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Introduction
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Dual Benefit of Rainwater Harvesting

Supply water while reducing urban drainage flows

Runoff mitigation during significant events 
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Performance During Significant Events

Feb 25-26, 2010:

85 mm in 13 hours

45 mm
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Performance During Significant Events
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Goals

Develop a simulation-optimization methodology for generating control policies of a 

network of RWH systems for achieving two objectives:

reducing urban drainage flows and maximizing rainwater availability

Requirement

• Achieve both by using a simple optimization scheme without multi-objective optimization
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Challenges

• Water availability and flow reduction often compete

• Radar-based nowcasts have errors and change quickly

• Rain events’ duration is longer than forecast horizon

• Long optimization runtime – irrelevant control policies
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Simulation-Optimization Method
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Simulation-Optimization
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Optimization

• Genetic algorithm as optimization method

• Decision variables – valve opening %

• Internal kinematic wave model for flow routing
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Model Predictive Control
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Catchment and Rainfall Inputs
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Catchment

• “Retrofitting” an existing catchment:     
19 ha, 140 residential buildings,              
10 m3 tanks

• Rooftop area – independent model

• subcatchment-based control
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Rainfall and Forecast

Rainfall and forecast

• 73 events – at least 40 mm, 6 hr inter-event time

• Synthetic forecast data – 3 hr forecast horizon, depth and temporal errors

• Simulations with two datasets – perfect and synthetized forecast
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Results
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Performance Indicators
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Peak Flow Reduction
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Water availability Reduction
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25% - 0% reduction

60% - <5% reduction



Performance Examples
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Flow reduction – 70%
Water reduction – 0.85%

EDf5 = 2.5 mm/hr

Total depth: 47 mm

Feb. 2003
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Flow reduction – 31%
Water reduction – 1.7%

EDf5 = 9.1 mm/hr

Total depth: 177 mm

Dec. 2018
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Flow reduction – 0%
Water reduction – 0.7%

EDf5 = 45.5 mm/hr

Total depth: 105 mm

Nov. 2020



26

Nov. 2020
Flow reduction – 0%
Water reduction – 0.7%



Summary

• RWH - Controllable “buffer volume” for urban catchments

• Predictive control is successful in overcoming inherent shortcomings

• Method utilizes forecast to achieve intra-event recovery

• Future research – real nowcasts, intra-event behavior
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Thank you for listening!

RWH network controlSingle building model
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Lighthill and Whitham, 1955

Wong and Zhou, 2002
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• Beit Dagan meteo station  - 1999-2022

• Min 40 mm, 6 hours inter-event duration (73 events)

• Forecast: 3-hour horizon , depth and temporal errors:
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