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come    

one corresponding to random fluctuations in the price (A 2 ) and one corresponding to transaction/bid-ask spread costs (A 3 ). A 1 turns out to be a linear function of the portion of the portfolio that is closed; therefore, its distribution is fully determined by the distribution of that portion. We provide a numerical study of the distribution of the closed portion and the conditional distributions of A 2 and A 3 given the closed portion under the assumption that the price process is Brownian for I " 1 and a S corresponding to a lowerbound on terminal price.

Introduction

There is a range of order types available to an investor to close a position on an asset; the book [START_REF] Guéant | The financial mathematics of market liquidity[END_REF] presents the following: implementation shortfall (IS), target close and volume weighted average price. Given a trading horizon r0, T s, all of these order types are constrained to close an initial position at a terminal time T . Mathematically this is expressed as the constraint Q T " 0, where Q t denotes the position of the investor at time t (we assume Q 0 ą 0, i.e., an initial long position, for a more brief presentation; everything below applies to a short position Q 0 ă 0). Given that the price process is stochastic, this constraint can be too restrictive. For example, in IS orders the goal is to close an initial position near the initial price S 0 ; it may happen that the price drops substantially during the trading interval and the investor holding the position may no longer wish to be strict about closing the position. The present work studies algorithms that offer this type of flexibility in execution. We focus on IS type orders targeting the initial price S 0 because this is the most basic and most commonly studied order in the current literature but similar ideas can be considered for other types of orders and pursued in future research. The work [START_REF] Kruse | Minimal supersolutions for BSDEs with singular terminal condition and application to optimal position targeting[END_REF] already presents an optimal liquidation algorithm in which the full liquidation constraint is relaxed; the algorithms presented in the current work extend those in [START_REF] Kruse | Minimal supersolutions for BSDEs with singular terminal condition and application to optimal position targeting[END_REF] in two directions: 1) the model in the present work involves a permanent market impact component and 2) we allow the model to impose constraints on when trading takes place (for example, the model can be set up so that trading is allowed only when the current price is above a given threshold). The resulting stochastic optimal control problem leads to a backward stochastic differential equation of the form dY t " vol t |Y t | p `dM t , Y T " ξ, p ą 1, with a singular terminal condition (i.e., ξ can take the value 8). When compared to BSDE with singular terminal values arising from optimal liquidation problems studied in [START_REF] Kruse | Minimal supersolutions for BSDEs with singular terminal condition and application to optimal position targeting[END_REF] and other works on optimal liquidation, this BSDE has three new features: its generator/driver is not monotone in Y (see below for the precise definition), vol is allowed to be 0, and its terminal value can take negative values. For several versions of the problem with a Markovian formulation we also treat the partial differential equation (PDE) versions of this equation. As we discuss in detail below, the new features have nontrivial implications for the analysis of the BSDE and the PDE.

The IS order is commonly formulated as a stochastic optimal control problem optimizing the expected utility of the cash position that the order generates [START_REF] Guéant | The financial mathematics of market liquidity[END_REF]Chapter 4]. Section 2 presents the stochastic optimal control formulation of the modified IS orders that the present work focuses on. A great deal of the literature on optimal liquidation, including the model presented in section 2, is based on a model proposed by Almgren and Chriss in [START_REF] Almgren | Optimal execution of portfolio transactions[END_REF]. This model assumes that the price consists of three pieces: a random fluctuations term S, a transaction cost term and a permanent market impact term. The permanent price impact is a term κpQ 1 t qdt added to d St where Q 1 t is the time derivative of Q at time t; together with the random fluctuation term they make up the midprice process S. The transaction cost term corresponds to trading commissions and the bid-ask spread; this is modeled using a so-called execution cost function L. The common choice for L is a power function Lpρq " η|ρ| p, p ą 1 (we reserve the letter p for the Hölder conjugate of p, which arises in the solution of the problem). In most liquidation models the permanent price impact is assumed to be linear in Q 1 t (see [START_REF]No-dynamic-arbitrage and market impact[END_REF] for more comments on this assumption). This and the constraint Q T " 0 of the standard IS order lead to an interesting situation for this type of order: the permanent price impact ends up having no role in the stochastic optimal control formulation of the standard IS order (see [START_REF] Barles | Backward stochastic differential equations and integral-partial differential equations[END_REF] and [START_REF] Crandall | User's guide to viscosity solutions of second order partial differential equations[END_REF]). These assumptions have another important mathematical implication for the standard IS order: the position variable can be factored out of the value function and out of the backward stochastic differential and partial differential equations that the value function satisfies (see Proposition 3.3)-we will refer to this property of the value function as homogeneity. When we relax the constraint Q T " 0 the permanent price impact enters directly into the stochastic optimal control problem as a part of the terminal cost. In the modifications of the IS order we treat in the present work we would like to keep the homogeneity property of the value function as this greatly influences the analysis of the problem. This turns out to be possible if the permanent price price impact function is chosen compatible with the execution cost function L as follows:

κpQ 1 t , Q t q " kQ 1 t |Q t | p´2 , k ą 0,
κ remains linear in Q 1 t ; for p ą 2 (p ă 2) decays (increases) with the size of the remaining position.

As we have already noted, the permanent price impact has no role in the continuous time stochastic optimal control formulation of the standard IS order in the Almgren-Chriss framework. We see a reflection of this fact in the optimal liquidation literature that is based on this framework, as follows: some works introduce a permanent price impact parameter in the model (see e.g., [START_REF] Forsyth | Optimal trade execution: a mean quadratic variation approach[END_REF][START_REF] Schied | Risk aversion and the dynamics of optimal liquidation strategies in illiquid markets[END_REF] and [START_REF] Guéant | The financial mathematics of market liquidity[END_REF]Chapter 3]), but it ends up having no role in the stochastic optimal control problem, while others drop the permanent price impact parameter altogether from the model assumptions, see, e.g., [START_REF] Ankirchner | BSDEs with Singular Terminal Condition and a Control Problem with Constraints[END_REF][START_REF] Kruse | Minimal supersolutions for BSDEs with singular terminal condition and application to optimal position targeting[END_REF]. The seminal work [START_REF] Almgren | Optimal execution of portfolio transactions[END_REF] includes a permanent price impact parameter in a discrete time framework, which ends up having a role in the optimal controls but this role disappears as the discrete time step size converges to 0. A key feature of the problem and the analysis presented in the current work is how the permanent price impact enters and changes the analysis when the full liquidation constraint is relaxed. We discuss this in detail below.

The output of the standard IS order is the cash position generated by the trading algorithm. When full liquidation is no longer required, i.e., when we don't have the constraint Q T " 0, the output of the trading process at time T will be pX T , Q T q where X T is the cash generated by the trading process and Q T is the position remaining in the asset being traded. There are several choices available to formulate an expected utility maximization problem based on this output. One option is to use a general utility function whose input is the pair pX T , Q T q; a simpler option is to first assign a monetary value mpQ T q to the position Q T , use a utility function whose only input is a monetary value and apply it to X T `mpQ T q.

In the present work we use the latter approach. For mpQ T q the present work focuses on mpQ T q " Q T S T ; this is the market value of the position at terminal time T ignoring trading costs. The technical advantage of this choice is that it preserves the homogeneity of the value function; a |q| p p term can also be added that preserves homogeneity. For the utility function we focus on the identity function, i.e., we consider the problem of maximizing expected terminal position; an additional risk term can be included in the final stochastic optimal control problem with minor modifications to the analysis. We further comment on these points in the conclusion (Section 7).

In subsection 2.1 we discuss two ways the stochastic optimal control problem modeling the IS order can be modified to delay/stop liquidation depending on price behavior 1) by relaxing the full liquidation constraint if the price is too low (which was first proposed in [START_REF] Kruse | Minimal supersolutions for BSDEs with singular terminal condition and application to optimal position targeting[END_REF]) 2) stopping/pausing trade if the price is too low (proposed in the present work). These two modifications are parameterized in the stochastic optimal control problem by a measurable set S and a process I taking values in t0, 1u. The set S prescribes when full liquidation is required and enters the stochastic optimal control problem as a part of the terminal cost; the process I prescribes when trading takes place and enters the stochastic optimal control problem by multiplying the volume process (see [START_REF] Guéant | Optimal execution and block trade pricing: a general framework[END_REF]). We give four examples for S and I in subsection 2.1 which are all based on a lower bound specified for the price process: pI p1q , S p1q q puts no constraints on trading, the position is constrained to be fully closed if the closing price is above a given threshold; pI p2q , S p2q q allows trading until the price goes below a given threshold, the position is constrained to be fully closed if the price remains above the given threshold across the whole trading interval; pI p3q , S p3q q allows trading only when the price is above a given threshold, the position is constrained to be fully closed if the closing price is above the given threshold; pI p4q , S p4q q is the same as previous except that for trading to restart the price process first has to upcross a higher threshold. The resulting stochastic optimal control problem for the modified IS order is given in [START_REF] Guéant | Optimal execution and block trade pricing: a general framework[END_REF]. This problem has the same structure as the one studied in [START_REF] Kruse | Minimal supersolutions for BSDEs with singular terminal condition and application to optimal position targeting[END_REF] except for the following differences: 1) inclusion of the permanent market impact in the model implies that the terminal cost can take negative values 2) the presence of the I t term in the running cost (for k " 0 and I t " 1 the problem in fact reduces to the one studied in [START_REF] Kruse | Minimal supersolutions for BSDEs with singular terminal condition and application to optimal position targeting[END_REF]). The solution method in [START_REF] Kruse | Minimal supersolutions for BSDEs with singular terminal condition and application to optimal position targeting[END_REF] is the derivation and the analysis of a BSDE associated with the value function of the control problem. This is also one of the solutions approaches we will pursue in the present work. We next discuss how the above new features of the problem impact the associated BSDE and its analysis.

The set S (specifying conditions for full liquidation) defines the singular component 8 ¨1S of the terminal condition of the BSDE; allowing a nontrivial permanent price impact term introduces an additional negative term ´k p 1 S c in the terminal condition of the BSDE. The driver y Þ Ñ f t pyq, y P R of a BSDE is said to be monotone if there exists χ P R such that pf pt, y, ωq ´f pt, y 1 , ωqqpy ´y1 q ď χpy ´y1 q 2 for any t ě 0 and y, y 1 P R almost surely. The monotonicity of the driver is a key property in establishing the existence of solutions to BSDE. The work [START_REF] Kruse | Minimal supersolutions for BSDEs with singular terminal condition and application to optimal position targeting[END_REF] focuses on non-negative terminal costs; a non-negative terminal cost corresponds to a nonnegative terminal condition for the associated BSDE. This and the dynamics and cost structure of the control problem lead in [START_REF] Kruse | Minimal supersolutions for BSDEs with singular terminal condition and application to optimal position targeting[END_REF] to a BSDE with the monotone driver pt, yq Þ Ñ ´λt y|y| p´1 (for y ě 0, y|y| p´1 " |y| p " y p ). In the case of the stochastic optimal control problem (13), the terminal condition is allowed to take negative values and this forces us to work with the non-monotone convex driver pt, yq Þ Ñ I t Vol t |y| p . Finally, as already noted, the process I (specifying when trading is allowed) enters the BSDE by multiplying the driver of the BSDE. The resulting BSDE is given in [START_REF] Schied | Optimal basket liquidation for CARA investors is deterministic[END_REF] and [START_REF] Samuel | Continuity problem for singular BSDE with random terminal time[END_REF].

Note that although the terminal condition [START_REF] Samuel | Continuity problem for singular BSDE with random terminal time[END_REF] can take negative values, the negative component is bounded above by a constant. For this reason we focus on terminal conditions with bounded negative parts. The challenges/new points that arise in the analysis of ( 25), [START_REF] Samuel | Continuity problem for singular BSDE with random terminal time[END_REF] as a result of these new features are as follows: the currently available literature doesn't contain existence results on the minimal supersolution of a BSDE such as [START_REF] Schied | Optimal basket liquidation for CARA investors is deterministic[END_REF] with a singular terminal condition [START_REF] Samuel | Continuity problem for singular BSDE with random terminal time[END_REF] and with a driver involving the function y Þ Ñ |y| p . Secondly, a terminal condition that can take negative values and the superlinearity of the driver imply that the solution of the BSDE can explode to ´8 backwards in time.

We handle both of these issues in Section 3 by deriving an apriori lower bound process z on any supersolution of the BSDE with a terminal condition whose negative part is bounded by a constant K ; z is obtained by solving [START_REF] Schied | Optimal basket liquidation for CARA investors is deterministic[END_REF] with the terminal condition ξ " ´K (for which [START_REF] Schied | Optimal basket liquidation for CARA investors is deterministic[END_REF] reduces to an ordinary differential equation). The interval over which z is defined depends on model parameters. We introduce an assumption on the permanent price impact parameter and market volume that guarantees the existence and boundedness of the lower bound process over the interval r0, T s (Assumption 1). The lower bound process is increasing in t; therefore, the value z 0 provides a lower bound on supersolutions on the whole interval r0, T s. We then deal with the non-monotonicity of the driver by replacing the portion of y Þ Ñ |y| p over p´8, z 0 s with its linear approximation over the same interval, which results in a monotone driver. Hence existence and uniqueness of the solution for BSDE for integrable terminal condition is obtained in Proposition 3.1. The only way the I term impacts the analysis of the BSDE is by entering Assumption 2 that guarantees that the supersolution can attain the singular value 8 at terminal time T ; in particular Assumption 2 requires I t " 1 for t P rT ´ϵ, T s for some ϵ ą 0. Under these conditions, Proposition 3.2 provides a minimal supersolution for the BSDE with singular terminal condition.

The verification argument presented in subsection 3.1 connects the minimal supersolution of the BSDE [START_REF] Schied | Optimal basket liquidation for CARA investors is deterministic[END_REF], [START_REF] Popier | Integro-partial differential equations with singular terminal condition[END_REF] to the value function and optimal control of the stochastic optimal control problem (13) (Proposition 3.3). This argument is based on the convexity of the cost in Q 1 ; under Assumption 2, this turns out to be the case only for the quadratic case (Lemma 2), therefore this verification argument assumes p p " p " 2. Assumption 2 is a stringent condition and I pjq , j " 2, 3, 4, proposed in subsection 2.1 (see [START_REF] Kruse | Bsdes with monotone generator driven by brownian and poisson noises in a general filtration[END_REF], ( 16) and ( 17)) which depend on price behavior don't satisfy it. In subsections 3.2 and 3.3, we break up the stochastic optimal control problem and the BSDE corresponding to these choices of I into pieces where each piece involving a singular terminal condition satisfies Assumption 2 (Proposition 3.5 and Lemma 4).

The main advantage of the BSDE arguments in Section 3 is that we can work with a general filtration, without any further assumption except the standard ones (completeness and right-continuity) and the left-continuity at time T . The drawback is the restriction to the quadratic case p p " p " 2.

We call the problem Markovian if the price process is Markovian and the cost structure of the problem is a function of the price process. In Section 4 we explore the case p ‰ 2 and a PDE representation of the value function and the optimal control when the problem is Markovian or can be broken into Markovian pieces. A popular choice for price dynamics in finance applications is the stochastic volatility model. To the best of our knowledge it is rarely treated in the context of optimal liquidation; in Section 4 we assume the price dynamics to follow this model. For a direct PDE representation (i.e., identifying the value function as a supersolution of a related PDE), the process I and the measurable set S must also be functions of the price process. Of the four possible choices for I and S given in ( 14)-( 17), only pI p1q , S p1q q is given as a function of the price process. In subsection 4.1 we present the PDE representation of this case. For pI pjq , S pjq q, j " 2, 3, 4, the decompositions/reductions given in subsections 3.2 and 3.3 yield Markovian subproblems. The resulting PDE problems are treated in subsections 4.2-4.4. The PDE representation of pI p4q , S p4q q involves two coupled PDE (one for active trading and one when trading is paused). To compute a solution we introduce an additional parameter n, which is the number of switches allowed between trading and no trading. We solve this problem recursively, letting N Ñ 8 gives the solution to the coupled PDE. To the best of our knowledge, there exists no readily available results in the current literature for the existence and smoothness of solutions of PDE that arise in the analysis presented in Section 4. We obtain solutions to these PDE as follows: we use the BSDE results of Section 3 to first obtain viscosity supersolutions. We then use regularization bootstrapping, parameter smoothing and the regularity of the underlying price process to obtain the smoothness of these supersolutions. Once smoothness is proved classical verification arguments from stochastic optimal control can be constructed to relate the solutions to the stochastic optimal control problems. These arguments do not require p " 2 as opposed to the verification arguments given in Section 3 which are directly based on the BSDE representation.

The output of the standard IS order is the cash position X T at time T generated by the trading algorithm; under the assumption that the price process is a Brownian motion, X T turns out to be normally distributed whose mean and variance have simple formulas in terms of the model parameters. When we relax the IS order so that full liquidation is no longer required at terminal time, the output of the IS order consists of the pair of real random variables pQ T , X T q where X T is, as before, the total cash generated by the trading process and Q T is the remaining position at terminal time in the asset being traded. For the relaxed/modified IS orders, X T is not normally distributed even when the price process is taken to be Brownian and the joint distribution of pX T , Q T q doesn't have an explicit form. Define

A "

X T ´pQ 0 ´QT qS 0 pQ 0 ´QT qS 0

A is the percentage deviation from the target price S 0 of the average price at which the position is (partially) closed in the time interval r0, T s. In Section 5 we study the joint distribution of pQ T {Q 0 , Aq. We note that A can be divided into three pieces: one corresponding to permanent price impact (A 1 ), one corresponding to transaction/bid-ask spread costs (A 2 ) and one corresponding to random fluctuations in the price (A 3 ). A 1 turns out to be a linear function of 1 ´QT {Q 0 ; therefore, its distribution is fully determined by that of Q T {Q 0 . We provide a numerical study of the distribution of Q T {Q 0 and the conditional distributions of A 2 and A 3 given Q T {Q 0 under the assumption that St " σW t for the case pI " 1, S " tW T ě ℓuq. The same section also provides numerical examples of the sample path behavior of the optimal controls of this modified IS order. Section 7 comments further on the models presented in this work and on possible future research.

