

Simulation-Optimization of Smart Decentralized Network of Rainwater Harvesting Systems for Reducing Urban Drainage Flows

Ofer Snir

Prof. Eran Friedler

Assoc. Prof. Luca Vezzaro

Introduction

Runoff mitigation during significant events

Performance During Significant Events

Feb 25-26, 2010:

85 mm in 13 hours

Performance During Significant Events

Develop a simulation-optimization methodology for generating control policies of a

network of RWH systems for achieving two objectives:

reducing urban drainage flows and maximizing rainwater availability

<u>Requirement</u>

• Achieve both by using a simple optimization scheme without multi-objective optimization

Develop a simulation-optimization methodology for generating control policies of a

network of RWH systems for achieving two objectives:

reducing urban drainage flows and maximizing rainwater availability

<u>Requirement</u>

• Achieve both by using a simple optimization scheme without multi-objective optimization

• Water availability and flow reduction often compete

• Radar-based nowcasts have errors and change quickly

• Rain events' duration is longer than forecast horizon

• Long optimization runtime – irrelevant control policies

Simulation-Optimization Method

Drainage Flow

Concept

NÔVA TECH L'equ dans la ville Urban water

9

Simulation-Optimization

Genetic algorithm as optimization method

• Decision variables – valve opening %

• Internal kinematic wave model for flow routing

L'eau dans la ville Urb

n

L'eau dans la ville Ur

OVC

OVO

n

L'eau dans la ville U

Catchment and Rainfall Inputs

Catchment

 "Retrofitting" an existing catchment: 19 ha, 140 residential buildings, 10 m³ tanks

• Rooftop area – independent model

subcatchment-based control

Rainfall and Forecast

Rainfall and forecast

- 73 events at least 40 mm, 6 hr inter-event time
- Synthetic forecast data 3 hr forecast horizon, depth and temporal errors
- Simulations with two datasets perfect and synthetized forecast

Results

Performance Indicators

nôvo tech L'eau dans la ville Urban wa

• Peak flow reduction:

$$\frac{\max(Q_{baseline}) - \max(Q_{control})}{\max(Q_{baseline})}$$

• Water availability reduction:

$$\frac{\sum Water_{baseline} - \sum Water_{control}}{\sum Water_{baseline}}$$

Peak Flow Reduction

Water availability Reduction

25% - 0% reduction

60% - <5% reduction

Performance Examples

Feb. 2003

Dec. 2018

Nov. 2020

Nov. 2020

Flow reduction – 0% Water reduction – 0.7%

- RWH Controllable "buffer volume" for urban catchments
- Predictive control is successful in overcoming inherent shortcomings
- Method utilizes forecast to achieve intra-event recovery
- Future research real nowcasts, intra-event behavior

Single building model

RWH network control

Thank you for listening!

nark you for usering:

Flow routing by using the continuity eq. for open channels:

$$\frac{\partial Q}{\partial x} + \frac{\partial A}{\partial t} = 0$$
Lighthill and Whitham, 1955
$$Q = f(A) = \alpha \cdot A^{\beta}$$

$$\alpha \approx 0.501 \cdot \frac{D^{\frac{1}{6}} \cdot S^{\frac{1}{2}}}{n}, \beta \approx \frac{5}{4}$$
Wong and Zhou, 2002
$$\frac{\partial Q}{\partial A} = \alpha \cdot \beta \cdot A^{\beta - 1}$$

$$\alpha \cdot \beta \cdot A^{\beta - 1} \cdot \frac{\partial A}{\partial x} + \frac{\partial A}{\partial t} = 0$$

- Beit Dagan meteo station 1999-2022
- Min 40 mm, 6 hours inter-event duration (73 events)
- Forecast: 3-hour horizon , depth and temporal errors:

