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Introduction

In shape optimization, the energy and thus the equilibrium configuration of a bending-resistant surface can depend both on its geometry as well as the distribution of some physical densities, representing, for example mass, electrostatic charge, temperature, etc. For instance, the shape can depend on the material composition and vice versa, as it is the case for certain biomembranes [START_REF] Jülicher | Domain-induced budding of vesicles[END_REF][START_REF] Baumgart | Imaging coexisting fluid domains in biomembrane models coupling curvature and line tension[END_REF][START_REF] Mcmahon | Membrane curvature and mechanisms of dynamic cell membrane remodelling[END_REF]. This phenomenon is not accounted for in the classical Canham-Helfrich model describing the characteristic biconcave shape of red blood cells [START_REF] Canham | The minimum energy of bending as a possible explanation of the biconcave shape of the human red blood cell[END_REF][START_REF] Helfrich | Elastic properties of lipid bilayers: Theory and possible experiments[END_REF]. If the densities are discrete, a variational existence theory has been established, relying on either rotational symmetry [START_REF] Choksi | Global minimizers for axisymmetric multiphase membranes[END_REF][START_REF] Helmers | Convergence of an approximation for rotationally symmetric two-phase lipid bilayer membranes[END_REF] or weak formulations using curvature varifolds [START_REF] Brazda | Existence of varifold minimizers for the multiphase Canham-Helfrich functional[END_REF]. A one-dimensional model which attributes for the aforementioned interplay between curvature and density-related effects has been introduced in [START_REF] Brazda | Bifurcation of elastic curves with modulated stiffness[END_REF], where closed planar curves are equipped with a (nondiscrete) density function. For the discrete setting, we refer to [START_REF] Helmers | Snapping elastic curves as a one-dimensional analogue of two-component lipid bilayers[END_REF] and also mention a related discrete-to-continuum Γ-limit result [START_REF] Dondl | Γ-convergence of a discrete Kirchhoff rod energy[END_REF]. Inspired by the Canham-Helfrich model depending on a spontaneous curvature, we define a generalized Euler-Bernoulli energy for a planar heterogeneous elastic wire γ with density function ρ by

E µ (γ, ρ) = 1 2 γ β(ρ)(κ -c 0 ) 2 + µ (∂ s ρ) 2 ds. (1.1)
Here, β is a smooth positive function, describing the density-modulated bending stiffness of the wire, the parameter c 0 ∈ R denotes the spontaneous curvature, and µ > 0 models the diffusivity of the density. Further, κ is the signed curvature of γ, ds = |∂ x γ(x)| dx is the arc-length element, and ∂ s = |∂ x γ(x)| -1 ∂ x . Consequently, the curve strives for a preferred curvature c 0 ∈ R (determined by the material, see [START_REF] Mcmahon | Membrane curvature and mechanisms of dynamic cell membrane remodelling[END_REF]), and the defect is penalized depending on the continuous density distribution. In the special case where ρ is constant and c 0 = 0, we essentially retrieve the classical Euler-Bernoulli elastic energy given by

E(γ) = 1 2 γ κ 2 ds. (1.2)
Critical points of (1.2) with prescribed length are called elasticae and have been classified in several previous works. In particular, the only closed elasticae are multifold coverings of the circle and of the figure eight elastica (depicted in Figure 12), see for instance [START_REF] Langer | The total squared curvature of closed curves[END_REF], [START_REF] Djondjorov | Explicit parameterization of Euler's elastica[END_REF], or [START_REF] Müller | A Li-Yau inequality for the 1-dimensional Willmore energy[END_REF]Lemma 5.4]. Such a classification is, of course, not available for (1.1), but, as we shall see, elasticae play an important role also in this general case. Actually, for planar curves, the order of the energy (1.1) may be reduced as follows. Since (1.1) is invariant under orientation preserving reparametrisations, we assume that the planar curve γ with prescribed length L is parametrized by arc-length. Then there exists an (inclination) angle function θ : [0, L] → R such that ∂ s γ = (cos θ, sin θ). Modulo isometries of R 2 , the curve γ together with its orientation is uniquely determined by θ. More precisely, for some γ(0) ∈ R 2 we have

γ : [0, L] → R 2 , γ(s) = s 0 cos θ sin θ dr + γ(0). (1.3)
With θ and the density function ρ : [0, L] → R, the energy (1.1) can be expressed by 2 ds, (1.4) using that κ = ∂ s θ, so that E µ (γ, ρ) = E µ (θ, ρ). Naturally, to achieve compactness, the variational discussion of (1.4) involves prescribing the length L and the rotation index ω of the curve, and the integral of the density, i.e. The length constraint and the preferred curvature c 0 ∈ R are competing forces for minimizing E µ , in general, since prescribing the length may not allow for a curve with constant curvature κ ≡ c 0 . In the sequel, the constants L > 0, ν ∈ R, µ > 0, ω ∈ Z, and c 0 ∈ R, are fixed, and we will refer to them as model parameters. For the bending stiffness β, we assume β ∈ C ∞ (R) and β > 0.

E µ (θ, ρ) = 1 2 L 0 β(ρ)(∂ s θ -c 0 ) 2 + µ (∂ s ρ)
1.1. Previous work. The constrained minimization problem min E µ (θ, ρ) with zero spontaneous curvature and rotation index equal to one was studied in [START_REF] Brazda | Bifurcation of elastic curves with modulated stiffness[END_REF]. In [START_REF] Dall'acqua | A dynamic approach to heterogeneous elastic wires[END_REF], some of the authors followed a dynamic approach and introduced the constrained L 2 -gradient flow associated to (1.4). It can be used to describe, in the simplified quasistatic and viscous regime, the continuous deformation towards an energetically more favourable state. In addition to the constraints on length, rotation index, and the integral of the density, we need to ensure that the angle function describes a closed curve. Overall, this results in the initial boundary value problem

                 ∂ t θ = ∂ s β(ρ)(∂ s θ -c 0 ) + λ θ1 sin θ -λ θ2 cos θ in (0, T ) × [0, L], ∂ t ρ = µ∂ 2 s ρ - 1 2 β (ρ)(∂ s θ -c 0 ) 2 -λ ρ in (0, T ) × [0, L], θ(•, L) -θ(•, 0) = 2πω, ρ(•, L) = ρ(•, 0) on [0, T ), ∂ s θ(•, L) = ∂ s θ(•, 0), ∂ s ρ(•, L) = ∂ s ρ(•, 0) on [0, T ), θ(0, •) = θ 0 , ρ(0, •) = ρ 0 on [0, L], (1.6) 
with (θ 0 , ρ 0 ) ∈ C 1 ([0, L]) satisfying the boundary conditions. Since an angle function θ : [0, L] → R represents a zeroth order closed curve if and only if L 0 sin θ ds = L 0 cos θ ds = 0, (1.7) it is required that θ 0 satisfies (1.7). To ensure (1.7) along the flow, the nonlocal Lagrange multipliers λ θ1 and λ θ2 are given by λ θ1 (t) λ θ2 (t) := Π -1 (θ) The matrix Π is invertible as long as the angle function θ describes a closed curve, see [START_REF] Dall'acqua | A dynamic approach to heterogeneous elastic wires[END_REF]Remark 2.1]. Moreover, the nonlocal Lagrange multiplier λ ρ is chosen as

λ ρ (t) := - 1 2L L 0 β (ρ)(∂ s θ -c 0 ) 2 ds. (1.9)
This ensures conservation of the total mass, i.e. (1.5) is preserved along the evolution. For the convenience of the reader, we recall the previous results on existence and convergence which we build upon, see [10, Theorems 1.2-1.4, Lemma 3.5, and Remark 3.7].

Theorem 1.1. Suppose the initial datum (θ 0 , ρ 0 ) ∈ C ∞ ([0, L]) satisfies (1.5), (1.7), and

θ 0 (L) -θ 0 (0) = 2πω, ∂ s θ 0 (L) = ∂ s θ 0 (0), ∂ 2 s θ 0 (L) = ∂ 2 s θ 0 (0), ρ 0 (L) = ρ 0 (0), ∂ s ρ 0 (L) = ∂ s ρ 0 (0), ∂ 2 
s ρ 0 (L) = ∂ 2 s ρ 0 (0). Then, there exists a unique global solution (θ, ρ) ∈ C ∞ ((0, ∞) × [0, L]) ∩ C 0 ([0, ∞); C 2 ([0, L])) of (1.6), depending continuously on the initial datum (θ 0 , ρ 0 ). For all t > 0, κ(t, •) = ∂ s θ(t, •) and ρ(t, •) can be extended to smooth L-periodic functions on R. Moreover, the solution satisfies lim sup t→∞ θ(t) W 3,2 (0,L) + ρ(t) W 3,2 (0,L) < ∞, and subconverges, as t → ∞, in C 2 ([0, L]) to a stationary solution, i.e. a solution of

                 0 = ∂ s β(ρ)(∂ s θ -c 0 ) + λ θ1 sin θ -λ θ2 cos θ in [0, L], 0 = µ∂ 2 s ρ - 1 2 β (ρ)(∂ s θ -c 0 ) 2 -λ ρ in [0, L], θ(L) -θ(0) = 2πω, ρ(L) = ρ(0), ∂ s θ(L) = ∂ s θ(0), ∂ s ρ(L) = ∂ s ρ(0), ∂ 2 s θ(L) = ∂ 2 s θ(0), ∂ 2 s ρ(L) = ∂ 2 s ρ(0) (1.10) 
for some λ θ1 , λ θ2 , λ ρ ∈ R. If, in addition, β is real analytic, then we have full convergence

(θ(t), ρ(t)) → (θ ∞ , ρ ∞ ) in C 2 ([0, L]) as t → ∞, for some (θ ∞ , ρ ∞ ) solving (1.10).
We will refer to a smooth function (θ 0 , ρ 0 ) satisfying the assumptions of Theorem 1.1 as an admissible initial datum in the sequel. The global existence and convergence of the system (1.6) is in accordance with previous work on the elastic flow, i.e. the L 2 -gradient flow of (1.2), both in its fourth order version for curves [START_REF] Dziuk | Evolution of elastic curves in R n : existence and computation[END_REF][START_REF] Mantegazza | The Lojasiewicz-Simon inequality for the elastic flow[END_REF][START_REF] Lin | L 2 -flow of elastic curves with clamped boundary conditions[END_REF][START_REF] Dall'acqua | A gradient flow for open elastic curves with fixed length and clamped ends[END_REF][START_REF] Dall'acqua | The Lojasiewicz-Simon gradient inequality for open elastic curves[END_REF][START_REF] Dall'acqua | A Willmore-Helfrich L 2 -flow of curves with natural boundary conditions[END_REF][START_REF] Mantegazza | A survey of the elastic flow of curves and networks[END_REF][START_REF] Müller | On the convergence of the elastic flow in the hyperbolic plane[END_REF] and its second order flow for the angle function in the planar case [START_REF] Wen | L 2 flow of curve straightening in the plane[END_REF][START_REF] Novaga | A second order gradient flow of p-elastic planar networks[END_REF][START_REF] Lin | The second-order L 2 -flow of inextensible elastic curves with hinged ends in the plane[END_REF][START_REF] Okabe | A gradient flow for the p-elastic energy defined on closed planar curves[END_REF]. Due to a lack of maximum principle, along the fourth order flow properties like convexity or embeddedness of the initial datum do not need to be preserved [START_REF] Blatt | Loss of convexity and embeddedness for geometric evolution equations of higher order[END_REF][START_REF] Miura | Optimal thresholds for preserving embeddedness of elastic flows[END_REF], see also [START_REF] Linnér | Some properties of the curve straightening flow in the plane[END_REF].

As we shall see, for the second order system (1.6) such properties depend delicately on the choice of the model parameters. Lastly, we mention that a similar system relating mean curvature flow and diffusion of a density on a hypersurface has been studied in [START_REF] Abels | Short time existence for coupling of scaled mean curvature flow and diffusion[END_REF][START_REF] Abels | Qualitative properties for a system coupling scaled mean curvature flow and diffusion[END_REF].

1.2. Main results and structure of the article. This article extends the results obtained in [START_REF] Dall'acqua | A dynamic approach to heterogeneous elastic wires[END_REF] and investigates several properties of solutions to (1.6), a quasilinear coupled parabolic system of second order involving nonlocal Lagrange multipliers. Our work is inspired by the analysis of preserved quantities for curvature flows of hypersurfaces by Escher-Ito [START_REF] Escher | Some dynamic properties of volume preserving curvature driven flows[END_REF] and by Wen's article [START_REF] Wen | L 2 flow of curve straightening in the plane[END_REF] on the gradient flow of (1.2) in terms of θ. We focus mainly on two aspects: the (non)preservation of several properties of the initial datum along the evolution and the discussion of conditions under which the limit and the rate of convergence of the system can be determined. Since the limit configuration is a constrained critical point of (1.4), this also provides a partial classification of constrained critical points of E µ . We complement the analysis by numerical experiments that have motivated our results. In Section 2, as a first step towards understanding the asymptotic behavior, we examine minimizers and constrained critical points of the functional, which are precisely the stationary solutions.

As indicated by the form of the energy (1.4), a global minimizer has to have constant density if µ is sufficiently large, cf. also [START_REF] Brazda | Bifurcation of elastic curves with modulated stiffness[END_REF] for the case ω = 1, c 0 = 0. Remarkably, this is generically not true on the level of critical points, see Example 2.13. We provide sharp sufficient conditions for constrained critical points to be homogeneous elasticae, i.e. elasticae with constant density.

