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Abstract— Economic growth and global competition are 

pushing manufacturing companies to have several production 

sites, often relatively close to each other. We are interested in the 

maintenance management of geographically distributed 

production sites. This paper deals with the problem of unexpected 

failures that usually disrupt maintenance operations. The 

objective is to manage a fleet of homogeneous vehicles in charge of 

performing preventive and corrective maintenance operations at 

several production sites. The major difficulty lies in the number of 

sites to be considered, which makes the optimisation time 

exponential if the classical methods of the literature are used. 

Nevertheless, some studies allow to obtain an expected scheduling 

of maintenance operations considering the uncertain aspect of 

failures. The novelty of this paper is the development of an 

approach and an algorithm allowing to quickly and simply update 

the order of maintenance operations in case of unexpected events 

on line. Through an industrial case study in oil & gas field, we 

determine the optimal framework based on heuristics in which to 

modify the expected vehicle scheduling. The results show that with 

the appropriate parameters, simple rules can handle unexpected 

failures in a cost-effective way. 

Keywords—automation; manufacturing systems; maintenance 

scheduling; mobile maintenance workshop; vehicle rescheduling 

problem; 

I.  INTRODUCTION 

Every production system is subject to uncertain failures that 
must be considered in the activities of manufacturing companies  
[1]. Maintenance is one of the best-known solutions, consisting 
of organizing operations in the best case before failures and in 
the worst case after. The objective is to ensure the dependability 
of production equipment while optimising the costs of the 
resources involved (spare parts, operators and tools) [2]. 
Logically, the more production equipment a company has, the 
higher the maintenance costs are likely to be. This scale factor is 
usually compounded by the distance between the equipment 
being managed. Fortunately, pooling resources can help 
overcome these problems [3]. 

In this article, we examine the concept of distributed 
maintenance [4] with the aim of pooling maintenance resources 
in a central workshop (CMW). Unlike other strategies where 
each production site has its own maintenance resources, a 
mobile maintenance workshop (MMW) is designed in 
distributed maintenance to circulate common resources between 
sites. These are vehicles that act as physical links between 
production sites. A vehicle is supplied by the CMW and moves 

from one production site to another to perform maintenance 
operations in an optimal order. 

Several studies in the literature model and optimise the 
routing of MMW between production sites. If a site is considered 
as a customer with a certain demand and the MMW as a set of 
vehicles with a limited transport capacity, then a MILP (Mixed-
Integer Linear Programming) is appropriate to optimise the 
vehicle routing [5]. This first approach is similar to the 
resolution of a classical CVRP (Capacitated Vehicle Routing 
Problem) in Operations Research [6]. A homogeneous fleet of 
vehicles has to serve customers with a known demand [7]. 
However, demand from production sites is not determined due 
to the uncertain nature of equipment failures. 

To consider the constraints linked to the uncertainty of 
failures, [8] proposes a combination of two iterative models 
under the name of CMR (Combined Maintenance and Routing). 
The first model determines the optimal periodicity of 
maintenance operations for each production site. This model 
uses the probability distribution of the number of failures over 
time to estimate the optimal number of preventive maintenance 
operations to perform for each site. The second model takes the 
previously optimised periodic requests as input to calculate the 
shortest path between the sites to be visited. 

Although it considers the uncertainties associated with 
failures, the CMR model has certain shortcomings. Indeed, the 
journey of a vehicle is assumed to be cyclical between 
production sites. This assumption could work in a classical 
CVRP problem, but this is not the case when considering 
failures, as production sites may have a different maintenance 
periodicity. Thus, [9] proposes a model under the name of 
OMCR (Optimised Maintenance and Capacitated Routing) 
which, instead of optimising a cyclic path between production 
sites, considers a path linking all maintenance operations during 
a time horizon. 

