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 10 

Abstract: Cholesterol metabolism dysregulation is associated with several neurological disorders. 11 

In Huntington's disease (HD), several enzymes involved in cholesterol metabolism are 12 

down-regulated, among which the neuronal cholesterol 24-hydroxylase, CYP46A1, is of particular 13 

interest. Restoration of CYP46A1 expression in striatal neurons of HD mouse models is beneficial 14 

for motor behavior, cholesterol metabolism, transcriptomic activity and alleviates 15 

neuropathological hallmarks induced by mHTT. Among the genes regulated after CYP46A1 res-16 

toration, those involved in cholesterol synthesis and efflux may explain the positive effect of 17 

CYP46A1 on cholesterol precursor metabolites. Since cholesterol homeostasis results from a fi-18 

ne-tuning between neurons and astrocytes, we quantified the distribution of key genes regulating 19 

cholesterol metabolism and efflux in astrocytes and neurons using in situ hybridization coupled 20 

with S100and NeuN immunostaining, respectively. Neuronal expression of CYP46A1 in the stri-21 

atum of HD zQ175 mice increased key cholesterol synthesis driver genes (Hmgcr, Dhcr24) specifi-22 

cally in neurons. This effect was associated with an increase of the srebp2 transcription factor gene 23 

that regulates most of the genes encoding for cholesterol enzymes. However, the cholesterol efflux 24 

gene, ApoE, was specifically upregulated in astrocytes by CYP46A1 probably though a paracrine 25 

effect. In summary, neuronal expression of CYP46A1 has a dual and specific effect on neurons and 26 

astrocytes to regulate cholesterol metabolism. Neuronal restoration of CYP46A1 in HD paves the 27 

way for future strategies to compensate for mHTT toxicity. 28 

Keywords: Huntington's disease, striatum, CYP46A1, cholesterol, gene regulation, Srebp2, Hmgcr, 29 

Dhrc24, ApoE, Fluorescence in situ Hybridization coupled with Immunostaining. 30 

 31 

1. Introduction 32 

Huntington’s disease (HD) is a neurodegenerative disorder with autosomal dominant 33 

inheritance, onset in young adults, and presents a combination of neuropsychiatric, mo-34 

tor, and cognitive symptoms [1]. The disease is caused by an abnormal expansion of CAG 35 

trinucleotide repeats in the gene encoding the huntingtin protein (HTT), resulting in a 36 

poly-glutamine repeat in the N-terminal region of the mutated huntingtin protein 37 

(mHTT) [2]. The toxic gain of functions of mHTT and the loss of function of wild-type 38 

huntingtin result in a cascade of events that leads to a progressive degeneration of me-39 

dium-sized spiny neurons (MSNs) in the striatum [3], which then extends to other brain 40 

regions such as the cerebral cortex, the hypothalamus and the cerebellum. Multiple cel-41 

lular and molecular dysfunctions have been well described, including transcriptional 42 

gene dysregulation, alteration of energy metabolism, synaptic transmission, BDNF syn-43 
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thesis and transport, TrB receptor trafficking, clearance of unfolded proteins, and alter-44 

ation of cholesterol homeostasis [4]. 45 

Despite these cardinal discoveries about HD pathogenesis, a significant challenge re-46 

mains to identify HD modification strategies that could be used to slow disease progres-47 

sion. Current therapeutic approaches focus on mHTT lowering, inhibition of mHTT ag-48 

gregation and modulators of key pathways involved in HD pathogenesis such as 49 

excitotoxicity, proteostasis, mitochondrial dysfunction [5,6], and more recently choles-50 

terol metabolism dysregulation [7,8].  51 

The maintenance of cholesterol homeostasis is a relevant aspect of the central nervous 52 

system (CNS) functions, including for brain development, myelination, neuronal sig-53 

naling and survival. Since peripheral cholesterol cannot cross the blood-brain-barrier, 54 

brain cholesterol is primarily synthesized locally by astrocytes, while the major pathway 55 

for cholesterol catabolism is achieved in neurons by the brain-specific cholesterol 56 

24-hydroxylase enzyme (CYP46A1), leading to the conversion of cholesterol into 24 57 

(S)-hydroxycholesterol (24S-OHC) [9]. Blood cholesterol levels are reduced in manifest 58 