In Section 3, we study the (non)preservation of properties of the initial datum along (1.6). The decisive advantage of working with the angle function θ is that the equation is of second order. In contrast, working with the curve γ yields a fourth order equation, like the classical elastic flow. Due to the reduction to second order, parabolic maximum principles are available for both evolution equations in (1.6) individually, but of course not for the full system. A key difficulty in applying maximum principles is the structure of the relevant evolution equations, explaining the fundamentally different behavior for c 0 = 0 compared to c 0 = 0. First, we adapt the methods in [START_REF] Angenent | The zero set of a solution of a parabolic equation[END_REF] to study the inflection points of the curve, i.e. the sign changes of the curvature.

Theorem 1.2. Let c 0 = 0 and let (θ, ρ) be a global solution of (1.6). Then both the number of zeros of κ = ∂ s θ and the number of inflection points of the associated curve are nonincreasing in time.

Combining this result with further maximum principle arguments, we examine (strict) convexity along the evolution.

Theorem 1.3 (Preservation of convexity for c 0 = 0). Let (θ, ρ) be the global solution of (1.6) with admissible initial datum (θ 0 , ρ 0 ) and c 0 = 0.

Then (i) κ 0 ≥ 0 (κ 0 ≤ 0) on [0, L] implies κ ≥ 0 (κ ≤ 0) on [0, ∞) × [0, L]; (ii) κ 0 > 0 (κ 0 < 0) on [0, L] implies κ > 0 (κ < 0) on [0, ∞) × [0, L].
Both Theorem 1.2 and Theorem 1.3 rely heavily on the vanishing of c 0 . Indeed, even for |c 0 | = 0 small, convexity is not preserved in general (see Example 3.7). This behavior is not easily predicted from the energy, since e.g. a large positive c 0 clearly favors positive curvature. Moreover, despite the nonlinear structure of the equation for the density, under appropriate sharp assumptions on β we are still able to apply maximum principles to examine sign-preservation of the density, see Proposition 3.8.

For the curve shortening flow, a classical application of the maximum principle is the preservation of embeddedness, cf. [START_REF] Gage | The heat equation shrinking convex plane curves[END_REF]. While the evolution of the curves obtained via (1.3) does not allow for these methods, we are still able to find an embeddedness-preserving energy threshold in Proposition 3.11. Further, we show in Section 3.6 that both k-fold rotational symmetry and axial symmetry of the initial datum are preserved along the evolution (see Propositions 3.15 and 3.19), for simplicity restricting to the case ω = 1. In the rotationally symmetric case, the Lagrange multipliers λ θ1 and λ θ2 vanish, which enables us to generalize Theorem 1.3 for a k-fold rotationally symmetric initial datum as follows.

Theorem 1.4. Let ω = 1, k ≥ 2 and c 0 ∈ R. Let (θ 0 , ρ 0 ) be an admissible initial datum corresponding to a k-fold rotationally symmetric heterogeneous curve with κ 0 ≥ c 0 on [0, L] and let (θ, ρ) be the solution of (1.6).

Then κ ≥ c 0 on [0, ∞) × [0, L]. Similarly, if κ 0 ≤ c 0 on [0, L], then κ ≤ c 0 on [0, ∞) × [0, L].
The convergence result in [START_REF] Dall'acqua | A dynamic approach to heterogeneous elastic wires[END_REF] naturally raises the question of a characterization of the limit, which we can answer despite the large number of selectable parameters under suitable assumptions on β, ν, and µ in Section 4. To that end, we rely on the properties of constrained critical points that we discussed in Section 2.

Theorem 1.5 (Asymptotic behavior under growth assumptions on β ). Suppose there exists C ≥ 0 such that

β (x)(ν -x) ≤ Cβ(x)(ν -x) 2 for all x ∈ R. (1.11)
Let (θ 0 , ρ 0 ) be an admissible initial datum with CLE µ (θ 0 , ρ 0 ) < µ. Then the density ρ of the solution (θ, ρ) to (1.6) 

converges exponentially fast to ρ ∞ ≡ ν in C 2 ([0, L]) as t → ∞. Moreover, (i) if ω = 0, then θ(t) → θ ∞ in C 2 ([0, L]), where θ ∞ describes a ω-fold covered circle; (ii) if ω = 0 and β is analytic, then θ(t) → θ ∞ in C 2 ([0, L])
, where θ ∞ describes a multifold covered figure eight elastica. (1.11). In this case, there is no assumption on the initial energy. We highlight that, remarkably, analyticity is not needed for the case ω = 0, see the discussion after the proof of Theorem 1.5 in Section 4.1.

Assumption (1.11) is clearly satisfied if we have β (ν) = 0, ||β || ∞ < ∞, and inf R β > 0. If β is such that β (x)(x -ν) ≤ 0 for x ∈ R, we may choose C = 0 in
For rotationally symmetric initial data (ω = 1) and c 0 = 2π L we prove exponential convergence to a circle with constant density without further assumptions, see Proposition 4.1. Furthermore, we can determine the limit for large values of µ and constant initial density. Theorem 1.6 (Asymptotic behavior for large µ). Let ω = 0 and suppose that β is real analytic. Let (θ 0 , ρ 0 ) be an admissible initial datum with ρ 0 ≡ ν. There exists µ 0 ∈ (0, ∞) such that if µ ≥ µ 0 , then the limit (θ ∞ , ρ ∞ ) of Theorem 1.1 describes an ω-fold covered circle with constant density.

A major difficulty here is that the two parts of the energy do not decrease individually, so that the density does not remain constant, in general. In Section 5, we propose a simple numerical scheme approximating solutions to (1.6) which takes advantage of the gradient flow structure of the problem and is based on De Giorgi's Minimizing Movements and finite differences, extending the idea of [START_REF] Brazda | Bifurcation of elastic curves with modulated stiffness[END_REF] to the more general and time-dependent system. Our analysis is substantially guided by the resulting computations, especially concerning the long-term behavior of the system. Numerical experiments allow us to explore qualitative properties of the flow beyond the scope covered in the previous sections. We consider a number of examples, some of which are: the loss of embeddedness in two cases, first in the case of some c 0 > 2π/L, and second in the more subtle case of c 0 = 0, with a careful choice of the initial data; the convergence to nontrivial states for µ small, which hints at the existence of nontrivial critical points, even for rotationally symmetric initial data; the impact of the choice of parameters on the limit configuration (θ ∞ , ρ ∞ ); and finally the instability of multiple coverings of the figure eight, in the case ω = 0. For a related problem on surfaces, we would like to point out that two finite element methods are proposed and analyzed in [START_REF] Elliott | Numerical analysis for the interaction of mean curvature flow and diffusion on closed surfaces[END_REF], based on a more geometric approach.

2. The static problem 2.1. The Euler-Lagrange equations. For k ∈ N, we denote the Hilbert space of periodic Sobolev functions on [0, L] by

W k,2 per (0, L) := {u ∈ W k,2 (0, L) : ∂ s u(L) = ∂ s u(0) for = 0, . . . , k -1}.
The standard angle function of an ω-fold covering of the circle is given by

φ(s) = 2πωs L for s ∈ [0, L], (2.1) see [10, Section 3.1]. If θ ∈ W k,2 (0, L) is an angle function for a C k -closed curve with rotation index ω ∈ Z, there exists a unique u ∈ W k,2
per (0, L) such that θ = φ + u. Consequently, it is natural to study the energy E µ defined in (1.4) on the set

U := W 1,2 per (0, L; R 2 ) + (φ, 0) = (θ, ρ) ∈ W 1,2 (0, L; R 2 ) : θ(L) -θ(0) = 2πω, ρ(L) = ρ(0) . By introducing the constraint functional G(θ, ρ) = L 0 cos θ ds, L 0 sin θ ds, L 0 ρ ds -νL ,
we see that (θ, ρ) ∈ U corresponds to a C 1 -closed curve with rotation index ω ∈ Z and a density with total mass νL if and only if G(θ, ρ) = 0. We thus define the side condition A := {(θ, ρ) ∈ U : G(θ, ρ) = 0}. The set U is not a vector space (unless ω = 0), but only an affine subspace of the Hilbert space W 1,2 (0, L; R 2 ). However, this causes only some minor technical difficulties which can be resolved by working in the periodic setting with the shifted functionals

E µ : W 1,2 per (0, L; R 2 ) → R, E µ (u, ρ) = E µ (u + φ, ρ), G : W 1,2 per (0, L; R 2 ) → R 3 , G(u, ρ) = G(u + φ, ρ
), with φ as in (2.1). It can be checked that G (θ, ρ) : W 1,2 per (0, L; R 2 ) → R 3 , for (θ, ρ) ∈ A, is surjective. Hence, applying [START_REF] Zeidler | Nonlinear Functional Analysis and its Applications -III: Variational Methods and Optimization[END_REF]Proposition 43.21], we see that the energy E µ has a critical point subject to the constraint G = 0 at some (θ, ρ) ∈ A if and only if there exist λ θ1 , λ θ2 , λ ρ ∈ R such that

0 = L 0 β(ρ)(∂ s θ -c 0 )∂ s v -λ θ1 sin θ v + λ θ2 cos θ v ds, (2.2) 0 = L 0 µ∂ s ρ∂ s σ + 1 2 β (ρ)(∂ s θ -c 0 ) 2 σ + λ ρ σ ds (2.3) for all (v, σ) ∈ W 1,2
per (0, L; R 2 ). Choosing appropriate test functions shows that λ θ1 , λ θ2 and λ ρ are given as in (1.8), and (1.9). If the constrained critical point (θ, ρ) is more regular, precisely (θ, ρ) ∈ W 2,2 per (0, L; R 2 ) + (φ, 0), (2.2) and (2.3) yield the Euler-Lagrange equations

0 = ∂ s (β(ρ)(∂ s θ -c 0 )) + λ θ1 sin θ -λ θ2 cos θ, (2.4) 0 = µ∂ 2 s ρ - 1 2 β (ρ)(∂ s θ -c 0 ) 2 -λ ρ . (2.5)
2.2. Existence of minimizers and smoothness of critical points. The existence of a solution to the minimization problem inf

(θ,ρ)∈A E µ (θ, ρ) -→ min! (2.6)
can be shown via the direct method following the arguments in [START_REF] Brazda | Bifurcation of elastic curves with modulated stiffness[END_REF]Prop. 3.2], also in the case of general winding number ω ∈ Z, and with spontaneous curvature c 0 ∈ R. Proposition 2.1 (Existence of a minimizer). There exists (θ * , ρ * ) ∈ A such that E µ (θ * , ρ * ) = inf (θ,ρ)∈A E µ (θ, ρ).

We prove now that constrained critical points (and in particular minimizers) are smooth.

Proposition 2.2 (Smoothness of critical points). If (θ, ρ) is a constrained critical point, the L- periodic extension of (∂ s θ, ∂ s ρ) to R is smooth. In particular, (θ, ρ) ∈ C ∞ ([0, L]) and ∂ s θ(L) = ∂ s θ(0), ∂ s ρ(L) = ∂ s ρ(0).
Proof. Let (θ, ρ) ∈ U be a constrained critical point. Then there exist λ θ1 , λ θ2 , λ ρ ∈ R such that (θ, ρ) satisfies (2.2) and (2.3).

Step 1:

(θ, ρ) ∈ W 2,2 (0, L) ⊂ C 1 ([0, L]). Since ρ ∈ W 1,2 (0, L) ⊂ C([0, L]), β • ρ C([0,L]) and ∂ s ρ L 2 (0,L) are bounded. Thus, (2.2) implies that there is C = C(θ, ρ) such that L 0 β(ρ)∂ s θ∂ s v ds = L 0 (λ θ1 sin θ -λ θ2 cos θ)v ds - L 0 β (ρ)∂ s ρc 0 v ds ≤ C v L 2 (0,L) for all v ∈ C 1 c ((0, L)) ⊂ W 1,2 per (0, L). So, β(ρ)∂ s θ ∈ W 1,2 (0, L). Hence, β(ρ)(∂ s θ -c 0 ) C([0,L]) and also β (ρ)(∂ s θ -c 0 ) C([0,L]) are bounded, so (2.3) implies that 2µ L 0 ∂ s ρ∂ s σ ds = L 0 -β (ρ)(∂ s θ -c 0 ) 2 σ -2λ ρ σ ds ≤ C σ L 2 (0,L) for all σ ∈ C 1 c ((0, L)). It follows that ρ ∈ W 2,2 (0, L) ⊂ C 1 ([0, L]). We thus obtain ∂ s (β(ρ)∂ s θ) = β (ρ)∂ s ρ∂ s θ + β(ρ)∂ 2 s θ in the sense of distributions, so ∂ 2 s θ ∈ L 2 (0, L) as inf [0,L] β(ρ) > 0.
Step 2: (θ, ρ) ∈ W 3,2 (0, L) ⊂ C 2 ([0, L]). The increased regularity yields that (θ, ρ) satisfies (2.4) and (2.5) in L 2 (0, L). Using the same ideas as in Step 1, we can deduce that (θ, ρ) ∈ W 3,2 (0, L).

Step 3: Smooth L-periodic extension. Testing (2.2) and (2.3) with W 1,2 per -functions not vanishing at the boundary results in the natural boundary conditions

∂ s θ L 0 = 0 and ∂ s ρ L 0 = 0. (2.7)
Since (θ, ρ) satisfies (2.4) and (2.5) pointwise we conclude with (2.7) that ∂ 2 s θ(L) = ∂ 2 s θ(0) and ∂ 2 s ρ(L) = ∂ 2 s ρ(0). The claim follows by bootstrapping.