Definitions

The following model is based on the Almgren Chriss framework for liquidation with price impact (see, e.g., [START_REF] Guéant | The financial mathematics of market liquidity[END_REF]Chapter 3]). Everything is assumed to be defined on a probability space pΩ, F, Pq equipped with a filtration F " tF t , t P r0, 8qu, which satisfies the usual assumptions: completeness and right-continuity. The market volume at time t is denoted by Vol t , which is a positive process adapted to the filtration F. The initial position is denoted by q 0 ą 0. The position of the investor at time t is Q t , in particular Q 0 " q 0 . The process Q is assumed to be absolutely continuous in the time variable, let Q 1 t denote its derivative at time t; Q and Q 1 are adapted to F.

We will be working with two positive real numbers p and p p that are Hölder conjugates of each other 1{p `1{p p " 1; we use p in the problem formulation, p appears in the associated backward stochastic and partial differential equations.

We suppose that the permanent price impact function κ is

κ : R 2 Þ Ñ R, κpq 1 , qq " k |q| p p´2 q 1 ; (2) 
where k ą 0 is a real constant. For p p ą 2 (p p ă 2), κ decreases (increases) with position size and for p p " 2 it is independent of position size. For p p " 2, κ reduces to kq 1 which is the standard choice for permanent price impact (see [START_REF]No-dynamic-arbitrage and market impact[END_REF] or [START_REF] Guéant | The financial mathematics of market liquidity[END_REF]Chapter 3]). The midprice process S is

S t " S 0 `S t `ż t 0 κpQ 1 s , Q s qds ( 3 
)
where S is a martingale adapted to F. The actual trading price at time t is S t `gt pQ 1 t {Vol t q where g t models transaction costs and the bid-ask spread (g depends on t, ω and Q 1 t {Vol t ). The process g is often specified via the so-called execution cost function l t : l t pρq " ρg t pρq. The actual trading price at time t, expressed in terms of l is

S t `Vol t Q 1 t L t ˆQ1 t Vol t ˙.
The cash position that Q generates is

X T " ´ż T 0 ˆSt `Vol t Q 1 t L t ˆQ1 t Vol t ˙˙Q 1 t dt " ´ż T 0 S t Q 1 t dt ´ż T 0 Vol t L t ˆQ1 t Vol t ˙dt (4) 
(Q1 t ă 0 corresponds to selling, hence an increase in X, and Q 1 t ą 0 corresponds to buying, a decrease in X). Note that dp|x| p p q{dx " p px|x| p p´2 ; this and integrating the first term by parts give:

ż T 0 S t Q 1 t dt " S T Q T ´S0 Q 0 ´ż T 0 Q t dS t " S T Q T ´S0 Q 0 ´ż T 0 Q t d St ´ż T 0 kQ t Q 1 t |Q t | p p´2 dt " S T Q T ´S0 Q 0 ´ż T 0 Q t d St ´k p p p|Q T | p p ´|Q 0 | p p q Then X T " Q 0 S 0 ´QT S T `K ´|Q T | p p ´|Q 0 | p p ¯`ż T 0 Q t d St ´ż T 0 Vol t L t ˆQ1 t Vol t ˙dt, where K " k p p .
Let us first review the classical IS order, in which the position is required to be closed fully at terminal time, i.e., we impose the constraint Q T " 0 on the problem. The terminal cash position under this constraint is

X T " Q 0 S 0 ´KQ p p 0 `ż T 0 Q t d St ´ż T 0 Vol t L ˆQ1 t Vol t ˙dt. (5) 
To identify the optimal liquidation strategy Q ˚one maximizes the expected utility ErU pX T qs, over the admissible strategies Q, where U is the utility function of the trader. The standard choice for the utility function in optimal liquidation literature is

U pxq " ´e´γx , (6) 
where γ is the risk aversion parameter of the investor [START_REF] Guéant | The financial mathematics of market liquidity[END_REF]. In the current work we will be focusing on the case γ Ñ 0, for which the problem becomes

1 sup QPA 1,Ω ErX T s, (7) 
with

A 1,Ω " # Q : absolutely continuous, Q 1 progressively measurable, E "ż T 0 Vol t L ˆQ1 t Vol t ˙dt ȷ ă `8 and Q 0 " q 0 , Q T " 0 a.s. + , see Definition 2.1 below. The term ş 0 Q t d
St is a martingale2 ; taking the expectation of X T in ( 5), [START_REF] Crandall | User's guide to viscosity solutions of second order partial differential equations[END_REF] 

reduces to inf QPA 1,Ω E "ż T 0 Vol t L ˆQ1 t Vol t ˙dt ȷ .
This is the standard version of the stochastic optimal control formulation of the IS order in the Almgren Chriss framework for γ " 0. This problem and its generalization where γ ą 0 is a well studied problem in the current literature, as in [START_REF] Guéant | Optimal execution and block trade pricing: a general framework[END_REF][START_REF] Schied | Risk aversion and the dynamics of optimal liquidation strategies in illiquid markets[END_REF][START_REF] Schied | Optimal basket liquidation for CARA investors is deterministic[END_REF]. In the next subsection we propose several modifications to this problem relaxing the constraint Q T " 0 and introducing constraints on when trading takes place.

Modifications

When full liquidation is no longer required, i.e., when we don't have the constraint Q T " 0, the output of the trading process at time T will be pX T , Q T q where X T is the cash generated by the trading process and Q T is the position remaining in the asset being traded. As discussed in the introduction, to formulate a utility maximization problem similar to [START_REF] Crandall | User's guide to viscosity solutions of second order partial differential equations[END_REF], we assign a monetary value mpQ T q to the position Q T and add it to X T . In the present work we mainly focus on the following simple choice for m: the market value of the position at terminal time T ignoring trading costs, i.e., Q T S T . With this choice, the monetary value of the position pX

T , Q T q is XT " X T `QT S T " Q 0 S 0 ´K|Q 0 | p p `K|Q T | p p `ż T 0 Q t d St ´ż T 0 Vol t L t ˆQ1 t Vol t ˙dt. (8) 
Recall that our goal is to modify the IS order to not liquidate depending on price behavior in two ways 1) by relaxing the full liquidation constraint if the price is too low 2) stopping/pausing trade if the price is too low. The following formulation allows both of these possibilities. Let t Þ Ñ I t be an adapted process taking values in t0, 1u. Let S P F T be a measurable set. The trading set is defined by I " tt P r0, T s, I t " 1u. Definition 2.1. Define A I,S as the set of processes Q that satisfy:

• Q is absolutely continuous in t and t Þ Ñ Q 1 t is progressively measurable ; • Q 0 " q 0 ;
• Q T pωq " 0 if ω P S (liquidation constraint) ;

• for λ b P-almost every pt, ωq P r0, T s ˆΩ,

I t pωq " 0 ñ Q 1 t pωq " 0 (if t R I, Q 1 t " 0) ; • the cost ż T 0 Vol t L ˆQ1 t Vol t ˙dt ´K|Q T | p p belongs to L ϱ pΩq for some ϱ ą 1.
For ease of notation set

A " A 1,H , (9) 
i.e., when I " 1 and S " H we simply write A instead of A I,S .

We modify [START_REF] Crandall | User's guide to viscosity solutions of second order partial differential equations[END_REF] to sup

QPA I,S
Er XT s.

The formula [START_REF] Drapeau | Minimal supersolutions of convex BSDEs[END_REF] implies that this control problem is equivalent to:

inf

QPA I,S E "ż T 0 Vol t L ˆQ1 t Vol t ˙dt ´K|Q T | p p ȷ
As noted in the introduction we work with the execution cost function

L t pρq " η t |ρ| p p ,
where η is an adapted and positive valued process. This choice of L reduces the problem to inf

QPA I,S E « ż T 0 η t Vol p p´1 t |Q 1 t | p p dt ´K|Q T | p p ff . ( 10 
)
Let us next note that η t can always be assumed to be 1 by appropriately modifying the volume process, i.e., if we set

Ą Vol t " Vol t η 1 p p´1 t " Vol t η p´1 t (11) 
(10) can be written as inf

QPA I,S E « ż T 0 1 Ą Vol p p´1 t |Q 1 t | p p dt ´K|Q T | p p ff ;
in what follows we always assume η t " 1 and that Vol is modified to Ą Vol if the original η process is not identically 1. A commonly used convention in the prior literature is

8 ¨0 " 0, 8 ¨c " # 8, if c ą 0, ´8, if c ă 0. (12) 
In addition to this we will also set 0{0 " 1 and c{0 " 8 for c ą 0. With these conventions [START_REF] Forsyth | Optimal trade execution: a mean quadratic variation approach[END_REF] can be written as

inf QPA E « ż T 0 1 I t Vol p p´1 t |Q 1 t | p p dt `p´K1 S c `8 ¨1S q |Q T | p p ff , (13) 
where we use the convention [START_REF] Karoui | Backward stochastic differential equations in finance[END_REF]. Note that the I process controls when trading takes place (by effectively switching the volume process on and off) and the event S controls when full liquidation is required.

In the next section we obtain a representation of the value function and the optimal control of the problem (13) via the minimal supersolution of an associated BSDE. Before that let us give several examples for the process I and the event S. The midprice process S consists of two components: St and ş 0 κpQ 1 s , Q s qds. The first component, S, is the random component of the change in the midprice; a large and unpredictable drop in price that the investor may fear can only arise from this component. Given this observation, a reasonable approach in choosing I and S is by putting a lower bound ℓ on this component. For this, define:

τ ℓ " infts ě 0 : Ss ă ℓu, τ t,ℓ " infts ě t : Ss ă ℓu.

Then some possible choices for I and S are:

I t " I p1q t . " 1, S " S p1q . " t ST ě ℓu : (14) 
trading is allowed at all times, full liquidation is forced only when the terminal price ST is above ℓ.

I t " I p2q t . " 1 ttďτ ℓ u , S " S p2q . " tτ ℓ ą T u : (15) 
trading stops once S hits the lower bound ℓ; full liquidation takes place if S remains above ℓ throughout r0, T s.

I t " I p3q t
. " 1 rℓ,8q p St q1 ttďτ T ´δ,ℓ u , S " S p3q " tτ T ´δ,ℓ ě T u : [START_REF] Kruse | Minimal supersolutions for BSDEs with singular terminal condition and application to optimal position targeting[END_REF] trading pauses when the price S is below ℓ, full liquidation takes place if the price process S remains above ℓ in the time interval rT ´δ, T s and trading stops if S goes below ℓ in the same interval; δ ą 0 is a small fixed constant.

Let us comment on the δ ą 0 parameter in this formulation: essentially we would like to continue with the liquidation when the price is not too below our target price S 0 and close the position fully if the terminal price is also near our target price. However, allowing trading (re)start arbitrarily close to T and forcing a full liquidation implies high transaction costs (in fact, 8 transaction costs under the current model). This is the reason for the δ ą 0 parameter: full liquidation is forced only if the price remains above ℓ in the time interval rT ´δ, T s.

In the last formulation trading pauses once S hits ℓ; if S is a continuous diffusion process, once it hits ℓ, it will hit ℓ infinitely often and the trading process will switch on and off infinitely often as S crosses ℓ. One can get a discrete sequence of on and off trading intervals by putting a buffer of size b ą 0 above ℓ between trading and no trading; once trading pauses, it is turned back on once S goes above b`ℓ. The corresponding I and S are expressed through the following sequence of hitting times:

τ ℓ,0 " τ ℓ , τ b,´1 " 0 τ b,0 " inftt : t ą τ ℓ,0 , St ě b `ℓu, τ ℓ,k " inftt : t ą τ b,k´1 , St ă ℓu, τ b,k " inftt : t ą τ ℓ,k , St ě b `ℓu. τb,k " # τ b,k , if τ b,k `δ ă T, T, otherwise.
Adding a buffer of size b ą 0 between no-trading and trading in [START_REF] Kruse | Minimal supersolutions for BSDEs with singular terminal condition and application to optimal position targeting[END_REF] amounts to the following definitions:

I t " I p4q t . " 8 ÿ k"´1 1 rτ b,k ,τ ℓ,k`1 s ptq, S " S p4q . " tI T " 1u. ( 17 
)

BSDE Analysis

In our arguments the concepts of monotonicity (of the driver of a BSDE) and the minimal supersolution of a BSDE play a key role, let us begin by giving a precise definition of these terms.

Definition 3.1. The function pt, y, ωq Þ Ñ f pt, y, ωq is said to be monotone if there exists χ P R such that a.s. and for any t ě 0 and y, y 1 P R, pf pt, y, ωq ´f pt, y 1 , ωqqpy ´y1 q ď χpy ´y1 q 2 .

Let ξ be an F T -measurable real valued random variable. A pair pY, M q is said to be a supersolution of the BSDE

dY t " ´f pt, Y t qdt `dM t , Y T " ξ, if 1. Y is adapted to F ; 2. M is a martingale 3 ; 3. Y s " Y t `şt s f pu, Y u qdu `pM t ´Ms q for 0 ď s ă t ă T ; 4. the inequality lim inf tÑT Y t ě ξ (18) 
holds a.s..

It is said to be minimal if a.s. for any t, Y 1 t ě Y t for any other supersolution pY 1 , M 1 q.

The work [START_REF] Kruse | Minimal supersolutions for BSDEs with singular terminal condition and application to optimal position targeting[END_REF] studies the following stochastic optimal control problem:

Q t " Q C t `QJ t , min QPA 1 E « ż T 0 ˜ηt ˇˇˇd Q C t dt ˇˇˇp `γt |Q t | p `CpQ J q t ¸dt `ξ|Q T | p p ff , (19) 
where: ξ P F T is a non-negative random variable that is allowed to take the value `8, Q C is the absolutely continuous part of Q, Q J is the jumping part of Q, CpQ J q a running cost associated with Q J , and A 1 an appropriate modification of A. On the set tξ " `8u, the constraint Q T " 0 is necessary to ensure a finite cost. Compared to [START_REF] Guéant | Optimal execution and block trade pricing: a general framework[END_REF] this problem has an additional term Q J in its dynamics and two additional terms (γ t |Q t | p and CpQ J q t ) in its cost structure. To focus on the novelties associated with the terminal cost we will assume these terms to be 0. The work [START_REF] Kruse | Minimal supersolutions for BSDEs with singular terminal condition and application to optimal position targeting[END_REF] identifies the value function of [START_REF] Pardoux | Stochastic Differential Equations, Backward SDEs, Partial Differential Equations[END_REF] as

Y t |Q t | p where Y is the minimal supersolution of the BSDE dY t " pp ´1q Y t |Y t | p´1 η p´1 t `dM t , Y T " ξ ě 0. ( 20 
)
The generator of this BSDE is monotone and establishing the existence of the minimal supersolution makes use of this property of the generator. The reason that [START_REF] Kruse | Minimal supersolutions for BSDEs with singular terminal condition and application to optimal position targeting[END_REF] is able to use this monotone generator is the assumption ξ ě 0. In the present work we allow ξ to take negative values therefore it is no longer possible to work with a generator involving the function y Þ Ñ y|y| p´1 . The BSDE corresponding to the stochastic optimal control problem (13) turns out to be

dY t " pp ´1qI t Vol t |Y t | p dt `dM t (21) 
with terminal condition

Y T " ξ, (22) 
ξ " ´K1 S c `8 ¨1S

(a rigorous link between this BSDE and ( 13) will be established in subsection 3.1 via a verification argument). Define vol t " pp ´1qI t Vol t ; [START_REF] Schied | Risk aversion and the dynamics of optimal liquidation strategies in illiquid markets[END_REF] vol is the restricted volume process available to the trader (up to some constant). Then we can write (21) also as

dY t " vol t |Y t | p dt `dM t . (25) 
Compared to [START_REF] Popier | Backward stochastic differential equations with singular terminal condition[END_REF] the novel features of ( 25), ( 22) are the following: its terminal condition is allowed to take negative values, its driver is convex in Y and not monotone and its generator can take the value 0 (because of the presence of the I term). We introduce several assumptions to deal with these new features when obtaining the existence of a minimal supersolution to this BSDE. First, note that the terminal condition ξ of ( 23) is bounded below by ´K; for this reason for our purposes it suffices to focus on terminal conditions whose negative parts are bounded above by a constant, i.e., all of the terminal conditions we consider satisfy ξ ´ď K.

The generator of ( 25) is defined in terms of the function y Þ Ñ |y| p and its terminal value can take negative values: a consequence of these facts is that any solution to ( 25) and ( 22) can explode to ´8 backward in time (see Lemma 1 below). To deal with this, we introduce the following assumption that ensures that an explosion doesn't happen in r0, T s: Assumption 1. vol is non-negative and one of the next two conditions holds:

• vol is deterministic and satisfies

K p´1 ż T 0 vol t dt ă 1 p ´1 , (26) 
• vol is bounded by a constant vol ą 0 such that

K p´1 T vol ă 1 p ´1 . ( 27 
)
We will assume throughout that either [START_REF] Sezer | Backward stochastic differential equations with non-Markovian singular terminal values[END_REF] or (27) holds. Note that when pp ´1qVol satisfies one of these, vol " pp ´1qI Vol also does because I P t0, 1u. This assumption balances the negative part of the terminal condition (determined by the permanent price impact parameter k) with the trading volume available to the trader.

