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Recent advances in experimental fluorescence microscopy allow high accuracy determination (res-
olution of 50 nm) of the 3D physical location of multiple (up to ~ 10%) tagged regions of the
chromosome. We investigate publicly available microscopy data for two loci of the human Chr.21
obtained from multiplexed FISH methods for different cell lines and treatments. Inspired by polymer
physics models, our analysis centers around distance distributions between different tags, aiming to
unravel the chromatin conformational arrangements. We show that for any specific genomic site,
there are (at least) two different conformational arrangements of chromatin, implying coexisting dis-
tinct topologies which we refer to as phase a and phase . These two phases show different scaling
behaviors: the former is consistent with a crumpled globule while the latter indicates a confined,
but more extended conformation, as a looped domain. The identification of these distinct phases
sheds light on the coexistence of multiple chromatin topologies and provides insights into the effects
of cellular context and/or treatments on chromatin structure.

I. INTRODUCTION

Understanding the organization of eukaryotic chromo-
somes is an issue of broad interest and has been inten-
sively studied both experimentally [1-8] and computa-
tionally [9-19]. This interest stems from the fact that
the 3D chromatin structure has a strong influence on
several genomic processes such as transcription or repli-
cation [20, 21]. Long DNA molecules go through high
compaction when chromosomes condense during mitosis.
During the interphase, genes are actively transcribed and
chromosomes are unpacked and distributed throughout
the cell nucleus but still possess a remarkable level of
spatial organization. This organization is hierarchical,
involving different structures at different genomic length
scales. Starting from whole chromosome lengths (~ 100
Mb) down to ~ 100 Kb the DNA organization can be
summarized as follows: 1) During the interphase, dif-
ferent chromosomes do not mix but occupy well-defined
territories inside the cell nucleus. 2) Each chromosome is
split into several stretches of gene-rich domains (euchro-
matin) alternating with gene-poor domains (heterochro-
matin). Euchromatin tends to be more open than hete-
rochromatin. Moreover stretches of the same chromatin
species aggregate forming so-called A and B compart-
ments. 3) At scales of ~ 1 Mb and below the chromatin is
assembled in Topologically Associating Domains (TADs),
which are regions where chromatin interacts more fre-
quently.

The biological function of TADs and the mechanisms
leading to their origin are still debated. A prevalent line
of thoughts suggests that TADs originate from a loop
extrusion mechanism [22]. Other models of genome or-
ganization have been proposed in the literature such as
the strings and binders model [11], the block-copolymer
model [23] or the diffusing transcription factor model [12].

It is very likely that different mechanisms operate simul-
taneously to contribute to the complex hierarchical orga-
nization of eukaryotic chromatin.

Advanced techniques such as Chromosome Conforma-
tional Capture (3C) [1], particularly its high-throughput
sequencing (Hi-C) version [2], have played a central role
in unveiling the chromatin organization. Hi-C provides
genome-wide data for contact probabilities between pairs
of genomic sites and was instrumental to understand the
folding of chromosomes at different length scales. Al-
though it is by no doubt a very powerful technique, Hi-C
has also some limitations. For instance, it provides indi-
rect information on physical distances (via contact prob-
abilities), it typically requires the averaging over a large
number of chromosomes (~ 10%) and may contain some
systematic biases [24], therefore raw data require normal-
ization and other pre-processing steps. Fluorescence in
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FIG. 1. Setup of multiplexed FISH as developed in Ref. [4].
(a) 1 < i < N genomic sites equally spaced are targeted by
FISH probes during sequential hybridization cycles. In the
setup of [4] the genomic distance between consecutive tags
was [y = 30 Kb. The 3D spatial coordinates of the tagged sites
are then read by high-resolution fluorescence microscopy. (b)
The experiment is repeated over M distinct copies of chro-
mosomes. The values of N and M for the experimental data
used in this paper are given in Table I. We analyzed here the
distance distributions for any two given sites i and j.



