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Recent advances in experimental fluorescence microscopy allow high accuracy determination (res-
olution of 50 nm) of the 3D physical location of multiple (up to ∼ 102) tagged regions of the
chromosome. We investigate publicly available microscopy data for two loci of the human Chr.21
obtained from multiplexed FISH methods for different cell lines and treatments. Inspired by poly-
mer physics models, our analysis centers around distance distributions between different tags with
the aim being to unravel the chromatin conformational arrangements. We show that for any specific
genomic site, there are (at least) two different conformational arrangements of chromatin, implying
coexisting distinct topologies which we refer to as phase α and phase β. These two phases show
different scaling behaviors: the former is consistent with a crumpled globule while the latter indi-
cates a confined, but more extended conformation, such as a looped domain. The identification of
these distinct phases sheds light on the coexistence of multiple chromatin topologies and provides
insights into the effects of cellular context and/or treatments on chromatin structure.

I. INTRODUCTION

Understanding the organization of eukaryotic chromo-
somes is an issue of broad interest and has been inten-
sively studied both experimentally [1–8] and computa-
tionally [9–21]. This interest stems from the fact that
the 3D chromatin structure has a strong influence on
several genomic processes such as transcription or repli-
cation [22, 23]. Long DNA molecules go through high
compaction when chromosomes condense during mitosis.
During the interphase, genes are actively transcribed and
chromosomes are unpacked and distributed throughout
the cell nucleus but still possess a remarkable level of
spatial organization. This organization is hierarchical,
involving different structures at different genomic length
scales. Starting from whole chromosome lengths (∼ 100
Mb) down to ∼ 100 kb the DNA organization can be
summarized as follows: 1) During the interphase, dif-
ferent chromosomes do not mix but occupy well-defined
territories inside the cell nucleus [24]. 2) Each chromo-
some is split into several stretches of gene-rich domains
(euchromatin) alternating with gene-poor domains (het-
erochromatin). Euchromatin tends to be more open than
heterochromatin. Moreover stretches of the same chro-
matin species aggregate forming so-called A and B com-
partments. 3) At scales of ∼ 1 Mb and below the chro-
matin is assembled in Topologically Associating Domains
(TADs) [25, 26], which are regions where chromatin in-
teracts more frequently. The biological function of TADs
and the mechanisms leading to their origin are still de-
bated. A prevalent line of thoughts suggests that TADs
originate from a loop extrusion mechanism [27], although
it is likely that different mechanisms operate simultane-
ously to contribute to the complex hierarchical organiza-
tion of eukaryotic chromatin [28, 29].

Advanced techniques such as Chromosome Conforma-
tional Capture (3C) [1], particularly its high-throughput

sequencing (Hi-C) version [2], have played a central role
in unveiling the chromatin organization. Hi-C provides
genome-wide data for contact probabilities between pairs
of genomic sites and was instrumental for understand-
ing the folding of chromosomes at different length scales.
Although it is by no doubt a very powerful technique,
Hi-C has also some limitations. For instance, it provides
indirect information on physical distances (via contact
probabilities), it typically requires the averaging over a
large number of chromosomes (∼ 106) and may contain
some systematic biases [30, 31], therefore raw data re-
quire normalization and other pre-processing steps. Fluo-
rescence in situ hybridization (FISH, Fig. 1) has also been
used to investigate chromosomal structure [32]. FISH
uses fluorescent probes that are complementary to de-
sired chromosomal regions. After hybridization, the 3D
location of the probes can be determined from fluores-
cence microscopy. For a long time FISH remained a

FIG. 1. Setup of multiplexd FISH as developed in Ref. [4].
(a) 1 ≤ i ≤ N genomic sites equally spaced are targeted by
FISH probes during sequential hybridization cycles. In the
setup of [4] the genomic distance between consecutive tags
was lt = 30 kb. The 3D spatial coordinates of the tagged sites
are then read by high-resolution fluorescence microscopy. (b)
The experiment is repeated over M distinct copies of chro-
mosomes. The values of N and M for the experimental data
used in this paper are given in Table I. We analyzed here the
distance distributions for any two given sites i and j.
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very low throughput technique, the main issue being
the limited number of fluorescent probes with differ-
ent emission spectra available so that only a few sites
could be visualized. However, quite recently, a multi-
plexed FISH (mFISH) method was developed [4]. Using
unique readout sequences and sequential hybridization
cycles, the method allows one to determine the positions
of N ∼ 50 − 100 chromosomal sites with high resolu-
tion (< 50 nm), see Fig. 1. Measurements are done on
samples containing up toM ∼ 104 distinct chromosomes.
Although, unlike Hi-C, it is not a genome-wide technique,
m-FISH data reproduce well the Hi-C contact probabil-
ities for the same genomic regions [4]. In addition, m-
FISH reveals cooperative (i.e. many-body) chromatin in-
teractions [4, 6, 8]. These interactions cannot be inferred
from Hi-C pairwise contacts, however polymer physics-
based models have recently been developed to describe
them [33, 34].

The aim of this paper is to analyze a set of m-FISH
data focusing on distance distributions of any two pairs
of labels i and j. In particular, we analyze the experi-
mental probability distribution Pij(r) of distance r be-
tween tags i and j. The large number of distinct samples
(M ∼ 104) implies good statistics, therefore these his-
tograms can be accurately determined. Our analysis re-
veals that there are (at least) two different modes of chro-
matin organization at any given genomic site. We report
scaling laws characterizing the growth of the chromatin
domains when increasing the genomic distance. Over-
all, our work presents a polymer physics-inspired anal-
ysis to characterize chromatin structure. Importantly,
this method is straightforward to implement and can be
applied to “raw” experimental data.

The paper is organized as follows. Section II presents
the method we propose based on the analysis of the ex-
perimental distance distribution. Section III focuses on
the analysis of the extracted scaling behaviour of typical
configuration radii from different cell lines. Section IV
discusses, using polymer physics models, the regularities
of typical chromatin conformations emerging from the

TABLE I. Summary of experimental data from [4] target-
ing two different regions on chromosome 21. One region is
2 Mb long, located between the 28 − 30 Mb position on the
chromosome, and was studied in lung fibroblast (IMR90) and
erythroleukemia (K562) cell lines. The other region is about
2.5 Mb in size, located between the 34− 37 Mb position, and
was investigated in a colon cancer cell line (HCT116). Tags
in the study are spaced apart by a genomic distance of 30 kb.
N is the number of equally spaced genomic sites and M is
the number of distinct copies of chromosomes for which the
experiments were repeated.

n. Cell line Chromosomic region N M

1 HCT116 (untreated) chr21 [34-37] Mb 83 11631
2 HCT116 (+Auxin 6h) chr21 [34-37] Mb 83 9526
3 IMR90 chr21 [28-30] Mb 65 4871
4 K562 chr21 [28-30] Mb 65 13997

experimental data. Appendices provide technical details
on the polymer models considered, as well as a full anal-
ysis of the whole distance probability distribution data
set.

II. DISTANCE PROBABILITY
DISTRIBUTIONS

Table I summarizes the main features of the four data
sets from [4] analyzed in this paper. These experi-
ments target two different loci of human chr. 21: a
2 Mb region (Chr21:28Mb-30Mb) labeled by N = 65
tags and a 2.5 Mb region (Chr21:34.6Mb-37.1Mb) labeled
by N = 83 tags. These regions contain several TADs
across multiple cell lines [4]. More data are available in
[4], but these 4 sets were selected because they contain
a large number of independent measurements, ranging
from M = 4871 to M = 13997, (Table I) from which
accurate distance probability distributions are obtained.
For an ideal polymer, the distance probability distribu-
tion is a Gaussian that depends only on the length r = |r⃗|
of the vector distance r⃗:

Pij(r) = g(r;R) ≡ 4πr2
(

3

2πR2

)3/2

e−3r2/(2R2) (1)

where the term 4πr2 comes from the Jacobian transfor-
mation of the distribution. The above distribution is nor-
malized and contains the mean-squared radius R2 = ⟨r⃗ 2⟩
as a single parameter. Despite its simplicity the Gaus-
sian chain model is a reasonable approximation to com-
plex phases of polymeric matter, such as polymer melts.
A well-known result of polymer physics is that a single
test chain immersed in a melt of other chains behaves as
an ideal polymer [35]. This is because self-avoidance gets
screened by the surrounding polymers. The mean square
radius of an ideal polymer scales as

R ∼ |i− j|1/2, (2)

where the exponent 1/2 describes the universal scaling
behavior of random walks. It has been recently shown
[36] that the introduction of suitable monomer-monomer
harmonic pairwise interactions in a bead and spring poly-
mer model leads to an equilibrium distance distribution
corresponding to (1), but with a scaling described by

R ∼ |i− j|ν . (3)