If PpSq ą 0, ξ can take the value 8 with positive probability and the terminal condition is said to be singular (terminal condition is said to be singular also when ξ doesn't belong to L ϱ pΩq for some ϱ). We need a further assumption to deal with this possible singularity. To ensure that there exists a solution which is finite on r0, T q, the generator should not be equal to zero close to time T . The corresponding assumption in [START_REF] Kruse | Minimal supersolutions for BSDEs with singular terminal condition and application to optimal position targeting[END_REF] is [16, (A.6)], which is:

E ş T 0 η s ds ă `8.
In the present work, to guarantee the existence of a minimal supersolution, we make the following assumption on vol " I Vol: Assumption 2. There exists some ς ą 1 and some ϵ ą 0 such that

E "ż T T ´ϵ 1 pvol s q pp p´1qς ds ȷ ă `8. ( 28 
)
Evoke that p p is the Hölder conjugate of p.

Assumption 2 can be interpreted as the availability of liquidity (through Vol and I) at terminal time. In particular it means that I t " 1 on rT ´ϵ, T s.

We begin our analysis by deriving a lower bound process z which we will use to guarantee that the minimal supersolution to (20) doesn't explode to ´8 in r0, T s. Under Assumption 1 the lower bound process z is defined as follows:

z t " ´˜1 K 1´p ´pp ´1q ş T t vol s ds ¸1 p´1 , (29) 
if ( 26) holds; and 

z t " ´ˆ1 K 1´p ´pp ´1qvolpT ´tq ˙1 p´1 , (30) if 
) 32 
Both z satisfy z T " ´K. Under Assumption 1, z is increasing on r0, T s and satisfies ´8 ă z 0 ď z t ď ´K for any t P r0, T s.

Proof. Assumption 1 implies

K 1´p ´pp ´1q ż T t
vol s ds ą 0 or K 1´p ´pp ´1qvolpT ´tq ą 0, for t P r0, T s. Therefore, z t ă 0 on r0, T s. Non-negativity of vol and vol imply that z is increasing. One can check by differentiation that z of (29) satisfies (31) and z of (30) satisfies (32).

The standard way to obtain the minimal supersolution of a BSDE with a singular terminal condition is approximation from below, i.e., we truncate the terminal condition ξ to ξ ^n, solve the resulting BSDE and let n Õ 8. Therefore, the treatment of singular terminal values requires the solution of the same BSDE with bounded/integrable terminal values. The next proposition addresses such terminal values: Proposition 3.1. Suppose that Assumption 1 holds. Furthermore assume:

• ξ `P L ϱ pΩq for some ϱ ą 1,

• ξ ´ď K where K is the constant appearing in Assumption 1.

Then BSDE (25) has a unique solution pY, M q such that Y ´is bounded and

E ˜sup tPr0,T s |Y t | ϱ `rM s ϱ{2 T ¸ă `8.
Moreover if ξ `is bounded, Y is also bounded.

In the Brownian setting, M is replaced by ş 0 Z s dW s and

rM s T " ż T 0 |Z s | 2 ds.
Proof. Recall that the generator y Þ Ñ ´vol t |y| p is not monotone. However, if the negative part Y ´of the solution is bounded by some constant c 1 ą 0, that is, if Y is bounded from below by ´c1 , then we can replace the generator pt, yq Þ Ñ ´vol t |y| p by a monotone continuous generator defined as follows:

r f ´c1 ps, yq " ´vol t |y| p 1 yě´c 1 `vol t c p´1 1 ppy `pp ´1qc 1 q1 yă´c 1 . ( 33 
)
This generator is indeed monotone since py ´y1 qp r f ´c1 pt, yq ´r f ´c1 pt, y 1 qq ď pvol t c p´1 1 py ´y1 q 2 for any t, y, y 1 . Since Y ě ´c1 ,

Y t " ξ `ż T t f ps, Y s qds ´pM T ´Mt q " ξ `ż T t r f ´c1 ps, Y s qds ´pM T ´Mt q.
Furthermore, by Assumption 1, vol belongs to L 1 p0, T q almost surely. These imply that the uniqueness result for BSDE driven by a monotone generator ([19, Proposition 5.24] or [15, Lemma 5]) apply in our current setting; therefore, if it exists and if its negative part is bounded, the solution of ( 25) is unique. We know from Lemma 1 that the process z is bounded from below by z 0 ă 0. Consider the generator r f z 0 and the BSDE

Y t " ξ `ż T t r f z 0 ps, Y s qds ´pM T ´Mt q. ( 34 
)
Since r f z 0 is monotone with respect to y and since vol P L 1 p0, T q, BSDE (34) has a unique solution pY, M q (see again [START_REF] Pardoux | Stochastic Differential Equations, Backward SDEs, Partial Differential Equations[END_REF]Proposition 5.24] or [15, Theorems 1 and 2]). Note that for ξ " ´K, the solution is pz, 0q. Since ξ ě ´K, the comparison principle ([15, Proposition 4] or [START_REF] Pardoux | Stochastic Differential Equations, Backward SDEs, Partial Differential Equations[END_REF]Proposition 5.33]) states that Y t ě z t ě z 0 a.s. for any t. In other words pY, M q is a solution of the BSDE [START_REF] Schied | Optimal basket liquidation for CARA investors is deterministic[END_REF], and this achieves the proof of the proposition.

Remark 1 (On the negative part of Y ). Itô-Tanaka formula (applied to y Þ Ñ y ´and Y ) implies that Y ´is a subsolution of the BSDE

U t " ξ ´`ż T t vol s |U s | p 1 Usě0 ds ´ż T t dN s (35) 
The generator r f : pt, yq Þ Ñ vol t y p 1 yě0 is not monotone. However, it is increasing and positive. From Lemma 1, pU ˚, V ˚q " p´z, 0q is a bounded supersolution of this BSDE. Following [START_REF] Drapeau | Minimal supersolutions of convex BSDEs[END_REF], we deduce the existence of a minimal bounded supersolution pU, N q which is also bounded and non-negative (see [START_REF] Drapeau | Minimal supersolutions of convex BSDEs[END_REF]Theorems 3.3 and 4.1]). Using again r f z 0 , we deduce that pU, N q in fact is the unique solution of the BSDE (35). Therefore, assumptions in the previous proposition can be replaced by the existence of a supersolution to the BSDE (35). In other words, these assumptions are sufficient to obtain a supersolution, but not necessary. As a by-product of these calculations, we obtain a better bound: 0 ď Y t ď U t ď ´zt . almost surely for any t P r0, T s.

Remark 2 (On the positive part of Y ). Consider the BSDE

Υ t " ξ ``ż T t vol s r´pΥ s ´Us q p `pU s q p s 1 Υsě0 ds ´pM T ´Mt q " ξ ``ż T t f ps, Υ s qds ´pM T ´Mt q,
where U is the solution of (35). U is bounded by K and B y f ps, yq ď pvol s K p´1 imply that the driver f is monotone: py ´y1 qp f pt, yq ´f pt, y 1 qq ď pvol t K p´1 py ´y1 q 2 and the existence and uniqueness of the solution holds, if ξ `belongs to some space L ϱ pΩq. Define Y " Υ ´U and M " M ´N :

Y t " Υ t ´Ut " ξ `´ξ
´`ż T t p f ps, Υ s q ´r f ps, U s qqds ´pM T ´NT ´Mt `Nt q " ξ ´ż T t vol s pΥ s ´Us q p ds ´pM T ´Mt q.

Hence, pY, M q solves the BSDE (25) and 0 ď Y t ď Υ t holds almost surely for t P r0, T s. Another estimate can be obtained using the Itô-Tanaka formula since

pY t q `" ξ `´ż T t vol s pY s q p 1 Ysě0 ds ´ż T t 1 Ysě0 dM s ´1 2 ż T t dL Y s .
If r Υ solves the BSDE with monotone generator

r Υ t " ξ `´ż T t vol s p r Υ s q p 1 r Υsě0 ds ´ż T t d Ă M s ,
the comparison principle implies that a.s. for any t, Y t ď r Υ t .

Our main result on the BSDE (25) when its terminal condition is singular is the following: Proposition 3.2. Suppose ξ ´ď K and Assumptions 1 and 2 hold. Assume that the filtration F is left-continuous at time T . Then there exists a minimal 4 supersolution pY min , M min q to the BSDE (25) with terminal condition ξ such that Y min has a left-limit at time T and the negative part of this minimal supersolution is bounded.

Several points: there is no condition on ξ `, the only condition on ξ ´is ξ ´ď K, in particular, the terminal condition [START_REF] Samuel | Continuity problem for singular BSDE with random terminal time[END_REF] arising from the stochastic optimal control problem satisfies the conditions of this proposition. Condition (28) implies that vol should remain away from zero close to T .

Proof. The proof proceeds parallel to that of [START_REF] Kruse | Minimal supersolutions for BSDEs with singular terminal condition and application to optimal position targeting[END_REF]Proposition 3]. Let us consider for any n ě 0 ξ n " ξ ^n.

The solution pY n , M n q of

Y n t " ξ n ´ż T t vol s |Y n s | p ds ´pM n T ´M n t q,
has the same upper bound U " ´z for the negative part pY n q ´for any n. Using the comparison principle for monotone BSDE, arguing as in [START_REF] Kruse | Minimal supersolutions for BSDEs with singular terminal condition and application to optimal position targeting[END_REF] gives

Y n Õ Y. From Remark 2, Y n ď Υ n with Υ n t " pξ `^nq ´ż T t vol s pΥ n s q p 1 Υ n s ě0 ds ´pN n T ´N n t q.
From [16, Lemma 1], we have

Υ n t ď 1 pT ´tq p p E « ż T t ˆp p ´1 vol s ˙p p´1
ds ˇˇˇF t ff for any t P rT ´ϵ, T s, almost surely. Therefore, from (28), Y n t , T ´ϵ ď t ă T , is finite and bounded in L ς pΩq uniformly with respect to n. In particular, for any ϵ 1 ă ϵ, there exists a constant C such that for any n,

E `|Y n T ´ϵ1 | ς ˘ď C. Stability result for BSDE ([19, Theorem 5.10]) shows that pY n , M n q converges to pY, M q: lim nÑ`8 E ˜sup tPr0,T ´ϵ1 s |Y n t ´Yt | ς `rM n ´M s ς{2 T ´ϵ1 ¸" 0.
Thus pY, M q solves (25 

ΘpY t q " E rΘpξq|F t s `ψt ´ψt
where ψ `and ψ ´are two non-negative supermartingales such that ψ `converges a.s. to zero. To obtain this result, we crucially use that the negative part of Y n is bounded uniformly with respect to n and also that the martingale N n " ş 1 Y n ď0 dM n is uniformly bounded in the sense that there exists a constant C such that for any n

E rN n s 2 T ď C.
To obtain this last inequality, the Itô-Tanaka formula for pY n q ´is applied (see Remark Our next task is to relate the solution/minimal supersolution of the BSDE [START_REF] Schied | Optimal basket liquidation for CARA investors is deterministic[END_REF] to the solution of the stochastic optimal control problem (13).

Solution of the quadratic stochastic optimal control problem

The goal of this subsection is to relate the minimal supersolution of the BSDE (25) with terminal condition [START_REF] Popier | Integro-partial differential equations with singular terminal condition[END_REF] to the solution of the stochastic optimal control problem (13). This will be achieved through a verification argument based on the convexity of the cost structure of [START_REF] Guéant | Optimal execution and block trade pricing: a general framework[END_REF]. The convex structure holds only for p p " 2, for this reason in this subsection we assume p p " p " 2. We deal with the case p p ‰ 2 in the next section in a Markovian framework. For ease of reference let us restate our stochastic optimal control problem (13):

inf QPA I,S E "ż T 0 |Q 1 t | 2 vol t dt `ξ|Q T | 2 ȷ " inf QPA E "ż T 0 |Q 1 t | 2 vol t dt `ξ|Q T | 2 ȷ ; ( 36 
)
we remind the reader that in the second formulation we are using the convention [START_REF]No-dynamic-arbitrage and market impact[END_REF]; the definitions of A I,S , A and vol are given Definition (2.1), ( 9) and [START_REF] Schied | Risk aversion and the dynamics of optimal liquidation strategies in illiquid markets[END_REF].

Remark 3. Under Assumption 1 on vol (with p " 2) the Cauchy-Schwarz inequality implies

sup tPr0,T s |Q t ´Q0 | 2 " sup tPr0,T s ˇˇˇż t 0 Q 1 s ds ˇˇˇ2 ď ˆż T 0 vol s ds ˙ˆż T 0 |Q 1 s | 2 vol s ds ď 1 K ˆż T 0 |Q 1 s | 2 vol s ds ˙. Hence if Q P A I,S , E sup tPr0,T s |Q t ´Q0 | 2ϱ ă `8.
In particular

|Q T | 2 ď 2|Q 0 | 2 `2 1 K ˆż T 0 |Q 1 s | 2 vol s ds ˙.
Hence for any bounded ξ, the integrability condition in Definition 2.1 is equivalent to

E « ˆż T 0 |Q 1 s | 2 vol s ds ˙ϱff ă `8.
Our goal is to prove the following result:

Proposition 3.3. Suppose p " p p " 2.
Suppose Assumptions 1 and 2 hold, suppose ξ ´ď K and let pY min , M min q be the minimal supersolution of (25), [START_REF] Popier | Integro-partial differential equations with singular terminal condition[END_REF]. Then

Q t " Q 0 exp ˆ´ż t 0 Y min s vol s ds ˙, t P r0, T q, (37) 
(equivalently, pQ ˚q1 t " ´Y min t vol t Q t ) is the optimal state process for the stochastic optimal control problem (36). Moreover the value function of (36) at time t, namely

inf QPA I,S ptq E "ż T t |Q 1 s | 2 vol s ds `ξ|Q T | 2 ˇˇˇF t ȷ ,
is given by V pt, qq " q 2 Y min t (A I,S ptq is defined by Definition 2.1, but the process Q starts at time t from the deterministic position q). The proof directly follows from the next two lemmas and is given at the end of this subsection. Let's call J the expression inside the min in (36

): for v " Q 1 Jpvq " ż T 0 v 2 t vol t dt `ξ ˆQ0 `ż T 0 v t dt ˙2 .
We start with the following observation:

Lemma 2. If ξ ´ż T 0 vol t dt ă 1 (38)
almost surely, then the functional v Þ Ñ Jpvq is strictly convex. The Gâteaux derivative of J at point v in direction w, is given by xDJpvq, wy " 2

ż T 0 v t w t vol t dt `2ξ ˆQ0 `ż T 0 v t dt ˙ˆż T 0 w t dt ˙.
Remark 4. Assumption 1 with p " p p " 2 and ξ ´ď K imply (38).

Proof. Taking v and r v and θ P r0, 1s, we have Jpθv `p1 ´θqr vq ´θJpvq ´p1 ´θqJpr vq

" ´θp1 ´θq « ż T 0 pv t ´r v t q 2 vol t dt `ξ ˆż T 0 pv t ´r v t qdt ˙2ff ď ´θp1 ´θq « ż T 0 pv t ´r v t q 2 vol t dt ´ξ´ˆż T 0 pv t ´r v t qdt ˙2ff ď θp1 ´θq " ´1 `ξ´ż T 0 vol t dt ȷ ż T 0 pv t ´r v t q 2 vol t dt ď 0.
We use the Cauchy-Schwarz inequality for the inequality. Now for any ϵ ą 0 and v and w

1 ϵ pJpv `ϵwq ´Jpvqq " 2 ż T 0 v t w t vol t dt `ϵ ż T 0 w 2 t vol t dt `2ξ ˆQ0 `ż T 0 v t dt ˙ˆż T 0 w t dt ˙´ϵξ ˆż T 0 w t dt ˙2 .
Letting ϵ to zero gives the desired formula.

The last intermediate result we need is a version of Proposition 3.3 where ξ is bounded.

Lemma 3. Suppose ξ is bounded. If pY, M q is the solution of (25) with terminal condition Y T " ξ, then the optimal state process Q ˚(resp. optimal control v ˚" pQ ˚q1 ) of (36) is given by

Q t " Q 0 ´ż t 0 pY s vol s qQ s ds presp. ´Ys vol s Q s q.
Moreover, Y 0 pQ 0 q 2 is the value function of the control problem.

Proof. Note that for bounded ξ, the BSDE [START_REF] Schied | Optimal basket liquidation for CARA investors is deterministic[END_REF] with terminal condition Y T " ξ has a unique solution and it equals the minimal supersolution: Y " Y min , M " M min . Since ξ is bounded, from Proposition 3.1, Y is bounded and for any ϱ ą 1

E ˆrM s ϱ ϱ´1
T ˙ă `8.

Thus Q t " Q 0 exp ˆ´ż t 0 Y s vol s ds is also bounded and from Assumption 1 ż T 0 pv s q 2 vol s ds " ż T 0 vol s pY s Q s q 2 ds is bounded. Thus Q ˚is in A I,S .
Let Q be in A I,S with L ϱ -integrability, and define v " Q 1 , w " v ˚´v and p Q " ş 0 w s ds.