HD patients [10,11], and levels of sterols upstream from cholesterol, including lanosterol, 59 

lathosterol and 7-dehydrocholesterol, are markedly decreased within the striatum of HD 60 

mice [12–17]. Additionally, 24S-OHC levels are reduced in the plasma of HD patients, 61 

paralleling caudate nucleus atrophy [11]. The mRNA level of cholesterol biosynthetic 62 

genes are reduced in HD cell lines, fibroblasts, and post-mortem striatal and cortical tis-63 

sues from HD patients and in the striatum of several mouse models of HD [18–21]. In 64 

addition, we made the original observation that expression levels of CYP46A1 are 65 

strongly reduced in the putamen of HD patients and striatum of both transgenic (R6/2) 66 

and knock-in (zQ175) HD mouse models [16,17]. Restoring striatal CYP46A1 levels in 67 

neurons by gene therapy using adeno-associated virus (AAVrh10) is neuroprotective in 68 

these two HD mouse models, and this approach directly reinstates the whole cholesterol 69 

metabolism pathway, including the production of sterols (lanosterol and desmosterol) 70 

and 24S-OHC [16,17]. Strikingly, this approach ameliorated the clearance of mHTT ag-71 

gregates and, most importantly, normalized the striatal transcriptome, especially for 72 

genes implicated in synaptic transmission and proteasome activity [17].  73 

To better understand how the normalization of CYP46A1 expression reactivates 74 

cholesterogenesis, it remains to be determined whether CYP46A1 regulation of choles-75 

terol biosynthetic genes occurs in astrocytes and/or MSNs, the main neuronal population 76 

of the striatum. Two non-exclusive hypotheses can be proposed: i) neuronal expression 77 

of CYP46A1 induced a paracrine effect on astrocyte cholesterogenesis through secretion 78 

of 24S-OHC product, which is an activator of nuclear Liver X Receptor (LXR) or, ii) neu-79 

ronal expression of CYP46A1 could act locally in neurons to activate cholesterogenesis 80 

[22]. To address this question, we took advantages of fluorescent in situ hybridization 81 

(FISH) coupled with immunostaining to quantify key cholesterol genes in astrocytes and 82 

MSNs of HD mice. We found that neuronal expression of CYP46A1 in HD zQ175 mice 83 

has a local effect on MSNs for the two cholesterol gene drivers, ie Hmgcr and Dhcr24, and 84 

a paracrine effect on astrocytes for Apoe cholesterol efflux gene. On the other hand, the 85 

sterol regulatory element binding protein 2 (SREBP2) transcription factor was regulated 86 

in both MSNs and astrocytes after CYP46A1 expression in MSNs. Altogether, these re-87 

sults suggest a bimodal effect of CYP46A1: one in MSNs to reinstate cholesterol biosyn-88 

thesis and one in astrocytes to favor cholesterol efflux. The beneficial effect of CYP46A1 89 

in HD reflects the dynamic balance between cholesterol synthesis, uptake, and export, all 90 

integrated into a dialogue between MSNs and astrocytes.  91 

2. Results 92 



Int. J. Mol. Sci. 2023, 24, x FOR PEER REVIEW 3 of 15 
 

 

2.1 Validation of virus-mediated expression of GFP and CYP46A1-HA in dorsal 93 

striatum and validation of FISH analysis coupled with cell-specific immunolabeling 94 

 95 

• 2.1.1 Expression of CYP46A1 in the striatum of HD mice  96 

In order to study the regulation of genes involved in cholesterol metabolism in HD 97 

mice after virus-driven CYP46A1 expression, bilateral stereotaxic injection of 98 

AAVrh10-GFP (control) and AAVrh10-CYP46A1-HA (a human version of CYP46A1 with 99 

a haemagglutinin (HA) tag) was performed in the striatum of four-month old mice. Five 100 

months later, FISH was performed to quantify gene expression in neurons (NeuN 101 

immunolabelling) and astrocytes (S100 immunolabelling) (Figure 1.A). We first exam-102 

ined the cell transduction of these two AAVs. As shown in Figure 1.B, GFP and 103 

CYP46A1-HA expression were strongly expressed in the dorsal striatum five months af-104 

ter stereotaxic injection as previously described [16,17]. Importantly, double labeling of 105 

HA and a neuronal marker (NeuN) showed that the majority of striatal cells expressing 106 