By tuning the monomer-monomer interactions, one can
generate any values of the exponent in the interval 1/3 ≤
ν ≤ 1/2 [36]. The statistical properties of the model
are those of a fractional Brownian motion (fBm), which
was invoked as a model for chromosome arrangement in
cells [37, 38], as well as for other problems of polymer
dynamics [39–41]. We note that the case ν = 1/3 is the
exponent of a crumpled globule [42], a phase discussed
in some more detail in Sec. IV. Therefore, the Gaussian
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FIG. 2. Distance probability distributions Pij(r) from exper-
imental data (black circles) for different tag locations i, j for
experiments of the HCT116 cell line (sets n.1 and n.2 of Ta-
ble I). The values for i and j are indicated in each graph. In
the two sets, we fix i = 20 and j = 21, 23 and 30 (from left to
right). Solid lines are fits to a single gaussian model (Eq. (1),
green line) and double gaussian model (Eq. (4), black line).
The legends in each plot show the value of R for a single
gaussian model (Eq. (1), green) and of Rα, Rβ and fα for
the double gaussian model (Eq. (4)). The red and blue filled
areas denote the contribution of the two components of the
fit. More results for other cell lines are shown in [43].

distribution (1) encompasses a broad range of polymer
models.

Figure 2 shows some plots of experimentally measured
distance probability distributions Pij(r) (circles), where
the tags i and j considered are reported in each graph and
the horizontal scale is the spatial distance in micrometers
(µm). The green solid lines are a one parameter fit to the
Gaussian model Eq. (1), where the mean-squared radius
R is the only fitting parameter We note that the model
does not fit well the experimental data and the deviations
are particularly strong for close tags, i.e. small |i−j| (say
within a range of |i− j| ≈ 5, corresponding to a genomic
distance of 150 kb). As the genomic distance increases,
i.e. for larger |i− j|, the experimental distributions gets
closer to (1), as reflected by the trend that the green
lines (Gaussian fits) tend to merge with the black circles
(experiments) in Fig. 2.

The probability densities for small |i − j| suggest
that experiments describe two coexisting populations
(phases), therefore we fitted the data using:

Pij(r) = fα g(r;Rα) + (1− fα) g(r;Rβ) (4)

where the parameter 0 ≤ fα ≤ 1 (respectively fβ =
1−fα) is the fraction of chromosomes with mean distance
Rα (respectively Rβ) separating tags i and j. We will
refer to the two phases as α and β. The two-phase model
(4) provides an excellent fit to the experimental data.
These fits are shown as solid black lines in Fig. 2. The
colored areas are the contributions of the two gaussian
components to the final fit.
The two-phase model is fitted to the data using Rα, Rβ

and fα as adjustable parameters [43]. These three values
are reported in the legends of Fig. 2. The radii change
with changing i and j and, as expected, increase for in-
creasing |i − j|. The growth rate is, however, different
for Rα and Rβ , as discussed in the next Section. Inter-
estingly, the two phase model (4) was also considered in
a recent analysis of Hi-C chromosomal data [18]. Such
a model was introduced to rationalize some observed
discrepancies between Hi-C and earlier non-multiplexed
FISH data. We examine the relationship between the
findings presented in Ref. [18] and our own results, along
with other relevant numerical and theoretical studies, in
the concluding Section of this paper.

III. SCALING BEHAVIOR OF Rα AND Rβ

Figure 3 shows the scaling behavior of the HCT116
cell line. These are log-log plots of Rα and Rβ vs. the
genomic distance lt|i− j| for fixed i and varying j, where
lt = 30 kb is the spacing in base pairs between two con-
secutive tags of the experiments (see Fig. 1). The hor-
izontal axis is thus the genomic distance measured in
bp, which extends up to about 2.5 Mb. We character-
ized the scaling behavior by fitting Rα and Rβ to (3) for
close tags, i.e. |i − j| ≤ 5 corresponding to a maximal
genomic distance of 150 kb. This choice is dictated by
two factors: (i) we observe that the scaling of Rα and
Rβ follows an approximate power-law behavior for a lim-
ited distance between tags and (ii) the values of Rα and
Rβ are more accurately determined from fitting distance
probability distributions for small |i− j| as well. This is
because there is typically a bigger gap between Rα and
Rβ for small |i − j|, therefore they can be more reliably
extracted from the data analysis.
Table II gives a summary of the average exponents να

and νβ for the four different cell lines averaged over all
the tags. With the exception of the K562 cell line, we
find consistently να > νβ . Comparing the two HCT116
cell lines we find very little difference between the ex-
ponents in the two cases, apart from a possibly slightly
higher να in the auxin-treated case, see Table II. This
small increase is a signature that the α phase is slightly
less compact in the auxin-treated case, consistent with
the fact that by degrading cohesin, auxin releases some
constraints. The little overall difference in exponents in
the two cases is coherent with the conclusions of Bintu
et al. [4]. The authors found that the ensemble averaged
contact matrices from mFISH show no sign of TADs in
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FIG. 3. Log-log plots of scaling behavior Rα (red triangles) and Rβ (blue circles) vs. genomic distance, in bases, for some
selected tags of the HCT116 cell. Top: untreated and bottom: 6h-auxin treated cells. The reference tag used is given in each
plot. The notation “tag: 40 ↑” means that Rα and Rβ are calculated for i = 40 and j = 41, 42 . . . N and “tag: 40 ↓” plots the
data for i = 40 and j = 39, 38, . . . 1. The solid lines are power-law fits over the first 5 points of each set.