If N t . " 2Y t Q t " ´2 v t vol t ,
integration by parts gives:

N t " 2Y 0 Q 0 `2 ż t 0 Q s vol s pY s q 2 ds ´ż t 0 2Y s Y s vol s Q s ds `2 ż t 0 Q s dM s " 2 ż t 0 Q s dM s .
Hence N and ş pQ ˚q2 dM are martingales (since Q ˚is bounded). Moreover

ż T 0 p p Q s Q s q 2 drM s s ď C sup tPr0,T s p p Q s q 2 rM s T ;
this and 3 imply

E ż T 0 p p Q s Q s qdrM s s ď C « E sup tPr0,T s p p Q s q 2ϱ ff 1 ϱ " E rM s ϱ ϱ´1 T ȷ ϱ´1 ϱ ă `8.

Hence

ş p QQ ˚dM is also a martingale. Now integration by parts implies:

ż T 0 w t 2v t vol t dt " ż T 0 p Q t dN t ´NT p Q T " ż T 0 p Q t dN t ´2ξq T p Q T .
This and Lemma 2 give xDJpv ˚q, wy "

ż T 0 p Q t dN t " 2 ż T 0 p Q t Q t dM t ,
which is a martingale. With the convexity of J we obtain EpJpv ˚q ´Jpvqq ď ExDJpv ˚q, v ˚´vy " 0.

Therefore, v ˚is the optimal control (unique from the strict convexity of J). Itô's formula applied to Y t pQ t q 2 gives dpY t pQ t q 2 q " pQ t q 2 vol t pY t q 2 dt `pQ t q 2 dM t `2Y t q t p´Y t vol t q t qdt " ´vol t pQ t Y t q 2 dt `pQ t q 2 dM t " ´pv t q 2 vol t dt `pQ t q 2 dM t .

Since ş pQ ˚q2 dM is a martingale,

Y t pQ t q 2 " E "ż T t pv s q 2 vol s ds `ξpQ T q 2 ˇˇˇF t ȷ .
In other words Y t pQ t q 2 is the value function of the control problem.

We now give

Proof of Proposition 3.3. For N " 2Y min Q ˚, one can use arguments parallel to those in the proof of the previous lemma to show that N is a martingale on r0, T q. Since pY min q ´is bounded (by K) we have This and Assumption 1 imply that Q ˚is also bounded. Since pY min q ´is also bounded, the martingale N is bounded from below. Therefore, the limit at time T of N exists in R and

Q t " N t 2Y min t
tends to zero a.s. on the set S " tξ " `8u, since lim tÑT Y min t 1 S " `8. Now we apply Itô's formula to Y min pQ ˚q2 : for any 0

ď t ď r ă T Y min t pQ t q 2 " Y min r pQ r q 2 ´ż r t pQ s q 2 vol s pY min s q 2 ds ´ż r t Y min s 2pQ s qp´Y min s vol s Q s qds ´ż r t pQ s q 2 dM min s " Y min r pQ r q 2 `ż r t pv s q 2 vol s ds ´ż r t pQ s q 2 dM min s with v s " ´vol s Y min s Q s .
Taking the conditional expectation we get

Y min t pQ t q 2 " E " Y min r pQ r q 2 `ż r t pv s q 2 vol s ds ˇˇˇF t ȷ .
By the the monotone convergence theorem

lim inf rÑT E "ż r t pv s q 2 vol s ds ˇˇˇF t ȷ " E "ż T t pv s q 2 vol s ds ˇˇˇF t ȷ .
And by Fatou's lemma (pY min q ´is bounded)

lim inf rÑT E " Y min r pQ r q 2 ˇˇˇF t ȷ ě E " lim inf rÑT pY min r pQ r q 2 q ˇˇˇF t ȷ .
Recall the definition of N " 2Y min Q ˚and that the limit of N at time T exists in R. Moreover

lim rÑT Q r " 0 " Q T , when lim rÑT Y min r " `8. Therefore, if lim rÑT Y min r " `8, then lim inf rÑT pY min r pQ r q 2 q " lim inf rÑT pN r q lim rÑT Q r " 0 " ξpQ T q 2
(with the convention 8 ¨0 " 0). If lim inf rÑT Y min r ă `8, then lim inf rÑT pY min r pQ r q 2 q ě ξpQ T q 2 .

In both cases we obtain

Y min t pQ t q 2 ě E "ż T t pv s q 2 vol s ds `ξpQ T q 2 ˇˇˇF t ȷ .
Thus Y min q 2 dominates the value function V p¨, qq of the constrained control problem. Now if Q is in A I,S , it is in A I,H (no terminal constraint on Q T ). Therefore, the value function V dominates the value function of the unconstrained control problem with terminal penalty ξ ^n, for any n. Denote by Y n the solution of the BSDE [START_REF] Schied | Optimal basket liquidation for CARA investors is deterministic[END_REF] with bounded terminal value Y n T " ξ ^n. From Lemma (3), Y n q 2 is the value function of the unconstrained control problem. We deduce that for any n

Y n t q 2 ď V pt, qq ď Y min t q 2 .
Since Y n converges to Y min , we obtain that Y min q 2 is the value function of the constrained control problem and that Q ˚is the optimal state process. Note that the value function is finite at time 0, that is

E "ż T 0 pv s q 2 vol s ds `ξpQ T q 2 ȷ ď Y min 0 pQ 0 q 2 ă `8.
Using (28) and the proof of Proposition 3.2, for t ă T , Y min t belongs to L ς pΩq and we can also deduce that

E « ˆż T 0 pv s q 2 vol s ds `ξpQ T q 2 ˙ς ff ă `8.
Therefore Q ˚belongs to A I,S and this achieves the proof.

3.2 Reduction to random time interval rr0, τ ℓ ^T ss for I t " 1 ttďτ ℓ u

In general, PpT ´ϵ ă τ ℓ ď T q ą 0 for any ϵ ą 0. therefore, for I " I p2q " 1 ttďτ ℓ u , Assumption 2 in general doesn't hold regardless of what Vol is. For I p2q a natural way to deal with this is to consider the problem on the random interval rr0, τ ℓ ^T ss: for Q P A I p2q ,S we have

Q t " Q τ ℓ , Q 1 t " 0 for t ą τ ℓ .
Therefore, the stochastic optimal control problem (13) can also be expressed as

min QPA E "ż τ ℓ ^T 0 pQ 1 t q p p Vol t dt ``´K1 tτ ℓ ăT u `8 ¨1tτ ℓ ěT u ˘Qp p T ȷ . (39) 
The corresponding BSDE is again [START_REF] Schied | Optimal basket liquidation for CARA investors is deterministic[END_REF] but with terminal condition

Y τ l ^T " ξ p2q " ´K1 tτ ℓ ăT u `8 ¨1tτ ℓ ěT u , (40) 
and we have a BSDE with random terminal time τ ℓ ^T . Note that now the dynamics of Y is considered only on the random interval rr0, τ ℓ ^T ss and I p2q t " 1 on this random interval. The next proposition (formulated in terms of a general stopping time τ ) states that the BSDE (25) has a minimal supersolution for terminal conditions of the form

Y τ ^T " ξ " ζ1 tτ ěT u `ψτ 1 tτ ăT u , ( 41 
)
where τ is a stopping time and ζ, ψ are bounded from below by ´K and ψ is also bounded from above; (40) is a special case of (41).

Proposition 3.4. Assumption 1 holds. Let ξ be as in (41). If for some ϱ ą 1

E ż T 0 vol s pErζ|F s sq ϱ ds ă `8, (42) 
then the BSDE (25) with terminal condition (41) has a unique solution pY, M q such that • P-a.s., on the set tt ě τ ^T u, Y t " ξ and M t " 0,

• P-a.s., for all 0 ď t ď r ď T ,

Y t^τ " Y r^τ `ż r^τ t^τ vol s |Y s | p ds ´ż r^τ t^τ dM s ,
• and for some constant C depending on vol, K and ϱ

E " |Y τ ^T | ϱ `ż τ ^T 0 |Y s | ϱ ds `rM s ϱ{2 τ ^T ȷ ď CE|ξ| ϱ .
If, instead of the integrability condition (42) on ζ, the following modified version of condition (28) holds

E « ż τ ^T τ ^pT ´ϵq 1 pvol s q pp p´1qς ds ff ă `8, (43) 
then there exists a minimal supersolution pY min , Z min q for the BSDE (25) with terminal condition (41).

Proof. The first part of the claim comes from [15, Proposition 6] on BSDEs with random terminal time. Note that our terminal time τ ^T is bounded. As in the proof of Proposition 3.1, since the negative part of the data is bounded, we can modify the generator in order to have a monotone generator (see Equation ( 33)).

In the singular case, we proceed by truncation. For n sufficiently large:

ξ ^n " pζ ^nq1 τ ěT `ψτ 1 τ ăT .

Again we construct a sequence of solutions pY n , M n q, such that pY n q is non-decreasing. It only remains to control Y n , uniformly in n.

We define p p U , p V q as the solution with terminal condition ψ τ 1 τ ăT ´ζ´1 τ ěT . Note that p U is bounded. Now for any t ď s ď T we have

Y n t^τ ´p U t^τ " Y n s^τ ´p U s^τ ´ż s^τ t^τ vol r "ˇˇˇY n r ´p U r `p U r ˇˇp ´ˇˇp U r ˇˇp ı dr ´ż s^τ t^τ pdM n r ´d p V r q.
Hence Υ n " Y n ´p U solves the BSDE with terminal condition pζ `^Lq1 τ ěT and generator gps, yq " ´vol s "ˇˇˇy

`p U s ˇˇp ´| p U s | p ı .
Once again, the map y Þ Ñ gps, yq is not monotone on R. But since the negative part of the data is bounded, we can modify g on p´8, ´c1 q, such that g becomes monotone (see Equation ( 33)). And again by the comparison principle, Υ n is non-negative.

To control Υ n , we again follow the arguments of [ This uniform bound on Υ n , thus on Y n , allows us to define the solution of the BSDE with terminal time τ ^T and a singular terminal condition.

For τ " τ ℓ we have vol " Vol and for the existence of a minimal supersolution Vol must satisfy (43). The next proposition connects the value function of (39) to the minimal supersolution pY min , M min q whose existence was derived above. Proposition 3.5. Suppose Vol satisfies (43) with p p " 2. Let pY min , M min q be the minimal supersolution of (25) and (40). For any t P r0, T q,

Q t " Q 0 exp ˆ´ż t 0 Y min s vol s ds ˙,
(equivalently, pQ ˚q1 t " ´Y min t vol t Q t ) is the optimal control for the stochastic optimal control problem (39). Moreover the value function of the same control problem at time t equals

Y min t q 2 .
Proof. Following the arguments of the proof of Proposition 3.3, we have that for any 0 ď t ď r ă T :

Y min τ ℓ ^tpQ τℓ ^tq 2 " Y min τ ℓ ^rpQ τℓ ^rq 2 `ż τ ℓ ^r τ ℓ ^t pv s q 2 vol s ds ´ż τ ℓ ^r τ ℓ
^t pQ s q 2 dM min s with v ˚" pQ ˚q1 . Taking the conditional expectation and passing to the limit on r, we obtain

Y min τ ℓ ^tpQ τℓ ^tq 2 ě E "ż τ ℓ ^T τ ℓ ^t pv s q 2 vol s ds `ξpQ τℓ ^T q 2 ˇˇˇF t ȷ .
The rest of the proof continues as that of Proposition 3.3.

3.3

Reduction to time interval r0, T ´δs for pI, Sq " pI p3q , S p3q q and pI p4q , S p4q q

As already noted, for I " I p3q and I " I p4q , Assumption 2 doesn't hold in general since both I p3q t and I p4q t can be zero for t arbitrarily close to T . However, in both of these cases the problem can be reduced to the time interval r0, T ´δs where this assumption is no longer needed.

Both pI, Sq " pI p3q , S p3q q and pI, Sq " pI p4q , S p4q q consist of two phases: before and after time T ´δ, the reason for this was explained in the paragraph following [START_REF] Kruse | Minimal supersolutions for BSDEs with singular terminal condition and application to optimal position targeting[END_REF]. In both cases the trading process for I p3q and I p4q proceeds exactly as in I p2q after time T ´δ: if the algorithm is in trading mode at time T ´δ, the position is fully closed only when the price remains above ℓ throughout the interval rT ´δ, T s; trading stops (and doesn't restart) if the price hits ℓ. This implies that the stochastic optimal control problem (36) can be written as

inf QPA E "ż T ´δ 0 |Q 1 t | p p vol t dt `Ipjq T ´δ V 8 T ´δ ´p1 ´Ipjq T ´δ qK|Q T ´δ | p p ȷ (44) 
where V 8 T ´δ is the value function of the stochastic optimal control problem corresponding to pI 2 , S p2q q on the time interval rrT ´δ, T ^τT ´δ,ℓ ss with initial position Q T ´δ . For p " 2, we know by Proposition 3.5 that

V 8 T ´δ " Q p p T ´δ Y 8,T ´δ T ´δ
where Y 8,T ´δ is the minimal supersolution of the BSDE [START_REF] Schied | Optimal basket liquidation for CARA investors is deterministic[END_REF] 

Y 8,T ´δ T ´δ is F T ´δ -measurable and belongs to L ς pΩq. Now consider the solution pY, M q of the BSDE (25) on the time interval r0, T ´δs with the F T ´δ -measurable terminal condition ξ of (45). Define

Y min t " # Y t if t ă T ´δ Y 8,T ´δ t I T ´δ if t ě T ´δ.
Lemma 4. Suppose p p " p " 2. For any t P r0, T q,

Q t " Q 0 exp ˆ´ż t 0 Y min s vol s ds ˙, (equivalently, v t " ´Y min t vol t Q t )
is the optimal control for the stochastic optimal control problem corresponding to pI, Sq " pI p3q , S p3q q or pI, Sq " pI p4q , S p4q q. Moreover, the value function of the same control problem at time t equals q 2 Y min t .

Proof. From our previous arguments, we know that if v t " ´Yt vol t Q t is the derivative of Q t , with starting point Q 0 , then for any other strategy v we have

Y 0 pQ 0 q 2 " E "ż T ´δ 0 pv s q 2 vol s ds `ξpQ T ´δ q 2 ȷ ď E "ż T ´δ 0 pv s q 2 vol s ds `ξpQ v T ´δ q 2 ȷ . ( 46 
)
Now let us define for t ě T ´δ

Q 8,T ´δ t " Q T ´δ ´ż t T ´δ Y 8,T ´δ s vol s Q 8,T ´δ s ds
and v 8,T ´δ " ´Y 8,T ´δ volQ 8,T ´δ . From Proposition 3.5, Y 8,T ´δ pQ 8,T ´δ q 2 is the value function of the related control problem starting at time T ´δ from Q T ´δ :

Y 8,T ´δ T ´δ pQ T ´δ q 2 " E « ż τ T ´δ,ℓ ^T T ´δ pv 8,T ´δ s q 2 vol s ds `ζpQ 8,T ´δ τ T ´δ,ℓ ^T q 2 ˇˇˇF T ´δ ff ď E "ż τ T ´δ,ℓ ^T T ´δ pv T ´δ s q 2 vol s ds `ζpQ v,T ´δ τ T ´δ,ℓ ^T q 2 ˇˇˇF T ´δ ȷ (47) 
for any process Q v,T ´δ with derivative v T ´δ starting at time T ´δ from Q T ´δ . Multiplying this equality by I T ´δ , we obtain

ξpQ T ´δ q 2 " I T ´δ Y 8,T ´δ T ´δ pQ T ´δ q 2 ´p1 ´IT ´δ qk{2pQ T ´δ q 2 " E « ż τ T ´δ,ℓ ^T T ´δ pI T ´δ v 8,T ´δ s q 2 vol s ds `IT ´δ ζpQ 8,T ´δ τ T ´δ,ℓ ^T q 2 ˇˇˇF T ´δ ff ´Kp1 ´IT ´δ qpQ T ´δ q 2 .
If for t ě T ´δ

Q t " Q T ´δ ´ż t T ´δ I T ´δ Y 8,T ´δ s vol s Q s ds,
we have

Q t " # Q 8,T ´δ t if I T ´δ " 1 Q T ´δ if I T ´δ " 0
and therefore

ξpQ T ´δ q 2 " E "ż τ T ´δ,ℓ ^T T ´δ
pv s q 2 vol s ds `ζpQ τT ´δ,ℓ ^T q 2 ˇˇˇF T ´δ ȷ .

From ( 46) and (47), we deduce the optimality of the defined process Q ˚.

PDE Analysis

In this section, we will assume the price process to be Markovian and the cost structure to be a function of the price process; under these assumptions, our goal is to relate the value function of the stochastic optimal control problem (13) to a PDE version of the BSDE for the four choices of I and S given in ( 14)- [START_REF] Ladyženskaja | Linear and quasilinear equations of parabolic type[END_REF].

As noted in the introduction, we assume the price process S to be driven by a stochastic volatility model:

St " ż t 0 ? ν t dW p1q t ,
where ν t is the stochastic volatility process:

dν t " αpθ ´νt qdt `c? ν t dW p2q t ; (48) 
W " pW p1q , W p2q q is a Brownian motion in R 2 (W piq 1 , i " 1, 2, have unit variance, but they are correlated with coefficient ρ). We assume that the Feller condition, 2αθ ą c 2 , ensuring a positive process ν holds. Let L denote the second-order differential operator corresponding to these dynamics:

Lu " 1 2 νB 2 ss u `1 2 νc 2 B 2 νν u `αpθ ´νqB ν u `cνρB 2 sν u. (49) 
The variables pν, sq belong to D " p0, `8q ˆR.

