

Keep in touch: the soil-root hydraulic continuum and its role in drought resistance in crops

Pablo Affortit, Mutez Ali Ahmed, Alexandre Grondin, Sylvain Delzon, Andrea Carminati, Laurent Laplaze

▶ To cite this version:

Pablo Affortit, Mutez Ali Ahmed, Alexandre Grondin, Sylvain Delzon, Andrea Carminati, et al.. Keep in touch: the soil-root hydraulic continuum and its role in drought resistance in crops. Journal of Experimental Botany, 2024, 75 (2), pp.584-593. 10.1093/jxb/erad312. hal-04177123

HAL Id: hal-04177123

https://hal.science/hal-04177123

Submitted on 4 Aug 2023

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

- 1 Keep in touch: the soil-root hydraulic continuum and its role in drought resistance in
- 2 crops
- 3 Affortit P.¹, Ahmed M.², Grondin A.¹, Delzon S.³, Carminati A.⁴, and Laplaze L.¹
- 4 ¹ DIADE, IRD, CIRAD, Université de Montpellier, Montpellier, France
- 5 ² Root-Soil Interaction, School of Life Science, Technical University of Munich, Freising,
- 6 Germany
- 7 ³ BIOGECO, INRAE, Université de Bordeaux, Pessac, France
- 8 ⁴ Department of Environmental Systems Science, ETH Zürich, Zürich, Switzerland

9 Highlight	9	Highlight
-------------	---	-----------

- 10 Rapid soil drying in the vicinity of the root is a major challenge for plant during drought. Plants
- can adapt to this stress by shaping the root-soil interface.

12

13

Abstract

- 14 Drought is a major threat to food security worldwide. Recently, the root-soil interface has
- emerged as a major site of hydraulic resistance during water stress. Here, we review the impact
- of soil drying on whole plant hydraulics and discuss mechanisms by which plants can adapt by
- modifying the properties of the rhizosphere either directly or through interactions with the soil
- 18 microbiome.

19

20

Keywords

21 Root architecture, rhizodeposition, root hairs, mucilage, rhizosheath, EPS, AMF

Introduction

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

Water stress is the main factor affecting crop yield worldwide (Hammer et al., 2021) and the impact of water stress on agriculture is expected to augment with increased frequency and intensity of drought spells predicted in most future climate scenarios (Fahad et al., 2017; Potopová et al., 2016). Understanding the factors that control water acquisition and use in plants is critical to adapt agriculture to future dry climate (Tardieu 2022). The hydraulic network at the whole plant scale can be described using a demand and supply scheme (Figure 1). Water loss occurs mostly in leaves by transpiration through stomata, small pores where gas exchange with the atmosphere occurs and whose opening is tightly regulated by the plant water status (Wang et al., 2022). Transpiration is driven by the difference of vapour pressure between the stomatal cavity and the atmosphere, which ultimately creates a gradient of increasing bulk water potentials from the leaves to the roots. This gradient of water potential drives water from the soil within the plant only when the water potential of the root is more negative than that of the surrounding soil. In wet soils and under high transpiration demand the largest drop in water potential is within the plant, and in these conditions, the main hydraulic resistance corresponds to the active regulation of transpiration by stomata. As the soil dries, an important resistance occurs in the soil surrounding the roots. In these conditions, plant traits that impact the water flow to the root surface are relevant for controlling leaf water potential and plant water status. Here, we describe the impacts of the drop in soil matric potential on plant hydraulics in drying soil and discuss mechanisms by which plants cope with the reduction in soil hydraulic conductivity by modifying the properties of the rhizosphere. We further illustrate how a complex interplay between roots and the soil microbiome contributes to sustain the water flow across the soil-root interface under drought.

The soil-root hydraulic continuum and its impact on drought tolerance

soil moisture develop around roots over minutes when the transpiration demand cannot be matched by the flow of water from the soil. These gradients are the result of the nonlinearity of the soil hydraulic conductivity, which decreases by several orders of magnitude as the soil matric potential drops, and of the radial geometry of the flow towards roots. Gradients of water potential around the roots were predicted since the early work by Gardner (1960). The concept of matric flux potential allowed more accurate calculation of these gradients (e.g. van Lier et al. 2008; 2013). Despite the improvements in modelling, these gradients remain challenging to measure. An experimental set-up developed by Passioura, (1980) was used to estimate gradients in soil water potential toward the root from the deviation of the leaf water potential from its linear trajectory. Nonlinearity in the relationship between transpiration and leaf water potential were interpreted as the consequence of a loss in the hydraulic conductivity (defined as the intrinsic ability of a material to conduct water, expressed in m.s⁻¹) of the soil, of the root, or of the root-soil interface. We refer to the hydraulic conductance (defined as the relationship between conductivity and driving force, expressed in m.s⁻¹.MPa⁻¹ – conductance is the inverse of resistance) of the root-soil continuum as the combination of the hydraulic conductance of the soil, the root and their interface; precisely, as it is a flow in series, it is the harmonic mean of the conductance of the three elements. Plants continuously adapt to variable atmospheric and soil conditions by altering the hydraulic conductivity of key elements below and above ground. Although the occurrence of these alterations is well accepted, our quantitative understanding of this hydraulic acclimatisation and its impact is incomplete. In wheat (Triticum aestivum), neither xylem collapse and cavitation nor a decrease in leaf conductance drive stomatal closure (Corso et al., 2020). Instead, decrease in soil-root hydraulic conductance was the main driver of stomatal closure during soil drying in tomato (Abdalla et al., 2021) and in olive trees (Dominguez and

Although the soil dries over weeks during a cropping season, millimetre-scale gradients of

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

Brodribb, 2020). Under drought, stomatal closure was controlled by a drop in soil water potential at the root-soil interface (Abdalla et al., 2022). These results demonstrate that losses in root hydraulic conductance, which could be due to (i) a disconnection of the root from the soil during moderate water stress and/or (ii) collapse of root xylem conduits, are profound and sufficient to induce stomatal closure. In a recent review, Cai et al. (2022) investigated, across 11 crops and 10 contrasting soil textures, the interplay between soil and root hydraulic properties on water uptake during soil drying. The authors found that root water uptake was constrained within a wide range of soil water potential (-6 to -1000 kPa), depending on both soil and root hydraulic properties (Cai et al., 2022). Furthermore, transpiration response to both soil drying and vapour pressure deficit was also found to be soil texture specific (Cai et al., 2022; Koehler et al., 2022). The accumulation of salts at the root surface, which is likely to occur in soil drying conditions and at high transpiration rates, is an additional process hindering water flow across the root-soil interface. Salinity not only induced a more negative predawn leaf water and reduced transpiration rate during soil drying, but also caused a reduction in root hydraulic conductance (Abdalla et al., 2022).

Altogether, this shows that the root-soil interface is a major site of hydraulic resistance during drought. Accordingly, plants have developed ways of coping with the creation of gradients of soil water potential near the root during soil drying.

