended to cover the BSDE in Section 3 for S of the
form studied in these works. To the best of our knowledge, the continuity problem with
terminal conditions of the form limtÑT Y

min
t “ 8 ¨1S for general S P FT is an open problem

even when the filtration is generated only by a Brownian motion.
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7 Conclusion

The present work studies the optimal control problem (13) of optimal liquidation where
the key parameters are the measurable set S specifying conditions for full liquidation and
the process I specifying when trading is allowed; we note that choosing S ‰ Ω introduces
a negative term into the terminal condition of the associated BSDE determined by the
permanent price impact parameter. We find the optimal control to be of the form

Q˚
t “ q0 exp

ˆ

´

ż t

0
IsVols|Y min

s |p´1sgn pY min
s qds

˙

where Y min is the first component of the minimal supersolution of the BSDE (25) with

terminal condition ξ “ ´
k

pp
1Sc ` 81S . In Section 3 this is proved directly using the BSDE

for the case p “ 2; Section 4 uses a PDE approach and focuses on the case p ‰ 2 where
the price dynamics are assumed Markovian and I and S are chosen so that the resulting
problem is either Markovian or can be broken into Markovian pieces.

In the remaining paragraphs we comment on some of our assumptions and on future
research. In the present work we use the identity function as our utility function (see (7));
this corresponds to setting the risk aversion parameter γ in the exponential utility function
to 0. Let us comment on the case γ ą 0. Recall that we proceed in two steps: we start
with the control problem (7) and then derive from it the secondary problem (13) and then
work with this problem. For γ ą 0 the reduction from (7) to (13) is possible only in special
cases (for example, when the optimal control is known to be deterministic, as in the case
of the standard IS order (see [14, Chapter 3]). To circumvent this problem, many prior
works directly start from the secondary problem and add a risk measure on the size of the
portfolio directly to this problem (see, e.g., [2, 4]). When the risk measure is added directly
to the second problem, it can even be allowed to be a random process, an example is given
in (19) (the term γt|Qt|

pp). As is the case in these prior works, it is straight-forward to
introduce a penalization term on the size of the portfolio involving a positive process in the
stochastic optimal control problem (13) and almost all of the analysis presented in sections
3 and 4 will have straightforward modifications. On the other hand, an analysis of the
exponential utility case for γ ą 0 (i.e., introducing γ ą 0 and starting the analysis from the

problem supQPAI,S
Er´e´γX̃T s) would require significant changes from the analysis presented

in the current work. In our view, one benefit of starting the analysis from (7) as we did in
the present work, is that it provided a relatively simple framework to understand the role
permanent price impact plays in the stochastic optimal control problem in the presence of
the parameter S.

An important assumption in the present work is the monetary representation of the
terminal position QT , for which we used mpqq “ qST . A simple modification that would
keep the problem within the framework of the current work is to set mpqq “ qST ` ξ1|q|pp

where ξ1 is an FT -measurable random variable. This would introduce an additional ξ1 term
into the terminal condition of the BSDE which would not impact the analysis as long as ξ1´

is bounded from above. Other choices are obviously possible depending on how the events
taking place after time T are modeled. These choices will give rise to different stochastic
optimal control problems whose analysis will probably require new/other tools and ideas.
This is a natural direction for future research.

Recall the random variable A of (1), the percentage deviation from the target price S0 of
the average price at which the portfolio is (partially) closed at terminal time. We provided a
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numerical study of the distribution of qT “ Q˚
T {q0 (remaining portion of the position) and A

in Section 5 for the case I “ 1 and S “ tS̄T ą ℓu. An analytical study of these distributions
for this choice of pI,Sq and for others seems interesting and challenging. One idea in the
study of the distribution of QT {q0 is the use of Malliavin calculus (see [18, Theorem 2.1.3]).
This would require that the product Y minvol has a Malliavin derivative with some additional
conditions. The Malliavin derivative of the solution of a BSDE has already been studied; see
among others [9] for integrable terminal condition and [20] for singular terminal condition. In
the Markovian framework, it requires some Malliavin regularity on the forward processes S
and ν. A study of these ideas and problems remain for future work. Another natural direction
is to try to compute the performance of the algorithms of the present work (especially the
joint distribution of pqT , Aq) on real trading data.
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