situ hybridization (FISH, Fig. 1) has also been used to in-
vestigate chromosomal structure [25]. FISH uses fluores-
cent probes that are complementary to desired chromoso-
mal regions. After hybridization, the 3D location of the
probes can be determined from fluorescence microscopy.
For a long time FISH remained a very low throughput
technique, the main issue being the limited amount of
fluorescent probes with different emission spectra avail-
able so that only a few sites can be visualized. However,
quite recently, a multiplexed FISH (m-FISH) method was
developed [4]. Using unique readout sequences and se-
quential hybridization cycles, the method allows to de-
termine the positions of N ~ 50 — 100 chromosomal sites
with high resolution (< 50 nm), Fig. 1. Measurements
are done on samples containing up to M ~ 10* distinct
chromosomes. Although, unlike Hi-C, it is not a genome-
wide technique, m-FISH data reproduce well the Hi-C
contact probabilities for the same genomic regions [4]. In
addition, m-FISH reveals cooperative (i.e. many-body)
chromatin interactions which cannot be inferred from Hi-
C pairwise contact probabilities [4, 8].

The aim of this paper is to analyze a set of m-FISH
data focusing on distance distributions of any two pairs of
labels i and j. In particular, we analyze histograms P;;(r)
of distances between the tags ¢ and j. The large num-
ber of distinct samples (M ~ 10*) implies good statis-
tics, therefore these histograms can be accurately deter-
mined. Our analysis reveals that there are (at least) two
different modes of chromatin organization at any given
genomic site. We report scaling laws characterizing the
growth of the chromatin domains when increasing the
genomic distance. Overall, our work presents a polymer
physics-inspired analysis to characterize chromatin struc-
ture. Importantly, this method is straightforward to be
implemented and applied to “raw” experimental data.

The paper is organized as follows. Section II presents
the method we propose based on the analysis of the ex-
perimental distance distribution histograms. Section IIT
focuses on the analysis of the extracted scaling behaviour
of typical configuration radii from different cell lines.
Section IV discusses, using polymer physics models, the
emerging regularities from typical chromatin conforma-
tions from the experimental data. Appendices provide
technical details on the polymer models considered and

TABLE I. Summary of experimental data analyzed from [4].
These target two different regions of chr.21: a 1.2 Mb region
in the 28 — 30 Mb genomic position and another one 2.5 Mb
in the 34 — 37 Mb position. Consecutive tags are separated
by a genomic distance of 30 kbp. HCT116 is a colon cancer
cell line, IMR90 a lung fibroblast cell line and K562 an ery-
throleukemia cell line.

[n.] Experiment/Cell line [N] M ]
1 HCT116_chr21-34-37Mb_untreated 8311631
2 HCT116_chr21-34-37Mb_6h-auxin 83| 9526
3 IMR90_chr21-28-30Mb 65| 4871
4 K562_chr21-28-30Mb 65]13997

a full analysis of the whole dataset histograms.

II. DISTANCE DISTRIBUTION HISTOGRAMS

Table I summarizes the main features of the four data
sets from [4] analyzed in this paper. Each dataset cor-
responds to a cell line whose properties will be detailed
later in Section ITI. These experiments target two differ-
ent loci of human chr. 21: a 2 Mb region (Chr21:28Mb-
30Mb) labeled by N = 65 tags and a 2.5 Mb region
(Chr21:34.6Mb-37.1Mb) labeled by N = 83 tags. These
regions contain several TADs across multiple cell lines
[4]. More data are available in [4], but these 4 sets
were selected because they contain a large number of in-
dependent measurements, ranging from M = 4871 to
M = 13997, (Table I) from which accurate histograms
are obtained. The histograms from the M experimental
samples are normalized as follows

/OOPZ'J'(’/')dT =1 (1)
0

For an ideal polymer, the distance distribution is a Gaus-
sian in the vector distance 7, while for its length r = |7
takes the form