To get a PDE representation we take η and Vol processes to be functions of pν, Sq. With a slight abuse of notation, we assume the market volume process to be t Þ Ñ Volpt, ν t , St q where Vol : r0, T s ˆD Ñ R `is a non negative valued function; similarly the transaction cost process is t Þ Ñ ηpt, ν t , St q where η : r0, T s ˆD Ñ p0, `8q is a strictly positive valued function. In this section we still use [START_REF] Friedman | Partial differential equations of parabolic type[END_REF] and [START_REF] Schied | Risk aversion and the dynamics of optimal liquidation strategies in illiquid markets[END_REF], we denote by Vol the quantity Ą Vol, and will use the assumption (27) on vol:

0 ď volpt, s, νq ď vol, K p´1 T vol ă 1 p ´1 (50) 
where K " k{p p and k is the constant in the permanent impact given by (2).

PDE representation for I " 1, S " t ST ě

In this subsection we assume I " 1, i.e., vol t " pp p ´1qVol t . Let us consider terminal values of the form ξ " Φpν T , ST q;

(51) where Φ :

D Ñ r´K, 8s (52) 
is a measurable function. By [START_REF] Samuel | Continuity problem for singular BSDE with random terminal time[END_REF], the choice S " t ST ě ℓu corresponds to the Φ function Φ " Φ p1q psq " ´k p p 1 p´8,ℓq psq `8 ¨1rℓ,8q psq.

Under the Markovian assumptions of the present section, and for I " 1 the BSDE (25) and the terminal condition (51) correspond to the following PDE: for any pν, sq P D and t P r0, T q

B t u `Lu ´vol t |u| p " 0. ( 53 
)
with the terminal constraint upT, ¨, ¨q " Φ.

Our goal, under the Markovian assumptions of the present section, is to prove that the value function of the stochastic optimal control problem (13) with I " 1 and S " S p1q can be expressed as a multiple of the unique solution of this PDE with terminal condition Φ " Φ p1q .

To express the value function as a solution to the above PDE, we first extend the stochastic optimal control problem (13) to allow it to start from any time point t. Accordingly, we define

St,ν,s r " s `ż r t b ν t,ν,s u dW p1q u , ν t,ν,s r " ν `ż r t αpθ ´νt,ν,s u qdu `ż r t c b ν t,ν,s u dW p2q u , ξ " Φpν t,ν,s T , St,ν,s T q, vol t,ν,s u " volpu, ν t,ν,s u , St,ν,s u q.
Under our assumptions on Vol and Φ, Proposition 3.2 implies that the following BSDE has a unique minimal supersolution:

Y t,ν,s r " ξ ´ż T r vol t,ν,s v ˇˇY t,ν,s v ˇˇp dv ´ż T r Z t,ν,s v dW v ; set u Φ pt, ν, sq :" Y t,ν,s t . (55) 
As we already noted, our goal in this subsection is to prove that u Φ is the minimal supersolution (or the unique solution if Φ is finite) of the PDE (53) for any Φ of the form (52) (and in particular for Φ " Φ p1q ). Our first step in this direction is the following: Lemma 5. If Φ is continuous and with polynomial growth on D and if vol is also continuous on r0, T s ˆD, then u Φ is a continuous function of pt, ν, sq P r0, T s ˆD and is the unique viscosity solution of the PDE (53) with polynomial growth on D.

Proof. See [START_REF] Pardoux | Stochastic Differential Equations, Backward SDEs, Partial Differential Equations[END_REF]Theorem 5.37] or [5, Theorems 3.4 and 3.5] (see also [START_REF] Popier | Integro-partial differential equations with singular terminal condition[END_REF]). If Φ is bounded, the solution Y t,ν,s and thus u are also bounded. Hence our generator is Lipschitz continuous.

If Φ satisfies ´k{p p " ´K ď Φps, νq ď Kp1 `|ν| m `|s| m q, then ξ `satisfies the condition imposed in Proposition 3.1. Thus Y t,ν,s and thus u are bounded from below, and we can modify our generator such that it becomes monotone (see the proof of Proposition 3.1). Then existence and uniqueness follow from [START_REF] Pardoux | Stochastic Differential Equations, Backward SDEs, Partial Differential Equations[END_REF]Theorem 5.37] (this result is stated for pν, sq P R 2 in [START_REF] Pardoux | Stochastic Differential Equations, Backward SDEs, Partial Differential Equations[END_REF] but all arguments continue to work when pν, sq P D). Now suppose that Φ is a continuous function from D to r´k{p p, `8s. We use the proof of Proposition 3.2. For any n ě 0, we consider the bounded function Φ n " Φ ^n. By the previous lemma there exists a unique bounded viscosity solution u Φ^n and by comparison principle, u Φ pt, ν, sq " lim nÑ`8

u Φ^n pt, ν, sq is well-defined with a bounded negative part. Suppose now that for some m ě 1 and some ϵ ą 0: @pt, ν, sq P rT ´ϵ, T s ˆD, 1 volpt, ν, sq ď Cp1 `|ν| m `|s| m q.

Then Condition (28) holds and we have on rT ´ϵ, T s ˆD,

u Φ^n pt, ν, sq ď 1 pT ´tq p p E » - ż T t ˜p p ´1 vol t,ν,s ρ ¸p p´1 dρ fi fl ď C pT ´tq p p´1 p1 `|ν| m `|s| m q p p´1 . (56) 
On the rest of the interval r0, T s, the bound of the solution u Φ^n is controlled by the previous estimate with t " T ´ϵ. In other words we have a bound on u Φ^n which does not depend on n. Hence u is lower semi-continuous on r0, T s ˆD and finite (even locally bounded) on r0, T q ˆD. These considerations give us the following result: Lemma 6. Suppose Φ is a continuous function from D to r´k{p p, `8s; then u Φ is the minimal viscosity solution of the PDE (53) on r0, T q ˆD (among all viscosity solutions with bounded negative part).

Proof. See [START_REF] Popier | Integro-partial differential equations with singular terminal condition[END_REF]Theorem 1].

The concept of a viscosity solution allows even a discontinuous solution and doesn't address the issue of smoothness/regularity of the solution; therefore the previous result doesn't say anything about the regularity of u Φ . The properties of the operator L (and smoothness assumptions on Vol and η) allow us to establish the smoothness of u Φ , with a regularization bootstrap argument for parabolic PDE. (see [START_REF] Sezer | Backward stochastic differential equations with non-Markovian singular terminal values[END_REF]Lemma 5] for a similar argument). Lemma 7. Suppose that vol is continuously differentiable with respect to all of its arguments. Assume that Φ n is a sequence of continuous functions, converging to Φ, such that the related (viscosity) solutions u n of the PDE (53) converge pointwise to u. Then u belongs to C 1,2 pr0, T q ˆDq and is a classical solution of the PDE (53).

Proof. Fix some ϵ ą 0 and K a compact subset of D. First note that from (56), the bound of u n on r0, T ´ϵs ˆK does not depend on the terminal value, that is on n, but only on ϵ and K.

Moreover, the operator L can be written as follows:

Lu " 1 2 νB 2 ss u `1 2 νc 2 B 2 νν u `αpθ ´νqB ν u `cνρB 2 sν u " 1 2 div papν, sq∇uq `bpν, sq∇u, with ∇upν, sq " ˆBs u B ν u ȧnd apν, sq " ν ˆ1 cρ cρ c 2 ˙, bpν, sq " ¨1 2 `cρ 2 αpθ ´νq `c2 2 `cρ 2 ‹ '.
Our coefficients a and b are bounded on K, and a is uniformly elliptic on K. Since vol is also continuously differentiable with respect to all of their arguments, then we can easily check that all conditions called a) (uniform ellipticity and boundedness condition), b) (growth condition on the derivatives, take m " 2) and c) (regularity condition) of [START_REF] Ladyženskaja | Linear and quasilinear equations of parabolic type[END_REF]Theorem VI.4.4] hold. From this theorem, if there exists a function ψ continuous on r0, T ´ϵs ˆK and is of class H 1`β{2,2`β ps0, T ´ϵrˆKq for some β ą 0 (space of functions which are C 2 with β-Hölder continuous second derivatives in the space variable x and C 1 with β{2-Hölder continuous in the times variable t), then the PDE In the next step, we prove that u n,m belongs to H β{2,β pr0, T ´ϵs ˆKq (space of functions which β-Hölder continuous in the space variable x and β{2-Hölder continuous in the times variable t) and that the norm of u n,m in this space does not depend on n and m. Note that Conditions (1.2) and (7.1) of [START_REF] Ladyženskaja | Linear and quasilinear equations of parabolic type[END_REF]Chapter 3] are satisfied. Suppose that v is a smooth solution of the PDE (53) on r0, T q ˆD: for any pt, ν, sq P r0, T q ˆD B t v `Lv ´vol t |v| p " 0, such that for any ϵ ą 0 and any compact subset K of D , v is bounded on r0, T ´ϵs ˆK.

B t v `Lv
Thus v solves on r0, T ´ϵs ˆK the PDE

B t v `Lv " vol t |v| p " f,
where f is a bounded function. We can apply [START_REF] Ladyženskaja | Linear and quasilinear equations of parabolic type[END_REF]Theorem III.10.1]. Hence v is in H β{2,β pr0, T ´ϵs ˆKq. The value of β ą 0 and the Hölder norm of v depend on ϵ, K and the bound on v. In other words β does not depend on the terminal value.

In the last step, we get the desired regularity. Now we know that u n,m belongs to H β{2,β pr0, T ´ϵs ˆKq and solves the PDE

B t v `Lv " vol t |u n,m | p " f n,m .
Since vol is also in C 1 pDq, then from [17, Theorem IV.10.1], u n,m is in H 1`β{2,2`β pr0, T έ1 s ˆK1 q for any ϵ 1 ą ϵ and K 1 Ă K, and the norm depends only on the H β -norm of f n,m . Therefore, u n , and thus u, belong to the same space 5 , that is on any subset r0, T ´ϵs ˆK, u n and u are in C 1,2 .

The proof also shows that the regularity of any solution does not depend on the terminal value. In other words, far from t " T and ν " 0, the solutions are smooth and classical solutions.

Let us summarize the foregoing results:

Proposition 4.1. Suppose that vol is continuously differentiable on r0, T s ˆD, that Φ is bounded from below by ´k{p p and that (27) holds. If one of the next conditions holds:

• Φ is continuous and with polynomial growth on D,

• Φ is continuous from D to r´k{p p, `8s and for some m ě 1 and ϵ ą 0 @pt, ν, sq P rT ´ϵ, T s ˆD, 1 volpt, ν, sq ď Cp1 `|ν| m `|s| m q, then there exists a viscosity solution u of the PDE (53) with terminal value Φp¨, ¨q. Moreover u is of class C 1,2 pr0, T q ˆDq and is the minimal viscosity solution (among all viscosity solutions with bounded negative part).

Remark 5. The particular dynamics for S is not important, as soon as the related operator L regularizes the solution of the PDE.

Remark 6. Here we use the existence of a solution for the BSDE to deduce the existence of a viscosity solution for the PDE and then we prove the regularity of the solution. The existence of a solution for the PDE could be directly proved (without probabilistic arguments) starting from [START_REF] Ladyženskaja | Linear and quasilinear equations of parabolic type[END_REF]Theorem V.8.1]. The proof would involve arguments similar to those given above because of the lack of monotonicity (see Assumption b) in [START_REF] Ladyženskaja | Linear and quasilinear equations of parabolic type[END_REF]Theorem V.8.1] or Condition (4.17) in [START_REF] Friedman | Partial differential equations of parabolic type[END_REF]Chapter 7]). Hence the proof of existence of solutions using PDE arguments will be as involved as the BSDE based approach given above.

Let us next comment on the smoothness of u on the boundary ν " 0, called the hyperbolic part of the boundary. Recall that our operator L is defined by (49) and that the dynamics of ν is given by (48). The Feller condition ensuring a positive process ν is 2αθ ą c 2 . Under this condition, the Fichera function bpνq " αpθ ´νq ´1 2 c 2 is positive when ν goes to zero. Hence no boundary condition has to be supplied on ν " 0 (see for example [START_REF] Bučková | Fichera theory and its application in finance[END_REF]).

For the control problem, we have to consider the terminal condition Φ ℓ pT, ν, ¨q " Φ ℓ p¨q " 8 ¨1rℓ,8q p¨q ´k p p 1 p´8,ℓq p¨q.

Note that we cannot directly apply Proposition 4.1, since Φ ℓ is not continuous. Nonetheless Lemma 8. There exists a minimal viscosity solution u ℓ , which is of class C 1,2 on r0, T q ˆD.

Proof. Indeed let us define Φ n p¨q " n ¨1rℓ,8q p¨q ´k p p 1 p´8,ℓq p¨q and Φ n,m p¨q " n ¨1rℓ,8q p¨q ´k p p 1 p´8,ℓ´1{ms p¨q `rpn `k{p pqmp¨´ℓ `1{mq ´k{p ps 1 pℓ´1{m,ℓq p¨q.

Φ n,m is continuous and non-decreasing with respect to m and converges to Φ n . Therefore, the related continuous viscosity solutions u n,m converge to u n . Arguing as in the proof of Proposition 4.1, we obtain a uniform norm of u n in the space H 1`β,2`β pr0, T ´ϵs ˆKq, for any compact subset K of D. Then we pass on the limit on n to obtain the desired result. Minimality can be obtained as for Proposition 4.1.

Next we connect the solutions of PDE obtained above to the value function of the control problem.

Extended control problem

The L function corresponding to the permanent impact κ given by ( 2) is L t pρq " η t |ρ| p p and the control problem ( 13) is inf

QPA I,S E « ż T 0 1 Vol p p´1 t |Q 1 t | p p dt `Φpν T , ST q|Q T | p p ff . ( 57 
)
Here I " 1 on r0, T s, with [START_REF] Friedman | Partial differential equations of parabolic type[END_REF] and [START_REF] Schied | Risk aversion and the dynamics of optimal liquidation strategies in illiquid markets[END_REF] with the notation Vol " Ą Vol. For p " 2, by Proposition 3.3, u Φ pt, ν, sqq 2 is the value function of the extended version of the stochastic optimal control problem. With a slight abuse of language, we will refer to u Φ simply as the value function of the extended stochastic optimal control problem with terminal cost Φ|Q T | p p . These give us the main result of this subsection: Proposition 4.2. Suppose (50) and the conditions of Proposition 4.1 hold. u Φ is the solution of the PDE (53) with terminal condition (54). If Φ is bounded and continuous or if Φ " Φ p1q , then the value function of (57) is given by |q| p p u Φ and an optimal control is given by: vpr, ν, s, qq " ´pp ´1qvolpr, ν, sq|upr, ν, sq| p´1 sgnpupr, ν, sqqq.

(58)

Proof. Since the proof is quite standard, let us provide an outline of the main arguments. First standard computations show that for any x: If Φ is continuous and bounded, by Proposition 4.1, u " u Φ is of class C 1,2 pr0, T q ˆDq and bounded and continuous on r0, T s ˆD. Now define V pt, ν, s, qq " |q| p p upt, ν, sq. This function has the same regularity as u with respect to pt, ν, sq and is of class C 1 with respect to q P R. Take Q " Q w P A I,S and w " pQ w q 1 is its derivative. Then Itô's formula leads to:

inf v « xv ` 1 
for any t ă T V p0, ν, s, Q 0 q " V pt, ν t , St , Q w t q ´ż t 0 pB t V `LV q pr, ν r , Sr , Q w r q `Bq V pr, ν r , Sr , Q w r qw r dr ´ż t 0 ? ν r " B s V pr, ν r , Sr , Q w r qdW p1q r `Bν V pr, ν r Sr , Q w r qcdW p2q r ı " V pt, ν t , St , Q w t q `ż t 0 " ´vol r |upr, ν r Sr q| p |Q w r | p p ´Bq V pr, ν r , Sr , Q w r qw r ı dr ´ż t 0 ? ν r " B s V pr, ν r , Sr , Q w r qdW p1q r `Bν V pr, ν r Sr , Q w r qcdW p2q r ı .
Note that B q V pr, ν, s, qq " upr, ν, sqp p|q| p p´1 sgn pqq. Thus

´vol r |upr, ν r Sr q| p |Q w r | p p " ´vol r pp pq p ˇˇB q V pr, ν r Sr , Q w r q ˇˇp " ´pp p ´1qVol r |B q V pr, ν r Sr , Q w r q| p pp pq p " inf v « B q V pr, ν r Sr , Q w r qv `1 Vol p p´1 t |v| p p ff ď B q V pr, ν r Sr , Q w r qv `1 Vol p p´1 t |v| p p .
Hence we obtain

V p0, ν, s, Q 0 q ď V pt, ν t , St , Q w t q `ż t 0 1 Vol p p´1 t |w r | p p dr ´ż t 0 ? ν r " B s V pr, ν r , Sr , Q w r qdW p1q r `Bν V pr, ν r Sr , Q w r qcdW p2q r ı .
Letting t tend to T and taking the expectation, we have

V p0, ν, s, Q 0 q ď E « |Q w T | p p Φpν T , ST q `ż T 0 1 Vol p p´1 t |w r | p p dr ff .
Moreover if we take v r " ´pp ´1qvol r |upr, ν, sq| p´1 sgn pupr, ν, sqqQ r ,

we have an equality. The first part of the proposition is proved.

