Jean-Marc Brossier

Olivier Lafitte

Lenny Réthoré

AND Lenny R Éthor

WHEN ANALYTIC CALCULUS CRACKS ADABOOST CODE

Keywords:

published or not. The documents may come

Introduction

Consider a dataset S = {(x i , y i)} i=1..n ⊂ X × Y, where X = R d is a set of characteristics and Y = {-1, +1} a set of labels for two classes.

We want to classify these examples so that the obtained classifier h : X → Y matches each data point x i with its label y i with the fewest errors. Thus, we want to find a classifier h which is equal to y i as many times as possible.

This can be done by studying a convexified version of an empirical risk over a given convex set of classifiers H as in [START_REF] Peter L Bartlett | Convexity, classification, and risk bounds[END_REF].

Considering G = (G 1 , G 2 , G 3) three weak binary classifiers and their weights β = (β 1 , β 2 , β 3) ∈ R 3 in the resulting classifier h = sign (β • G), this convexified empirical risk, using the convex function exp(-x), is:

R(β, S) = 1 n n i=1 exp (-y i β • G(x i)) .
We rewrite this risk by considering an approach based on truth tables, as in [START_REF] Brossier | Combining weak classifiers: a logical analysis[END_REF].

Let p be the number of weak binary classifiers (here, we mostly deal with p = 3). Given that (y i , G k (x i)) ∈ Y 2 , for any k ∈ [[1; p]] and i ∈ [[1; n]], the product y i G k (x i) is either equal to +1 if y i and G k (x i) are of the same sign, that is G k (x i) is true, or equal to -1 if y i and G k (x i) are not of the same sign, that is G k (x i) is false. For a list of p weak classifiers, this leads to 2 p possible combinations of the p classifiers which yields a partition of 2 p subsets of {x i , i = 1..n}. We thus create a truth table of p rows for all classifiers and 2 p columns for all configurations, encompassing all values of y i G k (x i). For example, we have the following truth table for p = 3 (labelling the sign of y i G k (x i) by G k for simplicity):

n 0 m 0 n 1 m 1 n 2 m 2 n 3 m 3 G 1 -1 1 1 -1 -1 1 -1 1 G 2 -1 1 -1 1 1 -1 -1 1 G 3 -1 1 -1 1 -1 1 1 -1 β T G -X 0 X 0 -X 1 X 1 -X 2 X 2 -X 3 X 3
The coefficients n j and m j , for j ∈ [[0; 2 3-1 -1]], count the number of occurrences of the corresponding configurations in S, with j (n j + m j) = n. For example, m 1 counts the number of elements misclassified by G 1 , but correctly classified by G 2 and G 3 . Each of the 2 3 = 8 configurations, or columns, is associated to one of the

8 quantities ±X 0 , • • • , ±X 3 defined by X 1 = -β 1 + β 2 + β 3 , X 2 = β 1 -β 2 + β 3 , X 3 = β 1 + β 2 -β 3 and X 0 = β 1 + β 2 + β 3 = X 1 + X 2 + X 3 .
The risk rewrites, using this logic approach:

(1) R(β, S) = 1 n 2 3-1 -1 j=0 n j e Xj + m j e -Xj .
According to many authors, ADABOOST is an algorithm returning the point of minimum of this convexified empirical risk. However, it has been demonstrated in [START_REF] Brossier | Combining weak classifiers: a logical analysis[END_REF] that ADABOOST does not minimize (1) and therefore is not an optimization algorithm. In this paper, we will show that it is not an algorithm either in the sense that, the truth table being obtained, we can determine upstream the weight β k of each weak estimator G k in the resulting classifier h with very simple calculations and without the help of such an algorithm 1 .

Calculation of the estimators weights for the general case

The traditional ADABOOST program as proposed initially by [START_REF] Freund | A desicion-theoretic generalization of on-line learning and an application to boosting[END_REF], is a procedure in which, over the course of iterations, the weight w i of each example x i is updated by calling a predefined weaklearner. The weight is modified according to whether the example is correctly classified or not by the new weaklearner: if the example is misclassified by the weaklearner, its weight w i is increased.

Note that, in algorithm 1, we use the notation α k for the estimator weights to follow [START_REF] Giraud | Introduction to high-dimensional statistics[END_REF]. One notices that α k = 2β k . The weight α k of each weaklearner is computed at each iteration k, based on the error ϵ k it generates. This error ϵ k is weighted by the weights w i of the examples, which are also updated at each iteration. Note that, in certain descriptions of this algorithm, one exits the loop when ϵ k ≥ 1 2 . However, the algorithm as it is coded in scikit-learn escapes this issue and keeps going, discarding in the weighted configuration the classifiers whose error is greater than 1 2 . Although it could appear to be challenging to extract the values of each weight α k , using truth tables without taking into account any examples weighting w i returns the analytic values of each weight α k as follows. 1 As implemented in the Python library scikit-learn.

Algorithm 1 ADABOOST

Input: Dataset of n examples S = {(x i , y i) ∈ X × Y, i ∈ [[1, n]]}
Integer p specifying the number of iterations Ensure:

w i = 1 n for i ∈ [[1, n]] the weight vector of each example for k ∈ [[1, p]] do
Fit a classifier G k to the dataset S using weights w i

ϵ k ← n i=1 w i 1 G k (x i)y i <0 / n i=1 w i α k ← ln (1 -ϵ k)/(ϵ k) for i ∈ [[1, n]] do w i ← w i exp α k 1 G k (x i)y i <0 end for end for Output: h(x i) = sign p k=1 α k G k (x i)
The ADABOOST analytic formula allowing to obtain the weights β explicitly, is the aim of this paper.

We proceed in an incremental way and we compute the weight β k at step k ≤ p using only the truth tables and the weights β (k-1) = (β 1 , . . . , β k-1) obtained in the previous steps. These weights form a first-order recurrent sequence on β k . We set τ q = e βq for q ∈ [[1, k -1]]. quantities τ 1 , . . . , τ k-1 allow to go from step k -1 to the next step k and is a necessary adjunction to the truth tables.

The final truth table (at step p), seen in the introduction, is constructed in an incremental way from the tables of lower order: at step k, the weight β k of the classifier G k is computed using the truth table at step k -1 and the action of the weaklearner G k . Hence, we consider a truth table for each step k.

For example, for p = 3, we have 3 truth tables:

c 2 c 3 G 1 -1 1 c 4 c 5 c 6 c 7 G 1 -1 1 G 2 -1 1 -1 1 c 8 c 9 c 10 c 11 c 12 c 13 c 14 c 15 G 1 -1 1 G 2 -1 1 -1 1 G 3 -1 1 -1 1 -1 1 -1 1 ⇓ ⇓ ⇓ ⇓ ⇓ ⇓ ⇓ ⇓ n 0 n 3 n 2 m 1 n 1 m 2 m 3 m 0
The coefficients c l , as the coefficients n j and m j seen before, count the number of occurrences (cardinal) of each configuration described by a subset S l of S = S 1 . We have thus c 1 = n and we can match each c 8 , . . . , c 15 to a corresponding n 0 , . . . , n 3 or m 0 , . . . , m 3 for the case p = 3. The weights β k depend only on the coefficients c l associated with the truth tables at step k.

We thus define a tree structure of disjoint subsets of S = S 1 such that, ∀k ≤ p,

S = 2 k+1 -1 j=2 k S j and n = 2 k+1 -1 j=2 k c j .
This corresponds to the Sosa-Stradonitz numeration in [START_REF] Michael Von | Thesaurus principum hac aetate in Europa viventium: quo progenitores eorum, tam paterni quam materni, simul ac fratres et sorores, inde ab origine reconduntur, usque ad annum a Christo nato[END_REF] of a genealogical tree and the recurrence relation c j = c 2j + c 2j+1 holds true at any step k for any

j ∈ [[2 k-1 ; 2 k -1]].
For each c j , we construct ϵ(j) ∈ Y k-1 which retraces the genealogy of c j thanks to the (k-1) th truth table. For instance, we have ϵ(5) = (-1, 1) and ϵ(13) = (1, -1, 1).

The risk at step k -1 is thus 1) . Applying the weaklearner G k at step k, the convexified risk becomes

2 k -1 j=2 k-1 c j e -ϵ(j).β (k-
2 k -1 j=2 k-1 c 2j e β + c 2j+1 e -β e -ϵ(j).β (k-1) . Let C 2j = c2j cj C j and C 2j+1 = c2j+1 cj C j , with the weights C j = c j e -ϵ(j)•β (k-1) yielding C 2j = C 2j τ k and C 2j+1 = C2j τ k .
Hence, we rewrite the convexified risk at step k as:

(2) R k (β, S) = 2 k -1 j=2 k-1 C 2j e β + C 2j+1 e -β .
We have R k (β, S) = R β (k-1) , β, 0, . . . , 0 , S and this function achieves its minimum at point β = β k .

The weight β k , which minimizes R k (β, S), is thus:

(3)

β k = 1 2 ln b k a k , where a k = 2 k -1 j=2 k-1 C 2j and b k = 2 k -1 j=2 k-1 C 2j+1 , thanks to R k (β, S) = a k e β + b k e -β .
Hence, we repeat the process until we obtain the whole set of weights β = β (p) . Note that β 1 is calculated using C 2 = c 2 and C 3 = c 3 from which we deduce all the subsequent β k . We recover analytically what ADABOOST computes: ADABOOST is nothing more than extensive calculations of the weights β (p) . We recall that β (p) is not the point of minimum of the convexified risk and doesn't verify equation (4). On the other side, (4) reverts, for p = 3, to solve a single equation (and for p > 3 to a system of 2 p equations with 2 p -p constraints).

An exact minimization formula introduced in [START_REF] Brossier | Combining weak classifiers: a logical analysis[END_REF], is obtained through the resolution of a scalar equation: the weights β which is the exact point of minimum of the convexified cost function corresponds to solving the equation:

(4)

3 j=0   T 0 2 + T 0 2 2 + m j n j   -m 0 n 1 n 2 n 3 = 0,
which leads to n 0 e X0 = T0 2 + T0 2

2 + m 0 n 0 and similar formulae for X 1 , X 2 and X 3 , hence giving the optimal β.

The particular case of three weak learners

We calculate the weights β ada in the case of p = 3. To compute the first weight β ada 1 , we simply apply the formula we have derived with the first truth table.

β ada 1 = ln   C 3 C 2   = ln c 3 c 2 .
We can now set the first factor τ 1 = e β ada 1 = c3 c2 .

We have to compute C 2j and C 2j+1 , j = 2, 3, at step k = 2 using τ 1 and the coefficients of the second truth table c 2j and c 2j+1 , j = 2, 3, thanks to the relation we set:

∀j ∈ [[2 k-1 ; 2 k -1]], C 2j = c2j cj C j and C 2j+1 = c2j+1 cj C j , with C j = c j e -ϵ(j)•β (k-1) .
We have :

C 4 = c 4 τ 1 , C 5 = c 5 τ 1 , C 6 = c6 τ1 and C 7 = c7 τ1 .
Hence, we can directly deduce β ada 2 as follows:

β ada 2 = ln   C 5 + C 7 C 4 + C 6   .
In the same way, we set τ 2 = e β ada 2 and we compute the values C 2j and C 2j+1 at step k = 3 thanks to τ 1 , τ 2 and the coefficients of the third truth table c 2j and c 2j+1 , where we have in this case:

τ 2 = C5+ C7 C4+ C6 . So: C 8 = c 8 τ 1 τ 2 , C 9 = c 9 τ 1 τ 2 , C 10 = c10τ1 τ2 , C 11 = c11τ1 τ2 , C 12 = c12τ2 τ1 , C 13 = c13τ2 τ1 , C 14 = c14 τ1τ2 and C 15 = c15 τ1τ2 .
Hence, we can finally compute the last classifier weight:

β ada 3 = ln   C 9 + C 11 + C 13 + C 15 C 8 + C 10 + C 12 + C 14   .
We have thus found all the weights of the weak estimators computed by ADABOOST using only truth tables and without taking into account any example weight directly.

Moreover, instead of introducing the C j and C j , we can express each β ada k only in terms of the original coefficients c j of the truth tables. With τ 1 = c3 c2 and

τ 2 = c5τ1+ c 7 τ 1 c4τ1+ c 6 τ 1
, one indeed has:

(5)

                     β ada 1 = ln c3 c2 , β ada 2 = ln c5τ1+ c 7 τ 1 c4τ1+ c 6 τ 1 β ada 3 = ln c9τ1τ2+ c 11 τ 1 τ 2 + c 13 τ 2 τ 1 + c 15 τ 1 τ 2 c8τ1τ2+ c 10 τ 1 τ 2 + c 12 τ 2 τ 1 + c 14 τ 1 τ 2 .
This allows to get the value of X 0 = β ada 1 + β ada 2 + β ada 3 , expression which can be used to test (4). This is summarized by the following tree structure:

n = c1 c2 c4 c8 ×τ 1 τ 2 τ 3 × τ 3 c9 × τ 1 τ 2 τ 3 × 1 τ 3 × τ 2 c5 c10 × τ 1 τ 3 τ 2 × τ 3 c11 × τ 1 τ 2 τ 3 × 1 τ 3 × 1 τ 2 × τ1 c3 c6 c12 × τ 2 τ 3 τ 1 × τ 3 c13 × τ 2 τ 1 τ 3 × 1 τ 3 × τ 2 c7 c14 × τ 3 τ 1 τ 2 × τ 3 c15 × 1 τ 1 τ 2 τ 3 × 1 τ 3 × 1 τ 2 × 1 τ 1
Moreover, this tree structure shows the case where τ 3 is used to weighting the exemples before applying G 4 (for p > 3). Therefore, we have successfully calculated the values of all the weights β ada = (β 1 , β 2 , β 3) ∈ R 3 , and we can directly deduce the resulting classifier of the ADABOOST algorithm without even running it. Moreover, note that there are obvious relations between the coefficients n j and m j and the coefficients c l . For instance, with p = 3, we have:

c 2 = n 0 + m 1 + n 2 + n 3 , c 3 = m 0 + n 1 + m 2 + m 3 , c 4 = n 0 + n 3 , c 5 = m 1 + n 2 , c 6 = n 1 + m 2 , c 7 = m 0 + m 3 , c 8 = n 0 , c 9 = n 3 , . . .
This means that the set of weights β ada returned by ADABOOST can be deduced over the course of iterations with the c l as well as with the n j and m j .

The weights β ada obtained algebraically rigorously here lead to a highly powerful and very cheap (in terms of computation time) method (see below). The structuration of the data provided by the truth tables makes ADABOOST in scikit-learn superfluous: the only sufficient information needed that ADABOOST can provide is the specific weaklearner it calls. The choice of the weaklearner in scikit-learn is thus really crucial.

Simulations Results for Three Classifiers

Based on the previous results, we analytically calculate the weights β that the ADABOOST algorithm in scikit-learn. It is important to note that this scikit-learn implementation is based on the algorithm by [START_REF] Hastie | Multi-class adaboost[END_REF], which is equivalent to the algorithm by [START_REF] Freund | A desicion-theoretic generalization of on-line learning and an application to boosting[END_REF] in the binary classification case we are dealing with. We also recall that ADABOOST as implemented in scikit-learn uses α k = 2β k . To construct a set G = (G 1 , G 2 , G 3) of weak classifiers and derive a truth table, we run the ADABOOST algorithm from scikit-learn for p = 3 iterations on a random dataset of 1000 examples in R 2 with two classes distributed according to a Gaussian distribution. The misclassified data are highlighted in cyan in Fig. 1:

G 1 -1 1 1 -1 -1 1 -1 1 G 2 -1 1 -1 1 1 -1 -1 1 G 3 -1 1 -1 1 -1 1 1 -1
The values of n j and m j have been calculated for p = 3 decision trees (default weak classifier used by scikit-learn) with T = 4 terminal points as described in [START_REF] Breiman | Classification and regression trees[END_REF].

The weights of the classifiers returned by ADABOOST are β ada = (1.221, 0.852, 0.706).

The approach using the truth table returns the same β, up to a mean absolute error of 2.96 × 10 -16 , in a reduced amount of time (33µs against 5ms for ADABOOST). We obtain the same resulting classifier.

There is, however, a surprising feature of the procedure ADABOOST in scikit-learn: when the weaklearner returns a weighted error greater than 1 2 , the weight β ada is computed to update as usual the examples weights w i , but this weaklearner is not used in the subsequent classifiers list, i.e. for the final classification, as if β ada was then set to 0. However, this has no consequence on our results since the algorithm still computes a value of β ada to update the weights of the examples before setting it to 0. Therefore, our approach retrieves the value of β ada before this forced setting to 0. This example on a single dataset S illustrates the beauty of these calculations. To be more exhaustive, we calculate this mean absolute error for 2000 random datasets in the same conditions (1000 examples in R 2 , 2 classes, Gaussian distribution, 3 weak classifiers). The total mean absolute error over these 2000 random datasets is 2, 99 × 10 -16 . Our approach thus computes exactly what ADABOOST returns, through a very stable calculus. This stability does not depend on the distribution of the examples, on the number of examples or on the weaklearners considered. Note, however, that the procedure of weighting the misclassified examples changes the probability law of the dataset S.

As plugging T 0 deduced from β ada in (4) does not return 0, we show that β ada is not the point of minimum of the convexified cost function and thus that ADABOOST is not a minimization algorithm. On the contrary, the point of minimum calculated in [START_REF] Brossier | Combining weak classifiers: a logical analysis[END_REF] satisfies (4).

Conclusion

Our logical approach recovers the resulting classifier given by the ADABOOST procedure in scikit-learn. We may replace ADABOOST by formulae (5) which yield the same result through simpler and less costly calculations: ADABOOST, from a computational point of view, is merely a formula.

The only thing needed is the prediction of the weaklearners and the resulting truth table from which the formula (5) follows readily. This remark is really important: the main role of ADABOOST is to choose the successive weaklearners. Once this choice of weaklearners is done, we describe a method to obtain the point of minimum of the convexified cost function, hence improving theoretically the resulting classifier.

Figure 1 .p = 3 n 0 m 0 n 1 m 1 n 2 m 2 n 3 m 3 4

 14 Figure 1. An example of classification performed by ADABOOST from Scikit-Learn for p = 3 CART decision trees [2] with T = 4 terminal points