Once the optimal vehicle path is determined offline, a new 
problem arises: what to do in case of an unexpected disruption 
online? This problem is known as the "Vehicle Rescheduling 
Problem" [10]. This paper focuses on this rescheduling problem 
which has not yet been solved in the distributed maintenance 
literature. In general, there are several rescheduling methods 
[11]. As shown in Figure 1, the first question to ask is whether it 
is possible to model vehicle path disruption scenarios. If the 
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answer is yes, the rescheduling is done offline considering the 
disruptions, otherwise it is done online using real-time trip 
tracking. We focus on the case where disruptions can be 
anticipated offline to define simple vehicle rescheduling rules 
for unexpected events. 

This paper is organised in five sections. After this 
introduction, the second section is devoted to assumptions and 
modelling. The third section implements experiments in the oil 
and gas field. The fourth section deals with the results obtained 
and the discussion. The last section concludes the paper by 
presenting the perspectives for future research. 

II. ASSUMPTIONS AND MODELLING 

A. Unexpected disruption online 

Let’s consider 𝑁 geographically distributed production sites 
(PS). 𝑚 vehicles are tasked to visit the PS over a time horizon 𝜏. 
Each vehicle starts at the central maintenance workshop (CMW) 

with a limited capacity of spare parts 𝑄. Preventive maintenance 
(PM) operations are optimally scheduled offline and assigned to 
each vehicle. Then, when scheduling is executed, the next PM 
operation to be performed by a vehicle 𝑘 ∈ {1,2, . . . , 𝑚} is 
denoted by 𝑖𝑘. Thus, 𝑖𝑘 is incremented each time a PM operation 
is completed. Once a vehicle is empty, it returns to the CMW to 
be supplied. 

As shown in Figure 2, the main assumption is that, during 
vehicle routing, the only disruptions to be considered are 
unexpected failures at the PS levels. In the online occurrence of 
an unexpected failure denoted by 𝑖𝑘

′ , the objective is to update 
the routing of the associated vehicle while minimising the 
downtime of the faulty equipment 𝑤 ′

𝑖𝑘
′  and the impact of 

rescheduling on routing costs. In this case, the scheduled PM 
will be transformed into corrective maintenance (CM) 
consisting in replacing the faulty equipment with a spare part as 
soon as possible. The other assumptions can be summarised as 
follows: 

• Each PS has one piece of equipment subject to uncertain 
failures. 

• A piece of equipment starts in “as good as new” 
condition, and, after a PM or a CM replacement, it 
returns to “as good as new” condition.  

• A PM or CM operation is a deterministic time 𝑇𝑀 spent 
by a vehicle in a PS. 

• Travel times between PSs are deterministic and the 
vehicles are reliable enough to be considered as never 
failing over the scheduling horizon. 

• If a failure occurs in a PS then the next PM operation of 
the faulty equipment becomes a CM with an associated 
penalty cost per unit of downtime (𝑐𝑤). 

In the following we will describe the methodology that will 
be used to reschedule vehicles in case of unexpected failures. 

B. Rescheduling approach 

This study aims to use a scheduling method from the 
literature and to include a rescheduling algorithm in case of 
unexpected failures. The scheduling of PM operations can be 

 

Fig. 2.  A case of online equipment failure 

 

  

Fig. 3.  Distributed Maintenance: offline scheduling and online rescheduling 

 

 

Fig. 1.  State of the art on Vehicle Rescheduling 

 



obtained by several methods. The most recent method in the 
literature is OMCR (Optimised Maintenance and Capacitated 
Routing) as explained in section 1. Figure 3 shows the general 
process of updating the routing of a vehicle online. The OMCR 
model is required to obtain offline the ordered list of PM 
operations to be performed, the scheduled PM start times {𝑠}𝑘 
and the expected waiting times between operations {𝑤}𝑘. Each 
operation corresponds to a single production site. 

Online, a tracking dashboard instantly provides the next PM 
𝑖𝑘 to be performed, for each vehicle 𝑘. And, if an unexpected 
failure occurs, the next CM of the failed equipment is denoted 
by 𝑖𝑘

′  (𝑖𝑘
′ ≥ 𝑖𝑘 in the event of failure; 0 otherwise). The time at 

which the failure occurs is denoted by 𝑇𝑖𝑘
′  and the effective 

downtime of the faulty equipment is 𝑤𝑖𝑘
′
′ . The novelty of the 

approach is the Dynamic Rescheduling Algorithm (DRA), 
which handles failures by making a trade-off between the 
downtime of the faulty equipment, the routing costs and the 
disruption of offline scheduling. Once the scheduling time 
horizon is over, it is necessary to determine a new schedule 
considering any changes in equipment parameters and the loop 
starts again. The DRA will be presented in detail in the next  
subsection. 

C. Dynamic Rescheduling Algorithm 

This is a set of two algorithms inspired by the back-insert 
and swap operators, which have already proven their 
performance in Operations Research [12]. It consists in 
optimally permuting some elements of a given task list, such as 
the input and output lists contain the same parts but not in the 
same order. The "swap" operator leads to the exchange of a pair 
of elements (𝑖, 𝑗) in the list, while the "back-insert" operator 
consists of removing an element from position 𝑗 and reinserting 
it into position 𝑖, where (𝑖 < 𝑗). These are heuristics with simple 
rules that can be used to modify the list of PM operations in case 
of an uncertain failure. 

The objective is to ensure that 𝑖𝑘
′  takes over from 𝑖𝑘 if a 

failure occurs. Then, the assigned equipment downtime could be 
reduced by prioritizing the CM over the other scheduled PM of 
the vehicle 𝑘. But attention should be paid to the potential cost 
of rescheduling. Therefore, it is necessary to define the 
frameworks in which an online rescheduling is cost effective. 
Thus, we define two parameters (𝛼, 𝛽) to be determined offline, 

in order to explore when it is profitable to change the schedule 
of a vehicle. 

The profit is considered to be the difference between the cost 
of maintenance before and after the rescheduling. We use the 
same maintenance cost function as in equation (31) of paper [7].  

𝑃𝑟𝑜𝑓𝑖𝑡 = 𝐶̅(𝑠𝑖) − 𝐶̅(𝑠𝑖
′)    𝑖 = 𝑖𝑘: 𝑖𝑘

′ (1) 

Where: {𝑠𝑖} is the set of PM start times before rescheduling and 
{𝑠𝑖

′} is the set after rescheduling.  

As shown in Figure 4, the first parameter 𝛼 is the minimum 
value of the discrete function 𝑓 such that the profit is maximised. 

𝑓 (𝑤𝑖𝑘
′
′ ) =

𝑤
𝑖𝑘
′
′

𝑤𝑖𝑘
′

(2) 

Where: 𝑤
𝑖𝑘
′
′ = 𝑠𝑖𝑘

′ − 𝑇𝑖𝑘
′  is the effective downtime of the faulty 

equipment and 𝑤𝑖𝑘
′  is the expected one. 

 The second parameter 𝛽 is the maximum value of the 
discrete function 𝑔 such that the profit is maximised.  

𝑔(|𝑠𝑖
′ − 𝑠𝑖|) = 𝑚𝑎𝑥(|𝑠𝑖

′ − 𝑠𝑖|)    𝑖 = 𝑖𝑘: 𝑖𝑘
′ − 1 (3) 

The smaller 𝛼 is, the less attention is paid to failures that 
occur earlier than expected. The higher the 𝛽, the more tolerable 
the differences between the start times of the rescheduled PM 
and the scheduled one are. Once the 𝛼 and 𝛽 values are set, it is 
simple and fast for a vehicle to determine whether or not to 
change its schedule in the event of a failure. 

The algorithm below presents the pseudo code of the DRA 
procedure to be applied online. Once the 𝛼 and 𝛽 values have 

been set offline, the downtime 𝑤𝑖𝑘
′
′  is calculated each time an 

equipment fails online.  If the ratio between the value obtained 
and the expected waiting time 𝑤𝑖𝑘

′  is greater than or equal to 𝛼, 

then the rescheduling can be carried out. Then if the difference 
between the start times of the operations after and before 
rescheduling is less than or equal to 𝛽 then rescheduling is 
performed using either the back-insert or swap operator. 

 

 

 

 
 

 
 
 
 
 
 

 
 
 
 
 
 

 

Fig. 4.  Definition of parameters (𝛼, 𝛽)  

 

Algorithm: DRA  
     - Inputs: 𝒊𝒌;  𝒊𝒌

′ ;  𝑻𝒊𝒌
′ ;  𝒔𝒊𝒌

′ ;  𝒘𝒊𝒌
′ ;𝜶;  𝜷 

     - Outputs: {𝒔𝒊} ∀ 𝒊 = 𝒊𝒌: 𝒊𝒌
′  

1. 𝑤𝑖𝑘
′
′ = 𝑠𝑖𝑘

′ − 𝑇𝑖𝑘
′  ;  // calculating the effective 

downtime 

2. 𝐢𝐟 𝑤𝑖𝑘
′
′ 𝑤𝑖𝑘

′⁄ ≥ 𝛼  𝐭𝐡𝐞𝐧 

3.      {𝑠𝑖
′} = Operation(𝑖𝑘; 𝑖𝑘

′ );   // Operation ∈
{Back_Insert; Swap}  

4.      𝐟𝐨𝐫 𝑖 = 𝑖𝑘: 𝑖𝑘
′ − 1 

5.             𝐢𝐟 |𝑠𝑖
′ − 𝑠𝑖| > 𝛽 𝐭𝐡𝐞𝐧 

6.                  break; 
7.             end if 
8.       end for 
9.       if  𝑖 = 𝑖𝑘

′ − 1 𝐭𝐡𝐞𝐧 

10.            {𝑠𝑖} = {𝑠𝑖
′}; // Rescheduling 

11.      𝐞𝐧𝐝 𝐢𝐟 
12. end if 
13. 𝑖𝑘

′ = 0 



 
 

The variables used in the proposed DRA algorithm are 
summarised as follows: 

• 𝑖𝑘: next PM of vehicle 𝑘  

• 𝑖𝑘
′ : next CM of vehicle 𝑘 

• 𝑇𝑖𝑘
′ : time at which the failure occurred 

• 𝑠𝑖: scheduled start time of PM 𝑖  

• 𝑠𝑖
′: rescheduled start time of PM 𝑖 

• 𝑤𝑖: expected waiting time before the next PM 𝑖 

• 𝑤𝑖
′: effective downtime before the next CM 𝑖 

• (𝛼, 𝛽): decision parameters for rescheduling 

In the following we will conduct experiments in the oil & gas 
domain to explore the relevance of the proposed algorithm. 

III. EXPERIMENTS 

Our case study involves the maintenance of 10 pumping 
stations spread geographically over a 300 km radius. Every 
pumping station has a pump that is subject to uncertain failures. 
Vehicles are used to visit the stations to ensure the dependability 
of the pumps. This case study is inspired by a real industrial case 
[8]. The OMCR provides the optimal scheduling of maintenance 
operations for each vehicle. 

The question that remains is: what is the best rescheduling 
strategy to adopt in the event of unexpected failures? We 
implement the DRA algorithm. The first objective is to 
determine the two parameters (𝛼, 𝛽) that produce the highest 
profit after rescheduling. As explained in the previous section, 
the DRA involves the swap and back-insert operators. Each of 
these operators allows for a different rescheduling. The second 

objective is thus to determine the most profitable operator for 
this case study.  

We use Arena software which is well suited for the 
simulation of discrete event systems. We perform the 
experiments on Windows 8, 64 bits machine, with an Intel(R) 
Core (TM) i7-10850H, CPU 2.70 GHz and 32 Go of RAM. The 
characteristics of each pump are presented in Table 1. The 
simulation allows several scenarios to be tested by varying the 
values of 𝛼 and 𝛽. The objective is to introduce random failures 
while the vehicles are performing the scheduling prescribed by 
the OMCR and to obtain the profit generated by the DRA 
algorithm. To do this, we use the different probability 
distributions 𝑓𝑖 (𝑡) provided for each equipment 𝑖. The (𝛼, 𝛽) 
values used for each scenario are as follows: 

𝛼 ∈ {0; 0.5; 1; 2; 4; 8} 𝑎𝑛𝑑 𝛽 ∈ {0; 5; 10; 20; 40; 80; 160} 

For example, for 𝛼 =  0.5 any failure occurring greater than 
half the expected time is considered. If 𝛽 = 5 ℎ𝑜𝑢𝑟𝑠, 
rescheduling is performed if and only if it does not disrupt the 
start times of maintenance operations by more than 5 hours. 
Recall that from the DRA algorithm, it can be deduced that if 𝛼 
is too small and 𝛽 is too large, there will always be a 
rescheduling. If 𝛼 is too large or 𝛽 is too small, there will never 
be a rescheduling. The objective in the following is to find the 
best trade-off. 

 Each of the 42 scenarios is simulated over a 30-day time 
horizon and replicated 40 times. A 95% confidence interval of 
the results is respected. In the next section the results are 
discussed. 

IV. RESULTS 

A. Analysis and interpretation 

The implementation of the proposed DRA algorithm 
highlights the importance of (𝛼, 𝛽) in the application of the 
back-insert (Figure 5) and swap (Figure 6) operators for 
rescheduling. The various experiments carried out thus make it 
possible to obtain several cases favourable or unfavourable to 
rescheduling. Indeed, in terms of cost, there are three main 
categories of profit: negative, positive and optimal. 

1) Unprofitable rescheduling 
Rescheduling is considered unprofitable when the profit is 

less than zero. For the back-insert operator, we have 4 out of 42 
scenarios where rescheduling is not profitable, representing 
9.52%. For the swap operator, we have 2 scenarios out of 42, or 
4.76%, i.e. twice as few as the back-insert operator. These cases 
occur when beta is relatively too large (𝛽 ≥ 80ℎ). A too high 𝛽 
value leads to too many reschedules, which significantly disrupt 
the start time of scheduled preventive maintenance operations. 
The values of 𝛼 involved are 0 (all failures are considered 
indiscriminately) or 4 (failures occur earlier than expected but 
rescheduling is costly). However, these values remain marginal 
compared to the rest of the scenarios. And it should be noted that 
without setting limits on rescheduling by 𝛼 and 𝛽, there would 
be a negative benefit (this corresponds to the case where alpha 
is zero and beta tends towards infinity). 

2) Profitable rescheduling 

TABLE I.  PUMP CHARACTERISTICS 

i CPMi
a($) TPMi

a(hour) Cwi
a($/hour) fi(t)

 b 

1 183 9 7,344 N(45,4) 

2 121 5 5,728 N(54,4.5) 

3 193 6 7,080 W(66,3.5) 

4 156 8 3,387 W(100,3.5) 

5 138 8 5,059 W(63,3.5) 

6 194 10 8,583 N(44,4.4) 

7 163 9 4,356 W(84,3.5) 

8 100 9 3,344 N(78,7) 

9 193 6 2,891 N(96,8.728) 

10 105 10 5,179 N(75,6.819) 

a. 𝐶𝑀𝑖
: service cost of replacing a pump; 𝑇𝑀𝑖

: time necessary to replace a pump; 𝑐𝑤𝑖
: downtime 

cost per time unit 

b. 𝑁(, ) denotes the Normal probability density function with mean  and standard 

deviation ; and 𝑊(, 𝑘) denotes the Weibull probability density function with scale 

parameter  and shape parameter k. [hours] 



Rescheduling is considered profitable when the profit is 
greater than or equal to zero. The majority of the scenarios are 
profitable, i.e. 90.48% for the back-insert operator and 95.24% 
for the swap operator. The (𝛼, 𝛽) pair is therefore useful for 
rescheduling as a decision parameter. Indeed, 42.86% of the 
scenarios do not modify the initial schedule despite the 
occurrence of unexpected failures in order to avoid additional 
costs. While 47.62% to 52.38% of the scenarios manage to 
change the original scheduling while reducing costs. The swap 
operator remains more cost effective than the back-insert 
operator. 

3) Optimal rescheduling 
Among the profitable rescheduling, there are considerable 

differences in the profits obtained, ranging from $0/ℎ to 
$282/ℎ for the back-insert operator and from $0/ℎ to $436/ℎ 
for the swap operator. The optimal couple for the first and 
second operator is successively (𝛼 = 1, 𝛽 = 80ℎ) and (𝛼 =
0.5, 𝛽 = 80ℎ). Therefore, for this case study, if the expected 
downtime of a pump is 4 days then it is optimal to perform 
rescheduling for this pump if and only if the following two 
conditions are met: 

(1) The unexpected failure occurs at least 2 days before the 
next pump visit. 

(2) The rescheduling does not change the other preventive 
maintenance by more than 80 hours or approximately 3 days. 

It is important to note that all these calculations prior to the 
rescheduling decision require only a few milliseconds.  

B. Industrial usefulness 

This study can be useful only for cases where the most 
representative unexpected events are equipment failures. 
However, in some cases there may be other unexpected events 
related to, for example, vehicle failures, traffic, operators, etc. 
Thus, in order to implement the DRA algorithm in other 
industrial applications, it would be necessary to first identify the 
different origins of unexpected events. It should then be 
determined whether the equipment failures are the most 
representative or not. The Pareto chart is one of the best-known 
tools that can be used in this respect. 

This study is inspired by the oil & gas sector but is 
representative of all industrial sectors (rail, aviation, road, 
maritime, etc.). Indeed, the probabilities of failure of a piece of 
equipment can be theoretically represented by a Weibull 
distribution or a normal distribution (the distributions we used 
in the experiments of this study) whatever the field studied. It is 
sufficient to determine the best parameters of one of these 
families of distribution, for other cases of study. 

We considered one piece of equipment per production site in 
this study. Then the more equipment there is in another industrial 
case study, the more it may be necessary to modify the DRA 
algorithm before implementing it. However, in the case where 
there is a large number of equipment per site, it is possible, for 
example, to obtain a failure law for each piece of equipment 
individually and to define the transport distance between 
equipment at the same site as zero. With this last approximation, 
the DRA remains industrially useful. 

V. CONCLUSION 

The objective of this paper was to propose an approach to 
rescheduling in distributed maintenance and an algorithm to 
ensure the cost effectiveness of such operations. We considered 
a set of vehicles in charge of the preventive maintenance 
operations of several geographically distributed production 
sites. As the scheduling of the operations of each vehicle was 
considered to be known, it was necessary to develop a method 
to deal with unexpected failures. The issue was therefore the 
rescheduling of the vehicles. Among the classical approaches in 
the literature, we have chosen to develop rules that are simple 
and quick to implement online by the vehicles. 

We have thus proposed a novel algorithm with the aim of 
optimising maintenance costs and ensuring the availability of 
equipment despite unexpected failures. We were able to 
experiment with an industrial case study. We have found that 
rescheduling is not always interesting. In some cases, it may be 
costly to change the scheduling of a vehicle in the event of an 
unexpected failure. It is necessary to pay attention to certain 
parameters that we have defined with the aim of knowing when 
rescheduling is profitable. This study highlights the impact of 
the rescheduling algorithm on profits in a distributed 
maintenance context. 

For future research based on this paper it would be 
interesting to study the influence of the geographical distribution 
of sites on the rescheduling strategy. In addition, the results 

 

Fig. 5.  Results of back-insert 

 

 

Fig. 6.  Results of swap 

 



obtained in this study could be compared with other methods 
that propose the use of standby vehicles in case of unexpected 
failures. It would also be interesting to study the case where the 
vehicle fleet is heterogeneous and thus consider the difference 
in capacity of each vehicle. Finally, it might be interesting to 
consider other types of unexpected events that might be more 
severe than equipment failures. 
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