If Φ " Φ p1q , then u " u Φ p1q is not continuous at time T , but C 1,2 on r0, T q ˆD. Hence for any t ă T :

V p0, ν, s, Q 0 q " V pt, ν t , St , Q t q `ż t 0 1 Vol p p´1 t |v r | p p dr ´ż t 0 ? ν r " B s V pr, ν r , Sr , Q r qdW p1q r `Bν V pr, ν r Sr , Q r qcdW p2q r ı .
We take the expectation and we use Fatou's lemma:

V p0, ν, s, Q 0 q ě E « lim inf tÑT V pt, ν t , St , Q t q `ż T 0 1 Vol p p´1 t |v r | p p dr ff " E « lim inf tÑT ´upt, ν t , St q|Q t | p p ¯`ż T 0 1 Vol p p´1 t |v r | p p dr ff . A direct computation shows that N t " Y min t |Q t | p p´1 " upt, ν t , St q|Q t | p
p´1 is a martingale on r0, T q. This martingale being bounded from below, it has a limit at time T . Arguing as at the end of the proof of Proposition 3.3, we deduce that

V p0, ν, s, Q 0 q ě E « Φpν T , ST q|Q T | p p `ż T 0 1 Vol p p´1 t |v r | p p dr ff .
Using the proof of Lemma 8, we obtain a sequence of smooth functions u n,m such that |q| p p u n,m is the value function of (57) with Φ n,m as terminal condition. Hence

|Q 0 | p p u n,m p0, ν, sq ď inf QPA I,S E « Φpν T , ST q|Q T | p p `ż T 0 1 Vol p p´1 t |Q 1 r | p p dr ff ď V p0, ν, s, Q 0 q " |Q 0 | p p´1 up0, ν, sq.
Passing through the limit on m Ñ `8 and then on n Ñ `8 achieves the proof of this proposition.

An optimal state process Q ˚given by (58) can be written:

pQ r q 1 " v r " ´pp ´1qvol r |Y min r | p´1 sgn pY min r qQ r .
And our proof shows that this control is admissible and inf

QPA I,S E « ξ|Q T | p p `ż T 0 1 Vol p p´1 t |Q 1 r | p p dr ff ď |Q 0 | p p Y min 0 .
However, even for bounded ξ, and except in the case p " p p " 2, the lack of convexity prevents us proving equality. Therefore the Markovian setting and the fact that the solution u of the HJB equation is smooth, are crucial to extend our result to any p p ą 1.

4.2 PDE representation for I t " 1 ttďτ ℓ u and S " tτ ℓ ě T u

To get a PDE representation of the BSDE ( 25), ( 22) for I t " I p2q t " 1 ttďτ ℓ u , we consider the problem in the interval rr0, τ ℓ ^T ss. As discussed in subsection 3.2, the corresponding BSDE is again [START_REF] Schied | Optimal basket liquidation for CARA investors is deterministic[END_REF] but with terminal condition (40). This reduced formulation of the problem is indeed Markovian. The PDE is the same as before (53) but solved over the domain D " p0, 8q ˆrℓ, 8q and with boundary conditions u| r0,T qˆp0,8qˆtℓu " ´k{p p, u| tT uˆp0,8qˆrℓ,8q " 8.

The value function u p2q of the extended version of the stochastic control problem is again defined through (55) and we have: Proposition 4.3. u p2q is the minimal viscosity solution of (53) and boundary conditions (59). Moreover u p2q is of class C 1,2 on r0, T q ˆp0, 8q ˆpℓ, 8q.

The proof proceeds parallel to the arguments given in the previous section. We therefore provide an outline. We begin by considering the case where the boundary condition is given by u| r0,T qˆp0,8qˆtℓu " ψ, u| tT uˆp0,8qˆrℓ,8q " Φ (60

)
where ψ is a continuous and bounded function. If Φ is bounded and if the compatibility constraint Φpν, ℓq " ψpT, νq is verified, we can directly apply [START_REF] Pardoux | Stochastic Differential Equations, Backward SDEs, Partial Differential Equations[END_REF]Theorem 5.41] to obtain the existence of a unique viscosity bounded and continuous solution u of the PDE (53) with the boundary condition (60). The regularity inside the domain can be obtained by the arguments of Lemma 7. If the compatibility condition does not hold, the solution still exists but is not continuous up to the boundary. Finally, the 8 terminal condition can be handled via approximation from below (as was done in the previous section as well as in Section 3 in the treatment of the BSDE [START_REF] Schied | Optimal basket liquidation for CARA investors is deterministic[END_REF] and the singular terminal condition ( 22)). Using Proposition 3.5, the value function of the control problem (39) is: V pt, ν, s, qq " |q| 2 upt, ν, sq for any s ě ℓ. But the regularity of u p2q also allows us to solve the control problem (57) up to τ ℓ ^T :

|Q 0 | p p up0, ν, sq " min QPA I,S E « ż τ ℓ ^T 0 1 Vol p p´1 t |Q 1 t | p p dt `Φpν τ ℓ ^T , Sτ ℓ ^T q|Q τ ℓ ^T | p p ff .
The arguments are the same as in the proof of Proposition (4.2), where T is replaced by τ ℓ ^T .

4.3 PDE representation for I t " 1 t Stěℓu and S " tτ T ´δ,ℓ ě T u

In Section 3.3, we already explain how to reduce the problem on the interval r0, T ´δs. Let us consider the PDE B t u `Lu ´vol t |u| p " 0 on the set r0, T s ˆp0, `8q ˆrℓ, `8q, with terminal condition `8 at time T and ´k{p p on the lateral boundary ts " ℓu. From the previous section, there exists a unique solution u 8 defined on r0, T q ˆp0, `8q ˆrℓ, `8q. Following the representation given by (45), we define rpt, s, vq " |v| p vol t 1 sąℓ , Here hpy, r yq " p ż 1 0 |r y `αpy ´r yq| p´1 sgn pr y `αpy ´r yqqdα.

Using the boundedness of Y ϵ,¨,¨,¨a nd r Y ϵ,¨,¨,¨( uniformly with respect to ϵ) and standard stability result for BSDEs, we obtain the existence of a constant C independent of ϵ such that

|v ϵ pt, ν, sq ´wϵ pt, ν, sq| 2 ď CE "ż T ´δ t ´ϕϵ p St,ν,s u q ´r ϕ ϵ p St,ν,s u q ¯2 du ȷ ď 2C ż T ´δ t P `ℓ ´ϵ ď St,ν,s u ď ℓ `ϵ˘d u
Fix some η ą 0. The uniform ellipticity of L implies that there exists ϵ 0 such that for any ϵ ă ϵ 0 , P `ℓ ´ϵ ď St,ν,s

u ď ℓ `ϵ˘ď η 2 {p2Cq.
Hence letting ϵ go to zero, we get for any η ą 0 |v ‹ pt, ν, sq ´v‹ pt, ν, sq| ď η.

Thus v ‹ " v ‹ and thus v is continuous. Finally, by a regularization argument, it is a classical solution of the PDE (61) on r0, T δq ˆp0, `8q ˆpRztℓuq.

If we define Y t " vpt, ν t , St q, using Itô's formula (allowed since St ‰ ℓ a.s.) we check that Y " Y min is the solution of BSDE [START_REF] Schied | Optimal basket liquidation for CARA investors is deterministic[END_REF] with terminal condition (45). Now since v is a smooth function, |q| p p vpt, ν, sq is the value function of the control problem (57) with I t " 1 t Stěℓu and S " tτ T ´δ,ℓ ě T u and

Q t " Q 0 exp ˆ´ż t 0 pp ´1qvolps, ν s , Ss q|vps, ν s , Ss q| p´1 sgn pvps, ν s , Ss qqds " Q 0 exp ˆ´ż t 0 pp ´1qvolps, ν s , Ss q|Y min s | p´1 sgn pY min s qds ˙.
The proof is a direct adaptation of the proof of Proposition 4.2 to the current setting.

PDE representation for I p4q and S p4q

Finally, let us derive a PDE representation for the control problem (57) with I " I p4q and S " S p4q . From Section 3.3, we know that the problem can be reduced to the time interval r0, T ´δs; as opposed to what happens with I " I p3q and S " S p3q , the problem is not Markovian after this reduction. This is because, the choice I " I p4q and S " S p4q introduces an additional state variable, which is I p4q itself; I p4q keeps track of whether the system is in the trading state or in the waiting state (for I t " I p3q t " 1 rℓ,8q pW t q I is directly a function of W and W serves as the state of the system). Correspondingly, we expect a value function of the form V " u i pt, ν, sq|q| p p where the additional variable i (shown as a subscript) takes values in t1, 0u (1 for the trading state and 0 for no trading) and u satisfies the coupled PDE system B t u 0 `Lu 0 " 0 (62

)
where L is defined by (49) solved in the region r0, T ´δs ˆp0, 8q ˆp´8, ℓ `bq with boundary conditions u 0 pT ´δ, ν, sq " ´k p p , u 0 pt, ν, ℓ `bq " u 1 pt, ν, ℓ `bq

and B t u 1 `Lu 1 ´vol t |u 1 | p " 0, (63) 
solved in the region r0, T s ˆp0, 8q ˆpℓ, 8q with boundary conditions u 1 pT, ν, sq " 8,

u 1 pt, ν, ℓq " u 0 pt, ν, ℓq, t ă T ´δ, u 1 pt, ν, ℓq " ´k p p , t ě T ´δ.
Note that the first equation (corresponding to the waiting state) is linear since in this state no control is applied and the PDE is determined only by the underlying diffusion. We think that a solution to this system can be obtained from the minimal supersolution of the corresponding BSDE as we did in earlier sections. In the following subsection we provide an alternative solution based on the number of switches between trading and waiting states. The sequence of control problems where N is bounded by n can be solved recursively, letting n Ñ 8 gives a solution to the above system. An advantage of this approach is that it also gives a numerical algorithm to compute the value function. The difficulty in trying to numerically solve the above system directly is that u 1 and u 0 appear as boundary conditions in the equations that the other satisfies.

Finite trading approximation

Define N t . " psuptk : τb,k ă tu _ p´1qq `1τ ℓ ą0
The number of trading intervals realized up to terminal time t is equal to N t `1. Recall that for I " I p4q the set of all trading times before terminal time T is

I " tt P r0, T s, I t " 1u " N T `1 ď k"1 rrρ k , ρ k ss,
and S p4q " tT P Iu. Define

I n " n ď k"1 rrρ k , ρ k ss, ϖ n " sup I n , n " 1, 2, 3, ...
Note that ϖ n is one of the stopping times τ ℓ,k . The control problem with a limit on the number of active intervals is:

V n pQ 0 , ν, sq " inf QPA n I,S E "ż T 0 |Q 1 s | p p vol s ds ´k p p |Q T | p p ȷ ,
where

A n I,S " tQ : F-adapted, absolutely continuous, Q T " 0 if T P I n , Q 1 t " 0, if t R I or t ą ϖ n u.
Lemma 10. The sequence V n pQ 0 , ν, sq is non-increasing and tends to V pQ 0 , ν, sq, the value function of the control problem (57) with pI, Sq " pI p4q , S p4q q, as n tends to 8.

Proof. Note that A n I,S is included in A n`1 I,S . Hence V n is a non-increasing sequence. Moreover taking Q P A I,S and defining r Q equal to Q on the random interval rr0, ϖ n ss and r Q 1 equal to zero after ϖ n , the strategy r Q belongs to A n I,S and

ż T 0 |Q 1 s | p p vol s ds ´k p p |Q T | p p " ż ϖn 0 |Q 1 s | p p vol s ds `ż T ϖn |Q 1 s | p p vol s ds ´k p p |Q T | p p " ż ϖn 0 | r Q 1 s | p p vol s ds ´k p p | r Q T | p p `ż T ϖn |Q 1 s | p p vol s ds ´k p p p|Q T | p p ´| r Q T | p p q.
Taking the expectation, we have

E "ż T 0 |Q 1 s | p p vol s ds ´k p p |Q T | p p ȷ " E « ż ϖn 0 | r Q 1 s | p p vol s ds ´k p p | r Q T | p p ff `E "ż T ϖn |Q 1 s | p p vol s ds ´k p p p|Q T | p p ´| r Q T | p p q ȷ ě V n pQ 0 , ν, sq `E "ż T ϖn |Q 1 s | p p vol s ds ´k p p p|Q T | p p ´| r Q T | p p q ȷ . Since r Q T " Q ϖn , we have E " |Q T | p p ´| r Q T | p p ı " E "ˆż T ϖn Q 1 s ds ˙ż 1 0 p p| r Q T `αpQ T ´r Q T q| p p´1 sgn p r Q T `αpQ T ´r q T qqdα ȷ ď " E ˆż 1 0 p p| r Q T `αpQ T ´r Q T q| p p´1 dα ˙pȷ 1 p « E ˆż T ϖn Q 1 s ds ˙p p ff 1 p p ď CT 1 p p " E ´| r Q T | p p `|Q T | p p ¯ı 1 p " E ˆż T ϖn |Q 1 s | p p vol s ds ˙ȷ 1 p p
under Assumption 1 on vol. Let us notice that

E ´| r Q T | p p `|Q T | p p ¯ď 2 p p E ˆ|Q 0 | p p `ż T 0 |Q 1 s | p p ds ˙.
Thereby we obtain for any strategy Q P A I,S and any n: V n pQ 0 , ν, sq ě V pQ 0 , ν, sq.

E "ż T 0 |Q 1 s | p p vol s ds ´k p p |Q T | p p ȷ ě V n pQ 0 , ν, sq `E "ż T ϖn |Q 1 s | p p vol s ds ȷ ´kCT 1 p p " E ˆ|Q 0 | p p `ż T 0 |Q 1 s | p p ds ˙ȷ 1 p " E ˆż T ϖn |Q 1 s | p p vol s ds ˙ȷ 1 p p ě V pQ 0 , ν, sq `E "ż T ϖn |Q 1 s | p p vol s ds ȷ ´kCT 1 p p " E ˆ|Q 0 | p p `ż T 0 |Q
Since this holds for any Q P A I,S , we obtain the desired result.

Now we consider the dynamical version of the control problem with n trading intervals: for any t P r0, T s:

V i,n pt, q, ν, sq " inf QPA n,t I,S E "ż T t |Q 1 s | p p vol s ds ´k p p |Q T | p p ȷ ,
the value function of the control problem starting at an arbitrary time t ă T . The additional variable i indicates the starting value of the process I; I t " 1 means that the problem starts from a trading state and I t " 0 means that the problem starts from a waiting state. The definition of A n,t is the same as A n : there are at most n trading intervals during the time interval rt, T s.

Considering the problem until the first transition from one state to the other (from trading to no trading or vice versa) we can write the above optimal control problems recursively as follows:

V 0,n pt, q, ν, sq " E ˆV1,n pτ b,jt , q, ν τb,j t , ℓ `bq1 tτ b,j t ăT u ´k p p |q| p p 1 tτ b,j t ěT u ˙(64)

where j t " inftj, τb,j ą tu and V 1,n pt, q, ν, sq " inf where τ ℓ,jt is the first time after t when the price S goes below ℓ. In (64) the problem starts in a waiting interval; the controller waits until the first time after t when S goes above ℓ `b (τ b,jt ) or T , whichever comes first. If it is τb,jt , trading starts; if it is T , the controller pays the terminal cost. Note that the recursion (64) involves no control since the liquidation process starts in the waiting state (i.e., no trading, Q 1 " 0) and remains in that state until τb,jt . In (65) the agent already uses one trading possibility, after τ ℓ,jt , there are at most n ´1 trading intervals.

As before the homogeneous cost structure suggests V i,n pt, q, ν, sq " |q| p p u i,n pt, ν, sq, and we define u 0,0 to be the constant function ´k p p : there is no trading (i.e., no control and Q 1 " 0) and at terminal time the trader pays the terminal cost. The above recursions imply the following sequence of PDE to compute u 0,n and u 1,n for n ě 1:

B t u 0,n `Lu 0,n " 0, ( 66 
)
where L is defined by (49) solved in the region r0, T ´δs ˆp0, 8q ˆp´8, ℓ `bq with boundary conditions u 0,n pT ´δ, ν, sq " ´k p p , u 0,n pt, ν, ℓ `bq " u The PDE for u 1,n and its boundary conditions on the set rT ´δ, T s ˆp0, `8q ˆrℓ, 8q do not depend on n. Hence on this set, we have u 1,n " u 8 (see Section 3.2 and the beginning of Section 4.3).

For n " 1 we have: u 1,1 " u p2q where u p2q is the value function in Section 4.2, Proposition 4.3. The arguments of Lemma 7 show that u 1,1 is of class C 1,2 on r0, T ´δs ˆp0, 8q ˆpℓ, 8q and continuous on r0, T ´δs ˆp0, 8q ˆrℓ, 8q. Once u 1,1 is available, the rest of the value functions can be computed recursively by solving (66) and (68) in the following order:

u 1,1 Ñ u 0,1 Ñ u 1,2 Ñ u 0,2 ¨¨N
ote that u 0,1 solves the linear PDE (66) with smooth and bounded boundary conditions ´k{p p and u 1,1 p¨, ¨, ℓ`bq. Therefore, u 0,1 is also of class C 1,2 on r0, T ´δsˆp0, 8qˆp´8, ℓ`bq and continuous on r0, T ´δqˆp0, 8qˆp´8, ℓ`bs. In particular u 0,1 pT ´δ, ν, ℓq " ´k{p p. Hence the boundary condition for u 1,2 is continuous. Recursively all functions u 1,n (resp. u 0,n ) are well-defined and bounded on r0, T ´δsˆp0, 8qˆrℓ, 8q (resp. r0, T ´δsˆp0, 8qˆp´8, ℓ`bs), continuous on r0, T ´δs ˆp0, 8q ˆrℓ, 8q (resp. r0, T ´δq ˆp0, 8q ˆp´8, ℓ `bs) and of class C 1,2 on r0, T ´δs ˆp0, 8q ˆpℓ, 8q (resp. r0, T ´δs ˆp0, 8q ˆp´8, ℓ `bq).

