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Abstract: Dynamic job shop scheduling consists of scheduling jobs dynamically with different
routing on a set of machines. A feasible and quick solution can be computed using heuristics.
One well-known heuristic in job shop problems is selecting the priority dispatching rule (such as
giving priority to the job with the Shortest Processing Time called SPT). Nowadays, with the
application of industry 4.0 technologies such as sensors, Intelligent robots, etc., workshop data
are more accessible and can be exploited to find the appropriate dispatching rule depending on
the state of the shop. This work proposes a data-driven methodology for scheduling an AIV
(Autonomous Intelligent Vehicle) that supplies three workstations. Our approach is based on
data collected from an Arena simulation model fed to a supervised learning algorithm. This one
helps identify one among five dispatching rules for each scheduling decision.

Keywords: Job shop scheduling, AIV transporter, simulation-based supervised learning,
flexible layout

1. INTRODUCTION

Scheduling methods are well-known processes aiming to
improve the performance of manufacturing systems. In
this paper, our focus is on Job shop scheduling problems
(JSSP), which consist of scheduling jobs (products) that
need to be processed on a set of machines. Each job has its
own execution path. A feasible solution to this scheduling
problem can be achieved by scheduling all jobs on ma-
chines in a specific order that adheres to the predeter-
mined machines-execution precedence constraints. After-
ward, different performance indicators can be measured,
such as maximum lateness of jobs or maximum completion
time of all jobs (Azadeh et al., 2012). This last indicator
is referred to as makespan and is used for our research.

In real situations, jobs arrive dynamically, and decisions
must be made in real-time (Ramasesh, 1990). Such con-
text is referred to as dynamic scheduling. Moreover, in
a dynamic job shop, processing times are stochastic and
unexpected disruptions may occur. Disruptions and in-
terruptions can arise from a variety of sources, such as
machine breakdowns, material shortages, supplier delays,

⋆ This work is supported by the French National Research Agency
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changes in product specifications, and fluctuations in de-
mand (Farajzadeh et al., 2019). These unexpected events
can cause delays, production inefficiencies, and additional
costs. Rescheduling is one strategy to minimize the impact
of these disruptions and maintain production efficiency
(Yahouni, 2017; Uhlmann and Frazzon, 2018). The com-
bination of the dynamic behavior exhibited by the Job
Shop Scheduling Problem (JSSP) and its classification as
NP-hard makes it challenging to attain a feasible schedule
with optimal performance(Mohan et al., 2019). That is
why optimization methods such as branch and bound are
not feasible in real situations, significantly if the number
of jobs and resources increases (Wang, 2021). To cope
with this issue, heuristics can be used. One of the most
used ones is Priority Dispatching Rules (PDRs), such as
the Shortest Processing Time (SPT). The advantage of
PDRs is the ease of implementation and quick execution,
which gives credit to their ability to respond to dynamic
environments (Pickardt et al., 2013).

However, the drawback of these PDRs is they do not
guarantee an optimal solution. Hence, there is always
a capacity to improve the solution. Researchers showed
that a combination of different dispatching rules outper-
forms the use of only one for all processes (Pierreval and
Mebarki, 1997). Various methods have been applied to



find a suitable combination. Most current approaches focus
on using machine learning in JSSP (Seeger et al., 2022).
Supervised and Reinforcement learning are the most used
methods in predicting the best dispatching rule combina-
tions (Usuga Cadavid et al., 2020).

Selecting the dispatching rule depends on different crite-
ria, such as machines’ current state, transportation tasks,
etc. This last criterion plays a crucial role in improving
the schedule performance. Several studies have been done
about optimizing the transport of materials, and some of
them considered the AGV (Automated guided vehicles)
scheduling such as Mousavi et al. (2017). Unlike AGVs,
AIVs (Autonomous Intelligent Vehicles) are more con-
nected and do not require a movement zone. They are more
flexible and use navigation technology with mapping and
environmental recognition to go through their destination
(Martin et al., 2021). AIVs are intractable with industry
4.0 equipment such as IoT and can enroll in a real-time
decision-making process. Based on distances and obsta-
cles, they can select which job has priority to be trans-
ferred first to its destination (Usuga Cadavid et al., 2020).
This priority in transferring jobs substantially impacts the
scheduling of a shop and, therefore, its performance.

In this paper, we address the problem of scheduling a single
AIV in a dynamic job shop environment. The proposed
methodology is applied to a case study made of three work-
stations. This approach schedules jobs to be transferred to
machines (supposing that the AIV can only transfer one
job at a time). Such a decision impact the makespan (when
the number of jobs and their characteristics are supposed
to be known). Our main contribution is using a data-
driven approach to select the appropriate dispatching rule
at each decision process dynamically. We use simulation to
generate artificial data that are fed to a supervised learning
AIV scheduler algorithm. The scheduler predicts the PDR
to be used at the system’s current state.

The remainder of the paper is organized as follows: In
section 2, relevant studies are reviewed. In section 3,
the methodology of simulation-based supervised learning
to select the best combination of dispatching rules is
proposed. In section 4, a case study of a dynamic job
shop scheduling problem is introduced, and results are
discussed. Finally, the conclusion and future research gaps
are provided in the last section.

2. LITERATURE REVIEW

2.1 Machine learning in job shop scheduling problems

With the advancement of industry 4.0 technologies, the
manufacturing process’s real-time data has become more
accessible. This opened new opportunities for data-driven
decision-making and machine-learning techniques in JSSP.
Machine learning methods are suitable tools to predict the
best dispatching rules or jobs sequence on machines. The
mostly applied machine learning methods for scheduling
are supervised and reinforcement learning (Seeger et al.,
2022).

Reinforcement learning methods get considerable atten-
tion in production scheduling (Wang and Usher, 2004). For
instance, Belmamoune et al. (2022) proposed a Q-learning-
based approach that selects one out of four dispatching

rules in a job shop problem. The Q-learning agent uses
machine loads for calculating makespan-related rewards.
Another similar method is proposed in Lang et al. (2020).
The authors use a deep Q Networks approach with two
agents that allocate jobs to resources and select a se-
quence in each. This approach can be useful in a dynamic
scheduling environment where real-time decisions have to
be made. However, unlike supervised/unsupervised learn-
ing, they do not rely on historical data.

Supervised learning has gotten widespread attention in
JSSP (Seeger et al., 2022). Training these learning models
requires data. The correctness of data has a significant
impact on the learning accuracy of the model. That is
why several previous studies first solved the JSSP with
optimization methods and then used the data of optimal
schedules as a learning base for the supervised methods.

Such an approach was taken in Ingimundardottir and
Runarsson (2011), where GNU linear programming is used
to find the optimal schedule. A logistic regression model
based on the optimal model is trained to find the best
dispatching rule in each decision instance. Furthermore,
Jun et al. (2019) took a similar optimization approach to
a flexible job shop scheduling problem (FJSSP). They first
used mixed-integer linear programming (MILP) to find the
optimal solution as a learning base for the training set.
After that, a random forest classifier was introduced to
predict the priority in each pair of jobs. However, training
the dataset based on an optimization model is not possible
for all cases. Solving high-dimension JSSP (with many jobs
and machines) with optimization is not always feasible,
and simulation can be used to cope with this problem.

2.2 Simulation-based approaches

Dealing with JSSP in real manufacturing processes has
always been a challenge for factories as they have dynamic
behavior and stochastic process times. That is where the
importance of simulation in JSSP emerges. Da Silva et al.
(2014) considered random arrival of jobs and stochastic
processing time using simulation optimization approaches
to find the optimal PDR for the system. Also, Zahmani
et al. (2015) took the same path but selected the best
PDR for each machine and proved that using a combi-
nation of rules (PDRs) outperforms using a single rule.
However, simulation optimization can be time-consuming
as it should sometimes try all the possible combinations
of PDRs to select the best one. Hence, it is not always
feasible for real-time decision-making.

Many studies have tried to cope with real-time decision-
making. Turker et al. (2019) proposed a simulation deci-
sion support system that dynamically changes the PDR
based on the number of jobs waiting in the queues. If this
number falls within a critical value, the order of jobs is
changed using simulation.

Other approaches combined simulation and supervised
learning techniques. For instance, Mouelhi-Chibani and
Pierreval (2010) integrated a simulation optimization with
a neural network classifier to minimize the total flow time
in a flow shop scheduling workshop. This method does
not need a training dataset as parameters of the neural
network are selected over simulation optimization. The



drawback of this model is the time required to run the
simulation, especially for more complex problems. Further-
more, Doh et al. (2014) presented simulation optimization
on a flexible job shop with multiple process plans to op-
timize two objectives; total flow time and total tardiness.
Based on the simulation, they found the best dispatching
rule in a particular process plan. After that, they used
the simulation result to train the decision tree classifier to
predict the best PDR in each process plan.

Shahzad and Mebarki (2016) combined simulation, op-
timization, and decision tree to minimize the maximum
lateness in a dynamic job shop scheduling problem. They
introduced Tabu search, a metaheuristic method, to find
the best schedule and then trained the decision tree based
on that. The decision tree classifier can predict the prece-
dence of pair of jobs on a specific machine using binary
labels.

Studies above presented supervised classifiers to predict
the best dispatching rules. Instead of classifiers, Heger
et al. (2015) introduced Gaussian regression to see the
system’s performance with all the PDRs and selected the
optimum PDR in each state. They minimized the Mean
Tardiness for stochastic and dynamic job-shop scheduling.
However, the optimum global decisions are neglected in
this study as the authors were focused on the local op-
timum solution of the current state. A similar approach
is taken in our research as regression is selected over
classifiers to predict the best PDR. The selection of PDR
depends on many factors, such as transportation activities
(location of the transporter, transportation time, etc.).

2.3 AGV/AIV scheduling

Unlike the studies above that all considered job schedul-
ing, few studies have been done regarding transportation
scheduling inside the shop floors. Different PDRs are fre-
quently used to schedule and assign jobs to AGVs, such as
first come, first served (FCFS), shortest traveling distance
(STD), longest waiting time (LWT), and nearest vehicle
first (NVF), etc. (Hu et al., 2020).

Farahvash and Boucher (2004) introduced an agent-based
architecture for AGV transporters. AGV agents were in-
corporated with three other agents on the shop floor: cell
agents, material handling, and scheduling agents. They
proved that the performance of the routing (scheduling)
method relies on the current state of the AGVs.

Popper et al. (2021) presented a concurrent machine
job scheduling and AGV planning. They minimized the
makespan and total lateness using multi-agent reinforce-
ment learning (MARL). The state-action pair in the Q-
learning approach allows making a decision based on the
state’s data in each decision instance. Xue et al. (2018)
proposed a Q-learning method for multi-AGV flow shop
scheduling. The objective is to minimize the average job
delays and makespan. Once an AGV is assigned to trans-
port a job to a machine, it will select the job that waits
for the longest. Table-based Q-learning algorithms can be
effective in simple environments with a small number of
discrete states and actions. As the number of states and ac-
tions in the environment increases, the state space becomes
exponentially larger, which can lead to a dimensionality

problem. This means that it becomes increasingly difficult
to explore and learn optimal policies in high-dimensional
state spaces (Wang et al., 2021).

To deal with the dimensionality problem of traditional
table-based Q learning, in Hu et al. (2020), deep rein-
forcement learning for the real-time scheduling of AGVs
in a flexible shop is proposed. The objective is to minimize
makespan and delays. The algorithm’s actions are a vector
that specifies the scheduling PDR and the vehicle to be
dispatched by the selected job. Five PDRs are proposed:
FCFS, STD, Earliest due date (EDD), LWT, and Near-
est Load Point (NLP). Comparison is made with other
methods, such as Q-learning and single dispatching rules.
Deep Q-networks, however, have a limitation regarding
explainability, as the Q-values are acquired through a
complex neural network. This makes it challenging to com-
prehend how the network reaches its decisions (Kayhan
and Yildiz, 2021). Moreover, the scalability of action-based
reinforcement learning methods is restricted due to their
inability to train on small problems with limited workshop
layouts and generalize effectively to larger problems with
more jobs and varying layout configurations (Kayhan and
Yildiz, 2021).

This study proposes simulation-based supervised learning
to address explainability and scalability issues in the pre-
vious works and increase the workshop layout flexibility.

3. METHODOLOGY

In this section, details of our approach are demonstrated in
two phases: (1) Simulation and data generation, (2) using
multiple linear regression model to select the PDR that
optimizes the performance.

3.1 Data Generation

The first step in applying supervised learning is generating
data. The generated data should be large enough to
contain most of the possible and random situations of
the system. Our approach uses simulation to create the
data, as collecting big data from a real system is time-
consuming. Furthermore, simulation allows one to consider
the dynamic behavior of JSSP by entering stochastic
inputs for the system variables.

Two concepts of state and decision are explained; Each
state is defined as when AIV receives one/several requests
to transfer products and has to make a decision which
is using a dispatching rule to select which product has
priority. States are arrays of data that contain information
such as the number of remaining jobs, next processing time
of each job, transportation time of each transfer, etc. The
main state’s data is composed of two types of variables,
as shown in Table 1. The first ones are the static or
descriptive problem variables, such as the number of jobs.
The second type of variables are the dynamic variables;
they usually depend on the first type of variables and the
current state of the shop, such as AIV location.

The decision is the priority dispatching rule (PDR) in each
state, leading to the next job being transferred. Dispatch-
ing rules (PDRs) are given randomly as inputs through
simulation, and makespan is measured. We propose five



PDRs selected based on previous literature (Haupt, 1989).
Priority is with the job :

(1) With Shortest Processing Time (SPT)
(2) With Shortest Remaining Processing Time (SRPT)
(3) Goes to the Shortest Queue Length workstation

(SQL)
(4) Goes to the Lowest Mean Utility workstation (LMU)
(5) With Shortest Transfer Time (STT)

For simplicity, the makespan that corresponds to each de-
cision is measured. However, to avoid considering only the
actual (local) makespan at each state, the final makespan
is also considered and is calculated when the problem
simulation is finished. This value is assigned to all the
states (decisions) of the problem that led to it. Therefore,
at the end of the data generation process, we propose
for each state to have three possible evaluations called
Targets:

• Target 1 = Current (local) Makespan (after taking
the current decision)

• Target 2 = Final Makespan (after taking all deci-
sions),

• Target 3 = Target 1 + Target 2

Using this approach, many simulations can be executed.
Each simulation instance represents one type of problem
(number of jobs, processing times, etc.), and each line of
data represents a state (decision) of a problem. Each state
contains the corresponding variables (descriptive and dy-
namic ones), a random PDR, and the three corresponding
target values.

3.2 Data Preparation

After generating data, data preprocessing is necessary be-
fore applying machine learning methods. Data were gener-
ated by simulation, so there are no missing values. Besides,
there is no duplicate data as the design of the experiment
is applied to create unique problems and states. As the
selected machine learning method is linear regression, one-
hot encoding should be applied to categorical columns.
Finally, the data is classified into five different datasets
based on the PDRs. The reason is that the prediction
should mainly be influenced by PDRs. It will be helpful
to compare the results of applying different PDRs in the
same decision instance.

3.3 Multiple Linear Regression

For each PDR dataset, a linear regression (LR) model is
trained to predict our proposed targets. The reason for
choosing linear regression over other complex regressors,
such as neural networks and the random forest, is its

Table 1. Generated data

Problem Total number of jobs and machines
description Processing time of each workstation

Distances between all workstations

Dynamic Remaining number of Jobs on each workstation
Variables Current Completion time of each workstation (Ci)

Current AIV location and transfer time
Current queue length of each workstation
Current mean utility of each workstation

advantage in explainability and interpretability (Burkart
and Huber, 2021). Furthermore, linear regression is pre-
ferred over tree-based models as the relationship between
features and target is approximately linear. Features of
the linear models are all state data, and the target value
is the makespan of the production. Fig. 1 illustrates the
linear regression models in a block diagram.

Fig. 1. The block diagram of the proposed simulation-
based linear regression method

This will allow us, in real situations, whenever a decision
(state) is presented, to use the linear regression model and
predict the performance (target) of each PDR at each
state. The PDR that presents the best target value is
selected for the state. Fig. 2 indicates the process of finding
the best PDR once the model is proposed.

Fig. 2. Process of finding best dispatching rule in each
state using Linear Regression (LR) model

4. CASE STUDY

This case study is proposed to test the approach presented
in the previous section in a simple workshop with a small
number of machines and tasks. It proposes a dynamic
stochastic job shop scheduling problem. The job shop
consists of three different workstations (W1, W2, Q) and
a storage space for raw materials. W1 and W2 are assem-
bling workstations, and Q is a quality check workstation.
Two different types of jobs (Job1, Job2) are considered.
The first job has two operations: from the storage to as-
sembly W1 and then to the Quality check station (Q). The
second job goes from storage to W2 and then to Q. The
speed of AIV is assumed to follow a normal distribution
with the following parameters (µ = 4m/s, σ = 0.4m/s).
A distance matrix D is defined as the distance between
all stations. Values of the D matrix can define the layout



of the job shop. There are several numbers of Job1 and
Job2, and the workstations’ processing times are normally
distributed (µ, σ = µ

10 ). Fig. 3 indicates the model of the
case study.

Fig. 3. Routing of Job1 and Job2 on workstations

Fig. 4. Decisions of AIV

All the transfers are done by one AIV robot that can
handle one product at a time. AIV transmits raw materials
of Job1 and Job2 from storage to W1 andW2, respectively.
So whenever W1 and W2 require new raw materials for
Job1 and Job2 to assemble, they send their request to
the AIV robot. Furthermore, whenever W1 and W2 finish
their assembly, they will send a transfer request for finished
jobs to the Quality Control station. At some point, there
will be several transfer requests simultaneously (Fig. 4),
and the question is which workstation to serve first. Our
objective here is to assist the AIV scheduler in his decision
to optimize the system’s performance (makespan).

4.1 Data Generation using Arena

Simulation of this case study is made using Rockwell
Arena software with VBA blocks. Whenever AIV is free
to transfer, there is a state-decision pair. Making decisions
in a state leads to a new state. The decision is selecting
a PDR in each state, which means choosing the next
job to be transferred, which is taken randomly at each
state. Thanks to the simulation, 5500 distinct problems
are generated using a design of experiment based on the
problem description variables (Uy and Telford, 2009).
Each problem has a specified number of jobs, processing
times, and distances between workstations. The number
of arrival jobs ranged randomly between 2 to 50 for job1
and job2, and the mean of process times of the three
workstations ranged from 2 to 7 minutes for W1, W2, and
Q. Distance between stations ranged from 5m to 100m.
The mean speed of the AIV is assumed to be 4m/s for all
the problems.

Each simulation creates several rows of state data based
on the total number of AIV transfers. In total, more

Fig. 5. Data of a simulation replication with an example
of State 3: Current state with local makespan, State
20: Final state with final makespan

than 1,500,000 rows of state data are generated. Fig. 5
represents an example of the recorded data of one problem
out of 5500 problems. In this example, the simulation gen-
erated 20 states (decisions), and each state’s performance
was calculated. For instance, in state 3 (Fig. 5 ), Target1
(current Makespan) is 15.8225. The final Makespan (Tar-
get2) is then added when all decisions are taken (state 20 is
the last decision) and equal 170.065. In this case, Target3
equals 15.8225 + 170.065 for the third state. The PDRs
were chosen randomly at each state.

4.2 Result of linear regression and Comparison

The Simulation run of 5500 distinct problems in the Arena
took around two hours in a PC intel I7. After simulation,
multiple linear regression models are trained on the whole
generated data to be able to learn various problems related
to our job shop configuration in one learning process. This
approach increased the scalability of our predictors and
significantly reduced the computation times. This study
emphasizes the ability of linear models to solve a big scale
of variant problems for a specific job shop configuration.
In this particular case study, our model can only be used
for this specific configuration of one AIV, two types of jobs
(job1 and job2), and three workstations plus one storage.

The evaluation of the model is done using three perfor-
mance metrics:

(1) Accuracy of the prediction model (on 20% of the
data),

(2) Comparison between the results of the proposed
model and using a constant PDR such as SPT for
all decisions or a random mix of PDRs,

(3) Reliability of the prediction model in different sizes
of problems (scalability of the model)

For the first phase of evaluation, R-squared and adjusted
R-squared are used. Mean values (of the five linear regres-
sion models) are represented in Table 2. Adjusted-R2 is
applied to check if adding some features have a significant
impact on the prediction (Vittinghoff et al., 2006). Table 2
also indicates that the accuracy of predictions for all pro-
posed models is greater than 90%. Having an evaluation for
Target 1 with a 99% score is logical as the prediction for
local makespan is not that difficult once the parameters
are given. However, these evaluations are still based on
the data and do not guarantee a good performance of the
model in real situations. That is why the second evaluation
is executed.

For the second phase of evaluation, the performance of the
three variants of the proposed method (Target 1, 2, and
3) are compared with existing heuristics in a set of 100
distinct problems of the case study with a different number
of jobs, processing times and machines layout (distance



between workstations). These heuristics consist of using a
constant PDR for all decisions of a problem. We used the
five previously proposed PDRs plus a random combination
of these PDRs. In total, 9 strategies were compared. For
each one of the 100 problems and each strategy, the final
performance (makespan) is measured. Fig. 7 represents the
mean of 100 makespans for each strategy.

Fig. 6. comparison between the results of the proposed
model and using each of the five PDRs

The result indicates that the proposed linear model with
Target 3 (local + global makespan) outperforms all the
other strategies. Moreover, it indicates the compatibility
of the Target 3 model in job shops with flexible layouts
as it trained on limited layouts and made decisions for
problems with new layouts.

In the third evaluation, the model’s effectiveness is tested
regarding the size of the problem (number of jobs). For
one specific problem with fixed categories, such as process
times and distances between workstations, a hundred
problems with different numbers of jobs (2 to 300 jobs in
total) are tried. This approach compares our best model
(Target 3) and two famous constant PDRs (SPT and
STT). Target 3 outperforms the two other strategies. The
significant point is by increasing the number of jobs, the
difference between the performance of Target3 and the
two other strategies (SPT, STT) will be augmented. That
verifies the scalability of the model Target 3 to be trained
on smaller-sized problems and predict larger-sized ones.

Fig. 7. reliability of the prediction model in different sizes
of problems

Table 2. R2 and Adjusted-R2 for predictions of
makespan

Target 1 Target 2 Target 3

R2 0.99 0.92 0.97
Adjusted-R2 0.993 0.921 0.972

5. CONCLUSION

This paper addresses a dynamic JSSP where there is one
AIV transporter to be scheduled on three workstations.
A simulation-based supervised learning method is applied
to minimize the makespan. Our approach consists of two
phases: Generating data by simulation, then using linear
regression to predict the best dispatching rule for a current
state. In this way, the model compares the selection of
different dispatching rules in a particular state and chooses
the one that leads to the minimum makespan. A simple
case study is developed to apply three different models
and compare them with five heuristics. The result shows
that one model Target 3, outperforms the others.

The advantage of such an approach is that the linear
regression models are trained only once on a different range
of parameters for a specific type of problem. After that,
the model predicts the dispatching rule in a short time.
Moreover, there is no need for an optimal schedule to
train supervised learning, which gives credit to the model’s
capability to be applied in dynamic JSSP with many jobs.

However, this approach has its limitations, and different
perspectives of this study can be highlighted. The first
one consists of testing other models, such as random
forest, neural networks, etc., and using different objective
functions such as maximum lateness of jobs and energy
consumption of AIV. It is interesting to compare these
models with a stochastic approach, such as Markov Chain,
to evaluate its behavior in unstable environments. The
second perspective is to generalize the problem for different
job shop configurations with many machines and multiple
AIVs. In this case, for each state, two decisions must be
taken; selecting the AIV, then choosing the workstation to
be served.
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