CYP46A1-HA were neurons (92.8%, data not shown) (Figure 1.A, right panels). There-107 

fore, the experimental setup allows a long-lasting neuronal expression of CYP46A1 in the 108 

striatum of zQ175 mice.  109 

 110 
Figure 1. Validation of striatal expression of CYP46A1 in mice.  111 

(A) Experimental set up to assess mRNA quantification on brain sections within neurons and as-112 

trocytes. Created with BioRender.com (B) Left and middle panels: expression of GFP in WT 113 

(WT-GFP) and HD (HD-GFP) mice after stereotaxic injection of AAV-GFP. Right panels: expression 114 

of CYP46A1-HA revealed by HA immunostaining in HD (HD-CYP46A1) mice after stereotaxic in-115 

jection of AAV-CYP46A1-HA on striatal sections (Scale bar: 100µm). A close-up of CYP46A1-HA in 116 

HD is shown after double HA/NeuN immunostaining (scale bar: 30µm) and reveals neuronal tro-117 

pism of AAVrh10. CC: corpus callosum, LV: Lateral Ventricle, D.ST: Dorsal Striatum 118 

 119 

• 2.1.2 Imaging tools to quantify mRNA signals after FISH coupled with IHC  120 

We next sought to visualize specific mRNAs related to cholesterol metabolism in 121 

striatal neurons and astrocytes to analyze the effect of CYP46A1-mediated gene regula-122 

tion in each cell population in HD mice. FISH was performed on 30-µm-thick mouse 123 

brain sections, using specific fluorophore-coupled RNAscope® probes against Hmgcr, 124 

Dhcr24, Srebp2, and ApoE. Since each FISH signal gave rise to different patterns, with ei-125 

ther sparse or densely packed puncta, a 2D projection (maximum intensity) followed by 126 

intensity thresholding (Otsu method) allowed to measure the number of dots in each 127 
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nucleus (identified manually by ROIs) with the immunostaining signal (NeuN 128 

immunolabeling for neurons and S100β immunolabeling for astrocytes). For Srebp2 129 

(Figure 2.A) and Dhcr24 (see Figure 4), we used the machine-learning Advanced Weka 130 

Segmentation plugin on 2D projection to perform image segmentation based on pixel 131 

classification and separate all dots. Then, a threshold and a particle analysis allow us to 132 

determine the number of dots in each DAPI-NeuN (Figure 2.A) or DAPI-S100β (Figure 133 

2.B) labeling. For ApoE, which retrieved very dense signal, we used macros in ImageJ to 134 

count the dot signal encapsulated in the nucleus in 3D. Due to the heterogeneity of the 135 

DAPI and immunostaining signals, we used the deep learning-based plugin Stardist [23] 136 

with fine-tuning training on the model with a small amount of our images for a better 137 

segmentation result. Then, cells are manually selected for counting the dot signals in 138 

neurons (Figure 2.C) or astrocytes (Figure 2.D) was performed after a difference of 139 

Gaussian filtering then a 3D Dot Segmentation [24]. Counting was performed with 3D 140 

ROI Manager plugin from the 3D ImageJ Suite [25].  141 

 142 

Figure 2. Imaging methods after FISH coupled with IHC.  143 

(A) Sequence of the different stages for Srebp2 signal quantification in neurons (NeuN 144 

immunostaining in red) and (B) in astrocytes (S100 immunostaining in red): contouring 145 

of nucleus labeled with DAPI (in white) from positive immunostained cells, mask appli-146 

cation to the Srebp2 signal and segmentation result. (C) Stages of macro for ApoE signal 147 

quantification in neurons (NeuN immunostaining in red), and (D) astrocytes (S100 148 

immunostaining in red): NeuN/S100-DAPI labeling, ApoE signal before macro treatment, 149 

mask and Gaussian result (after macro). Scale bar: 17µm.  150 

 151 

 152 

2.2 Analysis of Hmgcr and Dhcr24, two key cholesterol synthesis genes, in neu-153 

rons and astrocytes after CYP46A1-HA expression in HD mice  154 

 155 

The effect of CYP46A1 in the cholesterogenic pathway was then studied on two critical 156 

genes coding the rate-limiting enzyme HMGCR and a key node enzyme DHCR24, which 157 

ensures the link between the Kandutch-Russel and Bloch pathways [7]. Hmgcr mRNA 158 

FISH signals were detected as discrete dots in the nucleus (Figure 3.A). Quantification of 159 