Recall from (24) that vol t " pp p ´1qI t Vol t .

To conclude we give Lemma 11 (Verification). For n ě 1, the representation V i,n pq, ν, sq " |q| p p u i,n p0, ν, sq, i P t0, 1u holds, and the optimal strategy is given by Note that pn´N t q `is the number of remaining trading intervals at time t and 1 p´8,ns pN t 1q indicates whether n trading intervals have been used by time t.

Q t " Q 0 exp ˆ´ż t 0 I p4,
Proof. The definition of vol implies volps, ν s , Ss q " 0 when s R I. Hence the optimal control pQ ˚q1 is equal to zero when I " 0. For n " 0, there is no trading, ϖ 0 " 0, Q t " Q 0 and V 0,0 pQ 0 , 0, ν, sq " ´pk{p pq|Q 0 | p p " |Q 0 | p p u 0,0 p0, ν, sq.

For n " 1, there are two cases. For τ ℓ ą 0 (I 0 " 1) and ϖ 1 " τ ℓ : the control problem starts from the trading state and the result follows from Section 4.2: V 1,1 pq, t, ν, sq " u 1,1 pt, ν, sq|q| p p . Moreover for any n ě 2, V 1,n pq, t, ν, sq ď u 1,1 pt, ν, sq|q| p p : indeed after ϖ 1 , Remark 7. Our sequence of solutions u 1,n and u 0,n satisfies for any b ą 0 and n @s ă ℓ, u 0,n pT ´δ, ν, sq " ´k{p p, @t ą T ´δ, u 1,n pt, ν, ℓq " ´k{p p.

The boundary condition imposed on v in (61) is coherent with these previous properties. Moreover u 0,n (resp. u 1,n ) solves the PDE (66) on r0, T ´δq ˆp0, `8q ˆp´8, ℓq (resp. (68) on r0, T ´δq ˆp0, `8q ˆpℓ, `8q). In other words they solve (61) on their own domain of definition.

A natural but non-trivial question is: do u 1,n and u 0,n provide some approximation of v given by Lemma 9, when b tends to zero and n to 8 ? This question is left for further research.

When the numbers of active intervals tends to 8

With Lemma 10 we saw that the value function of the control problem with a finite number of trading intervals converge to the value function of the same control problem with no bounds on the number of trading intervals. We now argue that 1) a similar result holds for the u n 2) the limit determines the value function of the control problem with unbounded number of trading intervals and 3) the limit is a solution of the coupled PDE system (62) and (63). Since the arguments follow the same lines as those above we only provide an outline.

The argument of the previous verification lemma gives V i,n pt, q, ν, sq " |q| p p u i,n pt, ν, sq.

Together with Lemma 10, this shows that u i,n is a non-increasing sequence. Hence it converges pointwise to some function u i defined on r0, T ´δs ˆp0, 8q ˆp´8, ℓ `bs for i " 0 and r0, T ´δs ˆp0, 8q ˆrℓ, 8q for i " 1. Moreover we have the relation:

V i pt, q, ν, sq " |q| p p u i pt, ν, sq, i P t0, 1u.

Since u i is bounded from below and bounded from above by u i,1 and is upper semicontinuous, u 0 (resp. u 1 ) is a viscosity subsolution of (66) (resp. (68)) with terminal condition u 0 p¨, ¨, T ´δq " ´k{p p (resp. u 1 p¨, ¨, T ´δq " u 8 p¨, ¨, T ´δq). Since the terminal conditions are bounded and continuous, the arguments of Lemma 7 imply that u 0 and u 1 are smooth solution of the PDE (66) and (68) on the set r0, T ´δs ˆp0, 8q ˆp´8, ℓ `bq and r0, T ´δs ˆp0, 8q ˆpℓ, 8q.

Let us consider the lateral boundary conditions. For s " ℓ `b, u 0 is equal to ψ " u 1 p¨, ¨, ℓ `bq, which is a smooth function. From [START_REF] Ladyženskaja | Linear and quasilinear equations of parabolic type[END_REF], the PDE (66) with terminal condition ´k{p p at time T ´δ and lateral condition ψ has a unique smooth solution. A similar argument shows that u 1 is the unique smooth solution of (68) with terminal condition u 8 at time T ´δ and lateral condition ϕ " u 0 p¨, ¨, ℓq. These results give us the required regularity to proceed as in Lemma 11 and to prove that for t P r0, T s Q t " Q 0 exp ˆ´ż t 0 pp ´1qvolps, ν s , Ss q|u It ps, ν s , Ss q| p´1 sgn pu It ps, ν s , Ss qqds is an optimal control for the control problem (57) with I " I p4q and S " S p4q .

A partial analysis of the output of the algorithm and numerical examples

Recall A of (1), which is the percentage deviation from the target price S 0 of the average price at which the position is (partially) closed in the time interval r0, T s. The actual output of the trading algorithm defined by the optimal control Q ˚of (37) or (58), is the random pair pQ T , Aq, where A is computed for Q " Q ˚. An important question is the distribution of this pair and the dependence of this distribution on model parameters. In this section we would like to give a partial analysis of this question including some numerical examples.

Compared to the original IS order, the modified IS order considered in the present work has two additional parameters: the process I that determines when trading takes place and the event S that determines when full liquidation takes place. In the numerical examples we will limit ourselves to I " I p1q " 1, S " S p1q " t ST ě ℓu. To further simplify the presentation and the calculations we take p " 2, S " σW , where W is a standard Brownian motion, σ ą 0 a constant and Vol t " V ą 0; these are also the choices made for these parameters in the standard Almgren-Chriss framework [START_REF] Guéant | The financial mathematics of market liquidity[END_REF]Chapter 3]. Under these assumptions we will compute Q ˚by discretizing and numerically solving the corresponding PDE, which becomes:

u t `1 2 σ 2 u xx ´V η I t u 2 " 0, ( 69 
)
where the domain of the equation and its boundary conditions depend on S and I.

To better understand how Q ˚and pQ T {q 0 , Aq change with the model parameters, we factor out as many parameters as possible from the calculations. If we let

vpt, xq " V η upt, σxq (70) 
the equation (69) reduces to

v t `1 2 v xx ´It v 2 " 0. ( 71 
)
To see how A depends on model parameters let us reduce the expression (1) as much as possible (remember that Q 0 " q 0 is the initial position size):

A " X T ´pQ 0 ´QT qS 0 pQ 0 ´QT qS 0 By (4) (the expression for X T ) and the assumption Lpvq " ηv 2 :

" ´şT 0 S t Q 1 t dt ´η V ş T 0 pQ 1 t q 2 dt ´S0 pQ 0 ´QT q S 0 pQ 0 ´QT q
By the definition (3) of S t and the assumptions κpvq " kv, St " σW t :

" ´k{2pQ T ´Q0 q 2 ´σ ş T 0 W t Q 1 t dt ´η V ş T 0 pQ 1 t q 2 dt pQ 0 ´QT qS 0 .
Simplifying the last expression we get

A " ´kQ 0 2S 0 ˆ1 ´QT Q 0 ˙´σ S 0 1 pQ 0 ´QT q ż T 0 W t Q 1 t dt ´η V S 0 1 pQ 0 ´QT q ż T 0 pQ 1 t q 2 dt. ( 72 
)
From this expression we see that A consists of three components: 1) one due to the permanent price impact 2) one due to random fluctuations in price and 3) one due to transaction costs. All components consist of a coefficient term and a term depending on Q or its derivative Q 1 :

Permanent market impact term:

A 1 " 1 ´QT Q 0 , coefficient: ´kQ 0 2S 0 , Random fluctuations term: A 2 " 1 pQ 0 ´QT q ż T 0 W t Q 1 t dt, coefficient: σ S 0 , Transaction costs term: A 3 " 1 1 ´qT ż T 0 pQ 1 t {Q 0 q 2 dt, coefficient: ηQ 0 V S 0 , where q t " Q t {Q 0 .
The permanent impact term 1 ´QT {Q 0 " 1 ´qT is the portion of the initial position that is closed; A depends linearly on this portion with coefficient kQ 0 2S 0 . Secondly note that if S 0 , k and η are parameterized as multiples of σ then none of the coefficients appearing in A depend on σ. We will comment on the behavior of the other two terms below.

Before we move on let us note the following for comparison. The case I " 1 and S " Ω corresponds to the standard Almgren Chriss liquidation algorithm for which the optimal control is known to be Q

˚,S t " q 0 T ´t T , (73) 
i.e., closing the position with uniform speed over the time interval r0, T s. Then pQ 1 q ˚,S t {q 0 " ´1{T and q T " 0. These reduce A 3 to

A S 3 " 1 T
for the standard IS algorithm. Similarly, for A 2 we have

A S 2 " ´1 T ż T 0 W t dt, (74) 
which is normally distributed with 0 mean by the iid normal increments of W .

We continue our analysis with the choices I " I p1q " 1 and S " S p1q " t ST ě ℓu for I and S given in [START_REF] Guéant | The financial mathematics of market liquidity[END_REF]; these choices correspond to: no restriction on trading and closing the position fully is required only when the terminal price ST is above a given threshold ℓ. Parallel to the change of variable in (70) we assume ℓ is given as a multiple of σ ą 0; with this convention and the assumption St " σW t , S becomes S " tW T ě ℓu. For I t " 1, the PDE (71) is

v t `1 2 v xx ´v2 " 0; (75) 
for S " tW T ě ℓu the domain and the boundary conditions for this PDE are: pt, xq P r0, T s ˆR and vpT, xq " 8 ¨1rℓ,8q pxq ´kV 2η ¨1p´8,ℓq pxq,

x P R, where we again use the scaling (70).

Recall our convention that k and η are specified as multiples of σ; it follows that PDE (75) and its boundary condition (76) are independent of σ. The optimal control Q ˚is computed from v via the formula (58) Q t " q 0 q t " q 0 exp ˆ´ż T 0 vpt, W t qdt ˙(77) we note that Q ˚is independent of σ. We have already noted that the coefficients in (70) are independent of σ. We have observed above that the same is true also for Q ˚, therefore all of A 1 , A 2 and A 3 are independent of σ as well. This gives us the following result: Lemma 12. Suppose all of S 0 , k, η and ℓ are parameterized as multiples of σ. Then Q ˚and A do not depend on σ.

Note that the same analysis in fact holds for all of I " I piq , S " S piq , i " 2, 3, 4 treated in the previous sections.

As already noted Q ˚is computed via the solution of the PDE (75) which obviously doesn't have an explicit solution. To see how Q ˚behaves we will solve (75) numerically; for the parameter values we begin by considering those used in [14, Chapter 3]: T " 1, η " 0.1, V " 4 ˆ10 6 , S 0 " 45, σ " 0.6. Recall that the permanent price impact parameter k doesn't appear in the control problem corresponding to the original IS order, so no value for k is specified in [14, Chapter 3]. A k value of k " 2 ˆ10 ´7 accompanying these parameter values is given in [START_REF] Guéant | The financial mathematics of market liquidity[END_REF]Chapter 8] in the context of block trade pricing. The assumption (1) in the present case reduces to kV {2η ă 1;

for the above parameter values we have kV {2η " 4, therefore the above parameter values do not satisfy Assumption 1. To continue with our numerical example, we take η " 0.3, V " 4 ˆ10 6 and k " 10 ´7 for these values we have kV {2η " 2{3 which satisfies (1).

In addition to these, we need to provide a value for the ℓ parameter, which we choose as ℓ " 1.4 ˆσ. The graph of u for the parameter values above are shown in Figures 1 and2. We note that for x ą ℓ and x away from ℓ, upx, ¨q behaves like t Þ Ñ y t " 1{pT ´tq (the solution of (69) with terminal condition y T " 8). and for x ă ℓ and x away from ℓ, upx, ¨q behaves like t Þ Ñ z t (given by ( 29)) The negative boundary condition for u means that upx, tq takes negative values for x ă ℓ; (4) implies that whenever u is negative, the corresponding Q ˚is actually buying the underlying stock. Figure 3 shows four sample paths of S and Q ˚. In the first two examples S stays above ℓ at all times and the corresponding Q ˚goes parallel to Q ˚,S of (73), the optimal liquidation path for the standard IS order. In the third example S is below ℓ approximately in the time interval r0.6, 0.8s when trading slows down, it goes above ℓ around 0.8 and closes above ℓ; correspondingly Q ˚speeds up trading after 0.8 and closes the position at terminal time. In the fourth example, S hits ℓ around the middle of the trading interval and remains below ℓ till the end; correspondingly Q ˚slows down and stops trading and the position is only partially closed at terminal time. In the last example Q ˚is in fact slightly increasing near t " T " 1 (i.e., Q ˚buying the underlying asset) ; this is due to the negative value that the terminal value takes for x ă ℓ. These examples suggest that Q ˚behaves approximately as follows: when S is above ℓ, it behaves like the standard IS algorithm Q ˚,S , linearly closing the remaining position; when S goes below ℓ, Q ˚slows down/ stops trading. The negative boundary condition implies that the algorithm can in fact execute buy trades especially when the price is below ℓ near terminal time T .

Distribution of pQ T {q 0 , Aq For S " t ST ě ℓu, the position fully closes when the closing price is above the lower-bound l, therefore, the probability that the algorithm closes the position at terminal time is:

PpQ T " 0q " PpW T ě ℓq " 1 ´N0,1 pℓ{ ? T q
where N 0,1 denotes the standard normal distribution.

A random variable E is said to be exponentially distributed with rate λ if PpE ą xq " e ´λx , i.e., ´logpPpE ą xqq " λx;

a well known fact is

ErEs "

1 λ . (79) 
The distribution of q T " Q T {q 0 over p0, 8q depends on u via (77) (or (58)) and it obviously doesn't have an explicit formula. Figure 4 shows graphs of

x Þ Ñ Ppq T ą x|q T ą 0q, x Þ Ñ ´logpPpq T ą x|q T ą 0qq and x Þ Ñ xq 0
ErQ T |Q T ą0s (all estimated via simulating 10 4 sample paths). These graphs, (78) and (79) suggest that the exponential distribution provides a rough approximation for the conditional distribution of Q T {q 0 given the event tQ T ą 0u. An exponentially distributed random variable satisfies ErEs " 1 λ and varpEq " 1 λ 2 . In the case of Q T {q 0 conditioned over tQ T ą 0u we have the Monte Carlo estimates Erq T |q T ą 0s " 0.1218 and varpq T |q T ą 0q 1{2 " 0.1387 for the parameter values specified above.

Q ˚depends on ℓ via the domain of the PDE (75) and on kV {2η via the terminal condition (76). Figure 5 shows how Erq T |q T ą 0s and varpq T |q T ą 0q 1{2 vary with these parameters. We have already noted that the permanent impact factor term A 1 of ( 72) is fully determined by q T . We now consider the joint distribution of pA 2 , q T q. This distribution consists of two parts: the distribution of A 2 conditioned on q T " 0 (i.e., the cases where the algorithm closes the initial position q 0 fully) and the conditional distribution of A 2 given q T for q T ą 0 (the cases where the algorithm closes the initial position q 0 partially). If Q ˚were a deterministic function (as in the case of the standard IS order), A 2 would be normally distributed by the normal and independent increments of W (see (74)). The q-q plot of the conditional distribution of A 2 given Q T " 0 and Q T " x for several values of x is shown Figure 6; (for x ą 0 we approximate P pA 2 P A|Q T {q 0 " xq with P pA 2 P A|Q T {q 0 P px, x `δqq where δ ą 0 is small and we estimate the latter by simulating 2 ˆ10 5 sample paths of W and Q ˚). These plots suggest that the conditional distribution A 2 given Q T {q 0 is approximately normal even though Q ˚is random and a function of W . Figure 6: q-q plots of the conditional distribution of A 2 given q T " x for x " 0, x " 0.06 `j0.07, j P t1, 2, 3, 4u Lastly, we consider the distribution of A 3 . Like A 2 this distribution consists of two parts: over the event q T " 0 and over the event q T ą 0. The first part of Figure 10 shows the distribution of A 2 over q t " 0; this graphs suggests that A 3 behaves approximately like A S 3 " 1 of the standard IS algorithm: most of the mass is concentrated around a constant near 1. The second part of Figure 10 shows how the conditional mean and variance of A 3 change with q T for q T ą 0. This graph suggests that the near constant behavior of A 3 persists for q T ą 0. Finally Figures 11 and12 show how the distribution of A 3 changes with model parameters ℓ and kV {η. For the class of stochastic optimal control problems studied in this paper, minimal supersolutions suffice to characterize the value function; this is the reason for the focus of this paper on minimal supersolutions. An interesting further question is whether Y min satisfies the terminal condition with equality, i.e., whether lim tÑT

Y min t " ξ (80) 
holds. We call this question "the continuity problem." Recall the constraint tQ T " 0u over the set S for the stochastic optimal control problem. Let Q ˚be the optimal control defined by Y min . The relation (80) corresponds to tQ T " 0u Ą S, i.e., the constraint is satisfied over S, but it may happen that it is satisfied beyond the event S. The relation (80) on the other hand implies that the optimal control satisfies the constraint tightly: tQ T " 0u " S. This further information about the optimal control is the main significance of the continuity problem from the control perspective. In previous works [START_REF] Popier | Limit behaviour of bsde with jumps and with singular terminal condition[END_REF][START_REF] Sezer | Backward stochastic differential equations with non-Markovian singular terminal values[END_REF][START_REF] Ahmadi | Backward stochastic differential equations with non-Markovian singular terminal conditions for general driver and filtration[END_REF][START_REF] Samuel | Continuity problem for singular BSDE with random terminal time[END_REF] we studied the continuity problem for a number of BSDE with singular terminal conditions. The results in these works do not apply in the current setting because they all assume monotone generators. We think that the continuity problem can be resolved positively for the Markovian cases covered in Section 4 using the ideas and methods presented in these prior works. The continuity problem for the general BSDE studied in Section 3 is more challenging: results in all of the previously cited works concern S of special forms such as S " tτ ď T u where τ is a stopping time. We think that results and methods in [START_REF] Ahmadi | Backward stochastic differential equations with non-Markovian singular terminal conditions for general driver and filtration[END_REF][START_REF] Samuel | Continuity problem for singular BSDE with random terminal time[END_REF] can be extended to cover the BSDE in Section 3 for S of the form studied in these works. To the best of our knowledge, the continuity problem with terminal conditions of the form lim tÑT Y min t " 8 ¨1S for general S P F T is an open problem even when the filtration is generated only by a Brownian motion.