3/2
Pij (T) = g(r; R) = 4712 (27TR2) 6—37“2/(2}?,2) (2)

where the term 472 comes from the Jacobian of the dis-
tribution. The above distribution is normalized as (1)
and contains the mean-squared radius R? = (#?) as a
single parameter. Despite its simplicity the Gaussian
chain model is a reasonable approximation to complex
phases of polymeric matter, such as polymer melts. A
well-known result of polymer physics is that a single test
chain immersed in a melt of other chains behaves as an
ideal polymer [26]. This is because self-avoidance gets
screened by the surrounding polymers. The mean square
radius of an ideal polymer scales as

R~ i—j['? 3)

where the exponent 1/2 describes the universal scaling
behavior of random walks. It has been recently shown
[27] that the introduction of suitable monomer-monomer
harmonic pairwise interactions in a bead and spring poly-
mer model leads to an equilibrium distance distribution
as (2), but with a scaling described by

R~ i =gl (4)

By tuning the monomer-monomer interactions, one can
generate any values of the exponent in the interval 1/3 <
v < 1/2 [27]. The statistical properties of the model are
those of a fractional Brownian motion (fBm), which was
invoked as a model for chromosome arrangement in cells
[27], as well as in other problems of polymer dynamics
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FIG. 2. Histogram of distance distributions Pj;(r) from experimental data (black circles) for different tag locations ¢, j for
experiments of the HCT116 cell line (sets n.1 and n.2 of Table I). The values for ¢ and j are indicated in each graph. In the
two sets, we fix ¢ = 20. The tag j is increased from j = 21 (top left) to j = 45 (bottom right). Solid lines are fit to a single
gaussian model (Eq. (2), green line) and double gaussian model (Eq. (5), black line). The legends in each plot show the value
of R for a single gaussian model (Eq. (2), green) and of R, Rg and f, for the double gaussian model (Eq. (5)). The red and
blue filled areas denote the contribution of the two components of the fit. The distance in the horizontal axis is in pm.
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FIG. 3. Same analysis as in Fig. 2 for experiments n.3 (IMR90 cell line) and n.4 (K562 cell line) of Table I.

[28-30]. We note that the case v = 1/3 is the exponent of
a crumpled globule [31], a phase discussed in some more
detail in Sec. IV. Therefore, the Gaussian distribution
(2) encompasses a broad range of polymer models.

Figures 2 (HCT116 and auxin-treated HCT116 cell
lines) and 3 (IMR90 and K562 cell lines) show several
plots of experimentally measured histograms P;;(r) (cir-

cles), where the tags i and j considered are reported in
each graph and the horizontal scale is the spatial dis-
tance in micrometers (um). The green solid lines are a
one parameter fit to Eq. (2), where the mean-squared ra-
dius R is the only fitting parameter. We note that the
model does not fit well the experimental data and the de-
viations are particularly strong for close tags, i.e. small



|i — 4| (say within range of |i — j| &~ 4 corresponding to a
genomic distance of 120 Kbp). As the genomic distance
increases, i.e. larger |[i — j|, the experimental distribu-
tions gets closer to (2), seen by the trend to merging of
the green line (gaussian fit) to the black circles (experi-
ments) in Figs. 2 and 3. This merging trend is however
stronger in the untreated HCT116 and the IMR90 lines,
while there remains a substantial gap between the sin-
gle and double gaussian fits for large genomic distances
|i — j| = 25 for the auxin-treated HCT116 and the K562
lines.

The histograms for small |¢ — j| suggest that ex-
periments describe two coexisting populations (phases),
therefore we fitted the data using:

IDij(T) :fag(r;Ra)_F(l_f(x)g(r;Rﬁ) (5)

where the parameter 0 < f, < 1 (respectively fz =
1 — fo) is the fraction of chromosomes with mean radius
R, (respectively Rg) around the tags i and j. We will re-
fer to the two phases as a and 8. The two-phase model
(5) provides an excellent fit for the experimental data.
These fits are shown as solid black lines in Figs. 2 and 3.
The colored areas are the contributions of the two gaus-
sian components to the final fit. The two-phase model is
fitted to the data using R, Rg and f, as adjustable pa-
rameters. These three values are reported in the legends
of Figs. 2 and 3. The radii change with changing i and
j and, as expected, increase for increasing |i — j|. The
growth rate is however different for R, and Rg, as dis-
cussed in the next Section. Interestingly, the two phase
model (5) was considered on a recent analysis of Hi-C
chromosomal data [18]. Such model was introduced to
solve some observed discrepancies between Hi-C and ear-
lier non-multiplexed FISH data. We discuss the connec-
tion between the results of Ref. [18] and our results in
the concluding Section of this paper.

III. SCALING BEHAVIOR OF R, AND Rg

Figures 4 and 5 show the extracted scaling behavior
for the four different cell lines. These are log-log plots
of the mean radii R, and Rg vs the genomic distance
li]i — j| for fixed ¢ and varying j, where I; = 30 Kb is
the spacing in base pairs between two consecutive tags of
the experiments (see Fig. 1). The horizontal axis is thus
the genomic distance measured in bp, which extends up
to about 2.5 Mbp. We characterized the scaling behav-
ior of the radii fitting R, and Rg to (4) for close tags,
i.e. |i — j| <6 corresponding to a maximal genomic dis-
tance of 180 Kb. This choice is dictated by two factors:
(1) we observe that the scaling of R, and Rg follows an
approximate power-law behavior for a limited distance
between tags and (i) the values of R, and Rg are more
accurately determined from fitting histograms for small
|i — j| as well. This is because there is typically a bigger
gap between R,, and Rg for small |i—j|, therefore the two

TABLE II. Mean values of the geometric exponents v, and
vg for the different data sets. The last column gives the value
of fo averaged on all data in the range |i — j| < 5.

| Data set [ Vo [ Vg [ fa ‘
HCT116 (untreated) | 0.35(10) 0.11(7) 0.64(5)
HCT116 (+Auxin 6h)| 0.40(6) 0.10(3) 0.60(5)
IMR90 0.31(11) | 0.11(6) | 0.61(3)
K562 0.33(8) | 0.35(7) | 0.53(3)

radii can be more reliably extracted from the data anal-
ysis. Table IT gives a summary of the average exponents
for the four different cell lines averaged over all the tags.
The exponents give a measure of the average geometrical
properties of the two phases. With the exception of the
K562 cell line, we find consistently v, > vg. The prop-
erties of the different cell lines will be discussed in the
following.

A. HCT116 cell line

HCT116 are human colon carcinoma cells. Figure 4
shows the scaling behavior of R, and Rg for a few se-
lected tags of the untreated (left) and the auxin-treated
(right) cases for HCT116. Auxin degrades cohesin and
it is therefore expected to affect the TAD structure. We
find, however, very little difference between the expo-
nents in the two cases, apart from a possibly slightly
higher v, in the auxin-treated case, see Table II. This
small increase is a signature that the a-phase is slightly
less compact in the auxin-treated case. This is consis-
tent with the fact that by degrading cohesin, auxin re-
leases some constraints. The overall little difference in
exponents in the two cases agrees with the conclusions
of Bintu et al. [4]. The authors found that the ensemble
averaged, contact matrices from mFISH show no sign of
TADs in the auxin-treated cells. However, TADs were
still visible at the single cell level. As a matter of fact, as
explained in [4], while TAD boundaries in the untreated
HCT116 cells are pinned at specific genomic sites, in the
auxin-treated line, they are found in different genomic
positions for each cell, therefore washing out any TAD
signature in the ensemble average as done in Hi-C data
analysis. The effect of pinned vs. variable boundaries
is also visible in Fig. 4: the scaling of R, and Rg is
smoother and power-laws extend to a broader interval
in the auxin-treated cells as compared to the untreated
ones. In the latter, several “bumps”, which are likely the
effect of strongly pinned domains, are visible.