2.3. Homogeneous elastica. The structure of the energy functional E µ suggests that for large values of µ, minimizers favor almost constant density, cf. [START_REF] Brazda | Bifurcation of elastic curves with modulated stiffness[END_REF]. For constant density, E µ is essentially the elastic energy whose critical points are called elasticae. For µ large, these elasticae also play an important role for the heterogeneous elastic energy (1.4).

Definition 2.3. Let (θ, ρ) ∈ A. We say that θ describes a (length-constrained) elastica if the curvature κ = ∂ s θ is smooth and satisfies the constrained elastica equation

∂ 2 s κ + 1 2 κ 3 -λκ = 0 for some λ ∈ R. (2.8)
If further ρ is constant, we say that (θ, ρ) describes a homogeneous elastica.

Solutions of (2.8) have been classified explicitely in several previous works, see for example [START_REF] Langer | The total squared curvature of closed curves[END_REF], [START_REF] Djondjorov | Explicit parameterization of Euler's elastica[END_REF], or [START_REF] Müller | A Li-Yau inequality for the 1-dimensional Willmore energy[END_REF]Lemma 5.4]. In the case of closed curves, the elasticae can be characterized as follows.

Lemma 2.4 ( [START_REF] Langer | The total squared curvature of closed curves[END_REF]). The only closed constrained elasticae are multifold coverings of circles and multifold coverings of the figure eight (elastica).

The figure eight is illustrated in Figure 12 on page 32.

Remark 2.5. Let (θ, ρ) ∈ A. If ω = 0 and θ describes an elastica, then θ is the angle function of an ω-fold covering of a circle with curvature κ = 2πω L . Thus, θ is determined up to an additive constant. If (θ, ρ) describes a homogeneous elastica and we require that θ(0) = 0 or that

L 0 θ(s) ds = πωL, then (θ, ρ) = (θ c , ρ c ) := 2πω L s, ν ∈ A.
2.3.1. Minimizers and critical points for large µ. We now show that for large values of µ and ω = 0, a minimizer (θ, ρ) in (2.6) describes a homogeneous elastica. To state a uniqueness result, we define I(θ) := L 0 θ(s) ds and fix I(θ) = πωL. Proposition 2.6 (Unique minimizer for large µ). Let ω = 0. Then there exists

µ 0 ∈ (0, ∞) such that if µ ≥ µ 0 , E µ (θ c , ρ c ) < E µ (θ, ρ) for all (θ, ρ) ∈ A ∩ {I(θ) = πωL} \ {(θ c , ρ c )}.
The proof can essentially be done as in [START_REF] Brazda | Bifurcation of elastic curves with modulated stiffness[END_REF]Prop. 3.3] which is why we only outline the idea here.

Idea of the proof. In a first step, one shows that for µ large enough, the second variation E µ (θ c , ρ c ) is strictly positive. It follows (for example with [START_REF] Zeidler | Nonlinear Functional Analysis and its Applications -III: Variational Methods and Optimization[END_REF]Theorem 43

.D]) that (θ c , ρ c ) is a strict local minimizer in the sense that there exists δ = δ(µ) > 0 such that E µ (θ c , ρ c ) < E µ (θ, ρ) for all (θ, ρ) ∈ A ∩ {I(θ) = πωL} \ {(θ c , ρ c )} with norm (θ, ρ) -(θ c , ρ c ) W 1,2 (0,L) < δ. Now, note that E µ (θ c , ρ c ) is independent of µ whereas E µ (θ, ρ) is increasing in µ.
Consequently, the neighborhood in which (θ c , ρ c ) is a strict local minimizer can be chosen only depending on a lower bound µ 1 on µ. In a second step, one proves that there exists µ 2 such that for µ > µ 2 , all global minimizers are contained in B δ (θ c , ρ c ) ⊂ W 1,2 (0, L). Together with the first step, for µ > max {µ 1 , µ 2 }, (θ c , ρ c ) is the unique global minimizer with I(θ) = πωL. This result does not extend to ω = 0, see Remark 2.10. The next example shows that (θ c , ρ c ) does not always need to be a global minimizer.

Example 2.7. Consider the double-well potential β(x) := (x 2 -1) 2 + c with c > 0. Let L = 2π, ω = 1, c 0 = 0 and ν = 0. Consider θ c = s, ρ c = 0 and ρ := sin(2s). Then (θ c , ρ) ∈ A and

E µ (θ c , ρ c ) = (1 + c) π > 3 8 + c + µ 2 π = E µ (θ c , ρ) for µ < 5 4 .
For large µ, (θ c , ρ c ) is also locally the unique constrained critical point. This follows from the continuity of E µ and G and the positive definiteness of E µ (θ c , ρ c ).

Corollary 2.8. Let ω = 0. There is µ 0 > 0 and a C 1 -neighborhood O of (θ c , ρ c ) such that if (θ, ρ) ∈ O is a constrained critical point with I(θ) = πωL and µ > µ 0 , then (θ, ρ) = (θ c , ρ c ).

2.3.2.

Conditions for homogeneous elastica. If a constrained critical point has constant density, this already implies that it describes a homogeneous elastica. Lemma 2.9. If (θ, ρ) describes a constrained critical point and ρ ≡ ν, then θ describes an elastica.

Proof. By Proposition 2.2, (θ, ρ) is smooth. Since ρ is constant, the Euler-Lagrange equation (2.4) reads 0 = β(ν)∂ s κ + λ θ1 sin θ -λ θ2 cos θ, (2.9) with κ = ∂ s θ. As in [START_REF] Novaga | A second order gradient flow of p-elastic planar networks[END_REF]Remark 2.2], we multiply (2.9) with κ. This yields 0

= 1 2 β(ν)∂ s (κ 2 ) + ∂ s (-λ θ1 cos θ -λ θ2 sin θ). So there is λ ∈ R such that λ = 1 2 β(ν)κ 2 -λ θ1 cos θ -λ θ2 sin θ. (2.10)
Differentiation of (2.9) and inserting (2.10) leads to (2.8) with λ = λ/β(ν).

Remark 2.10. In the case ω = 0, a constrained critical point with constant density exists only if β (ν) = 0. Indeed, if ρ ≡ ν and β (ν) = 0, it follows from (2.5) that (∂ s θ -c 0 ) 2 is constant. For ω = 0, this contradicts the closedness of the curve described by θ.

For ω = 0 and under suitable assumptions on β, the converse implication of Lemma 2.9 also holds.

Lemma 2.11. Let ω = 0 and c 0 = 2πω L . Let (θ, ρ) be a constrained critical point and suppose θ describes an elastica. If

β is such that (a) β is convex or (b) |β (x)| < 2µ 2π 2πω -Lc 0 2 |ν -x| or (c) sup |β | < 2µ 2π 2πω -Lc 0 2 ,
then ρ is constant. In particular, (θ, ρ) describes a homogeneous elastica.

Proof. Since θ describes a constrained closed elastica and ω = 0, we have κ = ∂ s θ ≡ 2πω

L by Remark 2.5. The Euler-Lagrange equation for ρ (cf. (2.5)) simplifies to

∂ 2 s ρ = (κ -c 0 ) 2 2µ β (ρ) - 1 L L 0 β (ρ) ds . (2.

11)

(a) Using integration by parts, (2.11), L 0 ρ ds = νL, and the convexity of β, we have

L 0 (∂ s ρ) 2 ds = - (κ -c 0 ) 2 2µ L 0 β (ρ)(ρ -ν) ds = - (κ -c 0 ) 2 2µ L 0 (β (ρ) -β (ν)) (ρ -ν) ds ≤ 0.
(b) First, we proceed as in (a), then we obtain with (κ-c 0

) 2 = 2π L 2 2πω-Lc0 2π 
2 , the assumption on β , and the Wirtinger inequality that

L 0 (∂ s ρ) 2 ds = - (κ -c 0 ) 2 2µ L 0 β (ρ)(ρ -ν) ds < 2π L 2 L 0 (ρ -ν) 2 ds ≤ L 0 (∂ s ρ) 2 ds. (c) We write β (ρ) = 1 L L 0 β (ρ)
ds and use the Wirtinger inequality twice to get

L 0 (∂ 2 s ρ) 2 ds = (κ -c 0 ) 2 2µ 2 L 0 β (ρ) -β (ρ) 2 ds ≤ (κ -c 0 ) 4 (2µ) 2 L 2π 2 L 0 (β (ρ)∂ s ρ) 2 ds < 2π L 2 L 0 (∂ s ρ) 2 ds ≤ L 0 (∂ 2 s ρ) 2 ds.
In all cases, the periodic boundary conditions imply that ρ ≡ ν.

Corollary 2.12 (of Theorem 1.5). Let (θ, ρ) be a constrained critical point. If β is such that β (x) ≤ 0 for x < ν and β (x) ≥ 0 otherwise, then (θ, ρ) describes a homogeneous elastica.

Without additional assumptions on β, the density of a constrained critical point describing an elastica might be nonconstant.

Example 2.13. Let L = 2π, ω = 2, ν = 0 and let µ > 0 and c 0 = 2 be chosen such that (2

-c 0 ) 2 = 2µ. Let β(x) = -x 2 2 + 1 for -1 ≤ x ≤ 1.
Then both (θ = θ c , ρ ≡ ν) ∈ A and (θ = θ c , ρ = sin s) ∈ A are constrained critical points. In this case, inequalities (b) and (c) in Lemma 2.11 are attained with equality, so the assumptions are sharp.

Remark 2.14. For ω = 0, c 0 = 2πω L and (θ, ρ) a constrained critical point with θ describing an elastica, it follows directly from (2.11) and the periodic boundary conditions that ρ is constant.

Qualitative properties of solutions

3.1. Decrease of the energy. The L 2 -gradient structure of the flow equations in (1.6) ensures that the energy E µ decreases along the evolution. On the other hand, the two parts of the energy,

E θ (θ, ρ) := 1 2 L 0 β(ρ)(∂ s θ -c 0 ) 2 ds and E ρ µ (ρ) := µ 2 L 0 (∂ s ρ) 2 ds
are not monotonically decreasing individually as the computation

d dt E µ (θ, ρ) = L 0 1 2 β (ρ)(∂ s θ -c 0 ) 2 ∂ t ρ + β(ρ)(∂ s θ -c 0 )∂ t ∂ s θ ds + L 0 µ ∂ s ρ ∂ s ∂ t ρ ds = - L 0 ∂ s (β(ρ)(∂ s θ -c 0 )) ∂ t θ ds + L 0 1 2 β (ρ)(∂ s θ -c 0 ) 2 -µ∂ 2 s ρ ∂ t ρ ds = - L 0 ∂ t θ (∂ t θ -λ θ1 sin θ + λ θ2 cos θ) ds - L 0 ∂ t ρ (∂ t ρ + λ ρ ) ds = - L 0 (∂ t θ) 2 ds - L 0 (∂ t ρ) 2 ds ≤ 0 (3.1)
already suggests. This fact significantly complicates the discussion of the limit in Section 4. We give concrete examples where either E θ or E ρ µ grows. Example 3.1. Consider the double-well potential β(x) := (x 2 -1) 2 + c with c > 0. Let L = 2π, ω = 1, ν = 0, and c 0 = 1. Take θ 0 := θ c = s and ρ 0 := sin s. Then, for the solution (θ, ρ) of (1.6), an elementary computation yields λ θ1 (0) = λ θ2 (0) = λ ρ (0) = 0 and µ can be seen as the dominant term in E µ . However, even for arbitrary large µ, E ρ µ might still not be monotonically decreasing. This can be seen with the evolution equations in (1.6). Indeed, taking ρ 0 ≡ ν yields E ρ µ (ρ 0 ) = 0. On the other hand, ∂ t ρ| t=0 = 0 for all µ > 0 as long as θ is not constant and β (ν) = 0.

d dt E θ (θ, ρ) t=0 = (1 -c 0 ) 2 2π 0 µ 2 β (ρ 0 ) ∂ 2 s ρ 0 -∂ s (β(ρ 0 )) 2 ds - (1 -c 0 ) 4 4 2π 0 (β (ρ 0 )) 2 ds = π 2 (1 -c 0 ) 2 µ -(1 -c 0 ) 2 - 5 2 , which is positive for µ > (1 -c 0 ) 2 + 5 2 . On the other hand, d dt E ρ µ (ρ) t=0 = (1 -c 0 ) 2 µ 2 2π 0 β (ρ 0 ) ∂ 2 s ρ 0 ds -µ 2 2π 0 (∂ 2 s ρ 0 ) 2 ds = µπ 1 2 (1 -c 0 ) 2 -µ is positive for µ < 1 2 (1 -c 0 ) 2 .
3.2. Zeros of the curvature. Differentiating (1.6) we find that the curvature κ = ∂ s θ satisfies

∂ t κ = β(ρ)∂ 2 s κ + 2 ∂ s (β(ρ))∂ s κ + ∂ 2 s (β(ρ))κ + (λ θ1 cos θ + λ θ2 sin θ) κ -∂ 2 s (β(ρ))c 0 . (3.2)
The structure of this evolution equation already indicates that the behavior of κ strongly depends on c 0 . In case c 0 = 0, (3.2) may be written as a linear second order parabolic equation for κ. Indeed, we have

∂ t κ = a∂ 2 s κ + b∂ s κ + cκ, (3.3)
where we define the nonconstant coefficients a := β(ρ) > 0, b := 2∂ s (β(ρ)) and c := ∂ 2 s (β(ρ)) + λ θ1 cos θ+λ θ2 sin θ. This allows us to use the techniques in [START_REF] Angenent | The zero set of a solution of a parabolic equation[END_REF] to study the evolution of the zeroset of the curvature. Sign-changing zeros of the curvature are inflection points of the curve, i.e. points where the curve locally changes from being convex to being concave or vice versa. Zeros at which the curvature does not change sign are called undulation points of the curve. First, we do not distinguish between inflection points and undulation points and show that the total number of zeros of κ decreases. In [START_REF] Wen | L 2 flow of curve straightening in the plane[END_REF]Remark 3.2], this idea was also indicated, without proof, for the L 2 -gradient flow of the angle function of the classical elastic energy without density-modulated stiffness. For all t ≥ 0, we denote by z κ (t) ∈ N 0 ∪ {∞} the number of zeros in [0, L) of the curvature κ(t, •) of the global solution of (1.6). First we note the following. Lemma 3.3 ([3, Theorem C, (a)]). Let c 0 = 0 and (θ, ρ) be the global solution of (1.6). Then z κ (t) is finite for any t > 0.