Root traits contribute to maintenance of soil-root hydraulic continuum

Root architecture can impact water acquisition efficiency while root anatomy and physiology control the water transport capacity of the root (Lynch, 1995; Lynch, 2022). Accordingly, root system architectures that would optimise water acquisition in different environments have been proposed based in large part on *in silico* simulations (e.g. Leitner et al 2014; Koch et al 2019; Lynch, 2022). Maintenance of the root-soil hydraulic continuum is important in root zones that actively acquire water. In maize, water uptake occurs mainly

through seminal roots and their laterals at early developmental stages (Ahmed et al., 2016b). As the root system develops, crown roots appear and become the main contributors of water uptake (Ahmed et al. 2018b). Similarly, crown roots have a higher contribution to water acquisition than primary roots in barley and wheat (Krassovsky et al. 1926, Sallans et al. 1942). Moreover, water uptake and water radial/axial hydraulic conductivity are not homogeneous along the root (Javaux 2008). In maize, water acquisition occurs mainly in the apical parts in the seminal root (close to the tip; Zwieniecki, 2003). Besides, branching density as well as lateral root length impact the ability of the root to acquire water. For instance, larger root surface area attenuates water potential gradients in the rhizosphere due to a lower water flux at the rootsoil interface (Abdalla et al., 2022; Cai et al., 2022). Similarly, higher axial hydraulic conductivity in the apical segments combined with shorter and fewer laterals leads to a more uniform repartition of water potential along crown roots in maize (Ahmed et al., 2018b). Therefore, root water uptake is not homogeneous between and along root types and the maintenance of the root-soil hydraulic continuum in drying soils appears crucial in crown root apical zones and highly branched regions. Root traits have been associated with improved root-soil hydraulic continuity in conditions of water stress. Root hairs are tubular extensions of epidermal cells that increase the root surface area in contact with the soil (Ohlert., 1837; Haling et al., 2013). The role of root hairs for nutrient acquisition is well documented, but their role in water uptake remains controversial (Cai and Ahmed et al. 2022). Barley plants with relatively long root hairs showed increased water uptake in drying soils (Carminati et al., 2017; Marin et al., 2021). On the other hand, no differences in water uptake were observed between the rth3 root hair less maize mutant and its corresponding wild type (Cai et al., 2021; Jorda et al. 2022). It was suggested that short root hairs (as in maize) have little contribution to root water uptake as opposed to relatively longer

root hairs (as in barley; Cai and Ahmed, 2022). Barley roots also show denser root hairs as

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

compared to maize which increase the soil-root contact and reduce the radial hydraulic resistance at the root-soil interface (Aslam et al., 2022). Dense root hairs also influence soil density and porosity close to the root by aggregating soil particles (Hallett et al. 2022). Vulnerability (shrinkage or distortion) of root hairs under water stress limits their potential role in water uptake in drying soils. Duddek et al. (2022) demonstrated that, in maize, root hair shrinkage (i.e. reduction of root hair length and volume) was initiated at relatively high soil matric potentials (between -10 and -310 kPa). Hence, recent evidence converges towards a predominant role for longer and denser root hairs in buffering the drop in matrix potential within the rhizosphere by maintaining the root-soil hydraulic continuum in drying soils (Carminati et al., 2017; Marin et al., 2021).

Beyond root hair formation, roots can influence the chemical and physical characteristics of

their surrounding soil by releasing carbon compounds - a mechanism called rhizodeposition that includes root exudation and dead cell release from the root (Barber, 1995). Root exudates include high molecular weight compounds such as proteins and polysaccharides and lower molecular weight compounds that are mainly composed of primary and secondary metabolites (amino acids, sugars, carboxylates, flavonoids, etc). Root exudates can account for 20 to 40 % of the plant photosynthate depending upon species and varieties within species and are highly controlled by environmental factors (Chen et al., 2022; de la Fuente Cantó et al., 2020). Quantitative and qualitative changes in rhizodeposition have been reported in response to drought (Preece and Peñuelas, 2016; Williams and Vries, 2020; Wang et al., 2021). Drought often leads to a decrease in absolute rhizodeposition due to decrease in photosynthesis and in carbon availability for exudation. However, several studies suggest that there is an increase in relative C allocated to rhizodeposition relative to plant biomass in water stress conditions, highlighting the importance of this trait in response to drought (Williams and Vries, 2020; Wang et al., 2021). Indeed, rhizodeposits can contribute to water stress tolerance directly by

changing the physico-chemical properties of the rhizosphere or indirectly as a source of nutrients and signals for soil microbes.

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

Among rhizodeposits, mucilages are polysaccharides produced by active secretory cells of the root cap representing roughly 50% of the root exudates (Ropitaux et al., 2020). Mucilages have high water retention capability thus enhancing water content around the root and possibly attenuating the drops in soil hydraulic conductivity during drying (Benard et al. 2019). In addition, mucilages can bind soil particles together and thus stabilise soil aggregates (Morel et al., 1991) and affect the physical stability of the rhizosphere (Brax et al., 2020). Mucilage deposition around the root tip might be particularly important to alleviate the drop in soil matric potential in this region of high water uptake (Carminati and Vetterlein, 2013; Carminati et al., 2016). However, the impact of mucilage on water retention and hydraulic conductivity varies between species and is dependent on soil textures (Kroener et al., 2018). For instance, modelling showed that coarse soils require higher mucilage concentration to increase soil water content (Kroener et al., 2018). Their impact also depends on the severity and frequency of drying episodes (Carminati and Vetterlein, 2013). Upon extreme soil drying, mucilage may create a protective layer preventing water loss from the root to the soil as it becomes water repellent when dried (Moradi et al. 2011; Moradi et al., 2012; Ahmed et al., 2016a; Zickenrott et al., 2016). Therefore, rhizodeposition of mucilage may play important roles in delaying soil drying of the rhizosphere and prevent root-soil loss of contact.

Altogether, these alterations of the soil by the plant can culminate in some species with the formation of a layer of soil adhering tightly to the root system, called the rhizosheath (George et al., 2014; Mccully., 1999; Ndour et al., 2020; Aslam et al., 2022). Rhizosheath formation is found in many plant families across the plant kingdom and depends mostly on root hair and rhizodeposition (Ndour et al., 2020; Aslam et al., 2022). In dry soils, rhizosheath has higher water content than bulk soil, and may substantially contribute to water uptake (North & Nobel,

1997). Accordingly, larger rhizosheath has been associated with improved resistance to water stress in chickpea, foxtail millet and wheat (Rabbi et al., 2018b; Liu et al., 2019; James et al., 2016). Interestingly, rhizosheath formation is largely controlled by the plant genotype and could therefore be targeted by breeding programmes (George et al., 2014; de la Fuente Cantó et al., 2022).

The interplay between root and soil microbiome contributes to shape the hydraulic properties of the rhizosphere

Roots interact with many organisms in the soil to shape the rhizosphere microbial communities (de la Fuente Cantó et al., 2020). This in turn has a large impact on soil structure and hydraulic properties. In response to droughts, photosynthesis is reduced and therefore limits carbon availability. In those conditions, there is a trade-off for C allocation between root development (root growth, branching, root hair development, etc) and C invested in the soil compartment (rhizodeposition and symbiosis with soil microbe - chiefly arbuscular mycorrhizal fungi) leading to different strategies to deal with water stress (Wang et al., 2021).