B. IMRYO0 cell line

Figure 5 (left) shows the scaling properties of the
IMR90 lung fibroblast cell line. The exponents v, and
vg are consistent with those observed in the untreated
HCT116 cell lines, see Table II. As in the untreated
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FIG. 5. Same analysis as in Fig. 4 for the cell lines IMRI0 (left) and K562 (right).

HCT116 case, one observes from the irregular shape the
effects of TADs pinning at specific sites. This is consis-
tent with ensemble-averaged contact map results [4].

C. K562 cell line

The last case analyzed was the K562 erythroleukemia
cell line, shown in Fig. 5 (right). Unlike the previous

cases, we observe for K562 quite close exponents for the
two phases v, = vg, thus vg is substantially larger than
in the other cell lines, see Table II. This suggests a differ-
ent type of chromatin organization for K562 as compared
to HCT116 and IMR90. The origin of the peculiar behav-
ior is presently not understood. On view of the numerical
value of v it is more logical to characterize this cell line
as having two phases of type a but with two distinct
values of R,.



IV. DISCUSSION

In this paper, we have analyzed mFISH data from the
experiments reported in Ref. [4] for human chr.21 for
different cell lines. Our main result is the evidence of
two different coexisting phases of chromatin, which we
referred to the o and 8 phases. The range of genomic
length explored by these experiments goes from 30 Kbp
to 2.5 Mbp, but the characteristic radii R, and Rg can
be confidently obtained from data for distances up to ap-
proximately 0.5 Mbp. Therefore our claims are limited
to this range of lengths, which is roughly the genomic
distance at which TADs are observed. We characterized
the two phases using scaling exponents v, and vg. Inter-
estingly, these exponents are different in the two phases
(except for the K562 cell line) indicating substantially
different spatial organizations, which we discuss in this
Section.

A. Phase o

The exponent we extracted for the phase « is close to
that expected for a crumpled globule, which is v = 1/3
[31-33]. The crumpled globule is a metastable phase
arising from the rapid condensation of a self-attracting
polymer following a temperature quench. The polymer
condenses, but it has no sufficient time to relax to a true
equilibrium conformation. The rapid condensation pre-
vents the end points of the long polymer to retract and
to form knots, so the crumpled globule remains unentan-
gled [33]. This is different from an equilibrated compact
phase, which is strongly entangled and forms knots. The
absence of knots makes the unfolding of crumpled glob-
ules much more rapid than that of equilibrated conforma-
tions [34]. Crumpled globule polymeric phases have been
discussed in melts of polymer rings [9] and are believed
to be relevant for genome folding structures [34, 35]. Fig-
ure 6(a) illustrates the typical conformation of a crumped
globule. Nearby chromatin segments (indicated with dif-

FIG. 6. Possible phases of chromatin: (a) crumpled globule,
(b) confining due to external potential, and (c) flower. (a)
is a candidate for the phase a and (b,c) for the phase 3.
In (a) different segments of the chromatin fiber are colored
differently to illustrate the geometry of the globule. The rapid
condensation leads to collapses at the local scale involving
vicinal regions. In (b) and (c) strong confinement implies
Rp ~ s° for s sufficiently long.

ferent colors in Fig. 6(a)) tend to condense and the pro-
cess continues hierarchically involving longer and longer
length scales, with the end-points playing no specific role
in the process.