Conclusion

The present work studies the optimal control problem (13) of optimal liquidation where the key parameters are the measurable set S specifying conditions for full liquidation and the process I specifying when trading is allowed; we note that choosing S ‰ Ω introduces a negative term into the terminal condition of the associated BSDE determined by the permanent price impact parameter. We find the optimal control to be of the form In Section 3 this is proved directly using the BSDE for the case p " 2; Section 4 uses a PDE approach and focuses on the case p ‰ 2 where the price dynamics are assumed Markovian and I and S are chosen so that the resulting problem is either Markovian or can be broken into Markovian pieces.

Q t " q 0 exp
In the remaining paragraphs we comment on some of our assumptions and on future research. In the present work we use the identity function as our utility function (see [START_REF] Crandall | User's guide to viscosity solutions of second order partial differential equations[END_REF]); this corresponds to setting the risk aversion parameter γ in the exponential utility function to 0. Let us comment on the case γ ą 0. Recall that we proceed in two steps: we start with the control problem [START_REF] Crandall | User's guide to viscosity solutions of second order partial differential equations[END_REF] and then derive from it the secondary problem (13) and then work with this problem. For γ ą 0 the reduction from ( 7) to ( 13) is possible only in special cases (for example, when the optimal control is known to be deterministic, as in the case of the standard IS order (see [START_REF] Guéant | The financial mathematics of market liquidity[END_REF]Chapter 3]). To circumvent this problem, many prior works directly start from the secondary problem and add a risk measure on the size of the portfolio directly to this problem (see, e.g., [START_REF] Almgren | Optimal trading with stochastic liquidity and volatility[END_REF][START_REF] Ankirchner | BSDEs with Singular Terminal Condition and a Control Problem with Constraints[END_REF]). When the risk measure is added directly to the second problem, it can even be allowed to be a random process, an example is given in [START_REF] Pardoux | Stochastic Differential Equations, Backward SDEs, Partial Differential Equations[END_REF] (the term γ t |Q t | p p ). As is the case in these prior works, it is straight-forward to introduce a penalization term on the size of the portfolio involving a positive process in the stochastic optimal control problem [START_REF] Guéant | Optimal execution and block trade pricing: a general framework[END_REF] and almost all of the analysis presented in sections 3 and 4 will have straightforward modifications. On the other hand, an analysis of the exponential utility case for γ ą 0 (i.e., introducing γ ą 0 and starting the analysis from the problem sup QPA I,S Er´e ´γ XT s) would require significant changes from the analysis presented in the current work. In our view, one benefit of starting the analysis from [START_REF] Crandall | User's guide to viscosity solutions of second order partial differential equations[END_REF] as we did in the present work, is that it provided a relatively simple framework to understand the role permanent price impact plays in the stochastic optimal control problem in the presence of the parameter S.

An important assumption in the present work is the monetary representation of the terminal position Q T , for which we used mpqq " qS T . A simple modification that would keep the problem within the framework of the current work is to set mpqq " qS T `ξ1 |q| p p where ξ 1 is an F T -measurable random variable. This would introduce an additional ξ 1 term into the terminal condition of the BSDE which would not impact the analysis as long as ξ 1í s bounded from above. Other choices are obviously possible depending on how the events taking place after time T are modeled. These choices will give rise to different stochastic optimal control problems whose analysis will probably require new/other tools and ideas. This is a natural direction for future research. Recall the random variable A of (1), the percentage deviation from the target price S 0 of the average price at which the portfolio is (partially) closed at terminal time. We provided a numerical study of the distribution of q T " Q T {q 0 (remaining portion of the position) and A in Section 5 for the case I " 1 and S " t ST ą ℓu. An analytical study of these distributions for this choice of pI, Sq and for others seems interesting and challenging. One idea in the study of the distribution of Q T {q 0 is the use of Malliavin calculus (see [START_REF] Nualart | The Malliavin calculus and related topics[END_REF]Theorem 2.1.3]). This would require that the product Y min vol has a Malliavin derivative with some additional conditions. The Malliavin derivative of the solution of a BSDE has already been studied; see among others [START_REF] Karoui | Backward stochastic differential equations in finance[END_REF] for integrable terminal condition and [START_REF] Popier | Backward stochastic differential equations with singular terminal condition[END_REF] for singular terminal condition. In the Markovian framework, it requires some Malliavin regularity on the forward processes S and ν. A study of these ideas and problems remain for future work. Another natural direction is to try to compute the performance of the algorithms of the present work (especially the joint distribution of pq T , Aq) on real trading data.

  ´vol t |v| p " 0 with the boundary condition u " ψ, has a unique solution v with the same regularity as ψ. Now our viscosity solutions u n are continuous and bounded on r0, T ´ϵs ˆK. Let us consider a sequence of smooth mollifiers ζ m and define ψ m " u n ‹ ζ m . There exists a classical smooth solution u n,m of the PDE (53) with boundary condition ψ m and pointwise u n,m converges to u n as m goes to `8. As u n , the bound of u n,m on r0, T ´ϵs ˆK does not depend on n and m.
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 3 Figure 3: Sample paths of S and Q ˚for I " 1 and S " t ST ě ℓu; the dashed line shows ℓ " ´1.4σ
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 5 Figure 5: Graph of m T " Erq T |q T ą 0s and ? var T " varpq T |q T ą 0q 1{2 as a function of ℓ
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 77 Figure7shows the graphs of ErA 2 |q T " xs and a varpA 2 |q T " xq (using the same approximation as above and then simulation).
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 89 Figure 8: Graphs of P pA 2 ď xq|q T " 0q and P pA 2 ď xq|q T ą 0q for ℓ " ´σ and ℓ " ´1.4σ
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 10 Figure 10: On the left: distribution of A 3 conditioned on q T " 0, on the right: graphs of ErA 3 |q T " xs (ˆ) and varpA 3 |q T " xq 1{2 (o)
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 1112 Figure 11: Graphs of P pA 3 ď xq|q T " 0q and P pA 3 ď xq|q T ą 0q for ℓ " ´σ and ℓ " ´1.4σ

ˆ´ż t 0 Is

 0 Vol s |Y min s | p´1 sgn pY min s qds ẇhere Y min is the first component of the minimal supersolution of the BSDE (25) with terminal condition ξ " ´k p p 1 S c `81 S .

  Moreover Y ´ď U . And since the filtration is left-continuous at time T , we obtain that a.s. Y and Y n the quantity ´z and the same arguments on r Y ´z and Y n ´z lead to a.s. r Y ´z ě Y n ´z. The only remaining problem is the existence of a limit at time T . Compared to [21, Theorem 2.1], the novelty is the negative part of Y min or of Y n , which approximates Y min . To deal with the negative part, we can apply the arguments of the proof of [21, Theorem 2.1] using the function

	lim inf	
	Finally, minimality can be obtained as in the proof of [16, Proposition 4]. If p r Y , Ă M q is
	another supersolution, we add to both solutions r
	Θpyq "	ż 8 y	1 1 `|w| p dw
	(Θ can be defined in terms of the hypergeometric functions):

): for any 0 ď t ď r ă T Y t " Y r ´ż r t vol s |Y s | p ds ´pM r ´Mt q.

4 among all supersolutions with bounded negative part tÑT Y t ě ξ.

  Recall that p p is the Hölder conjugate of p. Thus with c p´1 " pp p ´1q{pvol s pT ´sqq p´1 rvol s pT ´sq| p U s | p ´p p p U s sds ˇˇˇF τ ^tȷ .

	gps, yq ď	´p p T ´s y	`ˆp p vol s ´1	˙p p´1 ˆ1 T ´s ˙p p	´p p T ´s p U s `vol s | p U s | p .
	Since Υ n T ^τ " 0 if τ ă T , explicit solution for linear BSDE and comparison principle imply
	that for t ă T					
	Υ n τ ^t ď	1 pT ´τ ^tq p p E	« ż T ^τ t^τ	ˆp p vol s ´1	˙p p´1	ds ˇˇˇF τ ^tff
					"ż T ^τ	
	`1 pT ´τ ^tq p p E	t^τ	pT ´sq p
							16, Lemma 1]. Young's inequality
	implies that for any y ě 0 and c ě 0	
			ˇˇy `p U s ˇˇp ě		p p	p p ´1 c p´1 py `p U s q	´cp p p ´1 .

  on the time interval rrT ´δ, τ T ´δ,ℓ ^T ss with terminal conditionζ " ´K1 tτ T ´δ,ℓ ăT u `8 ¨1tτ T ´δ,ℓ ěT u .

	Existence of Y 8,T ´δ follows from Proposition 3.4. Then for p p " 2, (44) can be written as
	inf QPA	E	"ż T ´δ 0	|Q 1 t | p vol t p	dt `ξ|Q T ´δ | p p ȷ
	with terminal cost factor				
	ξ " I			

pjq T ´δ Y 8,T ´δ T ´δ ´p1 ´Ipjq T ´δ qK.

  `V0,n´1 pτ ℓ,jt , Q τ ℓ,j t , ν τ ℓ,j t , ℓq1 tτ ℓ,j t ăT u ¯(65)

	QPA n,t I,S	E	ˆż τ ℓ,j t t	^T	|Q 1 s | p p vol s	ds	´k p p	|Q T | p p 1 tτ ℓ,j t ěT u

  1,n pt, ν, ℓ `bq.

	And		
	B t u 1,n `Lu 1,n ´vol t |u 1,n | p " 0,	(68)
	solved in the region r0, T s ˆp0, 8q ˆpℓ, 8q with boundary conditions
	u 1,n pT, ν, sq " 8,	
	u 1,n pt, ν, ℓq " u 0,n´1 pt, ν, ℓq, t ă T ´δ,
	u 1,n pt, ν, ℓq "	´k p p	, t ě T ´δ.
				(67)

Using p´e ´γx `1q{γ « x when γ goes to zero.

In general it is only a local martingale. However we will show that for the optimal strategy, Q is bounded. Hence there is no harm in assuming that this process is indeed a martingale.

In this paper, we always consider a right-continuous with left limits modification of the martingale

The Arzela-Ascoli theorem implies that un,m (up to a subsequence) converges to some function r un P H β{2,β pr0, T ´ϵs ˆKq. Here r un " un since pointwise convergence has been proved before.

* This work was supported by TUBITAK (The Scientific and Technological Research Council of Turkey) through project number 118F163.

and solve B t u `Lu ´rpt, s, uq " 0 (61) over r0, T ´δs ˆp0, `8q ˆR with terminal boundary condition gpν, sq " u 8 pT ´δ, ν, sq1 sąℓ ´pk{p pq1 sďℓ .

Note that the terminal boundary condition g is bounded and continuous. Nonetheless the free term r is not continuous at s " ℓ.

Lemma 9. There exists a function v such that v is bounded and continuous on r0, T ´δs p0, `8q ˆR and is a solution of class C 1,2 of the PDE (61) on r0, T ´δq ˆp0, `8q ˆpRztℓuq.

Proof. To circumvent the discontinuity of r, let us introduce ϕ ϵ psq " ˆ1sąℓ`ϵ `ps ´ℓq ϵ 1 ℓăsďℓ`ϵ ˙, r ϵ pt, s, vq " |v| p vol t ϕ ϵ psq.

This function is Lipschitz continuous with respect to s, satisfies r ϵ ď r and converges increasingly and pointwise to r when ϵ tends to zero. From standard arguments (see [START_REF] Pardoux | Stochastic Differential Equations, Backward SDEs, Partial Differential Equations[END_REF]Theorem 5.37]), there exists a unique bounded and continuous viscosity solution v ϵ of the PDE B t u `Lu ´rϵ pt, s, uq " 0 with the same terminal condition g as v. Note that the bounds on v ϵ do not depend on ϵ. Thus arguing as in Lemma 7, we can prove that v ϵ is of class C 1,2 on r0, T ´δq ˆp0, `8q ˆpRztℓuq with a norm independent of ϵ.

The comparison principle shows that v ϵ is a decreasing sequence and thus we can define v ‹ as the decreasing limit of v ϵ as ϵ tends to zero. We obtain immediately that v ‹ is bounded and upper semi-continuous and is a viscosity subsolution of PDE (61) (well-known result on stability for viscosity solutions [START_REF] Crandall | User's guide to viscosity solutions of second order partial differential equations[END_REF]).

The only remaining point concerns the continuity of v ‹ on the set ts " ℓu. Let us define another approximating sequence w ϵ defined as the solution of PDE (61) where r is replaced by r r ϵ : ψ ϵ psq " ˆ1sąℓ `ps ´ℓq ϵ 1 ℓ´ϵăsďℓ ˙, r r ϵ pt, s, vq " |v| p vol t ψ ϵ psq.

As v ϵ , w ϵ converges to v ‹ , which is lower semi-continuous and is a viscosity supersolution of PDE (61). Moreover by comparison principle, w ϵ ď v ‹ ď v ‹ ď v ϵ . Comparing sub-and supersolution implies that v ‹ " v ‹ (standard result for viscosity solution). Let us prove this statement in our case. For any pν, sq we have

there could be some opportunity for trading. The second case is when the trader starts from a waiting state (I 0 " 0): the trader has to wait until τ b,0 before trading and ϖ 1 " τ ℓ,1 . Hence for any strategy, Q t " Q 0 , t P rr0, τ b,0 ss.

Then due to the Markovian structure, for t P rrτ b,0 , ϖ 1 ss

is the optimal state process on the interval rrτ b,0 , T ss and

where the last equality comes from the boundary condition (67) of u 0,n . The value function at time 0 is thus given by: V 0,1 pQ 0 , 0, ν, sq " EV 1,1 pQ 0 , τ b,0 , ν τ b,0 , Sτ b,0 q " |Q 0 | p p Eu 0,1 pτ b,0 , ν τ b,0 , ℓ `bq.

The PDE that u 0,1 satisfies and Itô's formula give Eu 0,1 pτ b,0 , ν τ b,0 , ℓ `bq " Eu 0,1 pτ b,0 , ν τ b,0 , Sτ b,0 q " u 0,1 p0, ν, sq.

Thus we get for any n ě 2 V 0,1 pQ 0 , 0, ν, sq " |Q 0 | p p u 0,1 p0, ν, sq, which achieves the proof for the case n " 1.

The rest of the proof proceeds by induction on n. Let us detail the case n " 2 when I 0 " 1. The trader starts by following the strategy u 1,2 . Itô's formula gives:

pr, ν r , Sr q| p´1 sgn pu 1,2 pr, ν r , Sr qq, we obtain that

from the definition of vol. If τ ℓ ě T , the problem stops and since the used strategy has the same dynamics as u 1,1 with the same terminal condition at time T , from the case n " 1, we know that it is the best strategy on r0, T s.

If τ ℓ ă T , then the boundary condition connecting u 1,2 and u 0,1 over S " ℓ, the PDE satisfied by u 0,1 and Itô's formula give u 1,2 pτ ℓ , ν τ ℓ , Sτ ℓ q " u 0,1 pτ ℓ , ν τ ℓ , Sτ ℓ q " u 0,1 pτ b,0 , ν τ b,0 , Sτ b,0 q ´ż τ b,0

And since there is no trading between the times τ ℓ and τ b,0 , Q t " Q τ ℓ for any t P rrτ ℓ , τ b,0 ss. The boundary conditions and Q 1 t " 0 for t P rrτ l , τ b,0 ss imply

Again the strategy is optimal and there are again two cases. If τ b,0 ě T , the trading is finished and the agent has traded only one time. If τ b,0 ă T , then the agent starts again to trade until τ ℓ,1 ^T " ϖ 2 . We use the step n " 1, starting at time τ b,0 from the value Q τ b,0 . The best strategy is to follow u 1,1 and the value function of the trader is given by:

Gathering all steps together leads to Since we cover all possible scenarios and since the strategies are optimal on each (random) time intervals, taking the expectation, we conclude that V 1,2 p0, Q 0 , ν, sq " |Q 0 | p p u 1,2 p0, ν, sq, and that the optimal strategy is u 1,2 Ñ u 0,1 Ñ u 1,1 , which achieves the proof of this particular case.

The proof for the other scenarios uses very similar arguments.