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WHEN ANALYTIC CALCULUS CRACKS ADABOOST CODE

JEAN-MARC BROSSIER§, OLIVIER LAFITTE†, AND LENNY RÉTHORÉ§

Abstract. The principle of boosting in supervised learning involves combining
multiple weak classifiers to obtain a stronger classifier. ADABOOST has the

reputation to be a perfect example of this approach. It has been shown in [3]

that ADABOOST is not truly an optimization algorithm.
This paper shows that ADABOOST is an algorithm in name only, as the

resulting combination of weak classifiers can be explicitly calculated using a

truth table.
This study is carried out by considering a problem with two classes and is

illustrated by the particular case of three binary classifiers and presents results

in comparison with those from the implementation of ADABOOST algorithm
of the Python library scikit-learn.

1. Introduction

Consider a dataset S = {(xi, yi)}i=1..n ⊂ X × Y, where X = Rd is a set of
characteristics and Y = {−1,+1} a set of labels for two classes.

We want to classify these examples so that the obtained classifier h : X → Y
matches each data point xi with its label yi with the fewest errors. Thus, we want
to find a classifier h which is equal to yi as many times as possible.

This can be done by studying a convexified version of an empirical risk over a given
convex set of classifiers H as in [1].

Considering G = (G1, G2, G3) three weak binary classifiers and their weights
β = (β1, β2, β3) ∈ R3 in the resulting classifier h = sign (β ·G), this convexified
empirical risk, using the convex function exp(−x), is:

R(β,S) = 1

n

n∑
i=1

exp (−yiβ ·G(xi)) .

We rewrite this risk by considering an approach based on truth tables, as in [3].

Let p be the number of weak binary classifiers (here, we mostly deal with p = 3).
Given that (yi, Gk(xi)) ∈ Y2, for any k ∈ [[1; p]] and i ∈ [[1;n]], the product yiGk(xi)
is either equal to +1 if yi and Gk(xi) are of the same sign, that is Gk(xi) is true, or
equal to −1 if yi and Gk(xi) are not of the same sign, that is Gk(xi) is false. For
a list of p weak classifiers, this leads to 2p possible combinations of the p classifiers
which yields a partition of 2p subsets of {xi, i = 1..n}. We thus create a truth table
of p rows for all classifiers and 2p columns for all configurations, encompassing
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all values of yiGk(xi). For example, we have the following truth table for p = 3
(labelling the sign of yiGk(xi) by Gk for simplicity):

n0 m0 n1 m1 n2 m2 n3 m3

G1 -1 1 1 -1 -1 1 -1 1
G2 -1 1 -1 1 1 -1 -1 1
G3 -1 1 -1 1 -1 1 1 -1
βTG -X0 X0 -X1 X1 -X2 X2 -X3 X3

The coefficients nj and mj , for j ∈ [[0; 23−1 − 1]], count the number of occurrences
of the corresponding configurations in S, with

∑
j(nj +mj) = n. For example, m1

counts the number of elements misclassified by G1, but correctly classified by G2

and G3. Each of the 23 = 8 configurations, or columns, is associated to one of the
8 quantities ±X0, · · · ,±X3 defined by X1 = −β1 + β2 + β3, X2 = β1 − β2 + β3,
X3 = β1 + β2 − β3 and X0 = β1 + β2 + β3 = X1 +X2 +X3.

The risk rewrites, using this logic approach:

(1) R(β,S) = 1

n

23−1−1∑
j=0

(
nje

Xj +mje
−Xj

)
.

According to many authors, ADABOOST is an algorithm returning the point of
minimum of this convexified empirical risk. However, it has been demonstrated
in [3] that ADABOOST does not minimize (1) and therefore is not an optimization
algorithm. In this paper, we will show that it is not an algorithm either in the sense
that, the truth table being obtained, we can determine upstream the weight βk of
each weak estimator Gk in the resulting classifier h with very simple calculations
and without the help of such an algorithm1.

2. Calculation of the estimators weights for the general case

The traditional ADABOOST program as proposed initially by [4], is a procedure in
which, over the course of iterations, the weight wi of each example xi is updated
by calling a predefined weaklearner. The weight is modified according to whether
the example is correctly classified or not by the new weaklearner: if the example is
misclassified by the weaklearner, its weight wi is increased.

Note that, in algorithm 1, we use the notation αk for the estimator weights to
follow [5]. One notices that αk = 2βk. The weight αk of each weaklearner is
computed at each iteration k, based on the error ϵk it generates. This error ϵk
is weighted by the weights wi of the examples, which are also updated at each
iteration. Note that, in certain descriptions of this algorithm, one exits the loop
when ϵk ≥ 1

2 . However, the algorithm as it is coded in scikit-learn escapes this issue
and keeps going, discarding in the weighted configuration the classifiers whose error
is greater than 1

2 .

Although it could appear to be challenging to extract the values of each weight αk,
using truth tables without taking into account any examples weighting wi returns
the analytic values of each weight αk as follows.

1As implemented in the Python library scikit-learn.
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Algorithm 1 ADABOOST

Input: Dataset of n examples S = {(xi, yi) ∈ X × Y, i ∈ [[1, n]]}
Integer p specifying the number of iterations

Ensure: wi =
1
n

for i ∈ [[1, n]] the weight vector of each example

for k ∈ [[1, p]] do

Fit a classifier Gk to the dataset S using weights wi

ϵk ←
(∑n

i=1 wi1Gk(xi)yi<0

)
/
(∑n

i=1 wi

)
αk ← ln

(
(1− ϵk)/(ϵk)

)
for i ∈ [[1, n]] do

wi ← wiexp
(
αk1Gk(xi)yi<0

)
end for

end for

Output: h(xi) = sign
(∑p

k=1 αkGk(xi)
)

The ADABOOST analytic formula allowing to obtain the weights β explicitly, is the
aim of this paper.

We proceed in an incremental way and we compute the weight βk at step k ≤ p
using only the truth tables and the weights β(k−1) = (β1, . . . , βk−1) obtained in
the previous steps. These weights form a first-order recurrent sequence on βk. We
set τq = eβq for q ∈ [[1, k − 1]]. The quantities τ1, . . . , τk−1 allow to go from step
k − 1 to the next step k and is a necessary adjunction to the truth tables.

The final truth table (at step p), seen in the introduction, is constructed in an
incremental way from the tables of lower order: at step k, the weight βk of the
classifier Gk is computed using the truth table at step k − 1 and the action of the
weaklearner Gk. Hence, we consider a truth table for each step k.

For example, for p = 3, we have 3 truth tables:

c2 c3
G1 -1 1

c4 c5 c6 c7
G1 -1 1
G2 -1 1 -1 1

c8 c9 c10 c11 c12 c13 c14 c15
G1 -1 1
G2 -1 1 -1 1
G3 -1 1 -1 1 -1 1 -1 1

⇓ ⇓ ⇓ ⇓ ⇓ ⇓ ⇓ ⇓
n0 n3 n2 m1 n1 m2 m3 m0

The coefficients cl, as the coefficients nj and mj seen before, count the number of
occurrences (cardinal) of each configuration described by a subset Sl of S = S1. We
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have thus c1 = n and we can match each c8, . . . , c15 to a corresponding n0, . . . , n3

or m0, . . . ,m3 for the case p = 3. The weights βk depend only on the coefficients
cl associated with the truth tables at step k.

We thus define a tree structure of disjoint subsets of S = S1 such that, ∀k ≤ p,

S =
2k+1−1⊔
j=2k

Sj and n =
2k+1−1∑
j=2k

cj .

This corresponds to the Sosa-Stradonitz numeration in [7] of a genealogical tree
and the recurrence relation cj = c2j + c2j+1 holds true at any step k for any
j ∈ [[2k−1; 2k − 1]].

For each cj , we construct ϵ(j) ∈ Yk−1 which retraces the genealogy of cj thanks to
the (k−1)th truth table. For instance, we have ϵ(5) = (−1, 1) and ϵ(13) = (1,−1, 1).

The risk at step k−1 is thus
∑2k−1

j=2k−1 cje
−ϵ(j).β(k−1)

. Applying the weaklearner Gk

at step k, the convexified risk becomes
∑2k−1

j=2k−1

(
c2je

β + c2j+1e
−β

)
e−ϵ(j).β(k−1)

.

Let C̃2j =
c2j
cj

Cj and C̃2j+1 =
c2j+1

cj
Cj , with the weights Cj = cje

−ϵ(j)·β(k−1)

yielding C2j = C̃2jτk and C2j+1 =
C̃2j

τk
.

Hence, we rewrite the convexified risk at step k as:

(2) Rk(β,S) =
2k−1∑

j=2k−1

C̃2je
β + C̃2j+1e

−β .

We have Rk(β,S) = R
((
β(k−1), β, 0, . . . , 0

)
,S

)
and this function achieves its

minimum at point β = βk.

The weight βk, which minimizes Rk(β,S), is thus:

(3) βk =
1

2
ln

(
bk
ak

)
,

where ak =
2k−1∑

j=2k−1

C̃2j and bk =
2k−1∑

j=2k−1

C̃2j+1, thanks to Rk(β,S) = ake
β + bke

−β .

Hence, we repeat the process until we obtain the whole set of weights β = β(p).

Note that β1 is calculated using C̃2 = c2 and C̃3 = c3 from which we deduce all the
subsequent βk. We recover analytically what ADABOOST computes: ADABOOST is
nothing more than extensive calculations of the weights β(p). We recall that β(p)

is not the point of minimum of the convexified risk and doesn’t verify equation (4).
On the other side, (4) reverts, for p = 3, to solve a single equation (and for p > 3
to a system of 2p equations with 2p − p constraints).

An exact minimization formula introduced in [3], is obtained through the resolution
of a scalar equation: the weights β which is the exact point of minimum of the
convexified cost function corresponds to solving the equation:

(4)

3∏
j=0

T0

2
+

√(
T0

2

)2

+mjnj

−m0n1n2n3 = 0,
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which leads to n0e
X0 = T0

2 +

√(
T0

2

)2
+m0n0 and similar formulae for X1, X2 and

X3, hence giving the optimal β.

3. The particular case of three weak learners

We calculate the weights βada in the case of p = 3. To compute the first weight
βada
1 , we simply apply the formula we have derived with the first truth table.

βada
1 = ln

√
C̃3

C̃2

 = ln

(√
c3
c2

)
.

We can now set the first factor τ1 = eβ
ada
1 =

√
c3
c2
.

We have to compute C̃2j and C̃2j+1, j = 2, 3, at step k = 2 using τ1 and the
coefficients of the second truth table c2j and c2j+1, j = 2, 3, thanks to the relation

we set: ∀j ∈ [[2k−1; 2k − 1]], C̃2j =
c2j
cj

Cj and C̃2j+1 =
c2j+1

cj
Cj , with Cj =

cje
−ϵ(j)·β(k−1)

.

We have : C̃4 = c4τ1, C̃5 = c5τ1, C̃6 = c6
τ1

and C̃7 = c7
τ1
.

Hence, we can directly deduce βada
2 as follows:

βada
2 = ln

√
C̃5 + C̃7

C̃4 + C̃6

 .

In the same way, we set τ2 = eβ
ada
2 and we compute the values C̃2j and C̃2j+1 at

step k = 3 thanks to τ1, τ2 and the coefficients of the third truth table c2j and

c2j+1, where we have in this case: τ2 =
√

C̃5+C̃7

C̃4+C̃6
.

So: C̃8 = c8τ1τ2, C̃9 = c9τ1τ2, C̃10 = c10τ1
τ2

, C̃11 = c11τ1
τ2

, C̃12 = c12τ2
τ1

, C̃13 = c13τ2
τ1

,

C̃14 = c14
τ1τ2

and C̃15 = c15
τ1τ2

.

Hence, we can finally compute the last classifier weight:

βada
3 = ln

√
C̃9 + C̃11 + C̃13 + C̃15

C̃8 + C̃10 + C̃12 + C̃14

 .

We have thus found all the weights of the weak estimators computed by ADABOOST

using only truth tables and without taking into account any example weight directly.

Moreover, instead of introducing the C̃j and Cj , we can express each βada
k only

in terms of the original coefficients cj of the truth tables. With τ1 =
√

c3
c2

and



6 J.-M. BROSSIER, O. LAFITTE, AND L. RÉTHORÉ

τ2 =

√
c5τ1+

c7
τ1

c4τ1+
c6
τ1

, one indeed has:

(5)



βada
1 = ln

(√
c3
c2

)
,

βada
2 = ln

(√
c5τ1+

c7
τ1

c4τ1+
c6
τ1

)

βada
3 = ln

(√
c9τ1τ2+

c11τ1
τ2

+
c13τ2

τ1
+

c15
τ1τ2

c8τ1τ2+
c10τ1

τ2
+

c12τ2
τ1

+
c14
τ1τ2

)
.

This allows to get the value of X0 = βada
1 + βada

2 + βada
3 , expression which can be

used to test (4).

This is summarized by the following tree structure:

n = c1

c2

c4

c8

×τ1τ2τ3

×
τ 3

c9

× τ1τ2
τ3

×
1τ

3

×τ
2

c5

c10

× τ1τ3
τ2

×
τ 3

c11

× τ1
τ2τ3

×
1τ

3

×
1τ

2

×τ1

c3

c6

c12

× τ2τ3
τ1

×
τ 3

c13

× τ2
τ1τ3

×
1τ

3

×τ
2

c7

c14

× τ3
τ1τ2

×
τ 3

c15

× 1
τ1τ2τ3

×
1τ

3

×
1τ

2

× 1
τ
1

Moreover, this tree structure shows the case where τ3 is used to weighting the
exemples before applying G4 (for p > 3).

Therefore, we have successfully calculated the values of all the weights βada =
(β1, β2, β3) ∈ R3, and we can directly deduce the resulting classifier of the ADABOOST

algorithm without even running it.

Moreover, note that there are obvious relations between the coefficients nj and mj

and the coefficients cl. For instance, with p = 3, we have: c2 = n0 +m1 + n2 + n3,
c3 = m0 +n1 +m2 +m3, c4 = n0 +n3, c5 = m1 +n2, c6 = n1 +m2, c7 = m0 +m3,
c8 = n0, c9 = n3, . . .

This means that the set of weights βada returned by ADABOOST can be deduced
over the course of iterations with the cl as well as with the nj and mj .

The weights βada obtained algebraically rigorously here lead to a highly powerful
and very cheap (in terms of computation time) method (see below). The structuration
of the data provided by the truth tables makes ADABOOST in scikit-learn superfluous:
the only sufficient information needed that ADABOOST can provide is the specific
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weaklearner it calls. The choice of the weaklearner in scikit-learn is thus really
crucial.

4. Simulations Results for Three Classifiers

Based on the previous results, we analytically calculate the weights β that the
ADABOOST algorithm in scikit-learn. It is important to note that this scikit-learn
implementation is based on the algorithm by [6], which is equivalent to the algorithm
by [4] in the binary classification case we are dealing with. We also recall that
ADABOOST as implemented in scikit-learn uses αk = 2βk. To construct a set
G = (G1, G2, G3) of weak classifiers and derive a truth table, we run the ADABOOST

algorithm from scikit-learn for p = 3 iterations on a random dataset of 1000
examples in R2 with two classes distributed according to a Gaussian distribution.
The misclassified data are highlighted in cyan in Fig. 1:

Figure 1. An example of classification performed by ADABOOST from
Scikit-Learn for p = 3 CART decision trees [2] with T = 4 terminal

points

This allows us to obtain both the set of classifiers G and the values of the computed
weights β in order to compare them with our calculated values. With the set G of
classifiers, we can finally construct the truth table, for example:

p = 3 n0 m0 n1 m1 n2 m2 n3 m3

4 767 9 42 18 44 16 100
G1 -1 1 1 -1 -1 1 -1 1
G2 -1 1 -1 1 1 -1 -1 1
G3 -1 1 -1 1 -1 1 1 -1

The values of nj and mj have been calculated for p = 3 decision trees (default weak
classifier used by scikit-learn) with T = 4 terminal points as described in [2].

The weights of the classifiers returned by ADABOOST are βada = (1.221, 0.852, 0.706).
The approach using the truth table returns the same β, up to a mean absolute error
of 2.96×10−16, in a reduced amount of time (33µs against 5ms for ADABOOST). We
obtain the same resulting classifier.
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There is, however, a surprising feature of the procedure ADABOOST in scikit-learn:
when the weaklearner returns a weighted error greater than 1

2 , the weight βada is
computed to update as usual the examples weights wi, but this weaklearner is not
used in the subsequent classifiers list, i.e. for the final classification, as if βada was
then set to 0. However, this has no consequence on our results since the algorithm
still computes a value of βada to update the weights of the examples before setting
it to 0. Therefore, our approach retrieves the value of βada before this forced setting
to 0.

This example on a single dataset S illustrates the beauty of these calculations. To
be more exhaustive, we calculate this mean absolute error for 2000 random datasets
in the same conditions (1000 examples in R2, 2 classes, Gaussian distribution, 3
weak classifiers). The total mean absolute error over these 2000 random datasets
is 2, 99 × 10−16. Our approach thus computes exactly what ADABOOST returns,
through a very stable calculus. This stability does not depend on the distribution
of the examples, on the number of examples or on the weaklearners considered.
Note, however, that the procedure of weighting the misclassified examples changes
the probability law of the dataset S.

As plugging T0 deduced from βada in (4) does not return 0, we show that βada is
not the point of minimum of the convexified cost function and thus that ADABOOST

is not a minimization algorithm. On the contrary, the point of minimum calculated
in [3] satisfies (4).

5. Conclusion

Our logical approach recovers the resulting classifier given by the ADABOOST procedure
in scikit-learn. We may replace ADABOOST by formulae (5) which yield the same
result through simpler and less costly calculations: ADABOOST, from a computational
point of view, is merely a formula.

The only thing needed is the prediction of the weaklearners and the resulting truth
table from which the formula (5) follows readily. This remark is really important:
the main role of ADABOOST is to choose the successive weaklearners. Once this choice
of weaklearners is done, we describe a method to obtain the point of minimum of
the convexified cost function, hence improving theoretically the resulting classifier.
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