Further, the number of zeros of the curvature (inflection points and undulation points) does not increase along the evolution. Proposition 3.4. Let c 0 = 0 and (θ, ρ) be the global solution of (1.6). Then z κ is a nonincreasing function on [0, ∞).

Proof. Consider the smooth L-periodic extension of κ = ∂ s θ to R, which we do not rename for simplicity. The function z κ still denotes the number of zeros of the curvature in the interval [0, L). Let t 2 > 0. By Lemma 3.3, there exists n ∈ N 0 such that z κ (t 2 ) = n. Without loss of generality, we assume that n ≥ 1. Let 0 ≤ s 1 < s 2 < • • • < s n < L be the zeros of κ at time t 2 . By [3, Lemma 5.5], there are continuous curves x i (t), i = 1, . . . , n in the zeroset

Z κ = {(t, s) ∈ (0, ∞) × R : κ(t, s) = 0} defined for t ∈ (0, t 2 ] such that x i (t 2 ) = s i . Moreover, define x n+1 (t) := x 1 (t) + L, t ∈ (0, t 2 ]. Then x n+1 (t) is also in Z κ . For t 1 ∈ (0, ∞) with t 1 < t 2 , [3, Lemma 5.3] tells us that if x i (t 2 ) < x j (t 2 ), then x i (t) < x j (t) for all t ∈ [t 1 , t 2 ], i, j = 1, . . . n + 1. Hence, considering I t := [x 1 (t), x n+1 (t)) for t ∈ [t 1 , t 2 ], we find x i (t) ∈ I t for t ∈ [t 1 , t 2 ]
and i = 1, ..., n. Thus, there are at least n zeros of κ on {t 1 } × I t . Since by periodicity, the number of zeros on {t 1 } × [0, L) equals the number of zeros on {t 1 } × I t , it follows that z κ is nonincreasing on (0, ∞). It remains to consider the transition from t = 0 to positive times. Due to Lemma 3.3 we assume without loss of generality that z κ (0) < ∞. Similarly as in [3, Lemma 5.2] it follows that lim t 0 x i (t) exists for i = 1, . . . n. Suppose that lim t 0 x i (t) = lim t 0 x j (t) for i < j and consider the nonempty open set G := {(t, s) : 0 < t < t 2 , x i (t) < s < x j (t)}. Since κ ≡ 0 on the parabolic boundary of G, the parabolic maximum principle implies that κ ≡ 0 in G. This contradicts Lemma 3.3. Thus, lim t 0 x i (t) = lim t 0 x j (t) for i = j and it follows that z κ (0) ≥ n.

In the following, we specifically consider the inflection points and show that the number of signchanging zeros of κ does not increase. This means geometrically that the number of 'dents' of a curve like in Figure 1 is not increasing along the evolution. This is supported by numerical experiments, see Figure 9, while for c 0 = 0, Figure 6 gives an example for growing number of inflection points. We denote the number of sign-changing zeros in [0, L) of the L-periodic extension of κ(t, •) by zκ (t) ∈ N 0 ∪ {∞}, t ∈ [0, ∞). Proposition 3.5. Let c 0 = 0 and (θ, ρ) be the global solution of (1.6). Then zκ is a nonincreasing function on [0, ∞).

Proof. Consider the smooth L-periodic extension of (κ, ρ) to R. First we observe, that the zeros of κ(t, s) := e -λt κ(t, s), λ ∈ R, (t, s) ∈ [0, ∞) × R, coincide with the zeros of κ(t, •). By choosing λ sufficiently large, we can thus assume that κ satisfies

(3.3) with c(t, s) < 0 on [0, ∞) × R. Let 0 ≤ t 1 < t 2 < ∞. By Lemma 3.3, there is n ∈ N 0 such that z κ (t 2 ) = n.
In view of Proposition 3.4 and due to periodicity of κ, we may assume without loss of generality that n > 1. As in the proof of Proposition 3.4, let 0 ≤ s 1 < • • • < s n < L be such that κ(t 2 , s i ) = 0, i = 1, . . . , n. By the arguments in the proof of Proposition 3.4, there exist continuous curves x i (t) in the zeroset of κ defined for t ∈ [0, t 2 ] such that x i (t 2 ) = s i , i = 1, . . . , n, and x i (t) < x i+1 (t) for t ∈ [0, t 2 ], where x n+1 := x 1 + L. Let i ∈ {1, . . . , n}. Either κ(t 2 , •) < 0 or κ(t 2 , •) > 0 on (x i (t 2 ), x i+1 (t 2 )). We assume the latter. Consider the open set G := {(t, s) : t 1 < t < t 2 , x i (t) < s < x i+1 (t)}, whose boundary is composed of the curves x i , x i+1 and two vertical lines at t = t 1 , t 2 . By assumption and continuity, κ attains a positive maximum on Ḡ, more precisely at the parabolic boundary by the maximum principle. But since κ(t, x i (t)) = 0 for t ∈ [t 1 , t 2 ] and similarly for x i+1 , the maximum is attained at the vertical line t = t 1 . Consequently, there exists an interval I ⊂ (x i (t 1 ), x i+1 (t 1 )) with κ(t 1 , s) > 0 for s ∈ I. Thus, for each of the disjoint intervals (x i (t 2 ), x i+1 (t 2 )), i = 1, . . . , n, with κ > 0 (or κ < 0), there is an interval in (x i (t 1 ), x i+1 (t 1 )) with κ > 0 (or κ < 0). Since

x i (t) < x i+1 (t), t ∈ [t 1 , t 2 ]
, there are at least as many sign changes of κ in [x 1 (t 1 ), x 1 (t 1 ) + L) as in [x 1 (t 2 ), x 1 (t 2 ) + L). By periodicity, it follows that zκ (t 1 ) ≥ zκ (t 2 ).

Proof of Theorem 1.2. The result directly follows from Proposition 3.4 and Proposition 3.5.

Convexity.

In the following, we will use (3.3) to examine whether nonnegativity (or nonpositivity) of the curvature of the initial curve is preserved along the evolution. This is closely related to convexity of the associated curve, see Remark 3.6 below.

Proof of Theorem 1.3. Case (ii) follows from Proposition 3.4. For case (i), we now show that if ∂ s θ 0 ≥ 0, then ∂ s θ ≥ 0 for all t ∈ (0, ∞). The proof for the nonpositive case works analogously. We consider the L-periodic extension of the global solution (θ, ρ) to all of R, which we do not rename for simplicity. Note that

∂ s θ ∈ C ∞ ((0, ∞) × R) and ρ ∈ C ∞ ((0, ∞) × R) by Theorem 1.1. Since c 0 = 0, κ satisfies (3.3) on (0, ∞) × R.
Even though θ itself is not even continuous on R, due to the boundary condition θ(L) -θ(0) = 2πω, the coefficients a, b and c in (3.3) are smooth on R for all t ≥ 0. Moreover, since the initial datum is attained in the C 2 ([0, L])-norm (see Theorem 1.1) and c is bounded globally in (0, ∞) × R (see [START_REF] Dall'acqua | A dynamic approach to heterogeneous elastic wires[END_REF]Section 4]), there is K > 0 such that sup t∈[0,∞), s∈R c(t, s) < K. Defining κ ε := κ + ε exp(Kt) for ε > 0 it follows that

∂ t κ ε > a(t, s)∂ 2 s κ ε + b(t, s)∂ s κ ε + c(t, s)κ ε on (0, ∞) × R (3.4)
and min s∈R κ ε (0, s) = min s∈[0,L] ∂ s θ 0 (s) + ε > 0. Now we set t * := sup t ≥ 0 : min s∈R κ ε (τ, s) > 0 for all τ ∈ (0, t) .

Clearly, t * > 0. We assume that t * < ∞. This implies that there is

s * ∈ R such that 0 = min s∈R κ ε (t * , s) = κ ε (t * , s * ). (3.5)
The necessary conditions for a local minimum yield

∂ 2 s κ ε (t * , s * ) ≥ 0, ∂ s κ ε (t * , s * ) = 0 and ∂ t κ ε (t * , s * ) ≤ 0. Together with (3.5) this is a contradiction to (3.4). Hence, κ ε > 0 on (0, ∞)×R. Sending ε → 0 yields ∂ s θ = κ ≥ 0 on (0, ∞) × R.
Remark 3.6. A planar closed curve γ is called convex if it is simple and its curvature κ = ∂ s θ does not change sign. This is equivalent to γ parametrizing the boundary of a convex subset of R 2 . If the initial datum θ 0 of the flow (1.6) describes a convex curve and if c 0 = 0, then the corresponding curve remains convex for all times. Indeed, by Theorem 1.3, the sign of κ 0 = ∂ s θ 0 is preserved. Since the initial curve is simple and the winding number is preserved along the flow, we have ω = ±1 for all t ≥ 0 by Hopf's Umlaufsatz. Thus, L 0 |κ(t, s)| ds = 2π for any t ≥ 0. Fenchel's Theorem yields that the evolving curve remains convex for all t ≥ 0, in particular it remains simple. For c 0 = 0, this is a distinctive advantage of the second order system (1.6) over the classical fourth order elastic flow, as simple curves generically can become nonsimple, see [START_REF] Miura | Optimal thresholds for preserving embeddedness of elastic flows[END_REF].

Remarkably, the statement of Theorem 1.3 can, in general, not be extended to the case c 0 = 0. We give an example with |c 0 | > 0 arbitrarily small. For a numerical example, see Figure 6. 3.4. Nonnegativity of the density. For a physical mass density ρ, only a positive sign is meaningful. We state a condition on β which gives a lower bound on ρ and particularly enables us to control its sign. Compared to the situation of Theorem 1.3, the evolution equation for ρ in (1.6) is not linear in ρ. This asks for stricter assumptions on β, which we again show to be sharp, see Example 3.10.

Proposition 3.8. Let x 0 ∈ R. Let β ∈ C ∞ (R) be such that β ≥ 0 on [x 0 , ∞) and β (x 0 ) = 0.
Let (θ, ρ) be the global solution of (1.6) with admissible initial datum (θ 0 , ρ 0 ).

If ρ 0 ≥ x 0 on [0, L], then ρ ≥ x 0 on (0, ∞) × [0, L].
Proof. As in the proof of Theorem 1.3, consider the L-periodic extension of the global solution (θ, ρ) to all of R. Since β (x 0 ) = 0, the function

f (x) := β (x) x-x0 for x = x 0 , β (x) for x = x 0 is continuous. Choose R > 0 such that sup t∈[0,∞),s∈R |ρ| < R and K > 0 such that sup t∈[0,∞), s∈R sup x∈[-R,R] |β (x)| -f (ρ(t, s)) (∂ s θ(t, s) -c 0 ) 2 < 2K. (3.6)
Let ε, T > 0 be arbitrary. Define ρ ε := ρ -x 0 + ε exp(Kt) and

t * := sup t ∈ [0, T ] : min s∈R ρ ε (τ, s) > 0 for all τ ∈ (0, t) .
We assume that t * < T . Observe that with (1.6) and (1.9),

∂ t ρ ε = µ∂ 2 s ρ ε - 1 2 f (ρ)(∂ s θ -c 0 ) 2 ρ ε + 1 2 f (ρ)(∂ s θ -c 0 ) 2 εe Kt + Kεe Kt + 1 2L L 0 β (ρ ε + x 0 )(∂ s θ -c 0 ) 2 ds + 1 2L L 0 (β (ρ) -β (ρ ε + x 0 )) (∂ s θ -c 0 ) 2 ds. (3.7)
For t ∈ [0, t * ], ρ ε (t, s) + x 0 ≥ x 0 on R and hence β (ρ ε (t, s) + x 0 ) ≥ 0. Thus, the first integral in (3.7) has positive sign. Choosing ε so small that sup t∈[0,T ],s∈R (ρ + εe Kt ) ≤ R, we estimate the second integral in (3.7) for t ∈ [0, t * ] by

1 2L L 0 (β (ρ) -β (ρ ε + x 0 )) (∂ s θ -c 0 ) 2 ds ≥ - 1 2 sup [-R,R] |β | εe Kt sup t∈[0,∞),s∈R (∂ s θ -c 0 ) 2 .
Thus it follows with the definition of K in (3.6) that for t ∈ [0, t * ],

∂ t ρ ε > µ∂ 2 s ρ ε - 1 2 f (ρ)(∂ s θ -c 0 ) 2 ρ ε .
Arguing as in the proof of Theorem 1.3 we find t * = T , which implies that ρ ε ≥ 0 on [0, T ] × R.