Hmgcr puncta in neurons (NeuN staining) and astrocytes (S100 staining) did not show 160 

any difference between WT-GFP and HD-GFP mice in both cell populations. These results 161 

confirm previous studies showing no major dysregulation of Hmgcr mRNA expression in 162 

the striatum of zQ175 at 12 months [17]. However, CYP46A1 re-expression after 163 
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AAVrh10-CYP46A1-HA transduction induced a significant increase of Hmgcr expression 164 

in neurons (Figure 3.A-B) but not in astrocytes (Figure 3.D-E). MSNs, which comprise 165 

around 90 % of the neurons in the striatum, belong to two anatomically and functionally 166 

distinct populations that exert opposite role in the selection of motor plans. MSNs of the 167 

direct pathway (D1 MSNs) express dopaminergic receptor type 1 (DRD1), while those of 168 

the indirect pathway (D2 MSNs) express dopaminergic receptor type 2 (DRD2) [26]. D1 169 

and D2 MSNs exhibit distinctive structural and functional properties in zQ175 mice 170 

[27–29]. Hence, we sought to analyze if CYP46A1-mediated increase of Hmgcr was more 171 

prominent in one of the two MSNs populations. We took advantage of the multiplex 172 

ability of RNAscope®, to analyze the expression of Hmgcr in both D1 and D2 MSNs pop-173 

ulations of HD mice injected with AAVrh10-CYP46A1-HA. As expected, Drd1 and Drd2 174 

dots were perfectly segregated in dorsal striatum sections from HD mice (Fig 3.C). In 175 

HD-CYP46A1 mice, Hmgcr mRNA levels are equally distributed in both D1 and D2 MSNs 176 

populations (53% in D1 MSNs and 46.9% in D2 MSNs and) (Fig 3.C).  177 

 178 

 179 
Figure 3. Hmgcr gene expression in neurons and astrocytes after CYP46A1-HA expression in HD 180 

mice.  181 

(A) Mice were injected with AAVrh10-GFP (WT GFP and HD GFP) or AAVrh10-CYP46A1-HA 182 

(HD-CYP46A1). RNAscope® coupled with NeuN immunostaining was performed on WT and HD 183 

brain mouse sections and images were taken at 63x objective (Scale bar = 17 μm). (B) Quantification 184 

of dots on approximately 400 neurons * p < 0.05 (HD-GFP vs HD-CYP46A1). (C) RNAscope® dis-185 

crimination between neurons expressing Drd1 and Drd2 in the HD-CYP46A1 group and proportion 186 
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of Hmgcr in each D1 or D2 MSNs in this same group. (D) RNAscope® coupled with S100β 187 

immunostaining (Scale bar = 17 μm). (E) Quantification of dots on approximately 100 astrocytes. 188 

Results are expressed as mean ± SEM (n = 3–4). One-way ANOVA with Kruskal-Wallis post-hoc 189 

test was used for statistical analysis.  190 

 191 

With regard to Dhcr24 mRNA levels, we did not detect differences in either neurons or 192 

astrocytes from WT-GFP and HD-GFP mice. (Figure 4.A-D), while CYP46A1 193 

re-expression induced an increase of Dhcr24 levels in neurons (Figure 4.B) but not astro-194 

cytes (Figure 4.D).  195 

Altogether, these results show that neuronal CYP46A1 expression has a direct effect on 196 

cholesterogenic enzymes within the two MSNs populations and no action on astrocytes. 197 

 198 

 199 
Figure 4. Dhcr24 gene expression in neurons and astrocytes after CYP46A1-HA expression in HD 200 

mice.  201 

(A) Mice were injected with AAVrh10-GFP (WT-GFP and HD-GFP) or 202 

AAVrh10-CYP46A1-HA (HD-CYP46A1). RNAscope® coupled with NeuN immunostaining was 203 

performed on WT and HD brain mouse sections and images were taken at 63x objective (Scale bar = 204 

17 μm). (B) Quantification of dots on approximately 400 neurons ***p < 0.0001 (WT-GFP vs 205 

HD-CYP46A1) and ***p < 0.001 (HD-GFP vs HD-CYP46A1). (C) RNAscope® coupled with S100β 206 

immunostaining (Scale bar = 17 μm). (D) Quantification of dots on approximately 100 astrocytes. 207 