B. Phase g

The phase (3 is characterized by a very small exponent,
which is an indication of strong confinement. Figure 6(b)
and (c) illustrate two possible mechanisms of polymer
confinement. In (b) the confinement is due to an exter-
nal potential forcing the monomers to remain within a
certain range from a fixed origin. This could be due to
the formation of a droplet by, for instance, liquid-liquid
phase separation, with chromatin preferentially absorbed
by the droplet. An alternative interpretation is a flower-
like conformation (c) where loops, possibly forming via
an extrusion mechanism, are bound to a central hub. For
both types of conformations (b) and (c) one has Rg ~ s°,
i.e. the characteristic radius becomes independent on the
typical genomic length s beyond some threshold value
s > sg. Here sq is the typical genomic length of the poly-
mer to reach the droplet surface and back to the origin in
(b) or the typical loop genomic size in (c). A mathemati-
cal model for the case (b) is discussed in Appendix A, but
the s-independence can also be explained intuitively. Let
us consider the point “1” and “2” in Fig. 6(b), which we
assume are separated by a genomic distance s > so. To
reach point “2”, the polymer chain bounces a few times
with the boundaries of the confined region. In doing that
any information about the length s is lost and the prob-
ability distribution that the two points have a distance
r = |1 — 72| does not depend on s. For confinement of
type of Fig. 6(c), if the points “1” and “2” are on dif-
ferent petals of the flower-like configuration then again
the distance distribution of r = |} — 75| will not depend
on the genomic distance s. Experimental data show no
“ideal” confinement (v = 0) as the average exponent is
non-vanishing, although very small vg ~ 0.1. We note
that, although confined, the phase 3 is characterized by
a radius Rg > R, in the range of genomic distances up
to ~ 2-10° bp.

C. Coexisting topologies

The picture emerging from this analysis reveals differ-
ent coexisting conformations in which in which the chro-
mosome of each cell alternates between micro-domains of
phases « and S (see also Appendix B). To illustrate this
behavior we plot in Fig. 7 (solid black lines) the local
radius of gyration R,(i) calculated over five subsequent
tags centered around the tag . The plots are obtained
from the data of six randomly selected cells for the cell
lines 1, 2 and 3 of Table I. While so far we have analyzed
histograms over the whole set of M distinct cells, here
we perform a single-cell analysis where Fig. 7 illustrates
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tags. pg is defined in Eq. (6).

a marked cell-to-cell variability. The radius of gyration
R,(1) defined above describes the local structure of the
chromatin in a range of 150 Kbp.

In Fig. 7 one remarks large and small values of Ry(%)
indicative of more open and more compact configura-
tions, as expected for the phases 8 and «, respectively.
We also analyzed the S-phase probability ps(i) as func-
tion of tag position ¢, which is defined as follows. We
constructed first a global histogram of consecutive tags
by averaging P, ;y1(r) over all tag positions ¢ for all
cells within a cell line. We indicate this averaged his-
togram with (P; ;11(r));. From a two gaussian fit (5) of
(P;i41(r)); we obtain global values for f,, R, and Rg
over all tags. Given now a measured distance r = rf’j)ﬂ
between tags i and ¢ + 1 for a cell k¥ we define the local
probability to find the local chromatin conformation in

HCT116 (untreated)

4 Rq=0.17; Rg=0.44 cell 208 cell 213
— f,=0.66 (eq.5)
cell1
2
0
4 cell 257 cell 401 cell 402
> a
0 M

0 0.5 1 150 0.5 1 150 0.5 1 1.5

r(um) r (um) r(um)
FIG. 8. Histograms show distance distributions of consecu-
tive tags (|i — j| = 1) for individual cells from the HCT116
strain.  Similar distributions are obtained for the Auxin
treated HCT116 ensemble as well as other cell-types. Solid
black line corresponds to a fit of (P ;11), with (5) for the
untreated HCT116 cell line. Agreement of the single-cell dis-
tance distributions and <Pi,i+1>2. corroborates the existence of
at least two distinct topologies of chromatin organization at
the single-cell level.