The limit ε → 0 yields ρ ≥ x 0 on [0, T ] × R. Since T was chosen arbitrarily, the claim follows.

Remark 3.9. With the same arguments it can be shown that for β ∈ C ∞ (R) such that β ≤ 0 on (-∞, x 0 ] and β (x 0 ) = 0 for some

x 0 ∈ R, ρ 0 ≤ x 0 on [0, L] implies that ρ ≤ x 0 on (0, ∞) × [0, L].
The following example shows that it is necessary to impose some conditions on β in order to control the sign of ρ.

Example 3.10. Let x 0 , R ∈ R, x 0 > R and suppose that β (x 0 ) ≥ β (x) for all x ∈ [x 0 , R].

Assume ω = 0 and c 0 = 2πω L . Consider an admissible initial datum with

κ 0 ≡ 2πω L , x 0 ≤ ρ 0 ≤ R, ρ 0 ≡ x 0 on [a, b], ρ ≡ x 0 on [0, L] for some nontrivial [a, b] ⊂ [0, L]. For s ∈ [a, b],
(1.6) and (1.9) imply

∂ t ρ(t, s) t=0 = - 1 2 2πω L -c 0 2 β (x 0 ) - 1 L L 0 β (ρ 0 (s)) ds < 0.
Thus, on [a, b] the density is not bounded from below by x 0 for t > 0.

3.5. Embeddedness. We now discuss the (non)preservation of embeddedness. The curve γ described by the angle function θ will no longer satisfy a second order parabolic equation (not even one with Lagrange multipliers), but a nonstandard integro-differential equation instead. Indeed, if θ evolves according to (1.6), we may integrate (1.3) to describe the evolution of γ.

Denoting by n = (-sin θ, cos θ) the usual normal vector field along γ, by integration by parts we find

∂ t γ = β(ρ)(∂ 2 s γ -c 0 n) + s 0 ∂ s γ β(ρ)κ(κ -c 0 ) dr + s 0 n(λ θ1 sin θ -λ θ2 cos θ) dr + v(t).
Here v(t) ∈ R 2 attributes for ∂ t γ(t, 0) and the boundary term arising at s = 0. Note that the second term on the right hand side still contains κ, a term of order two, in a nonlocal way. While it is possible to express θ and thus the right hand side entirely in terms of γ and its derivatives, the resulting evolution equation is rather complicated and of nonstandard structure.

In particular, in contrast to the curve shortening flow (cf. [START_REF] Gage | The heat equation shrinking convex plane curves[END_REF]), we cannot rely on classical maximum principles to show the preservation of embeddedness. Instead, we use a recent energybased argument [START_REF] Miura | Optimal thresholds for preserving embeddedness of elastic flows[END_REF] to conclude preservation of embeddedness for explicitly small initial energy. Note that ω = ±1 for any embedded curve by Hopf's Umlaufsatz.

Proposition 3.11. Let C 2T ≈ 146.628 be as in [32, Theorem 1.1]. Let (θ, ρ) be the global solution of (1.6) with admissible initial datum (θ 0 , ρ 0 ). Suppose that θ 0 describes an embedded curve with rotation index ω = 1 and (θ 0 , ρ 0 ) satisfies

E µ (θ 0 , ρ 0 ) ≤ inf R β 2 C 2T L -4πc 0 + Lc 2 0 . (3.8)
Then θ(t, •) describes an embedded curve for all t > 0.

Remark 3.12. If inf R β > 0, then the above threshold is nontrivial, i.e. there exist an admissible initial datum (θ 0 , ρ 0 ) satisfying (3.8). Indeed let ω = 1, ε > 0 and let ν ∈ R such that β(ν) ≤ inf R β + ε. Consider ρ 0 ≡ ν and let θ 0 (s) = 2πs L . Then, we have

E µ (θ 0 , ρ 0 ) = β(ν) 2 4π 2 L -4πc 0 + Lc 2 0 .
Using that 4π 2 < C 2T it follows that the assumptions of Proposition 3.11 are satisfied for ε > 0 small enough. Moreover, 4π 2 < C 2T also yields that the right hand side of (3.8) is positive if inf R β > 0.

Proof of Proposition 3.11. Let t > 0. If (θ 0 , ρ 0 ) is stationary, then there is nothing to show. Thus, by (3.1), we may assume that the energy is strictly decreasing, i.e. E µ (θ(t, •), ρ(t, •)) < E µ (θ 0 , ρ 0 ). Moreover, (3.1) and the assumption yield that

L 0 κ(t, s) 2 ds ≤ 2 inf R β E µ (θ(t, •), ρ(t, •)) + 4πc 0 -Lc 2 0 < 2 inf R β E µ (θ 0 , ρ 0 ) + 4πc 0 -Lc 2 0 ≤ C 2T L .
Now, θ(t, •) describes a closed curve with rotation index one, and hence this curve must be embedded by [START_REF] Miura | Optimal thresholds for preserving embeddedness of elastic flows[END_REF]Theorem 1.4].

3.6. Symmetry. The following section is inspired by [START_REF] Linnér | Some properties of the curve straightening flow in the plane[END_REF]. We restrict ourselves here to ω = 1.

3.6.1. Rotational symmetry. Without further comment, in this section, we frequently identify (θ -φ, ρ) with its L-periodic extension to R. Here, φ as in (2.1).

Definition 3.13. Let ω = 1, (θ, ρ) ∈ C ∞ ([0, L]) and k ∈ N with k ≥ 2. If (θ-φ, ρ) is L k -periodic, we call the heterogeneous curve described by (θ, ρ) k-fold rotationally symmetric. Remark 3.14. We gather some immediate consequences of rotational symmetry.

(i) The L k -periodicity of θ -φ is equivalent to demand that

θ(s) = θ s -nL k + 2πn k for s ∈ nL k , (n+1)L k and n = 0, 1, . . . , k -1. (3.9) (ii) If θ -φ is L
k -periodic, then θ describes a closed curve. Indeed, using (3.9) we have

L 0 sin θ(s) ds = k-1 n=0 (n+1)L k nL k sin θ(s) ds = k-1 n=0 (n+1)L k nL k sin θ s -nL k + 2πn k ds = L k 0 k-1 n=0 sin θ(s) + 2πn k , which is zero for k ≥ 2 since k-1 n=0 sin θ + 2πn k = Im exp(iθ) k-1 n=0 exp(i 2πn k ) = Im exp(iθ) 1 -exp (2πi) 1 -exp 2πi k = 0.
Analogously, we obtain Here, Rot(α) is the counterclockwise rotation by the angle α. Since additionally ρ s-nL k = ρ(s), the graph of the heterogeneous curve described by (θ, ρ) indeed possesses a k-fold rotational symmetry, see Figure 3.

We show that the flow (1.6) preserves k-fold rotational symmetry for all k ∈ N, k ≥ 2. Proposition 3.15. Let ω = 1 and k ≥ 2. Let (θ, ρ) be the solution of (1.6) with admissible initial datum (θ 0 , ρ 0 ). If (θ 0 , ρ 0 ) describes a k-fold rotationally symmetric heterogeneous curve, then so does (θ, ρ) for all t ∈ (0, ∞).

Proof. We consider the L-periodic extension of (u, ρ)

:= (θ -φ, ρ) to R. Notice that (u, ρ) ∈ C ∞ ((0, ∞) × R). We define (ũ, ρ) ∈ C ∞ ((0, ∞) × R) by (ũ, ρ)(t, s) := (u, ρ) t, s -L k and ( θ, ρ) ∈ C ∞ ((0, ∞) × R) by ( θ, ρ) := (ũ + φ, ρ). Notice, that θ ∈ C ∞ ((0, ∞) × R) is not periodic.
Our intention now is to show that the restriction of ( θ, ρ) to (0, ∞) × [0, L] solves (1.6) with initial datum (θ 0 , ρ 0 ). By uniqueness of the solution (see Theorem 1.1), it then follows that ( θ -φ, ρ) = (θ -φ, ρ) and thus for s ∈ R. Thus, the heterogeneous curve described by (θ, ρ) is k-fold rotationally symmetric.

(θ -φ, ρ)(t, s) = (ũ, ρ)(t, s) = (u, ρ) t, s -L k = (θ -φ, ρ) t, s -L k 0 2π 
It is clear that ( θ, ρ) ∈ C ∞ ((0, ∞) × [0, L]). With (2.1) and the L-periodicity of u, we have

θ(t, s) = ũ(t, s) + φ(s) = u t, s -L k + φ s -L k + φ L k = θ t, s -L k + 2π k for (t, s) ∈ (0, ∞) × L k , L , θ(t, s) = θ t, s -L k + L + 2π k -2π for (t, s) ∈ (0, ∞) × 0, L k . (3.11) 
Using this and trigonometric identities, we see that for t ≥ 0 and s ∈ [0, L], ( θ, ρ) solves Inserting (3.12) into (3.13) and comparing to (1.8), a short computation yields α 1 = λ θ1 ( θ, ρ) and α 2 = λ θ2 ( θ, ρ). Moreover, we check that λ ρ ( θ, ρ) = λ ρ (θ, ρ) and

∂ t θ = ∂ s β(ρ)(∂ s θ -c 0 ) + α 1 sin θ -
∂ t ρ = µ∂ 2 s ρ - 1 2 β (ρ)(∂ s θ -c 0 ) 2 + λ ρ ( θ, ρ).
Next, we notice that ( θ, ρ) satisfies the boundary conditions

θ(t, L) -θ(t, 0) = ũ(t, L) + φ(L) -ũ(t, 0) = u t, L -L k + 2π -u t, -L k = 2π,
ρ(t, L) = ρ(t, 0), and ∂ s ( θ, ρ)(t, L) = ∂ s ( θ, ρ)(t, 0) for all t > 0. Since (θ 0 -φ, ρ 0 ) describes a k-fold rotationally symmetric heterogeneous curve, we know with (3.11) and Remark 3.14 (i) that

lim t→0 ( θ, ρ)(t, s) = lim t→0 θ t, s -L k + 2π k , ρ t, s -L k = (θ 0 , ρ 0 )(s) (in C 2+α ([0, L]
) for all α ∈ (0, 1)) for s ∈ L k , L and analogously for s ∈ 0, L k . Hence, ( θ, ρ) solves (1.6) with initial datum (θ 0 , ρ 0 ).

A distinctive feature of rotationally symmetric configurations is that the Lagrange multipliers λ θ1 and λ θ2 vanish.

Lemma 3.16. Let k ≥ 2 and let (θ, ρ) ∈ C ∞ ([0, L]) describe a k-fold rotationally symmetric heterogeneous curve. Then λ θ1 (θ, ρ) = λ θ2 (θ, ρ) = 0.
Proof. With the L k -periodicity of ρ and with (3.9) we obtain that

L 0 -sin θ cos θ ∂ s β(ρ)(∂ s θ -c 0 ) ds = k-1 n=0 L k 0 -sin θ + 2πn k cos θ + 2πn k ∂ s β(ρ)(∂ s θ -c 0 ) ds.
This sum is zero as we have seen in Remark 3.14 (ii). With (1.8), this yields λ θ1 = λ θ2 = 0.

The vanishing of λ θ1 and λ θ2 gives the following extension of Lemma 2.11. If ω = 1, c 0 = 2π L and (θ, ρ) is a constrained critical point with constant curvature, which describes a k-fold rotationally symmetric configuration, then L 1 ({x : β (x) = 0}) = 0 implies ρ ≡ ν. Furthermore, Lemma 3.16 together with Proposition 3.15 enables us to prove Theorem 1.4.

Proof of Theorem 1.4. With Proposition 3.15 we know that the solution (θ -φ, ρ) remains L kperiodic for all t ≥ 0. Hence, Lemma 3.16 implies that λ θ1 (t) = λ θ2 (t) = 0 for all t ≥ 0. This is why (3.2) can be written as In Example 3.7, we saw that convexity may not be preserved for c 0 = 0. With a small modification of the density, the example can be made rotationally symmetric, so that convexity (κ 0 ≥ 0) is still lost, while the bound κ 0 ≥ c 0 is preserved by Theorem 1.4.

∂ t (κ -c 0 ) = β(ρ)∂ 2 s (κ -c 0 ) + 2∂ s (β(ρ))∂ s (κ -c 0 ) + ∂ 2 s (β(ρ))(κ -c 0 ). ( 3 
3.6.2. Axial symmetry. We characterize axial symmetry of heterogeneous curves (after a possible shift in the s-argument) as follows.

Definition 3.17. Let (θ, ρ) ∈ C ∞ ([0, L]). We call the heterogeneous curve described by (θ, ρ) axially symmetric, if

(∂ s θ, ρ)(s) = (∂ s θ, ρ)(L -s) for s ∈ [0, L]. (3.15)
Remark 3.18. Axial symmetry implies the following properties.

(i) Integrating (3.15) we obtain the equivalent condition (3.15) and γ(0) ∈ R 2 be as in (3.10). A computation shows that

θ(s) = θ(L) + θ(0) -θ(L -s) for s ∈ [0, L]. (3.16) (ii) Let (θ, ρ) ∈ C ∞ ([0, L]) satisfy
Ref θ(0) -π 2 γ(s) = γ(L -s),
where Ref(α) represents the reflection about an axis through the origin with angle α to the x-axis. Since additionally ρ(s) = ρ(L -s), (3.15) indeed implies that the corresponding heterogeneous curve is axially symmetric, see Figure 4. (iii) A short computation, relying on (3.16) and the preservation of the integral of the inclination angle [START_REF] Dall'acqua | A dynamic approach to heterogeneous elastic wires[END_REF]Lemma 2.3], implies that for a solution (θ, ρ) describing an axially symmetric curve for all times t ≥ 0, we have θ(t, 0) = θ 0 (0). We show that if the initial datum describes an axially symmetric heterogeneous curve, then this also applies to the solution for all t > 0.