Results are expressed as mean ± SEM (n = 3–4). One-way ANOVA with Kruskal-Wallis post-hoc 208 

test was used for statistical analysis. 209 

 210 

2.3 Regulation of Srebp2 transcription factor gene in neurons and astrocytes after 211 

CYP46A1-HA expression in HD mice  212 

 213 
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Cholesterol biosynthesis is regulated by the transcription factor SREBP2, which ac-214 

tivates the expression of most cholesterol biosynthesis genes [30]. The nuclear level and 215 

activity of the N-terminal active fragment of SREBP2 are reduced in HD cellular models 216 

and mouse brains, and Srebp2 gene therapy in striatal astrocytes alleviates HD pheno-217 

types in R6/2 mice [31]. We previously showed that the Srebp2 mRNA level is signifi-218 

cantly decreased in zQ175 mice and CYP46A1 expression tended to restore the propor-219 

tion of nuclear SREBP2 activity in the striatum of zQ175 [17]. We quantified Srebp2 220 

mRNA in MSNs and astrocytes to better characterize CYP46A1 beneficial effect on 221 

cholesterogenesis (Figure 5). Srebp2 mRNA quantification did not show any differences 222 

between WT-GFP and HD-GFP groups in either neuronal cells (Figure 5.A-B) or astro-223 

cytes (Figure 5.D-E), however, CYP46A1 significantly increased Srebp2 mRNA expression 224 

in neurons and astrocytes in HD striatum (Figure 5.B; 5.E). The level of Srebp2 mRNA in 225 

HD-CYP46A1 was equally distributed in both D1 and D2 MSNs of HD mice (50.31% and 226 

49.69%, respectively) (Figure 5.C). Overall, neuronal CYP46A1 expression in HD mice 227 

has a direct role on neurons and a paracrine effect in astrocytes to regulate Srebp2 gene 228 

expression.  229 

 230 

 231 
Figure 5. Srebp2 gene expression in neurons and astrocytes after CYP46A1-HA expression in HD 232 

mice.  233 

(A) Mice were injected with AAVrh10-GFP (WT-GFP and HD-GFP) or AAVrh10-CYP46A1-HA 234 

(HD-CYP46A1). RNAscope® coupled with NeuN immunostaining was performed on WT and HD 235 

brain mouse sections and images were taken at 63x objective (Scale bar = 17 μm). (B) The number of 236 
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dots in neurons was quantified on approximately 400 neurons *** p < 0.001 (WT-GFP vs HD- 237 

CYP46A1) and ** p < 0.005 (HD-GFP vs HD-CYP46A1). (C) RNAscope® discrimination between 238 

neurons expressing Drd1 or Drd2 in HD-CYP46A1 group and proportion of Srebp2 in each D1 or D2 239 

MSN in this same group. (D) RNAscope® coupled with S100β immunostaining (Scale bar = 17 μm). 240 

(E) Quantification of dots on approximately 100 astrocytes. Results are expressed as mean ± SEM (n 241 

= 3–4). One-way ANOVA with Kruskal-Wallis post-hoc test was used for statistical analysis.  242 

 243 

2.4 Neuronal CYP46A1 expression effect on ApoE cholesterol efflux gene  244 

APOE protein is mainly expressed by glial cells including astrocytes, microglia, and 245 

oligodendrocytes and is involved in pathogenesis of neurodegenerative diseases [32]. 246 

Cholesterol transport by astrocytes to neurons is less efficient in HD, with decreased ex-247 

pression of ApoE mRNAs, and less release of APOE by astrocytes expressing mHTT 248 

[21,33]. Since CYP46A1 restores ApoE mRNA expression in the striatum of zQ175 mice 249 

[17], we quantified its expression in neurons and astrocytes. We focused on nuclear ApoE 250 

mRNA to quantify neo-synthesized transcripts (Figure 6.A; 6.C). ApoE mRNA dots 251 

quantification did not show difference in MSNs between WT-GFP, HD-GFP and 252 

HD-CYP46A1 mice (Figure 6.B). However, and as expected, ApoE dots were significantly 253 

lower in astrocytes of HD-GFP mice as compared to WT-GFP mice (Figure 6.D). Moreo-254 

ver, CYP46A1 restored ApoE mRNA expression in astrocytes of HD (Figure 6.D).  255 

 256 
Figure 6. ApoE gene expression in neurons and astrocytes after CYP46A1-HA expression in HD 257 

mice.  258 

(A) Mice were injected with AAVrh10-GFP (WT-GFP and HD-GFP) or AAVrh10-CYP46A1-HA 259 