the auxin-treated cells. However, TADs were still visible
at the single cell level. As a matter of fact, as explained
in [4], while TAD boundaries in the untreated HCT116
cells are pinned at specific genomic sites, in the auxin-
treated line, they are found in different genomic positions
for each cell, thereby washing out any TAD signature in
the ensemble averaged Hi-C data. The effect of pinned
vs. variable boundaries is also visible in Fig. 3: the scal-
ing of Rα and Rβ is smoother and power-laws extend to
a broader interval in the auxin-treated cells as compared
to the untreated ones. In the latter, several “bumps”,
which are likely the effect of strongly pinned domains,
are visible.

Similar scaling behavior is found for the IMR90 lung fi-
broblast cell line [43], with values of να and νβ consistent
with those observed in the untreated HCT116 cell lines,
see Table II. An exception is the K562 erythroleukemia
cell line for which we observe substantially no differences
between exponents να and νβ (Table II). This suggests
a different type of chromatin organization for K562 as
compared to HCT116 and IMR90. The origin of the pe-
culiar behavior is presently not understood. In view of
the numerical value of νβ it is more logical to character-
ize the K562 cell line as having two phases of type α, see
Fig. A.1.

Having examined the distinct properties of the two
phases thus far, we shall now shift our focus to the analy-
sis of a global quantity. Figure 4 shows a plot of the total
mean radius RT =

√
⟨r2⟩ for fixed tag i and with either

j > i (↑) or j < i (↓). Using Eq. (4) one can express RT

as a function of the radii of the two phases as

R2
T = fαR

2
α + (1− fα)R

2
β , (5)

which suggests that the scaling of RT as function of the

genomic distance is a weighted combination of Rα and
Rβ . The previous relation is valid in the range of genomic
distances for which the chromatin actually separates into
the α and β phases, and it also assumes that there are no
other major components besides these two phases. As we
have seen from the analysis of distance distributions, we
can identify the two phases up to genomic distances of
about 150 kb. Figure 4 shows plots of the scaling of RT

vs. s for some selected tags of the two HCT116 cell lines.
The data indicate that there is a different scaling behav-
ior at different genomic distances. We fitted therefore a
power-law scaling

RT ∼ sν (6)

in two ranges: s ≤ 150 kb (which corresponds to |i−j| ≤
5) and s ≥ 450 kb. The fits yield two scaling expo-

TABLE II. The first three columns give the mean values of
the critical exponents να and νβ and of fα averaged over all
data in the range |i − j| ≤ 5 (corresponding to a genomic
distance s ≤ 150 kb) for the different data sets. The analysis
of the HCT116 and IMR90 cell lines gives consistent values
of these exponents with να > νβ . For the leukemia cell line
K562 να ≈ νβ . The two last columns give the mean values
of the scaling exponent of the total mean radius RT (Eq. (5),
refer to Fig. 4 for details) at short range (s ≤ 150 kb) and
at long range (s ≥ 450 kb) with uncertainties indicated in
parentheses, referring to the last digit.

Data set να νβ fα νshort νlong

HCT116 0.35(7) 0.12(5) 0.64(5) 0.21(4) 0.33(20)
HCT116 (+Auxin) 0.40(3) 0.10(2) 0.60(5) 0.23(2) 0.29(03)

IMR90 0.29(8) 0.11(4) 0.61(8) 0.14(5) 0.32(13)
K562 0.37(8) 0.33(7) 0.53(8) 0.23(5) 0.22(11)
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nents, denoted hereafter by νshort and νlong, which are
reported in the last two columns of Table II. Differences
in scaling behavior at different genomic distances were
also observed and explained in the analysis of Hi-C con-
tact probabilities data [44]. The interpretation of the
results of Table II as well as the connections with other
studies will be discussed in details in the next Section.

IV. DISCUSSION

In this paper, we have analyzed mFISH data from the
experiments reported in Ref. [4] for human chr.21 for dif-
ferent cell lines. Our main result is the evidence of two
different coexisting phases of chromatin, which we re-
ferred to as the α and β phases. The range of genomic
length explored by these experiments goes from 30 kb to
2.5 Mb, but the characteristic radii Rα and Rβ can be
confidently obtained from data for distances up to ap-
proximately 0.5 Mb. Therefore our conclusions are lim-
ited to this range of lengths, which is roughly the genomic
distance at which TADs are observed. We characterized
the two phases using scaling exponents να and νβ . Inter-
estingly, these exponents are different in the two phases
(except for the K562 cell line), indicating substantially
different spatial organizations, which we discuss in what
follows.

FIG. 5. Possible phases of chromatin: (a) crumpled globule,
(b) confined, due to an external potential, and (c) flower. (a)
is a candidate for the α phase and (b,c) for the β phase. In
(a) different segments of the chromatin fiber are colored dif-
ferently to illustrate the geometry of the globule. The rapid
condensation leads to collapse at the local scale involving vici-
nal regions. In (b) and (c) strong confinement implies Rβ ∼ s0

for s sufficiently long.

A. α Phase

The exponent we extracted for the α phase is close to
that expected for a crumpled globule, which is ν = 1/3
[42, 45, 46]. The crumpled globule is a metastable phase
arising from the rapid condensation of a self-attracting
polymer following a temperature quench. The polymer
condenses, but it has insufficient time to relax to a true
equilibrium conformation. The rapid condensation pre-
vents the end points of the long polymer to retract and
to form knots, so the crumpled globule remains unentan-
gled [47]. This is different from an equilibrated compact
phase, which is strongly entangled and forms knots. The
absence of knots makes the unfolding of crumpled glob-
ules much more rapid than that of equilibrated conforma-
tions [47]. Crumpled globule polymeric phases have been
discussed in melts of polymer rings [9] and are believed
to be relevant for genome folding structures [47, 48]. Fig-
ure 5(a) illustrates the typical conformation of a crum-
pled globule. Nearby chromatin segments (indicated with
different colors in Fig. 5(a)) tend to condense and the pro-
cess continues hierarchically involving longer and longer
length scales, with the end-points playing no specific role
in the process.

B. β Phase

The β phase is characterized by a very small exponent,
which is an indication of strong confinement. Figure 5(b)
and (c) illustrate two possible mechanisms of polymer
confinement. In (b) the confinement is due to an exter-
nal potential forcing the monomers to remain within a
certain range from a fixed origin. This could be due to
the formation of a droplet by, for instance, liquid-liquid
phase separation, with chromatin preferentially absorbed
by the droplet. An alternative interpretation is a flower-
like conformation (c) where loops, possibly forming via
an extrusion mechanism, are bound to a central hub. For
both types of conformations (b) and (c) one has Rβ ∼ s0,
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tance distributions and ⟨Pi,i+1⟩i corroborates the existence of
at least two distinct topologies of chromatin organization at
the single-cell level.

i.e. the characteristic radius becomes independent of the
typical genomic length s beyond some threshold value
s > s0. Here s0 is the typical genomic length of the poly-
mer to reach the droplet surface and return back to the
origin in (b) or the typical loop genomic size in (c). A
mathematical model for the case (b) is discussed in Ap-
pendix B, but the s-independence can also be explained
intuitively. Let us consider the point “1” and “2” in
Fig. 5(b), which we assume are separated by a genomic
distance s > s0. To reach point “2”, the polymer chain
bounces a few times on the boundaries of the confined
region. In doing so any information about the length s
is lost and therefore the probability distribution that the
two points be separated by a distance r = |r⃗1 − r⃗2| can-
not depend on s. For confinement of the type presented
in Fig. 5(c), if the points “1” and “2” are on different
petals of the flower-like configuration then again the dis-
tance distribution of r = |r⃗1 − r⃗2| will not depend on the
genomic distance s. Experimental data show no “ideal”
confinement (ν = 0), as the average exponent is non-
vanishing, although very small νβ ≈ 0.1. We note that,
although confined, the β phase is characterized by a ra-
dius Rβ > Rα in the range of genomic distances up to
≈ 200 kb.

C. Coexisting topologies in single cells

Although so far we have analyzed experimental proba-
bility distributions over the whole set of M distinct cells,
here we perform a single-cell analysis. The analysis re-
veals various coexisting conformations in which the chro-
mosomes of each cell alternate between micro-domains of
α and β phases (see also Appendix C).
To illustrate this, we first constructed a global distance
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FIG. 7. Radius of gyration Rg (solid black, left y-axis) and β
phase probability pβ (dashed blue, right y-axis) as a function
of tag number for randomly selected from the HCT116 cell
line. Rg is calculated over five subsequent tags, while pβ is
defined in Eq. (7). The values in the upper right corner of
each panel give the Pearson correlation score between the two
quantities.

probability distribution of consecutive tags by averaging
Pi,i+1(r) over all tag positions i for cells within a cell line.
We denote this averaged distribution by ⟨Pi,i+1(r)⟩i.
Employing a two Gaussian fit (4) on ⟨Pi,i+1(r)⟩i pro-
vides global values for fα, Rα, and Rβ across all tags.
Figure 6 displays plots of single cells distance distribu-
tions over consecutive tags (|i − j| = 1). In contrast to
the data in Fig. 2, which are for fixed i and j and cover all
M ∼ 103 − 104 chromosomes, those in Fig. 6 are limited
to justN ∼ 60−80 samples, corresponding to the number
of tags used in mFISH experiments (see Table I). Despite
the lower statistics, Fig. 2 demonstrates a strong agree-
ment between the averaged distribution ⟨Pi,i+1(r)⟩i and
the distributions of individual cells. This result confirms
the existence of at least two populations with distinct
spatial distributions within each cell.

One can now define a probability to find a given local
chromatin conformation in the β phase as follows

pβ(i) =
(1− fα)g(r;Rβ)

⟨Pi,i+1(r)⟩i
(7)

with g(r;R) as in (1). This definition applies to a single
cell. Note that pβ increases for larger measured distances
r, as it is more likely that the measured cell is in the phase
β at the tag i. In Fig. 7, we superpose the plots of the
local gyration radius Rg(i) (black solid line) and the local
probability pβ(i) (blue dashed lines), both calculated over
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a sliding window of 5 subsequent tags centered around
the tag i.

This enables the comparison of the spatial variability
(expressed in tag number) of these physical quantities.
Interestingly, the figure shows that domains with a high
β phase content co-localize with maxima in the local ra-
dius of gyration, whereas clusters with much lower pβ
are centered around the lower values of Rg, thus within
compact chromatin regions. Although the location of
these different domains varies strongly from cell to cell,
the variation of these two quantities is remarkably corre-
lated.

D. Connection with other studies

Currently, there is a consensus regarding the existence
of a markedly heterogeneous chromatin organization that
manifests itself in significant cell-to-cell variations. This
conclusion is supported by experiments [4, 49, 50] and
simulations [29, 44, 51–53]. Conte et al. [29] recently
analyzed the same mFISH data discussed in this work
[4] and showed that they are consistent with micro-phase
separation, which agrees with our conclusions. The ad-
vantage of the distance distribution analysis employed
here is that one can define scaling exponents for the two
phases and extract them in a direct way from the exper-
imental data.

To reconcile discrepancies observed between some Hi-
C and (non-multiplexed) FISH data Shi and Thirumalai
[18] invoked the two phase model (4). They showed that
these discrepancies can be resolved if a heterogeneous
model with two or more sub-populations is used. Their
analysis was done on Hi-C data and on low-throughput
(multicolor) FISH data [50], therefore it could not reveal
scaling laws that appear when several labels regularly
spaced along the genome are used, as is the case for the
multiplexed FISH experiments by Bintu et al. [4] we
analyzed here.

Our findings are also in line with recent work mod-
eling chromatin structure using insights obtained from
Hi-C data [44, 54]. These papers focus on the decay of
Hi-C contact probabilities P (s) as function of the ge-
nomic distance s. The crumpled globule model would
predict P (s) ∼ R−3 ∼ s−3ν with ν = 1/3, as obtained
from Eq. (1) and (6) by taking the limit r → 0 to ob-
tain the contact probability. This scaling behavior for
P (s) is found to be consistent with Hi-C data only at ge-
nomic distances s > 1 Mb [44]. The deviations observed
at shorter scales are explained using a crumpled poly-
mer model with superimposed random loops [44]. This
is indeed similar to our description of chromatin as a
two phase system: a crumpled globule (α phase) and
looped/confined phase (β phase). Our distance distribu-
tions analysis indicates phase separation in single cells in
domains of the size of ∼ 100 kb. From the analysis of the
total radius RT we observed different behaviors at short
(s < 150 kb) and long (s > 450 kb) genomic scales, rem-

iniscent of the different scaling regimes discussed in [44].
The same behavior for RT was proposed in a theoreti-
cal analysis by Slavov and Polovnikov [55], who studied
the effect of loops on top of a crumpled globule with
ν = 1/3. The mFISH data analyzed in the present work
indicate an increase of the scaling exponent for large ge-
nomic lengths with νlong consistent with, or very close to,
the crumpled globule limit, see Table II.
In the future, it would be interesting to extend the

distance distribution analysis to more cell lines and also
explore chromosomal regions below the 30 kb resolution.
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Appendix A: Cell lines variability

All distance distributions Pij(r) obtained in the four
experiments are similar to those shown in Fig. 2. At ge-
nomic distances s < 150 kb (|i− j| < 5) one can clearly
identify two distinct characteristic radii Rα and Rβ [43].
While the two HCT116 and the IMR90 cell lines show a
markedly different scaling for Rα and Rβ , in the leukemia
cell line K562 (Fig. A.1) the average exponents να and
νβ are both consistent with the crumpled globule value
ν = 1/3, see Table II. The peculiar behavior of the K562
cell line suggests a different type of chromatin organi-
zation. To analyze further the cell-to-cell variability we
have plotted in Fig. A.2 the values of the exponents να,
νβ and νshort as functions of the tag position i around
which they are calculated. For the tags in the interval
5 < i < N − 5 the exponents are obtained from aver-
aging over j > i (↑) and j < i (↓) with |i − j| ≤ 5
(s < 150 kb). For the tags i < 5 and i > N − 5 we used
only the j > i and j < i, respectively. Of all cell lines,
the Auxin-treated HCT116 shows a remarkable homo-
geneous behavior across the different tags, with clearly
distinct exponents from να and νβ , and with an inter-
mediate value of νshort, as expected from Eq. (5). While
auxin removes some of the topological constraints, the
chromatin organization of the auxin-treated cell line as
quantified from the values of the exponents is similar to
the HCT116 untreated case. The untreated HCT116 line
shows much stronger tag-to-tag variability of the scaling
exponents, which is attributed to the pinned TAD bound-
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FIG. A.1. Scaling of the characteristic radii of the two phases
Rα and Rβ for a few selected tags in the leukemia cell line
K562. The notation is the same as of Fig. 3 with “tag: 10 ↑”
means that Rα and Rβ are calculated for i = 10 and j =
11, 12 . . . N . The solid lines are power-law fits over the the
first five points (s ≤ 150 kb).

aries, as discussed in [4]. Distinct values of να and νβ are
also obtained for the IMR90 cell line with a tag position
variability which is similar to the untreated HCT116 case.
Finally the leukemia cell line K562 shows “anomalous”
overlapping distributions for να and νβ with, surprisingly,
νshort smaller than να and νβ .

Appendix B: Confined Ideal polymer

We discuss here the effect of confinement in the sim-
pler and analytically tractable case of an ideal polymer.
We consider a polymer consisting of N monomers of av-
erage bond length b which is subject to an external radial
potential U(r) acting on all its monomers, as depicted in
Fig. 5(b). The potential is attractive forcing the polymer
to remain confined in the vicinity of the origin. One can
consider different forms for U(r), such as the infinite well
case

Uw(r) =

{
0 r < R

+∞ r ≥ R,
(B1)

a harmonic potential

Uh(r) =
k

2
r2, (B2)

of other types of confinement. The probability distribu-
tion for the end point vector r⃗, from the origin of the
potential, of a segment of length s satisfies the differen-
tial equation [56]

∂Q(r⃗, s)

∂s
=
b2

6r

∂2[rQ(r⃗, s)]

∂r2
− βU(r)Q(r⃗, s) (B3)
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short
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i
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Density
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FIG. A.2. Plots of the exponents να, νβ and ν as function of
the tag position i around which they are calculated (see text
for details). In the cell lines HCT116 and IMR90 να > νβ ,
while να ≈ νβ for the K562 cell line.

This equation can be solved by separation of variables,
i.e. by seeking solutions of the type Q(r⃗, s) = ψp(r⃗)gp(s),
labeled by an index p. The general solution is then given
by the linear combination

Q(r⃗, s) =
∑
p

Apψp(r⃗)gp(s), (B4)
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where the coefficients Ap are chosen to satisfy the de-
sired boundary conditions (the full series solution of the
infinite-well confinement is given in [57]). Separation of
variables leads to a differential equation for gp(s) of the
type dgp(s)/ds = −αpgp(s) with exponentially decaying
solutions gp(s) = e−αps. In the limit s→ ∞ one uses the
ground state dominance (GSD) approximation which re-
tains the component with the smallest αp [58]

Q(r⃗, s) ≈ A0e
−α0sψ0(r⃗) (B5)

where ψ0(r⃗) is the ground state solution of the associated
Schrödinger-like equation

b2

6r

∂2[rψ0(r⃗)]

∂r2
− βU(r)ψ0(r⃗) = −α0ψ0(r⃗) (B6)

We note that in the GSD approximation the distribution
in r⃗ is independent of the polymer length s, due to the
factorization in (B5). This is different from a free ideal
polymer where the probability distribution is a function
of the scaled variable r⃗ 2/s.
For a infinite well potential (B1) the solution of (B6)

is a spherical Bessel function of order zero

ψ0(r⃗) =
sin(πr/R)

r
for r ≤ R (B7)

and ψ0(r) = 0 for r > R. For a confining harmonic
potential (B2) one finds

ψ0(r⃗) = exp(−3r2/2R2
∗) (B8)

where we have defined R2
∗ ≡ b/

√
3βK. In both cases, we

have omitted normalization factors.
We recall that ψ0(r⃗), obtained from the ground state

dominance (B5), is the probability distribution of the
end-point of a very long polymer. The probability that
two points along the polymer are separated by a given
vector distance r⃗ = r⃗2 − r⃗1 is given by

P (r⃗) =

∫
dr⃗1dr⃗2 ψ0(r⃗1)ψ0(r⃗2) δ(r⃗1 − r⃗2 − r⃗) (B9)

where δ() denotes the Dirac delta function. Inserting the
following Fourier transform representation of the Dirac
delta,

δ(x⃗) =
1

(2π)3

∫
dk⃗ eik⃗·x⃗, (B10)

we obtain

P (r⃗) =

∫
dk⃗

[
ψ̃0(k⃗)

]2
eik⃗·r⃗ (B11)

where ψ̃0 is the Fourier transform of ψ0(r⃗). The Fourier
transform of a Gaussian function is also a Gaussian,
hence the harmonic confinement gives

Ph(r) = 4πr2
(

3

4πR2
∗

)3/2

e−3r2/4R2
∗ (B12)

where we have included the jacobian 4πr2. For the in-
finite well confinement we solved the problem numeri-
cally. We generated independent vector pairs r⃗1 and r⃗2
within a sphere of radius R distributed according to (B7)
and extracted the probability distribution of the distance
r ≡ |r⃗1 − r⃗2| shown in Fig. B.1 as solid line. This dis-
tribution deviates from a Gaussian one, which is shown
as a dashed line. It decays faster than the Gaussian at
larger r and vanishes for r > 2R (r = 2R is the maximal
distance between two points within a sphere of radius R).
For generic confining potentials the distribution is not a
Gaussian one.

0.0 0.5 1.0 1.5 2.0
r

0.0

0.2

0.4

0.6

0.8

1.0

1.2

P(
r)

Infinite well
Gaussian fit

FIG. B.1. Solid line: Numerical solution of the probability
distribution P (r) of spatial distance r between two points
separated by a long genomic distance s for confinement in the
case of infinite well-potential (B1) with R = 1. Dashed line:
Gaussian fit of P (r).

We consider now the case of confinement of an
ideal polymer in a flower-like shape conformation as in
Fig. 5(c). For simplicity we will assume that each petal
has the same length l and we number them 1, 2, . . . n ac-
cording to increasing genomic position. Let us again for
simplicity consider two points on the flower with posi-
tions r⃗1, r⃗2 and are located in the middle of petals i and
j. The genomic distance between these points is therefore
s = l|i − j|. Given pp(r⃗

∗; l), defined as the probability
distribution that the mid-point of the petal is at a dis-
tance r⃗ ∗ from the center of the flower, the probability
distribution that the spatial distance between the two
points is equal to r⃗ is then given by

P (r⃗) =

∫
dr⃗1 dr⃗2 pp(r⃗1; l)pp(r⃗2; l)δ(r⃗1 − r⃗2 − r⃗). (B13)

For an ideal polymer pp(r⃗
∗; l) is a Gaussian distribution

and so is P (r⃗) obtained from the previous formula. Most
importantly, this result is independent of the genomic
distance s, hence it predicts a scaling R ∼ sν with ν = 0.
This holds for distances s > l, i.e. beyond the length of
a petal.
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FIG. C.1. Plot of the average fα, the fraction of the α phase
as a function of the genomic distance (solid colored line). The
light-colored area indicates the standard deviation.

Appendix C: Fractions of α and β phases

From fits of the experimental distance distributions
Pij(r) with the two phase model (4) one obtains esti-
mates of fα and fβ = 1 − fα, the fraction of the two
phases for pairs of labels i and j. Figure C.1 shows
the values of fα (central thick colored lines) averaged
over all begin tags i as a function of genomic separation
lt|i − j|, where lt = 30 kb is the spacing between two
consecutive tags of the experiments. The colored areas
estimates the variability (standard deviation) over the
different data. For a microphase separation we expect a
constant value of fα for a distance range corresponding
to the characteristic length of the domains. The data in
Fig. C.1 show that fα ≈ 0.6 for the shortest tags dis-
tance |i − j| = 1 (except for K562 which, as discussed
previously, displays some anomalous behavior compared
to the other cell lines). The data also show that fα re-
mains approximately constant for some range of genomic
distances. This range appears to be somewhat cell-line
dependent. As discussed in the main text, the distance
distribution analysis is more reliable for tag distances
which are not too distant (|i− j| ≲ 5 ), as the differences
between Rα and Rβ are larger.
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