γ(0) γ L 2 α 0 L 2 L 0 π 2π θ ρ κ s
Proposition 3.19. Let ω = 1 and (θ, ρ) be the solution of (1.6) with admissible initial datum (θ 0 , ρ 0 ). If (θ 0 , ρ 0 ) describes a heterogeneous curve which is axially symmetric, then so does (θ, ρ) for all t ∈ (0, ∞).

Proof. Let (θ, ρ) be the solution of (1.6) with initial datum (θ 0 , ρ 0 ). We define

( θ, ρ)(t, s) := θ 0 (L) + θ 0 (0) -θ(t, L -s), ρ(t, L -s)
for (t, s) ∈ (0, ∞) × [0, L] and show that ( θ, ρ) solves (1.6) with the same initial datum (θ 0 , ρ 0 ). By uniqueness of the solution, it follows that (θ, ρ)

= ( θ, ρ) in [0, ∞) × [0, L]. This yields (∂ s θ, ρ)(t, s) = (∂ s θ, ρ)(t, L -s)in [0, ∞) × [0, L].
Thus, (θ, ρ) describes an axially symmetric heterogeneous curve for all t > 0.

It is clear that ( θ, ρ) ∈ C ∞ ((0, ∞) × [0, L]). Since ∂ s θ(s) = (∂ s θ)(L -s), ∂ 2 s θ = -(∂ 2 s θ)(L -s) and ∂ s ρ(s) = -(∂ s ρ)(L -s), we see that ∂ t θ = β(ρ)∂ 2 s θ + β (ρ)∂ s ρ(∂ s θ -c 0 ) + α 1 sin θ -α 2 cos θ.
Here, we have α 1 (t) = λ θ1 (θ, ρ) cos θ 0 (L) + θ 0 (0) -λ θ2 (θ, ρ) sin θ 0 (L) + θ 0 (0) and α 2 (t) = λ θ1 (θ, ρ) sin θ 0 (L) + θ 0 (0) + λ θ2 (θ, ρ) cos θ 0 (L) + θ 0 (0) (by using trignometric identities). Similarly,

L 0 sin θ ds = sin θ 0 (L) -θ 0 (0) L 0 cos θ ds -cos θ 0 (L) -θ 0 (0) L 0 sin θ ds = 0.
Analogously, we obtain L 0 cos θ ds = 0. Thus, θ describes a closed curve. As in the proof of Proposition 3.15 one shows that this implies that α 1 = λ θ1 ( θ, ρ) and α 2 = λ θ2 ( θ, ρ). Moreover, λ ρ ( θ, ρ) = λ ρ (θ, ρ) and

∂ t ρ = µ∂ 2 s ρ - 1 2 β (ρ)(∂ s θ -c 0 ) 2 + λ ρ ( θ, ρ).
It is readily checked that ( θ, ρ) satisfies the boundary conditions in (1.6). Using that (θ 0 , ρ 0 ) describes an axially symmetric configuration, we further have

lim t→0 θ, ρ (t, s) = θ 0 (L) + θ 0 (0) -θ 0 (L -s), ρ 0 (L -s) = (θ 0 , ρ 0 )(s) (in C 2+α ([0, L]
) for all α ∈ (0, 1)). Hence, ( θ, ρ) is a solution of (1.6) with initial datum (θ 0 , ρ 0 ) and the claim follows.

Remark 3.20. The proof of Proposition 3.19 shows that for an axially symmetric initial datum (θ 0 , ρ 0 ), the solution (θ, ρ) keeps θ(t, 0) = θ 0 (0) for all t ∈ [0, ∞).

Asymptotic behavior

Since stationary solutions of (1.6) are precisely the constrained critical points (compare (2.4)-(2.5) with (1.10)), we can already derive some properties of the limit (θ ∞ , ρ ∞ ) in Theorem 1.1 by using the classification of constrained critical points in Sections 2.2 and 2.3.

4.1.

Convergence to a homogeneous elastica under growth assumptions on β. In this section, we impose some additional assumptions on the initial datum and the model parameters, under which the limit of (1.6) is a homogeneous elastica.

Proof of Theorem 1.5. With (1.6), (1.9), and integration by parts we have

d dt L 0 (ρ -ν) 2 ds = 2 L 0 ρ ∂ t ρ ds = -2µ L 0 (∂ s ρ) 2 ds + L 0 (ν -ρ)β (ρ)(∂ s θ -c 0 ) 2 ds. (4.1)
We use (1.11) to estimate the second term on the right hand side of (4.1) and obtain 

d dt L 0 (ρ -ν) 2 ds ≤ -2µ L 0 (∂ s ρ) 2 ds + C L 0 (ν -ρ) 2 β(ρ)(∂ s θ -c 0 ) 2 ds ≤ -2µ L 0 (∂ s ρ) 2 ds + C sup s∈[0,L] (ν -ρ) 2 L 0 β(ρ)(∂ s θ -c 0 ) 2 ds ≤ -2µ L 0 (∂ s ρ) 2 ds + 2L CE µ (θ 0 , ρ 0 ) L 0 (∂ s ρ)
(ρ -ν) 2 ds ≤ -2 2π L 2 µ -L CE µ (θ 0 , ρ 0 ) L 0 (ρ -ν) 2 ds.
By Gronwall's inequality we conclude that

L 0 (ρ -ν) 2 ds ≤ L 0 ρ 2 0 ds -ν 2 L exp - 8π 2 L 2 µ -L CE µ (θ 0 , ρ 0 ) t .
Since CLE µ (θ 0 , ρ 0 ) < µ, it follows that ρ → ν in L 2 (0, L) exponentially fast. By the subconvergence result in Theorem 1.1, there is a sequence

t n → ∞ and θ ∞ ∈ C ∞ ([0, L]) such that (θ ∞ , ρ ∞ = ν) is a solution of (1.10) and θ(t n ) → θ ∞ in C 2 ([0, L])
. By Lemma 2.9, we find that (θ ∞ , ρ ∞ ) describes a homogeneous elastica.

If ω = 0, Lemma 2.4 yields that θ ∞ describes an ω-fold covering of a circle, so that necessarily

∂ s θ ∞ = 2πω L . From [10, Lemma 2.3], we conclude that L 0 θ ∞ ds = L 0 θ 0 ds, which implies θ ∞ (s) = φ(s) + 1 L L 0 θ 0 ds -πωL, s ∈ [0, L].
In particular, θ ∞ does not depend on the sequence (t n ) n∈N , and statement (i) follows from a subsequence argument. In the case ω = 0, the analyticity assumption on β and Theorem 1.1 imply that (θ(t), (1.10). Again, Lemma 2.9 implies that θ ∞ describes an elastica, so necessarily a multifold covered figure eight elastica by Lemma 2.4. Statement (ii) follows.

ρ(t)) → (θ ∞ , ρ ∞ = ν) in C 2 ([0, L]) as t → ∞, where (θ ∞ , ρ ∞ ) satisfies
The necessity for stronger assumptions in the case ω = 0 arises from the parametrization invariance of the energy, a general issue for geometric flows which occurs here despite working only with arclength parametrizations. Suppose that (θ, ρ) is a solution to (1.6) and (θ ∞ , ρ ∞ ) is a solution to (1.10) originating from the subconvergence result in Theorem 1.

1, i.e. (θ ∞ , ρ ∞ ) = lim n→∞ (θ(t n ), ρ(t n )) for some sequence t n → ∞. With φ as in (2.1), we write θ ∞ = u ∞ + φ.
Identifying u ∞ , ρ ∞ with their smooth L-periodic extensions to R, we find that for any s 0 ∈ R, the pair

( θ∞ , ρ∞ )(s) = (φ(s) + u ∞ (s -s 0 ), ρ ∞ (s -s 0 )), s ∈ [0, L], (4.2) 
is also stationary for any s 0 ∈ R. In fact, any other arclength parametrization of the corresponding curve leads to an angle function of this form. In particular, the set of possible limits (i.e. solutions to (1.10)) is nondiscrete, so that Lojasiewicz-Simon gradient inequalities are generically needed for deducing convergence from subconvergence. Hence, it is somehow surprising that this argument is not needed in case (i) of Theorem 1.5. The reason for this is that if (θ ∞ , ρ ∞ ) describes a circle, then any reparametrization of the form (4.2) with s 0 = 0 will result in adding a constant to the original angle function since θ ∞ is affine. Since by [10, Lemma 2.3], L 0 θ ∞ ds is determined by the initial datum, this degree of freedom is not present in the case ω = 0, resulting in full convergence. On the curve level, adding a constant to θ corresponds to a rotation of the associated curve about a fixed angle, i.e. for a circle there is a one-to-one correspondence between arclength reparametrizations and rotations. On the other hand, in the case ω = 0, the classification of solutions to the elastica equation in [START_REF] Linnér | Unified representations of nonlinear splines[END_REF]Proposition 3.3] allows us to determine all the parameters, except for the invariance due to (4.2), see also [START_REF] Müller | A Li-Yau inequality for the 1-dimensional Willmore energy[END_REF]Proposition B.8]. Hence the Lojasiewicz inequality (and consequently analyticity of β, cf. [START_REF] Rupp | On the Lojasiewicz-Simon gradient inequality on submanifolds[END_REF]Corollary 6.3]) is necessary to ensure convergence. For ω = 1, we have dealt with rotational symmetry of solutions. In this case we can prove exponential convergence of the curvature to a constant if the length allows for a circle with curvature κ ≡ c 0 . Proposition 4.1. Let ω = 1, c 0 = 2π L , and let (θ 0 , ρ 0 ) ∈ C ∞ ([0, L]) be an admissible initial datum describing a k-fold rotationally symmetric heterogeneous curve for some k ≥ 2. Then, as t → ∞, the solution (θ, ρ) to (1.6) converges exponentially fast to (θ ∞ , ρ ∞ ) with ∂ s θ ∞ ≡ c 0 , ρ ∞ ≡ ν. In particular, the limit describes a circle with constant density.

Proof. Let (θ, ρ) be the solution to (1.6) and recall

E θ (t) = 1 2 L 0 β(ρ)(κ -c 0 ) 2 ds with κ = ∂ s θ.
Due to Proposition 3.15 and Lemma 3.16, λ θ1 (t) = λ θ2 (t) = 0 for all t ≥ 0. Thus

d dt E θ = 1 2 L 0 β (ρ)∂ t ρ(κ -c 0 ) 2 ds + L 0 β(ρ)(κ -c 0 )∂ t κ ds ≤ sup (t,s) |β (ρ)| 2 inf (t,s) (β(ρ)) 2 ∂ t ρ L ∞ (0,L) L 0 (β(ρ)) 2 (κ -c 0 ) 2 ds - L 0 ∂ s β(ρ)(κ -c 0 ) 2 ds (4.3) Note that sup (t,s)∈[0,∞)×[0,L] |β (ρ)| < ∞ and inf (t,s)∈[0,∞)×[0,L] β(ρ) >
0 since by convergence of the flow, ρ(t, s) lies in a compact set for all (t, s). By the assumptions on ω and c 0 , the function κ(t) -c 0 has a zero in [0, L] for all t ≥ 0. Therefore, (4.3) and Wirtinger's inequality imply

d dt E θ ≤ C ∂ t ρ L ∞ (0,L) - 4π 2 L 2 L 0 (β(ρ)) 2 (κ -c 0 ) 2 ds,
where

C = C(β, θ, ρ) ∈ (0, ∞) is a constant independent of t ≥ 0. Now, (θ(t), ρ(t)) → (θ ∞ , ρ ∞ ) in C 2 ([0, L]) and (1.6) imply that ∂ t ρ L ∞ (0,L) → 0 as t → ∞. Consenquently, we have d dt E θ (t) ≤ - 4π 2 inf (t,s) β(ρ) 2L 2 E θ (t),
for t ≥ T large enough, whence Gronwall's lemma yields E θ (t) ≤ Ce -αt for some appropriate

C, α > 0. It follows that κ = ∂ s θ → c 0 in L 2 (0, L) for t → ∞ exponentially fast.
For the exponential convergence of ρ, we use (4.1) to conclude

d dt L 0 (ρ -ν) 2 ds ≤ -2µ 4π 2 L 2 L 0 (ρ -ν) 2 ds + sup (t,s) |ν -ρ| sup (t,s) |β (ρ)| inf (t,s) β(ρ) E θ (t).
Using E θ (t) ≤ Ce -αt , the exponential convergence ρ → ν in L 2 (0, L) follows with a Gronwall argument. Since 

→ (φ + 1 L L 0 θ 0 ds -π, ν) exponentially fast in C 2+ α([0, L]) for all α ∈ (0, 1 2 ). 
Proposition 4.1 implies that if ω = 1 and c 0 = 2π L , there exists no nontrivial constrained critical point which is k-fold rotationally symmetric. Moreover, in this setting, Proposition 4.1 implies that for t large enough, E θ (θ, ρ) is eventually monotonically decreasing (compare to Section 3.1).

4.2.

Convergence to a homogeneous elastica for large µ. In Proposition 2.6, we have seen that for ω = 0 and large µ, the ω-fold covering of the circle with constant density is the unique global minimizer. In Theorem 1.6, we present a time-dependent version of this result if ρ 0 ≡ ν. We point out that a constant initial density does not necessarily remain constant, see Remark 3.2, unless β (ν) = 0 or ∂ s θ 0 ≡ c 0 .