(HD-CYP46A1). RNAscope® coupled with NeuN immunostaining was performed on WT and HD 260 

brain mouse sections and images were taken at 63x objective (Scale bar = 17 μm). (B) Quantification 261 

of dots on approximately 400 neurons. (C) RNAscope® coupled with S100β immunostaining (Scale 262 

bar = 17 μm). (D) Quantification of dots on approximately 100 astrocytes ** p<0.05 (WT-GFP vs 263 
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HD-GFP and HD-GFP vs HD-CYP46A1). Results are expressed as mean ± SEM (n = 3–4). One-way 264 

ANOVA with Kruskal-Wallis post-hoc test was used for statistical analysis.  265 

 266 

3. Discussion 267 

Cholesterol metabolism dysregulation plays a critical role in HD pathogenesis and 268 

recent studies highlight the interest of considering this pathway as a therapeutic target 269 

[7,34]. The neuronal enriched enzyme CYP46A1 is down-regulated in HD transgenic and 270 

knock-in mouse models and its striatal restoration alleviates HD phenotypes [16,17]. In 271 

particular, CYP46A1 reinstates cholesterogenesis, cholesterol efflux and catabolism. We 272 

developed a co-labeling method that combined mRNA in situ hybridization and immu-273 

nofluorescence detection of MSNs and astrocytes on brain sections to assess 274 

CYP46A1-mediated regulation of cholesterol pathway genes in these two cellular popu-275 

lations. We found that CYP46A1 exerts a bimodal effect on cholesterol metabolism, one in 276 

neuronal cells (MSNs) on key cholesterogenesis genes, and one in astrocytes, likely via 277 

paracrine effects on cholesterol transport/efflux.  278 

Characterization of mRNA distribution in different cell types such as neurons or 279 

astrocytes, is now possible on a single brain slice. However, the combination of 280 

RNAscope® and immunostaining impairs immunolabelling quality probably due to 281 

protease digestion treatment. NeuN and S100 immunodetection associated with 282 

RNAscope® has been developed but as mentioned by other studies [31,17], technical im-283 

provements are still necessary, especially for the NeuN immunostaining signal. Addi-284 

tionally, we were unable to compare the dot quantification of mRNA between both cell 285 

types, probably because each immunostaining affects FISH signals differently. 286 

RNAscope® provides the advantages of in situ analysis of mRNA with a single-molecule 287 

visualization [35], but in case of abundant mRNA (e.g. ApoE mRNA), the dots cannot be 288 

differentiated and quantification required the use of macros in ImageJ. 289 

In our previous study, we showed that CYP46A1 restoration had a strong impact on 290 

cholesterol metabolism by increasing 24S-OHC, the product of cholesterol degradation 291 

but also cholesterol precursor levels [17]. In the adult brain, cholesterol is mainly syn-292 

thesized by astrocytes [7]; however, depending on the brain physiopathogenesis, one 293 

cannot exclude that a re-activation of cholesterol synthesis may occur in neurons. Indeed, 294 

in co-cultures of neurons and astrocytes, neurons can synthesize cholesterol, but at a 295 

lower rate as compared to astrocytes, probably because of the high energy cost of this 296 

metabolic pathway [32]. In HD mouse models, transcriptomic studies on sorted neurons 297 

and astrocytes highlight a cell-intrinsic pathology across mouse models of HD [36–38]. 298 

However, results may differ depending on HD mouse models (R6/2 transgenic which 299 

express N-terminal part of mHTT versus zQ175 knock-in mice expressing the full length 300 

mHTT). For the R6/2 mice-derived-astrocytes, the most altered pathways are related to 301 

fatty acid and cholesterol metabolism whereas opioid signaling, calcium signaling, and 302 

synaptogenesis are the core altered pathways in neurons [37,38]. In zQ175, astrocytes do 303 

not show down-regulation of cholesterogenesis genes which reveals transcriptomic dif-304 

ferences between glia expressing truncated mHTT versus full-length mHTT [37]. Our 305 

results are consistent with these studies as none of the 3 cholesterogenesis key mRNAs 306 

tested (Hmgcr, Dhcr24, and Srebp2) are down-regulated in zQ175 astrocytes. The 307 

downregulation of ApoE mRNA that we observed in zQ175 astrocytes corroborates pre-308 

vious results seen in cultures of HD astrocytes [21,33].  309 

Our study suggests that the neuronal enzyme CYP46A1 is able to reinstate choles-310 

terol metabolism specifically and locally in neurons with an upregulation of Hmgcr, 311 

Dhcr24 mRNA. This effect could be due to SREBP2, the key transcription factor regulat-312 

ing cholesterogenesis, which is upregulated in HD neurons expressing CYP46A1. We can 313 

therefore exclude a possible contribution of astrocytes in CYP46A1-mediated increase of 314 

cholesterol metabolism. However, we propose that 24S-OHC produced by CYP46A1 in 315 

neurons may increase ApoE mRNA expression in astrocytes through a paracrine effect. 316 

Indeed, 24S-OHC is a ligand of LXR positively regulating transcription of ApoE [22] that 317 



Int. J. Mol. Sci. 2023, 24, x FOR PEER REVIEW 10 of 15 
 

 

encodes cargo proteins for cholesterol transport from astrocytes to neurons [39,40]. 318 

Therefore, both cell populations need to be considered in the CYP46A1-mediated bene-319 

ficial effect in HD mice. 320 

The coupling of FISH with immunostaining can therefore be used to study the dis-321 

tribution of mRNAs in astrocytes and neurons in HD brain sections. CYP46A1 increases 322 

cholesterogenesis in neurons and cholesterol efflux on astrocytes probably through a 323 

paracrine effect. This study focused on neurons and astrocytes could be extended to other 324 

cell types involved in HD physiopathology such as microglia and oligodendrocytes.  325 

4. Materials and Methods 326 

4.1 Mice 327 

Four-month-old littermate WT or heterozygous zQ175 mice were used. zQ175 mice 328 

(B6J.129S1-Htttm1Mfc/190ChdiJ) were obtained from Jackson Laboratories. All mice used 329 

in the study were from the first or second offspring, and the genotype was determined by 330 

polymerase chain reaction (PCR) using genomic DNA extracted from the tail or ear. Both 331 

males and females were housed in groups with a 12-h light/ dark cycle, provided with 332 

food and water ad libitum, and kept at a constant temperature (19-22 °C) and humidity 333 

(40-50%). All experiments performed on animals followed the European Community 334 

guidelines (2010/63/EU) and the French Directive for animal experimentation (2013/118) 335 

for the use and care of experimental animals and the requirements for the three Rs for 336 

Animal Welfare. The ethics committee and approved by the French Ministry of Research 337 

(#17424) approved the animal study protocol. 338 

4.2 Production and stereotaxic injection of AAVrh10.GFP and AAVrh10.CYP46A1.HA 339 

All AdenoAssociatedVirus (AAV) vectors were obtained by Atlantic Gene therapies (In-340 

serm U1089, Nantes, France). The viral constructs for AAVrh10-GFP and 341 

AAVrh10-CYP46A1-HA contain the expression cassette consisting of either the GFP or 342 

the human CYP46A1, driven by a CMV/β-actin hybrid promoter (CAG) surrounded by 343 

inverted terminal repeats of AAVrh10. The stereotaxic coordinates were: 1 mm rostral to 344 

the bregma, 2 mm lateral to the midline and 3.25 mm ventral to the skull surface. The rate 345 

of injection was 0.2 µl/min with a total volume of 2 µl per striatum (equivalent to 3.109 346 

genomic particles). 347 

4.3 Brain section preparation 348 

Five months after stereotaxic injections, mice were deeply anesthetized by intraperitoneal 349 

injection of euthazol (150 mg/kg). Intracardiac perfusion of 4% paraformaldehyde in 0.1 350 

M Na2HPO4/NaH2PO4 buffer, pH 7.5 was performed, and brains were stored overnight 351 

in the same solution at 4°C. Then, brains were transferred to a cryoprotective solution 352 

containing 30 % sucrose and store at -20°C. Coronal brain sections (30 µm) were per-353 

formed using a cryostat (Leica®) and sections were stored at -20 °C in glycerol and eth-354 

ylene glycol phosphate buffer. 355 

4.4 Immunostaining 356 

Brain sections were incubated with primary antibodies overnight at 4°C: mouse-anti 357 

NeuN (1:500; Millipore); rat anti-HA (hemagglutinin) (1:400; Roche). Secondary anti-358 

bodies (anti-mouse Cy3 (1:500; Merck), anti-rat Alexa Fluor 488 (1:500; ThermoFischer), 359 

were incubated in 5% NGS (Normal Goat Serum) in Phosphate Buffer Saline (PBS) for 2h 360 

at room temperature (RT). Sections were then labelled with Hoechst solution to stain 361 

nuclei and mounted under coverslips in Prolong Gold Antifade reagent (Invitrogen). 362 
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4.5 FISH coupled with Immunostaining 363 

Transduced regions were systematically visualized by either GFP fluorescence or HA 364 

immunostaining (expression of CYP46A1) to select sections for FISH assay. FISH was 365 

performed using specific fluorophore-coupled RNAscope® probes against Hmgcr, 366 

Dhcr24, Srebp2 and ApoE. RNAscope® was coupled with immunochemistry according to 367 

manufacturer's protocol of RNAscope® Multiplex Fluorescent Reagent Kit v2 (Bio-368 

Techne). Brain sections were first incubated in hydrogen peroxide (H2O2) (BioTechne) for 369 

10 min at RT. The sections were washed in Tris-buffered saline (TBS) with Tween® (50 370 

mM Tris-Cl, pH 7.6; 150 mM NaCl; 0.1% Tween® 20) at RT, and mounted on Super 371 

Frost+®-treated glass slides. Then, sections were dried twice for 1h at RT (with a quick 372 

immersion in deionized water in between), incubated for 1 h at 60°C in a dry oven, and 373 

dried again overnight at RT in the dark. After rapid immersion in deionized water at RT 374 

for rehydration, the excess of liquid was removed with absorbing paper (repeated at each 375 

step) and a hydrophobic barrier was drawn. A rapid immersion in pure ethanol was 376 

performed and slides were incubated at 100°C in a steamer with a drop of RNAscope® 377 

Target Retrieval Reagent (Biotechne) for 15 min. After three washes in deionized water at 378 

RT, a last wash of TBS-Tween® was performed. Sections were then incubated overnight 379 

with primary antibodies: mouse-anti NeuN (1:500; Millipore) in a Co-detection antibody 380 

diluent (BioTechne) or rabbit anti-S100β (ready to use; Dako) at 4°C. Brain sections were 381 

post-fixed with cold PFA-PBS for 30 min at RT, followed by treatment with RNAcope® 382 

Protease Plus (BioTechne) for 30 min at 40°C in a humid box (to unmask the mRNAs). 383 

After three washes in deionized water, brain sections were incubated with hybridization 384 

probes of interest (2h at 40°C in a humid box) followed by amplification (30 and 15 min at 385 

40°C) and revelation of RNAscope® signals with Opals at different wavelengths: 386 

Opal520, Opal 620 and Opal 650 (30 min at 40°C; 1:1500 to 1:3000 depending on the 387 

RNAscope® probes; Akoya Biosciences) with washes between each step. Finally, the last 388 

immunofluorescence step was performed by incubating the secondary antibodies with 389 

Co-detection antibody diluent (BioTechne) for 30 min at RT: anti-mouse Cy3 (1:500; 390 

Merck), anti-rabbit Cy3 (1:500; Merck). Sections were then incubated with DAPI solution 391 

to stain nuclei and mounted under coverslips in Mowiol (Sigma Aldrich). 392 

4.5 Image acquisition and analysis 393 

Image stacks were taken using a confocal laser-scanning microscope (SP5, Leica Mi-394 

crosystems), with a pinhole aperture set to 1 Airy unit. Stack of confocal images were 395 

done using a x10 and x40 objectives (tropism and neuronal transduction analysis) or a 396 

x63 oil objective (RNA detection microscopy analysis), with a 0.3 µm z-interval. Laser 397 

intensity and detector gain were constant for all images of the same analysis. The number 398 

of nuclear dots in neurons and astrocytes was quantified in the AAV-transduced sections 399 

using imaging tools described in the result session (Figure 2). Then, the average number 400 

of RNAscope® dots per cell was quantified by dividing the total number of dots obtained 401 

in all selected cells by the number of neurons or astrocytes analyzed. For each condition, 402 

around 400 neurons and 100 astrocytes were analyzed. For each analysis, 3 to 4 mice were 403 

used (3 for WT-GFP group, 4 for HD-GFP group and 4 for HD-CYP46A1 group) for a 404 

total of 400 neurons and 100 astrocytes analyzed in each condition. 405 

4.6 Statistical analysis  406 

Statistical analysis was performed with GraphPad Prism 6 software. All data are repre-407 

sented as mean ±SEM. Statistical significance for RNA dots quantification was evaluated 408 

using a one-way ANOVA followed by Kruskal-Wallis post hoc test.  409 

 410 
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