the 8 phase as

(1= fa)g(r; Rg)
(P it1(1))s

with g(r; R) as in (2). In Fig. 7 we superpose the plots
of the local gyration radius R,(7) (black solid line) and
the local probability pg(i) (blue dashed lines) averaged
over b tags centered around the tag :. We thus compare
the spatial variability (expressed in tag number) of these
physical quantities. Interestingly, the figure shows that
domains with a high S-phase content co-localize with
maxima in the local radius of gyration, whereas clusters
with much lower pg are centered around the lower values
of R, thus with compact regions of the chromatin. The
location of these different domains vary strongly from cell
to cell, however, the variation of these two quantities is
remarkably correlated. A further indication of the het-
erogeneous cell-to-cell behavior is given in Fig. 8 which
shows plots of single cells histograms of spatial distances
r over consecutive tags (|¢ — j| = 1). Unlike the his-
tograms shown in Fig. 2 and 3, which are for fixed ¢ and
j and over all M ~ 10%—10* chromosomes, those in Fig. 8
are over just N ~ 60 — 80 samples, which are the number
of tags used in mFISH experiments (see Table I). Despite
the lower statistics, the data of Fig. 8 show a distribution
which is very similar to that of Fig. 2 and 3. These re-
sults confirm that there are at least two populations with
distinct spatial distributions within each cell.

There is nowadays quite some consensus about the very
heterogeneous chromatin organization which manifests
itself in strong cell-to-cell variations. This conclusion
is supported by experiments [4, 36, 37] and simulations
[38, 39]. Our mFISH histogram analysis is in line with
this view, with the advantage that it captures the hetero-
geneous organization in a simple way using general con-

pp(i) = (6)



cepts of polymer physics such as scaling laws and expo-
nents. To reconcile discrepancies observed between some
Hi-C and (non-multiplexed) FISH data Shi and Thiru-
malai [18] invoked the two phase model (5). They showed
that these discrepancies can be solved if a heterogeneous
model with two or more sub-populations is used. Their
analysis was done on Hi-C data and on low-throughput
(multicolor) FISH data [37], therefore it could not reveal
scaling laws that appear when several labels regularly
spaced along the genome are used. We believe that the
multiplexed FISH technology [4] has a lot of potential.
Overall, our analysis indicates that the chromatin orga-
nization is described by two underlying fractional Brow-
nian motions [27]. In the future, it would be interesting
to extend this methodology to more cell lines and also ex-
plore chromosomal regions below the 30 Kb resolution.
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Appendix A: Confined Ideal polymer

We discuss here the effect of confinement in the sim-
pler and analytically tractable case of an ideal polymer.
We consider a polymer consisting of N monomers of av-
erage bond length b which is subject to an external radial
potential U(r) acting on all its monomers, as depicted in
Fig. 6(b). The potential is attractive forcing the polymer
to remain confined in the vicinity of the origin. One can
consider different forms for U(r) as infinite well case

0 r<R
Uu(r) = { 400 r>R (A1)
a harmonic potential
k o
Un(r) = 5" (A2)

of other types of confinement. The probability distribu-
tion for the end point distance 7 of a segment of length
s satisfies the differential equation [40]

OP(is) B PPIP(Rs)]
ds  6r or?

—BU(r)P(7,s)  (A3)

This equation is solved by the separation of variables,
e.g. seeking solutions of the type P(7,s) = ¢,(7)gp(s),
labeled by an index p. The general solution is then given
by the linear combination

P(7s) = Y Apthy()gy(s) (A4)

where the coefficients A, are chosen to satisfy the de-
sired boundary conditions (the full series solution of the
infinite-well confinement is given in [41]). Separation of
variables leads to a differential equation for g,(s) of the
type dgp(s)/ds = —a,gp(s) with exponentially decaying
solutions g,(s) = e~*»®. In the limit s — oo one uses the
ground state dominance (GSD) approximation which re-
tains the component with the smallest o, [42]

P(7,5) & Age™"**o(7) (AD)
where 1o (7) is the ground state solution of the associated
Schodinger-like equation

b2 02[ripg (7
IO guryn(e) = oot (A6)
We note that in the GSD approximation the distribution
in 7 is independent of the polymer length s, due to the
factorization in (A5). This is different from a free ideal
polymer where the probability distribution is a function
of the scaled variable 72 /s.

For a infinite well potential (A1) the solution of (A6)

is a spherical Bessel function of order zero

bo(F) = M forr < R (A7)

and ¥g(r) = 0 for r > R. For a confining harmonic
potential (A2) one finds

o(7) = exp(~3r?/2RY) (A8)

where we have defined R? = b/\/33K. In both cases, we
have omitted normalization factors.

We recall that 1g(7), obtained from the ground state
dominance (A5), is the probability distribution of the
end-point of a very long polymer. The probability that
two points along the polymer are separated by a given
vector distance ¥ = 15 — 17 is given by

P(7) = [ drsdre voFun(r) 671 <7 =) (49)
where §() denotes the Dirac delta function. Inserting the
following Fourier transform representation of the Dirac
delta

5(7) = — / df R F (A10)
T)=—= e
(2m)?

we obtain



— Infinite well
== Gaussian fit

0.4

0.2

0.0

0.0 0.5 1.0 1.5 2.0

FIG. A.1. Solid line: Numerical solution of the probability
distribution P(r) of spatial distance r between two points
separated by a long genomic distance s for confinement in the
case of infinite well-potential (A1) with R = 1. Dashed line:
Gaussian fit of P(r).

where 1 is the Fourier transform of (7). The Fourier
transform of a Gaussian function is also a Gaussian,
hence the harmonic confinement gives

3/2 .
) o3 /ARS

Py, (r) = 4mr? ( (A12)

47w R2

where we have included the jacobian 47r2. For the infi-
nite well confinement we solved the problem numerically.
We generated independent vector pairs 71 and i within a
sphere of radius R distributed according to (A7) and cal-
culated histograms of the distance r = |} — 7%, which is
shown in Fig. A.1 as solid line. This distribution deviates
from a Gaussian one, which is shown as a dashed line. It
decays faster than the Gaussian at larger r and vanishes
for r > 2R (r = 2R is the maximal distance between two
points within a sphere of radius R). For generic confining
potential the distribution is not a Gaussian one.

We consider now the case of confinement of an
ideal polymer in a flower-like shape conformation as in
Fig. 6(c). For simplicity we will assume that each petal
has the same length [ and we number them 1,2,...n ac-
cording to increasing genomic position. Let us, again for
simplicity consider two points in the flower with posi-
tions 71, 75 and are located in the middle of petals ¢ and
4. The genomic distance between these points is therefore
s = l|i — j|. Given p,(7*;1) the probability distribution
that the mid-point of the petal is at a distance 7* from
the center of the flower, the probability distribution that
the spatial distance between the two points is equal to 7
is then given by

P(F) = /dF1 dfgpp(Fl,l)pp(FQ,l)(S(Fl - 772 - F) (A].?))

For an ideal polymer p,(7*;1) is a Gaussian distribution
and so is P(7) obtained from the previous formula. Most
important, this is independent on the genomic distance
s, hence it predicts a scaling R ~ s with v = 0. This is
for distances s > [, i.e. beyond the length of a petal.

Appendix B: Fractions of @ and § phases
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FIG. B.1. Plot of the average fa, the fraction of phase «, as
a function of the genomic distance (solid colored line). The
light-colored area indicates the error estimate.

From fits of experimental histograms P;;(r) with the
two phase model (5) one obtains estimates of f, and
fs = 1 — fq, the fraction of the two phases for pairs of
labels ¢ and j. Figure B.1 shows the values of f, (cen-
tral thick colored lines) averaged over all begin tags i as a
function of genomic separation l;|i—j|, where [, = 30,000
is the spacing in base pairs between two consecutive tags
of the experiments. The colored areas estimates the vari-
ability (standard deviation) over the different data. For
a microphase separation we expect a constant value of f,
for a distance range corresponding to the characteristic
length of the domains. The data in Fig. B.1 show that
fa = 0.6 for the shortest tags distance |i — j| = 1 (ex-
cept for K562 that, as discussed previously displays some
anomalous behavior compared to the other cell lines).
The data also show that f, remains approximately con-
stant for some range of genomic distances. This range ap-
pears to be somewhat cell-line dependent. As discussed
in the main text the histogram analysis is more reliable
for tag distances which are not too distant (] — j| <5)
as the differences between R, and Rg are larger.
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