Proof of Theorem 1.6. We assume that L 0 θ 0 (s) ds = πωL. This is no loss of generality because if (θ, ρ) is the solution to (1.6) with initial datum (θ 0 , ρ 0 ) ∈ C ∞ ([0, L]), then by a direct computation using trigonometric identities, it is readily checked that (θ + r, ρ) is the solution to (1.6) with initial datum (θ 0 + r, ρ) for r ∈ R. Consider (µ j ) j∈N such that µ j → ∞ for j → ∞. By assumption, E µj (θ 0 , ρ 0 ) =: K is independent of j ∈ N. For any µ j , there exists a unique global solution (θ j , ρ j ) with initial datum (θ 0 , ρ 0 ) and this solution converges to some (θ

∞,j , ρ ∞,j ) ∈ C ∞ ([0, L]) in C 2 ([0, L]) for t → ∞ (see Theorem 1.1 and Proposition 2.2). Since the integral of the angle is preserved (cf. [10, Lemma 2.3]), we have L 0 θ ∞,j (s) ds = L 0 θ j (t, s) ds = L 0 θ 0 (s) ds = πωL for all t ∈ (0, ∞), j ∈ N. (4.4)
Thus, we want to show that

(θ ∞,j , ρ ∞,j ) → (θ c , ρ c ) in C 1 ([0, L]) for j → ∞, (4.5) 
cf. Remark 2.5. Corollary 2.8 and (4.4) then allow us to conclude that for j large enough, (θ ∞,j , ρ ∞,j ) = (θ c , ρ c ) and the statement follows.

Step 1: Uniform boundedness of (θ ∞,j , ρ ∞,j ) W 1,2 (0,L) , λ θ1 (θ ∞,j , ρ ∞,j ), λ θ2 (θ ∞,j , ρ ∞,j ). For this, we first observe that

L 0 (∂ s ρ ∞,j ) 2 ds ≤ 2 µ j K → 0, j → ∞. (4.6)
Since the integral of the density is fixed (see (1.5)), this yields ρ ∞,j → ν in W 1,2 (0, L) and in particular uniform boundedness of ρ ∞,j W 1,2 (0,L) and ρ ∞,j C([0,L]) . Thus, there is M ∈ R (not depending on j) such that

L 0 (∂ s θ ∞,j ) 2 ds ≤ K inf [-M,M ] β + 4πc 0 ω. (4.7)
With (4.4), we conclude that also θ ∞,j W 1,2 (0,L) is uniformly bounded. By [10, Lemma 4.1] and (4.7), the matrix Π -1 (θ ∞,j ) is bounded uniformly in j. Hence the bounds on θ ∞,j W 1,2 (0,L) and ρ ∞,j C([0,L]) imply that

λ θ1 λ θ2 (θ ∞,j , ρ ∞,j ) = Π -1 (θ ∞,j ) L 0 cos θ ∞,j sin θ ∞,j ∂ s θ ∞,j β(ρ ∞,j )(∂ s θ ∞,j -c 0 ) ds is bounded uniformly in j ∈ N.
Step 2: Uniform boundedness of (θ ∞,j , ρ ∞,j ) W 2,2 (0,L) . To show boundedness of the L 2 -norm of the second derivatives, we use that for all j ∈ N, (θ ∞,j , ρ ∞,j ) is a stationary solution, i.e. a solution of (1.10). This allows to use similar arguments as in the proof of Proposition 2.2. First, we observe that

∂ s β(ρ ∞,j )(∂ s θ ∞,j -c 0 ) L 2 (0,L) = λ θ1 sin θ ∞,j -λ θ2 cos θ ∞,j L 2 (0,L) .
From Step 1, it follows that β(ρ ∞,j )(∂ s θ ∞,j -c 0 ) is bounded in W 1,2 (0, L) uniformly in j ∈ N and hence also in C([0, L]). By (1.9), this implies boundedness of λ ρ (θ ∞,j , ρ ∞,j ) and with that, (1.10) implies that ∂ 2 s ρ ∞,j is uniformly bounded in L 2 (0, L). Now, we know that ρ ∞,j is uniformly bounded in C 1 ([0, L]) and since β(ρ ∞,j ) ≥ inf [-M,M ] β, this implies that ∂ 2 s θ ∞,j is uniformly bounded in L 2 (0, L). It follows that (θ ∞,j , ρ ∞,j ) is bounded in W 2,2 (0, L), independently in j ∈ N.

Step 3:

(θ ∞,j , ρ ∞,j ) → (θ c , ρ c ) in C 1 ([0, L]).
Due to Step 2 and (4.6), there exists a (not relabeled) subsequence such that (θ ∞,j , ρ ∞,j ) (θ ∞ , ν) in W 2,2 (0, L) and (θ ∞,j , ρ ∞,j ) → (θ ∞ , ν) in C 1 ([0, L]). The limit (θ ∞ , ν) satisfies the Euler-Lagrage equations (2.2) and (2.3). Hence, (θ ∞ , ν) is a constrained critical point. With Proposition 2.2 it follows that θ ∞ ∈ C ∞ ([0, L]). Further, Lemma 2.9 implies that θ ∞ describes an elastica. More precisely, (4.4) together with Remark 2.5 yields θ ∞ = 2πω L s = θ c . Finally, a standard subsequence argument yields (4.5).

Numerical experiments

5.1. Newton's method for the gradient flow. In the case ω = 1 and c 0 = 0, a numerical scheme to solve the static minimization problem (2.6) is proposed in [START_REF] Brazda | Bifurcation of elastic curves with modulated stiffness[END_REF]. We start by recalling the underlying idea and then explain how this can be extended to approximate solutions to (1.6).

Numerical approximation of the static minimization problem. The idea is to approximate the Euler-Lagrange equations (2.2)-(2.3) using finite differences, and to solve the resulting system with Newton's method. We start by explaining the process formally: assuming that we have discretized space, we consider η = ( θ, ρ) ∈ R 2N , the piecewise constant approximation of η = (θ, ρ), as well as the corresponding energy ʵ , along with Êθ , Êρ µ and Ĝ. More generally, in what follows, a hat marks a space discrete quantity. We denote the set of admissible solutions by {η : Ĝ[η] = 0 ∈ R d }, where d is the number of constraints, so that the approximated minimization problem (2.6) can by written as (5.1) min

Ĝ[η]=0 ʵ [η] .
The first order optimality conditions are given by

∇ ʵ [η] + D Ĝ[η] Λ = 0 , Ĝ[η] = 0 ,
where Λ ∈ R d are the corresponding Lagrange multipliers. We can solve this system iteratively: assuming that the tuple (η j , Λ j ) is known, we linearize ʵ and Ĝ around (η j , Λ j ) and get the following system, which is linear in (η j+1 -ηj , Λ j+1 -Λ j ):

         ∇ 2 ʵ [η j ] + Λ j D 2 Ĝ[η j ] (η j+1 -ηj ) +D Ĝ[η j ] (Λ j+1 -Λ j ) = -∇ ʵ [η j ] -D Ĝ[η j ] Λ j D Ĝ[η j ] (η j+1 -ηj ) = 0 .
. Extension to the time-dependent problem. Here, we use the same underlying idea and De Giorgi's minimizing movements to solve the corresponding L 2 -gradient flow (1.6) numerically. To do this, we perform a time discretization with time step τ , and consider the corresponding time discrete solution ηn τ = ητ (nτ ), which is updated as follows:

ηn+1 τ ∈ arg min Ĝ(ητ )=0 1 2τ ητ -ηn τ 2 L 2 + ʵ [η τ ] .
This new minimization problem has the same structure as that of (5.1), so we can solve it with the method sketched above. For τ and n given, this can be approximated as above, where the index n corresponds to the discretization in time and the index j to the discretization in space: ). The iteration is stopped at j ∞ , corresponding to (η n+1,j∞ τ , Λ n+1,j∞ τ ) fulfilling a convergence criterion, typically based on the L 2 -norm of the residual, i.e. the right-hand side. This system has the form (5.2)

                 I2N τ + ∇ 2 ʵ[η n+1,j τ ] + Λ n+1,j τ D 2 Ĝ[η n+1
I2N 0 0 0 + τ ∇ 2 ʵ[η n+1,j τ ] + Λ n+1,j τ D 2 Ĝ[η n+1,j τ ] D Ĝ[η n+1,j τ ] D Ĝ[η n+1,j τ ] 0 ηn+1,j+1 τ -ηn+1,j τ Λ n+1,j+1 τ -Λ n+1,j τ = - ηn+1,j τ -ηn τ 0 -τ ∇ ʵ [η n+1,j τ ] + D Ĝ[η n+1,j τ ] Λ n+1,j τ 0 .
5.2. Discretization. As alluded to earlier, we consider a homogeneous discretization of [0, L] of size N , with s i = iL/N = i∆s for 0 ≤ i < N . We can then define the space discrete functions ητ,i = ( θτ,i , ρτ,i ) = ( θτ (s i ), ρτ (s i )). From the periodicity conditions, we extend the definition to -1 ≤ i ≤ N by defining θτ,-1 = θτ,N-1 -2ωπ, θτ,N = θτ,0 + 2ωπ, as well as ρτ,-1 = ρτ,N-1 , ρτ,N = ρτ,0 . Because of the discontinuity in θ, we also need to define the forward finite difference operator D + θτ with

(D + θτ ) i = θτ,i+1 -θτ,i 0 ≤ i < N -1 θτ,0 + 2πω -θτ,N-1 otherwise .
We define the backward (resp. centered) finite difference operator D -θτ (resp. D c θτ ) in the same fashion. The corresponding energy is ʵ [ θτ , ρτ ]:

ʵ [ θτ , ρτ ] = ∆s 2 0≤i<N β(ρ τ,i ) (D c θτ ) i 2∆s -c 0 2 + µ ρτ,i+1 -ρτ,i ∆s 2 ,
and its gradient ∇ ʵ = [∇ θ ʵ ∇ ρ ʵ ] T is approximated by:

∇ θ ʵ[ θτ , ρτ ] i = ∆s β(ρτ,i-1) + β(ρτ,i) 2 (D-θτ ) ∆s -c0 - β(ρτ,i) + β(ρτ,i+1) 2 (D+ θτ ) ∆s -c0 /∆s ∇ρ ʵ[ θτ , ρτ ] i = ∆s β (ρτ,i) 2 (Dc θτ )i 2∆s -c0 2 -µ ρτ,i-1 -2ρτ,i + ρτ,i+1 (∆s) 2 ,
where the expression for ∇ θ ʵ is itself a finite difference, so that the divergence structure of the system is preserved at the discrete level. The constraints are written as:

Ĝ( θτ , ρτ ) = ∆s    0≤i<N ρτ,i -νL 0≤i<N sin θτ,i 0≤i<N cos θτ,i    , ∇ Ĝ( θτ , ρτ ) = ∆s ρτ cos θτ -sin θτ .
For the sake of readability, we do not write the Hessian matrices of ʵ and Ĝ.

5.3.

Stabilization of k-fold rotationally symmetric solutions. As shown in Section 3.6.1, in the case ω = 1, k-fold rotational symmetry is preserved along the flow. For k > 1, such solutions are not numerically stable in general, and roundoff errors might lead to an incorrect asymptotic profile. More precisely, let us define the real Fourier coefficients for u = θ -φ (which we identify with its periodic L-extension to R):

a u 0 = 1 L L 0 u(s) ds , a u i = 2 L L 0 u(s) cos 2π L is ds , b u i = 2 L L 0 u(s) sin 2π L is ds ,
where i ≥ 1. The real Fourier coefficients a ρ 0 , a ρ i and b ρ i are defined similarly. A solution is k-fold rotationally symmetric if u and ρ are L/k-periodic, i.e. if (5.3)

a u i = b u i = a ρ i = b ρ i = 0 if i ≥ 1 is not a multiple of k .
In these terms, for the solution associated with k-fold rotationally symmetric initial datum, it can happen that the coefficient for some mode < k, which is zero initially, becomes nonzero because of roundoff errors. If this mode is numerically unstable for the choice of parameters considered (esp. µ), this mode will grow and break the solution's symmetry. To address this issue, we define the spaces which satisfy condition (5. where the discrete L 2 -orthogonal projection is done using the Fast Fourier Transform. Note that we exclude the space spanned by constants from the projection space, i.e. we do not project on V k but on Ṽk (which does not contain constants), since the integrals of both θ and ρ are preserved along the flow, so that the first Fourier coefficient of the increment ηn+1 τ -ηn τ is always zero. 1. Parameters used in the figures below. In the last column, k is given when the initial datum (ρ 0 , c 0 ) is k-fold rotational symmetric.

5.4.