Rhizodeposition is a major source of energy, carbon and nitrogen for soil microbes and has therefore a very strong effect on the rhizosphere microbiota, both quantitatively (microbial biomass is positively correlated to the amount of rhizodeposits) and qualitatively (the structure of the microbial population influenced by the nature of the exudates - Preece and Peñuelas, 2016). Rhizodeposition varies both quantitatively and qualitatively along the root, between genotypes (species and varieties) and in response to environmental parameters such as water stress (Preece and Peñuelas, 2016; Williams and Vries, 2020; Wang et al., 2021). Changes in rhizodeposition in response to water stress depend on the intensity of drought with a positive impact of mild stress, which decreases as stress intensity increases (Preece and Peñuelas, 2016). Crops seem to have more stable root exudation in response to drought stress than their wild relatives (Preece and Peñuelas, 2016).

The reduction in water availability within the soil as well as the changes in rhizodeposition brought about by water stress influence the rhizosphere microbiota (Preece and Peñuelas, 2016). Interestingly, the soil microbiota seems to be more resilient (i.e. its structure is less affected) to water stress than plants and resilient microbiota that were subjected to previous water stress may improve plant resilience (Preece and Peñuelas, 2016). In some cases, changes in rhizodeposition and microbiota upon water stress are associated with improved plant drought tolerance (see Preece and Peñuelas, 2016; Williams and Vries, 2020 for review). Soil microbes shape the rhizosphere physico-chemical properties in many ways (de la Fuente Cantó et al., 2020). Microbes produce extracellular polymeric substances (EPS) mainly composed of polysaccharides that are primarily involved in biofilm formation (Flemming and Wigender, 2010). Like mucilages, EPS bind soil particles together and change the hydraulic properties of the soil, improving water retention and maintaining the connectivity of the liquid phase around the root (Nazari et al., 2022; Benard et al., 2019). This delays desiccation of the rhizosphere and helps to maintain a flow of water and nutrients during soil drying. Besides, microbial exopolysaccharides contribute to rhizosheath formation (Ndour et al., 2020). It has been shown that bacteria from the root microbiota can modulate (either increase or decrease depending on the strain) suberin deposition in the root endodermis in the context of mineral nutrient homeostasis (Salas-Gonzales et al 2021). This would also have an effect on root hydraulics as it creates a barrier for apoplastic water flow. The microbiome can also change root architecture for instance by inducing root branching (Gonin et al 2023). This would also change root and rhizosphere hydraulics as larger root surface area attenuates water potential gradients in the rhizosphere. However, these effects of the root microbiome have not been studied in the context of water stress.

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

Arbuscular mycorrhizal fungi (AMF) have been shown to be the most important component of the root microbiome for drought tolerance in trees (Allsup et al 2023). The arbuscular

mycorrhizal symbiosis is a mutualistic association between most angiosperms and AMF- from the Glomeromycota phylum (Redecker et al., 2013). The fungus develops specific structures, called arbuscules, in root cortical cells to exchange resources with the plant and a network of hyphae that forage the soil for water and nutrients (Smith and Smith, 2011). Association with AMF has been known for a long time to improve plant resistance to water stress (Augé, 2001). Part of this effect is indirect via improved plant mineral nutrition and osmoregulation, reduced drought-induced oxidative stress and increased root hydraulic conductivity (Quiroga et al., 2019; Zulfiqar and Ashraf, 2021; Mbodj et al., 2018). Moreover, the hyphal network binds soil particles together, stabilises aggregates, impacts soil porosity (Hallett et al., 2009; Miller et al., 2000) and link roots to the surrounding soil, limiting hydraulic continuity loss and the formation of air gaps during drying (Augé, 2001). However, the effect of AMF on soil water retention and hydraulic conductivity is very dependent on the soil texture with opposite effects reported for loan and sand (Pauwels et al., 2023).

Recently, direct contribution of AMF to water transfer from the soil to plant roots via fungal hyphae was observed (Kakouridis et al., 2022). AMF hyphae can transport water across air gaps in the soil (Kakouridis et al., 2022) and extract water from small pores that are inaccessible to roots, two properties that can be advantageous for the water scavenging in dry soils. Under edaphic stress, AMF maintained the hydraulic continuity between root and soil in drying soils, thereby reducing the drop in soil matric potential near the root surface and sustaining root water uptake in dry soils (Abdalla and Ahmed, 2021). Altogether, this indicates that AMF act as an extension of the root and increase access to soil resources including water.

Conclusion and outlook

The root-soil interface is an important hydraulic resistance upon soil drying affecting whole plant hydraulics and response to drought stress. Accordingly, plants have evolved different mechanisms to shape the physico-chemical properties of the rhizosphere to maintain the soil-

root hydraulic continuum and water acquisition. This includes root hair development, rhizodeposition and symbioses with arbuscular mycorrhizal fungi. Interestingly, all these traits are under plant genetic control and could therefore represent new breeding targets to improve plant water use and drought tolerance. Indeed, as recently demonstrated for maize, most of the past selection for drought tolerance was based on traits like phenology and architecture but did not exploit mechanistic traits that contribute to environmental adaptation such as rhizosphere traits (Welcker et al., 2022). More work is needed to better characterise the genetic and physiological mechanisms controlling rhizosphere hydraulics and to evaluate how these impact drought tolerance in a breeding context. As roots influence the hydraulic properties of the rhizosphere, root positioning in the soil column (i.e. root system architecture) defines which regions of the soil exhibit root-induced alterations to their hydraulic properties and therefore the flow of water through the soil. Root system architecture and rhizospheric traits need therefore to be integrated to optimise water uptake by the plant.

Hydraulic properties of the soil-root interface can impact plant transpiration and eventually plant water use efficiency. In the actual and future context of water scarcity, agriculture needs to be more water efficient. Developing more efficient crops requires a holistic understanding of water use efficiency that involves a complex regulation of parameters related to soil properties, root traits, transpiration and photosynthesis (Vadez et al., 2023). For having an impact, these properties have to be regarded in the context of specific varieties used in different agrosystems prone to different stress patterns. Models combining soil-plant-atmosphere interactions at the plot level are needed to identify strategies better suited to different types of stress under variable agronomic contexts.

Acknowledgements

271	The authors acknowledge the financial support of the French Ministry for Research and Higher
272	Education (PhD grant to P.A.), the Agence National de la Recherche, and Deutsche
273	Forschungsgemeinschaft (DFG, German Research Foundation). All figures were created with
274	Biorender.com.
275	
276	Authors contribution
277	All authors contributed to the first version of the text and revised the manuscript. P.A., A.G.
278	and L.L. created the figures.
279	
280	Funding
281	The authors acknowledge the financial support of the French Ministry for Research and Higher
282	Education (PhD grant to P.A.), the Agence National de la Recherche (SorDrought grant ANR-
283	23-CE20 to L.L. and Plastimil grant ANR-20-CE20-0016 to A.G.), and Deutsche
284	Forschungsgemeinschaft (DFG, German Research Foundation), project numbers 403670197
285	"Emerging effects of root hairs on plant scale soil water relations." and 516052611"Texture
286	Dependency of Arbuscular Mycorrhiza Induced Plant Drought Tolerance" to M.A.
287	
288	Conflict of interest
289	The authors have no conflicts to declare.
290	

References

Abdalla M, Ahmed MA, Cai G, Wankmüller F, Schwartz N, Litig O, Javaux M, Carminati A (2022) Stomatal closure during water deficit is controlled by below-ground hydraulics. *Annals of Botany* **129**: 161–170

Abdalla M, Carminati A, Cai G, Javaux M, Ahmed MA (2021) Stomatal closure of tomato under drought is driven by an increase in soil—root hydraulic resistance. *Plant, Cell & Environment* **44**: 425–431

Abdalla M, Ahmed MA (2021) Arbuscular mycorrhiza symbiosis enhances water status and soil-plant hydraulic conductance under drought. *Frontiers in Plant Science*, 12, 722954.

Ahmed MA, Kroener E, Benard P, Zarebanadkouki M, Kaestner A, Carminati A (2016a)

Drying of mucilage causes water repellency in the rhizosphere of maize: measurements and modelling. *Plant and Soil* 407: 161–171

Ahmed MA, Zarebanadkouki M, Kaestner et al (2016b) A Measurements of water uptake of maize roots: the key function of lateral roots. *Plant and Soil* **398**, 59–77

Ahmed MA, Zarebanadkouki M, Meunier F, Javaux M, Kaestner A, Carminati A (2018b) Root type matters: measurement of water uptake by seminal, crown, and lateral roots in maize, *Journal of Experimental Botany*, Volume 69, Issue 5, 20 February 2018, Pages 1199–1206

Allsup CM, George I, Lankau RA (2023) Shifting microbial communities can enhance tree tolerance to changing climates. *Science*. 26;380(6647):835-840

Aslam MM, Karanja JK, Dodd IC, Waseem M, Weifeng X (2022) Rhizosheath: An adaptive root trait to improve plant tolerance to phosphorus and water deficits? *Plant, Cell & Environment* **45**: 2861–2874

Augé RM (2001) Water relations, drought and vesicular-arbuscular mycorrhizal symbiosis. Mycorrhiza 11: 3–42

Barber SA (1995) Soil nutrient bioavailability: a mechanistic approach. John Wiley & Sons.

Benard P, Zarebanadkouki M, Brax M, Kaltenbach R, Jerjen I, Marone F, Couradeau E, Felde VJMNL, Kaestner A, Carminati A (2019) Microhydrological Niches in Soils: How Mucilage and EPS Alter the Biophysical Properties of the Rhizosphere and Other Biological Hotspots. *Vadose Zone Journal* 18: 1–10

Brax M, Buchmann C, Kenngott K, Schaumann GE, Diehl D (2020) Influence of the physico-chemical properties of root mucilage and model substances on the microstructural stability of sand. *Biogeochemistry* **147**: 35–52

Burak E, Quinton JN, Dodd IC (2021) Root hairs are the most important root trait for rhizosheath formation of barley (Hordeum vulgare), maize (Zea mays) and Lotus japonicus (Gifu). *Annals of Botany* **128**: 45–57

Cai G, Ahmed MA (2022) The role of root hairs in water uptake: Recent advances and future perspectives. *Journal of Experimental Botany* 73: 3330–3338

Cai G, Ahmed MA, Abdalla M, Carminati A (2022) Root hydraulic phenotypes impacting water uptake in drying soils. *Plant, Cell & Environment* **45**: 650–663

Cai G, Carminati A, Abdalla M, Ahmed MA (2021) Soil textures rather than root hairs dominate water uptake and soil-plant hydraulics under drought. *Plant Physiology* **187**: 858–872

Carminati A, Passioura JB, Zarebanadkouki M, Ahmed MA, Ryan PR, Watt M, Delhaize E (2017) Root hairs enable high transpiration rates in drying soils. *New Phytologist* **216**: 771–781

Carminati A, Vetterlein D (2013) Plasticity of rhizosphere hydraulic properties as a key for efficient utilization of scarce resources. *Annals of Botany* 112: 277–290

Carminati A, Zarebanadkouki M, Kroener E, Ahmed MA, Holz M (2016) Biophysical rhizosphere processes affecting root water uptake. *Annals of Botany* 118: 561–571

Chen Y, Yao Z, Sun Y, Wang E, Tian C, Sun Y, Liu J, Sun C, Tian L (2022) Current Studies of the Effects of Drought Stress on Root Exudates and Rhizosphere Microbiomes of Crop Plant Species. *International Journal of Molecular Sciences*. doi: 10.3390/ijms23042374

Corso D, Delzon S, Lamarque LJ, Cochard H, Torres-Ruiz JM, King A, Brodribb T (2020) Neither xylem collapse, cavitation, or changing leaf conductance drive stomatal closure in wheat. *Plant, Cell & Environment* **43**: 854–865

Duddek P, Carminati A, Koebernick N, Ohmann L, Lovric G, Delzon S, Rodriguez-Dominguez CM, King A, Ahmed MA (2022) The impact of drought-induced root and root hair shrinkage on root-soil contact. *Plant Physiology* **189**: 1232–1236

Fahad S, Bajwa AA, Nazir U, Anjum SA, Farooq A, Zohaib A, Sadia S, Nasim W, Adkins S, Saud S, et al (2017) Crop Production under Drought and Heat Stress: Plant Responses and Management Options. *Frontiers in Plant Science* 8: 1147

Flemming HC, Wingender J (2010) The biofilm matrix. *Nature Reviews Microbiology* **8**, 623–633.

de la Fuente Cantó C, Diouf MN, Ndour PMS, Debieu M, Grondin A, Passot S, Champion A, Barrachina C, Pratlong M, Gantet P, et al (2022) Genetic control of rhizosheath formation in pearl millet. *Scientific Reports* 12: 9205

de la Fuente Cantó C, Simonin M, King E, Moulin L, Bennett MJ, Castrillo G, Laplaze L (2020) An extended root phenotype: the rhizosphere, its formation and impacts on plant fitness.

The Plant Journal 103: 951–964

Galloway AF, Akhtar J, Burak E, Marcus SE, Field KJ, Dodd IC, Knox P (2022) Altered properties and structures of root exudate polysaccharides in a root hairless mutant of barley. *Plant Physiology* **190**: 1214–1227

Gardner WR (1960) Dynamic aspects of water availability to plants. *Soil Science* 89(2):p 63-73, February.

George TS, Brown LK, Ramsay L, White PJ, Newton AC, Bengough AG, Russell J, Thomas WTB (2014) Understanding the genetic control and physiological traits associated with rhizosheath production by barley (*H ordeum vulgare*). *New Phytologist* 203: 195–205 Gonin M, Salas-González I, Gopaulchan D, Frene JP, Roden S, Van de Poel B, Salt DE, Castrillo G (2023) Plant microbiota controls an alternative root branching regulatory mechanism in plants. *Proceedings of the National Academy of Sciences* U S A. 11;120(15):e2301054120

Hallett PD, Feeney DS, Bengough AG, Rillig MC, Scrimgeour CM, Young IM (2009)

Disentangling the impact of AM fungi versus roots on soil structure and water transport. *Plant and Soil* 314: 183–196

Hallett PD, Marin M, Bending GD, George TS, Collins CD, Otten W (2022) Building soil sustainability from root-soil interface traits. *Trends in Plant Science*. 2022 Jul;27(7):688-698.

Haling RE, Brown LK, Bengough AG, Young IM, Hallett PD, White PJ, George TS (2013) Root hairs improve root penetration, root–soil contact, and phosphorus acquisition in soils of different strength. *Journal of Experimental Botany* 64, 3711–3721.

Hammer GL, Cooper M, Reynolds MP (2021) Plant production in water-limited environments. *Journal of Experimental Botany* **72**: 5097–5101

James RA, Weligama C, Verbyla K, Ryan PR, Rebetzke GJ, Rattey A, Richardson AE, Delhaize E (2016) Rhizosheaths on wheat grown in acid soils: phosphorus acquisition efficiency and genetic control. *Journal of Experimental Botany* 67: 3709–3718

Javaux M, Schröder T, Vanderborght J, Vereecken H (2008). Use of a three-dimensional detailed modeling approach for predicting root water uptake. *Vadose Zone Journal*, 7(3), 1079-1088.

Jorda H, Ahmed MA, Javaux M, Carminati A, Duddek P, Vetterlein D, Vanderborght J (2022) Field scale plant water relation of maize (Zea mays) under drought–impact of root hairs and soil texture. *Plant and Soil*, 478(1-2), 59-84.

Kakouridis A, Hagen JA, Kan MP, Mambelli S, Feldman LJ, Herman DJ, Weber PK, Pett-Ridge J, Firestone MK (2022) Routes to roots: direct evidence of water transport by arbuscular mycorrhizal fungi to host plants. *New Phytologist* **236**: 210–221

Koch A, Meunier F, Vanderborght J, Garr'e S, Pohlmeier A, Javaux, M (2019) Functional–structural root-system model validation using a soil mri experiment. *Journal of Experimental Botany* 70, 2797–2809.

Koehler T, Schaum C, Tung S-Y, Steiner F, Tyborski N, Wild AJ, Akale A, Pausch J, Lueders T, Mueller CW, et al (2023) Above and belowground traits impacting transpiration decline during soil drying in 48 maize (Zea mays L.) genotypes. *Annals of botany* 8;131(2):373-386.

Krassovsky I (1926) Physiological activity of the seminal and nodal roots of crop plants. Soil Science 21(4): p 307

Kroener E, Holz M, Zarebanadkouki M, Ahmed M, Carminati A (2018) Effects of Mucilage on Rhizosphere Hydraulic Functions Depend on Soil Particle Size. *Vadose Zone Journal* 17: 1–11

Leitner D, Meunier F, Bodner G, Javaux M, Schnepf A (2014) Impact of contrasted maize root traits at flowering on water stress tolerance—a simulation study. *Field Crops Research*. 165, 125–137.

Liu T, Ye N, Song T, Cao Y, Gao B, Zhang D, Zhu F, Chen M, Zhang Y, Xu W, et al (2019) Rhizosheath formation and involvement in foxtail millet (*Setaria italica*) root growth under drought stress. *Journal of Integrative Plant Biology* **61**: 449–462

Lynch J (1995) Root Architecture and Plant Productivity. Plant Physiology 109: 7–13

Lynch JP (2022) Harnessing root architecture to address global challenges. *The Plant Journal* **109**: 415–431

Marin M, Feeney DS, Brown LK, Naveed M, Ruiz S, Koebernick N, Bengough AG, Hallett PD, Roose T, Puértolas J, et al (2021) Significance of root hairs for plant performance under contrasting field conditions and water deficit. *Annals of Botany* 128: 1–16

Mbodj D, Effa-Effa B, Kane A, Manneh B, Gantet P, Laplaze L, Diedhiou AG, Grondin A (2018) Arbuscular mycorrhizal symbiosis in rice: Establishment, environmental control and impact on plant growth and resistance to abiotic stresses. *Rhizosphere* **8**: 12–26

McCully ME (1999) Roots in soil: unearthing the complexities of roots and their rhizospheres. *Annual review of plant biology*, 50(1), 695-718.

Miller RM, Jastrow JD (2000) Mycorrhizal Fungi Influence Soil Structure. In: Kapulnik, Y., Douds, D.D. (eds) Arbuscular Mycorrhizas: Physiology and Function. *Springer*, Dordrecht.

Moradi AB, Carminati A, Vetterlein D, Vontobel P, Lehmann E, Weller U, Hopmans JW, Vogel HJ, Oswald SE (2011) Three-dimensional visualization and quantification of water content in the rhizosphere. *New Phytologist* 2011 Nov;192(3):653-63.

Moradi AB, Carminati A, Lamparter A, Woche SK, Bachmann J, Vetterlein D, Vogel HJ, Oswald SE (2012) Is the Rhizosphere Temporarily Water Repellent? *Vadose Zone Journal*; 11 (3): vzj2011.0120.

Morel JL, Habib L, Plantureux S, Guckert A (1991) Influence of maize root mucilage on soil aggregate stability. *Plant and Soil* 136: 111–119

Müllers Y, Postma JA, Poorter H, van Dusschoten D (2023) Deep-water uptake under drought improved due to locally increased root conductivity in maize, but not in faba bean. *Plant, Cell & Environment* pce.14587

Nazari M, Bickel S, Benard P, Mason-Jones K, Carminati A, Dippold MA (2022) Biogels in Soils: Plant Mucilage as a Biofilm Matrix That Shapes the Rhizosphere Microbial Habitat. *Frontiers in Plant Science* **12**: 798992

Ndour PMS, Heulin T, Achouak W, Laplaze L, Cournac L (2020) The rhizosheath: from desert plants adaptation to crop breeding. *Plant and Soil* **456**: 1–13

North GB & Nobel PS (1997) Root–soil contact for the desert succulent Agave deserti in wet and drying soil. *The New Phytologist*, *135*(1), 21-29.

Ohlert E (1837) Einige Bemerkungen über die Wurzelzasern der höheren Pflanzen. *Linnaea* 1837, 609–628.

Passioura JB (1980) The Meaning of Matric Potential. *Journal of Experimental Botany* **31**: 1161–1169

Pauwels R, Graefe J, Bitterlich M (2023) An arbuscular mycorrhizal fungus alters soil water retention and hydraulic conductivity in a soil texture specific way. *Mycorrhiza*. doi: 10.1007/s00572-023-01106-8

Potopova V, Boroneant C, Boincean B, Soukup J (2016). Impact of agricultural drought on main crop yields in the Republic of Moldova. *International Journal of Climatology*, 36(4), 2063-2082.

Prece C, Peñuelas J (2016) Rhizodeposition under drought and consequences for soil communities and ecosystem resilience. *Plant and Soil* **409**: 1–17

Quiroga G, Erice G, Ding L, Chaumont F, Aroca R, Ruiz-Lozano JM (2019) The arbuscular mycorrhizal symbiosis regulates aquaporins activity and improves root cell water permeability in maize plants subjected to water stress. *Plant, Cell & Environment* 42: 2274–2290

PRabbi SMF, Tighe MK, Knox O, Young IM (2018b) The impact of carbon addition on the organisation of rhizosheath of chickpea. *Scientific Reports* **8**: 18028

Redecker D, Schüßler A, Stockinger H, Stürmer SL, Morton JB, Walker C (2013) An evidence-based consensus for the classification of arbuscular mycorrhizal fungi (Glomeromycota). *Mycorrhiza* 23: 515–531

Rodriguez-Dominguez CM, Brodribb TJ (2020) Declining root water transport drives stomatal closure in olive under moderate water stress. *New Phytologist* **225**: 126–134

Ropitaux M, Bernard S, Schapman D, Follet-Gueye M-L, Vicré M, Boulogne I, Driouich A (2020) Root Border Cells and Mucilage Secretions of Soybean, Glycine Max (Merr) L.: Characterization and Role in Interactions with the Oomycete Phytophthora Parasitica. *Cells* 9: 2215

Salas-González I, Reyt G, Flis P, Custódio V, Gopaulchan D, Bakhoum N, Dew TP, Suresh K, Franke RB, Dangl JL, Salt DE, Castrillo G (2021) Coordination between microbiota and root endodermis supports plant mineral nutrient homeostasis. *Science*, 8;371(6525):eabd0695

Sallans BJ (1942) The importance of various roots to the wheat plant. *Scientific Agriculture*, 23(1), 17-26.

Smith FA, Smith SE (2011) What is the significance of the arbuscular mycorrhizal colonisation of many economically important crop plants? *Plant and Soil* **348**: 63–79

Tardieu F (2022) Different avenues for progress apply to drought tolerance, water use efficiency and yield in dry areas. *Current Opinion in Biotechnology* **73**: 128–134

Vadez V, Pilloni R, Grondin A, Hajjarpoor A, Belhouchette H, Brouziyne Y, Chehbouni G, Kharrou MH, Zitouna-Chebbi R, Mekki I, et al (2023) Water use efficiency across scales: from genes to landscapes. *Journal of Experimental Botany* erad052

Wang R, Bicharanloo B, Shirvan MB, Cavagnaro TR, Jiang Y, Keitel C, Dijkstra FA (2021) A novel ¹³ C pulse-labelling method to quantify the contribution of rhizodeposits to soil respiration in a grassland exposed to drought and nitrogen addition. *New Phytologist* **230**: 857–866

Wang Y, Wang Y, Tang Y, Zhu X-G (2022) Stomata conductance as a goalkeeper for increased photosynthetic efficiency. *Current Opinion in Plant Biology* **70**: 102310

Welcker C, Spencer NA, Turc O, Granato I, Chapuis R, Madur D, Beauchene K, Gouesnard B, Draye X, Palaffre C, et al (2022) Physiological adaptive traits are a potential allele reservoir for maize genetic progress under challenging conditions. *Nature Communications* 13: 3225

Williams A, Vries FT (2020) Plant root exudation under drought: implications for ecosystem functioning. *New Phytologist* **225**: 1899–1905

Zickenrott I, Woche SK, Bachmann J, Ahmed MA, Vetterlein D (2016) An efficient method for the collection of root mucilage from different plant species—A case study on the effect of mucilage on soil water repellency. *Journal of Plant Nutrition and Soil Science* 179: 294–302 Zulfiqar F, Ashraf M (2021) Bioregulators: unlocking their potential role in regulation of the plant oxidative defense system. *Plant Molecular Biology* 105: 11–41

Zwieniecki MA (2003) Ionic control of the lateral exchange of water between vascular bundles in tomato. *Journal of Experimental Botany* **54**: 1399–1405

Boxes and Figure Legends

Figure 1: The soil - plant - atmosphere continuum. Water movement is driven by differences in water potentials.

Box 1: Recent developments in our understanding of the role of the rhizosphere properties in drought tolerance.

- (A) Cai et al. (2022) showed that, during soil drying, root water uptake is constrained within a wide range of soil water potential (−6 to −1000 kPa), depending on both soil and root hydraulic properties.
- (B) Dominguez-Rodriguez and Brodribb (2020) demonstrate that upon soil drying, the hydraulic resistance of the root-soil interface increases to ca. 90% of the total soil-plant hydraulic resistance and thus represents the main constraint to transpiration. The resistance of each component was measured in olive trees by following the rehydration rate of plants/organs submitted to different drought stress intensities
- (C) Abdalla et al. (2021) illustrated that stomatal closure under drought is driven by an increase in soil—root hydraulic resistance.
- (D) Müllers et al. (2023) estimated the vertical distribution of conductance and reported that, under drought, maize plants locally increase root conductivity in wetter soil layers hereby compensating for a reduced root conductance in upper, drier layers.

Box 2: Key developments in our understanding of the role of the root traits that contribute to building up the rhizosphere.

- (A) Burak et al. (2021) highlighted that both root hairs length and density promote rhizosheath formation in barley and maize.
- (B) Brax et al. (2020) studied the influence of the physico-chemical properties of root mucilage on the microstructural stability of sand.
- (C) Galloway et al. (2022) showed altered properties and structures of polysaccharides exudated by the root in a root hairless mutant of barley. This highlighted the role of root hairs in rhizodeposition.
- (D) Duddek et al. (2022) demonstrated that, in maize, root hair shrinkage during soil drying, was initiated at relatively high soil matric potentials (between -10 and -310 kPa). This highlights the important role of root hairs in maintaining root-soil continuity.

Box 3: Recent developments in our understanding of the role of the microbiome in shaping the root-soil hydraulic continuum.

- (A) Nazari et al. (2022) reported a meta-analysis of more than 80 studies showing the role of mucilages in shaping the rhizosphere microbial habitat. Mucilages are degraded by microbes that produce exopolyaccharides (EPS) with similar properties. Altogether, plant mucilage and bacterial exopolysaccharides form a mucigel that binds soil particles together and changes the hydraulic properties of the soil.
- (B) Kakouridis et al. (2022) showed that AMF hyphae can directly transport water from the soil to the root and that this transport can occur across air gaps in the soil. Part of the transport occurs in hyphae through an extracytoplasmic pathway.
- (C) Pauwels et al. (2023) demonstrated that colonisation by AMF hyphae changes water retention and hydraulic conductivity in root-free soil. However, the response was opposite in soils with very contrasted texture (loam and sand).

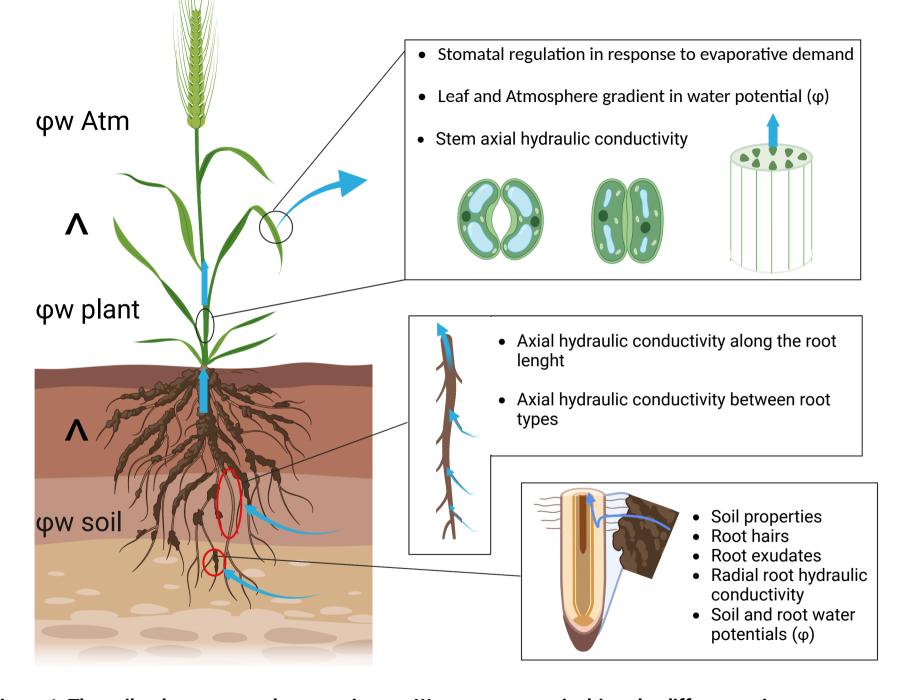
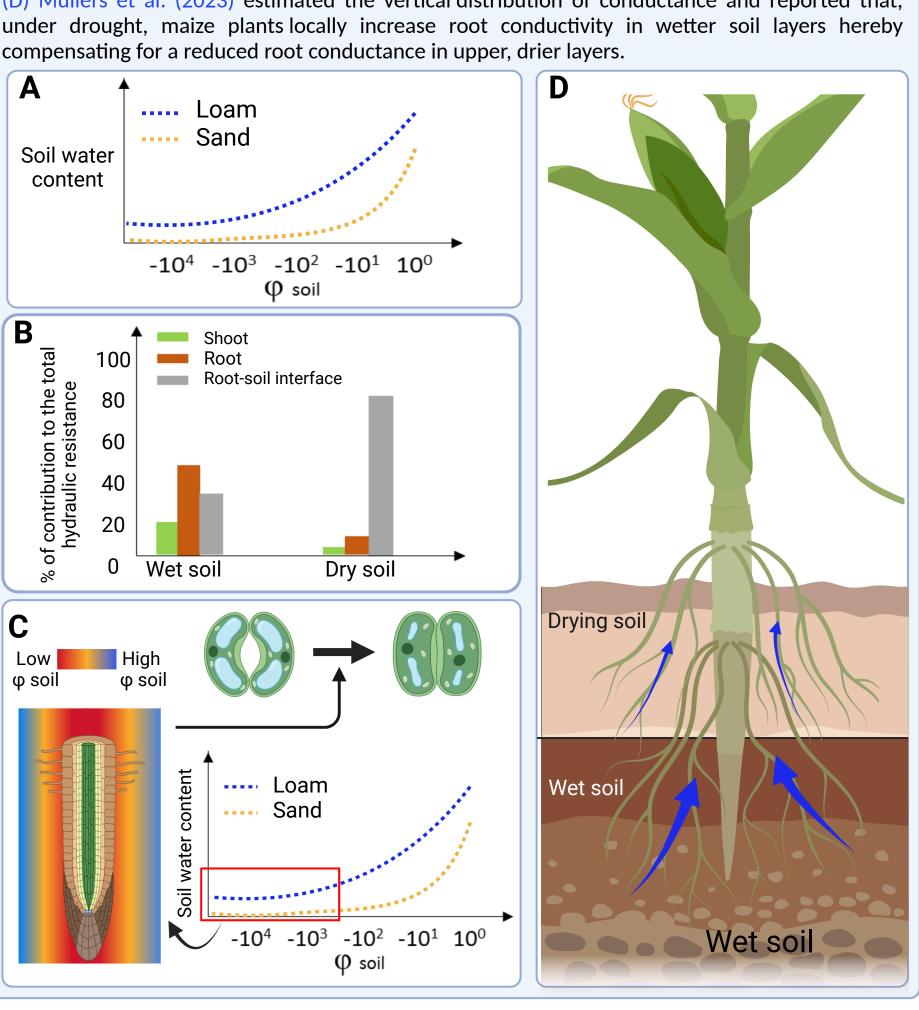
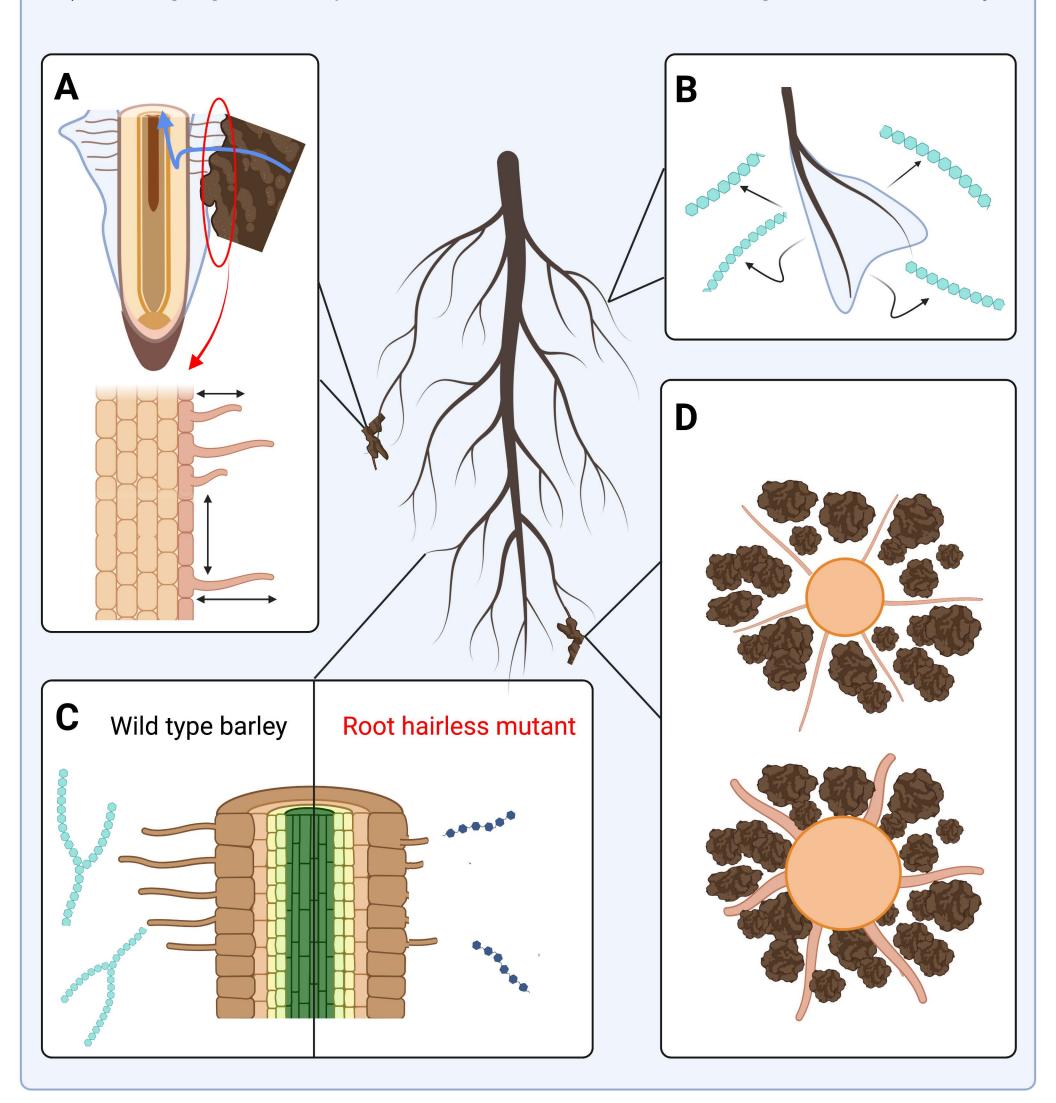
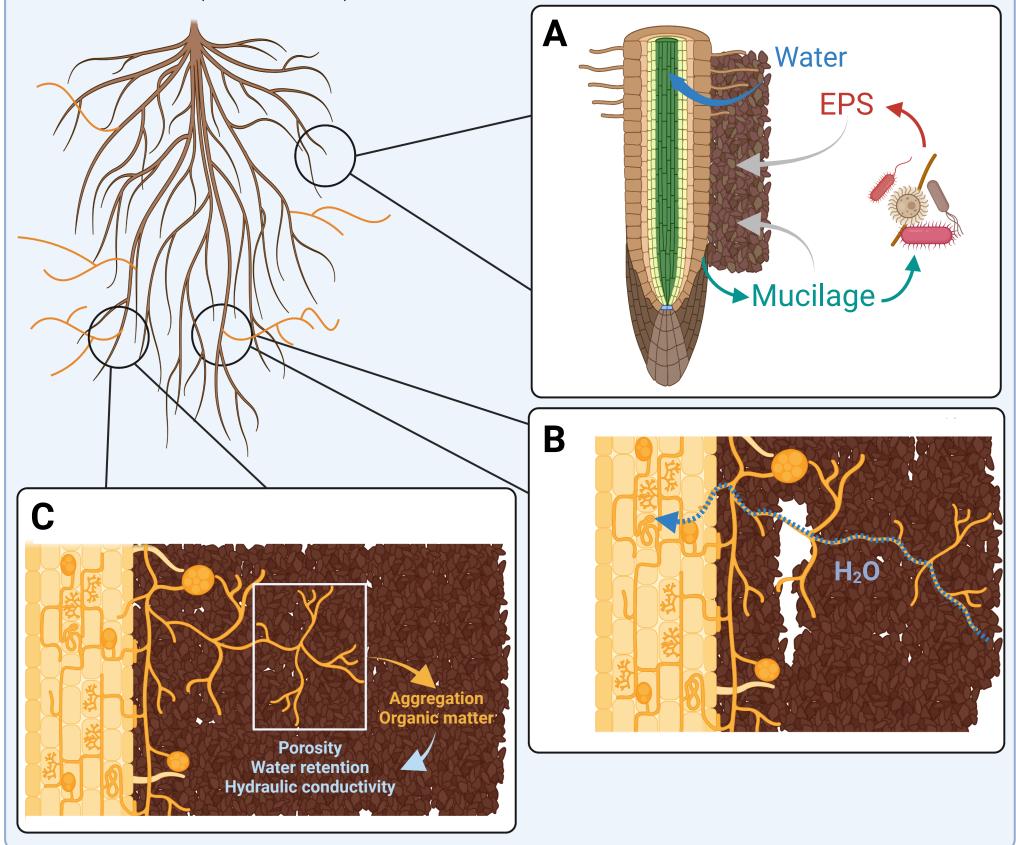



Figure 1: The soil - plant - atmosphere continuum. Water movement is driven by differences in water potentials. Figure produced with BioRender.com.


Box 1: Recent developments in our understanding of the role of the rhizosphere properties in drought tolerance. Figure produced with BioRender.com.

- (A) Cai et al. (2022) showed that, during soil drying, root water uptake is constrained within a wide range of soil water potential (-6 to -1000 kPa), depending on both soil and root hydraulic properties..
- (B) Dominguez-Rodriguez and Brodribb (2020) demonstrate that upon soil drying, the hydraulic resistance of the root-soil interface increases to ca. 90% of the total soil-plant hydraulic resistance and thus represents the main constraint to transpiration. The resistance of each component was measured in olive trees by following the rehydration rate of plants/organs submitted to different drought stress intensities
- (C) Abdalla et al. (2021) illustrated that stomatal closure under drought is driven by an increase in soil-root hydraulic resistance.
- (D) Müllers et al. (2023) estimated the vertical distribution of conductance and reported that, compensating for a reduced root conductance in upper, drier layers.


Box 2: Key developments in our understanding of the role of the root traits that contribute to building up the rhizosphere. Figure produced with BioRender.com.

- (A) Burak et al. (2021) highlighted that both root hairs length and density promote rhizosheath formation in barley and maize.
- (B) Brax et al. (2020) studied the influence of the physico-chemical properties of root mucilage on the microstructural stability of sand.
- (C) Galloway et al. (2022) showed altered properties and structures of polysaccharides exudated by the root in a root hairless mutant of barley. This highlighted the role of root hairs in rhizodeposities.
- (D Duddek et al. (2022) demonstrated that, in maize, root hair shrinkage during soil drying, was initiated at relatively high soil matric potentials (between -10 and -310 kPa). This highlights the important role of root hairs in maintaining root-soil continuity.

Box 3: Recent developments in our understanding of the role of the microbiome in shaping the root-soil hydraulic continuum. Figure produced with BioRender.com.

- (A) Nazari et al. (2022) reported a meta-analysis of more than 80 studies showing the role of mucilages in shaping the rhizosphere microbial habitat. Mucilages are degraded by microbes that produce exopolyaccharides (EPS) with similar properties. Altogether, plant mucilage and bacterial exopolysaccharides form a mucigel that binds soil particles together and changes the hydraulic properties of the soil.
- (B) Kakouridis et al. (2022) showed that AMF hyphae can directly transport water from the soil to the root and that this transport can occur across air gaps in the soil. Part of the transport occurs in hyphae through an extracytoplasmic pathway.
- (C) Pauwels et al. (2023) demonstrated that colonisation by AMF hyphae changes water retention and hydraulic conductivity in root-free soil. However, the response was opposite in soils with very contrasted texture (loam and sand).