Results. Here we give some example behavior of the solutions. First, in the case ω = 1, we look at the possible loss of convexity and simplicity of the corresponding curve. Then, we give examples of the time evolution of the energies Ê, Êθ and Êρ µ for small µ, where we observe metastable energy plateaus. In this case, the bending energy Êθ makes up most of the total energy ʵ . Then, in the case ω = 2, we illustrate how the choice of β and µ can impact the limiting profile ( θ∞ , ρ∞ ). Finally, for ω = 0 and nonzero c 0 , we look at the convergence of two curves, the first to the figure eight and the second to the 2-fold covering of the figure eight. All examples here correspond to L = 2π. A quick overview of the corresponding figures is given in Table 1. 5.4.1. Loss of convexity. In this section, we present a simple example illustrating the loss of convexity discussed in Example 3.7. As initial datum, we consider θ0 to be the discretization of a stadium of aspect ratio roughly equal to 1:5. ρ0 is (the discretization of) a cosine function of amplitude 1. We take β : x → e -x , and fix the parameters c 0 = 1 and µ = 10 -1 . This situation is illustrated in Figure 5, where the loss of convexity is visible at time t ≈ 0.05. We must note that, here, unlike in Example 3.7, the initial datum ρ0 is not linear on the flat sides of the stadium. By taking a very elongated stadium, it is reasonable to believe that the corresponding curve will not only lose convexity but also simplicity. In practice, it is difficult to show this behavior because of our choice of discretization, which enforces a homogeneous distribution of the nodes. An elongated stadium would require a very large N to resolve the rounded ends in a satisfying way. Instead, in the following, we choose a different initial condition, which also leads to loss of simplicity. t = 0 t ≈ 0.05 Figure 5. Loss of convexity of a stadium with sides parallel to the x-axis. Here and in subsequent figures, the width of the stroke increases with |ρ|. For the sake of readability, the y-scale is amplified 10 times and the curve is shown with constant width in the inset. The gray lines are the tangents parallel to the x-axis, for reference. Here and in all the following figures, positive values of ρ are shown in blue, negative values in red. It is not shown here, but the curve becomes convex again at later times. 5.4.2. Simplicity (or embeddedness) along the flow. In the case ω = 1, we now investigate the possible loss of embeddedness of the curve along the evolution. We look at two different situations: first, starting with an initial datum corresponding to a convex curve, with c 0 > 2π/L. Second, for c 0 = 0, we carefully choose the initial datum such that θ0 corresponds to an embedded curve with a narrow neck. As the curve evolves, the sides of this neck come closer together and eventually cross.

t = 0 t ≈ 1.82 t ≈ 2 t ≈ 8 t ≈ 6500
Loss of embeddedness, first case. We start with c 0 = 3 > 2π/L, θ0 close, but not equal, to θc , and ρ0 corresponding to cos(4π/Ls), so that the initial datum is the discretization of a 2fold rotationally symmetric curve. The solution at different times is drawn in Figure 6. The associated curve loses convexity and then embeddedness at t ≈ 1.82, and the solution stays 2-fold rotationally symmetric, which is expected from the results of Section 3.6.1.

Loss of embeddedness, second case. In Proposition 3.11, the preservation of embeddedness of the curve described by θ is proven for ω = 1, provided the initial energy is small enough. Here, we provide a numerical example for which the discrete energy ʵ ( θ0 , ρ 0 ) is above the threshold given by Proposition 3.11, and for which embeddedness is lost along the flow.

To do so, we consider the choice of parameters β : x → 0.03 + bx 2 , b > 0 and c 0 = 0. The energy threshold in Proposition 3.11 is then

ε := inf β 2 C 2T L -4πc 0 + Lc 2 0 ≈ 0.35 ,
where we recall that we chose L = 2π, and that it holds C 2T ≈ 146.628.

As initial datum, we pick a curve which can be described as consisting of two lateral dropshaped lobes which are connected by a long, narrow neck. The inital datum ρ0 is chosen positive and distributed in the concave parts of the lobes. Heuristically, the concave parts of the lobes concentrate a large part of the energy, and will quickly be "flattened" by the flow, making the two sides of the middle channel cross. We show numerically that this crossing does occur for b = 8. A representation of the corresponding curve and initial distribution ρ0 is shown in Figure 7A and 7B. For b = 8, we have ʵ ( θ0 , ρ0 ) ≈ 16 > ε. Loss of embeddedness occurs at t 1 ≈ 4.1 × 10 -3 with ʵ ( θ(t 1 ), ρ(t 1 )) ≈ 10. The curve becomes simple again at t 2 ≈ 2.91 × 10 -2 with ʵ ( θ(t 2 ), ρ(t 2 )) ≈ 4.9 > ε. See Figure 7D. Note that at time t 2 the energy is still one order of magnitude larger than the threshold given by Proposition 3.11. Simplicity is then kept for t > t 2 .

(A) t = 0.

(B) t = 0, detail, y-scale amplified, ρ not shown. In the middle, the vertical size of the gap is 2p = 10 -2 .

(C) t ≈ 0.01 > t1, same scale as (B).

(D) t ≈ 0.04 > t2, same scale as (B). Here, we provide some examples of the time evolution of the different components of the energy, along with characteristic shapes of the solution as well as the associated density distribution ρ. We are interested in cases where the solutions display a relatively rich behavior, so we choose µ small, namely µ = 10 -3 . The bending stiffness β is chosen as β(x) = e x , and we take zero total mass νL. We consider two choices for the initial datum:

• The first with c 0 = 0, with low initial energy ʵ , with κ0 close to 2π/L = 1 and ρ0 almost constant, see Figure 8. • The second with c 0 = 0, with high initial energy, with κ0 and ρ0 oscillating significantly, see Figure 9. In the two cases, both θ0 and ρ0 are L/5-periodic, so that the initial datum is 5-fold rotationally symmetric, and the symmetry preserving results of Section 3.6.1 apply. In the second case, θ0 is not only L/5-periodic, but also L/10-periodic. The corresponding results are shown in Figure 8 and Figure 9, respectively. Because of the metastable nature of the evolution, both the time and the energy scales are logarithmic. Since µ is small, with our choice of parameters, the main contribution to the initial energy ʵ ( θ0 , ρ0 ) comes from the bending energy Êθ . The shapes of the corresponding curves are naturally rather different: in the first case, the solution goes close to the trivial state ( θc , ρc ) and spends some time there before changing to a pentagon-like curve, with positive values of ρ on the flat "sides" and negative values on the rounded "corners", which is in accordance with νL = 0 and β monotone increasing.

In the second case, the solution does not come close to the trivial state, and the "dents" of the initial conditions coarsen, so that θ goes from being L/10-periodic to L/5-periodic. Eventually, ( θ∞ , ρ∞ ) is identical to the first case, up to rotation. This seems to suggests that, for this choice of parameters, the periodicity of the limiting profile is dictated by the choice of ρ0 . However, one can take ρ0 to be L/20-fold periodic by keeping all other parameters as in Figure 9, so that the initial datum is then 10-fold rotationally symmetric. The final profile is observed to be also L/10-symmetric, as shown in Figure 10, matching the periodicity of θ0 and not that of ρ0 . This shows numerically that for µ small enough, there are k-fold rotationally symmetric critical points different from the homogeneous elastica, extending the picture drawn by Theorem 1.6. For relatively small values of µ and large values of a, the solution is cigar-(or stadium-) shaped, with a small additional loop at one end, which accounts for ω = 2, see Figure 11A and 11D. In those cases, Êθ can be made small for a curve with flat sections corresponding to large values of β(ρ) (and highly curved sections corresponding to small values) without making Êρ µ large thanks to the small value of µ. • First, θ0 is given by a hand-drawn curve, with nonconstant ρ0 . Here, c 0 = 2. See Figure 12. • Second, in a very rough attempt to look at the stability of the 2-fold covering of the figure eight, we consider θ0 given by two slightly offset figure eights. We pick c 0 = 0. See Figure 13. In both situations we take ν = 0 and β(x) = 0.1 + x 2 , a choice which fits the assumptions of Theorem 1.5 with C = 0, so that the limit is necessarily a (potentially multiple) covering of the figure eight. We observe convergence to the 1-fold covering of the homogeneous figure eight in both situations, which is expected in the first case. In the second case, this suggests that the multiple coverings of the figure eight are not stable under the flow, at least for this choice of β.

  s θβ(ρ)(∂ s θ -c 0 ) ds, (1.8) where Π -1 (θ)(t) denotes the inverse of the matrix Π(θ)(t) := L 0 sin 2 θ ds -L 0 cos θ sin θ ds -L 0 cos θ sin θ ds L 0 cos 2 θ ds .
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 1 Figure 1. Curve with dents.
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 372 Figure 2. Cigar-shaped curve (A) with linear density on [a, b] (B).
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  cos θ(s) ds = 0. (iii) If (θ, ρ) ∈ C ∞ ([0, L]) describes a k-fold rotationally symmetric heterogeneous curve and we choose s) ds = 0), a computation shows that for s ∈ nL /k, (n+1)L /k with n = 0, 1, . . . , k -1, we have Rot 2πn k γ s -nL k = γ(s).

Figure 3 .

 3 Figure 3. Example of a 3-fold rotationally symmetric configuration (θ, ρ).

α 2 0

 2 cos θ (3.12)with α 1 := λ θ1 (θ, ρ) cos 2π k -λ θ2 (θ, ρ) sin 2π k , α 2 := λ θ1 (θ, ρ) sin 2π k + λ θ2 (θ, ρ) cos 2πk . We use(3.11) and the fact that θ describes a closed curve to obtain cos θ ds = 0 for all t ≥ 0. In particular, this implies

. 14 )

 14 Since(3.14) has the same structure as (3.3), we can proceed as in the proof of Theorem 1.3 to show the claim.

Figure 4 .

 4 Figure 4. Example of an axially symmetric configuration (θ, ρ).

  2 ds, using (3.1), sup s∈[0,L] |ν -ρ| ≤ L 0 |∂ s ρ| ds and Cauchy-Schwarz. This yields d dt L 0

L 0 θ

 0 ds is preserved (cf. [10, Lemma 2.3]), we have θ → φ+ 1 L L 0 θ 0 ds-π as t → ∞ exponentially fast by the Poincaré-Wirtinger inequality. Theorem 1.1 and an interpolation argument imply that (θ, ρ)

  where I 2N is the identity matrix of size 2N . This is a linear system with unknown (η n+1,j+1 τ -ηn+1,j τ , Λ n+1,j+1 τ -Λ n+1,j τ ). The inner loop (i.e. the loop in j) is initialized by setting ηn+1,0

2 ,V

 2 3):Ṽk := span (cos(2 πs i /L)) i , (sin(2 πs i /L)) i : ∃q ∈ N s.t. = q k and ≤ N/2 k := Ṽk + constants.Then, in the Newton iteration, instead of setting ηn+1 τ

Figure 6 .

 6 Figure 6. Snapshots of the solution showing the loss of embeddedness for c 0 = 3, starting from a convex initial datum.
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 7543 Figure 7. Snapshots showing that a simple curve does not need to stay simple along the flow, even for c 0 = 0. The choice of parameters is that of Section 5.4.2, here with b = 8.

Figure 8 .

 8 Figure 8. Energy evolution for c 0 = 0, starting with relatively low κ -1 ∞ and 5-fold rotational symmetry.

Figure 9 .

 9 Figure 9. Energy evolution for c 0 = 0, starting with relatively large κ -1 ∞ and 5-fold/10-fold rotational symmetry.

Figure 10 . 5 . 4 . 4 .

 10544 Figure 10. Representation of the L/10-periodic limiting profile of the solution with parameters identical to those of Figure9, except that ρ0 is L/20-periodic. As in Figure9, θ0 is L/10-periodic.

Figure 12 .Figure 13 .

 1213 Figure 12. Convergence of an hand-drawn curve (black) to the figure eight (gray). µ = 10 -1 , c 0 = 2 and β(x) = 0.1 + x 2 is quadratic and positive. We observe convergence to a homogeneous elastica. The figure eight in the background is the 1-fold covering of the figure eight whose integral of the corresponding tangential angle θ matches that of the initial curve.

  For numerical examples, see Figures 6, 8 and 9. Remark 3.2. In view of Proposition 2.6 and Corollary 2.8, for µ large, E ρ

Table

  

	Description	Figure	N	L	µ	c 0	β(x)	ν	ω	k
	Loss of convexity	5	1440 2π	10 -1	1	e -x	0	1	2
	Loss of embeddedness for c 0 > 2π/L	6	720	2π	10 -3	3	e x	0	1	2
	Loss of embeddedness for c 0 = 0	7	1440 2π	1	0 0.03 + bx 2 1/π 1	2
	ʵ(t), c 0 = 0, low κ0 -1 ∞	8	720	2π	10 -3	0	e x	0	1	5
	ʵ(t), c 0 = 0, high κ0 -1 ∞	9	720	2π	10 -3	0	e x	0	1	5
	θ0 ( θ0 , ρ0 ) as µ increases L 10 -periodic, ρ0 L 20 -periodic	10 11	720 420	2π 2π 10 -2 to 5 0 10 -3 0	e x e x	0 0	1 10 2 -
	( θ0 , ρ0 ) as β decreases	11	420	2π	10 -2	0	e ax	0	2	-
	Figure eight	12	720	2π	10 -1	2	0.1 + x 2	0	0	-
	2-fold figure eight	13	1440 2π	10 -1	0	0.1 + x 2	0	0	-

As µ increases, large values in the gradient of ρ are penalized and the geometric part dominates, so that the curve becomes rounder as a result, cf. Figure 11B. Increasing µ further, in view of Theorem 1.6, it seems plausible that the solution should converge to ( θc , ρc ), although here the density ρ0 is not constant. This is what can be observed in Figure 11C. For what concerns a, i.e. β , as it gets smaller (with µ kept small), the gain in Êθ coming from a given oscillation of density distribution diminishes, so the oscillation increases, see Figure 11E. Eventually, as a becomes very small, this is balanced by the increase in Êρ µ , and the solution converges to the trivial state ( θc , ρc ), see Figure 11F. 5.4.5. Convergence to the figure eight for ω = 0. To conclude this numerical overview, we look at the case ω = 0, for which we recall that the only closed elasticae are multiple coverings of the figure eight, see Lemma 2.4. More specifically, we consider two cases: