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Real-time warning 
system with application 

of AI models
• To better localise 

inundation areas 
• To provide more detailed 

information to the crisis 
management team
• To increase warning times



Data Acquisition

KIWaSuS Research Project

• Development of a chain of AI-models to predict a spatio-temporal sequence 
of inundation areas for the study area during a heavy rainfall event
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Flash-Flood Nowcasting
Study area

Hydrodynamic model 
(physical-based)

High accuracy
=> if sufficiently calibrated 

Long calculation times
=> not real-time suited

AI model
(data driven)

Short calculation times
=> once trained

High data demand
=> combined with missing
measurements



Flash-Flood Nowcasting
Data generation process

Natural rainfall events

Design rainfall events

Coupled 1D-2D 
hydrodynamic model

Manhole spilling 
hydrographs

Flood areas



Flash-Flood Nowcasting
Model architecture
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Flash-Flood Nowcasting
Preliminary results: Extreme Event Forecast (T > 200 a)



Rainfall Nowcasting
Current practice
• Lagrangian Persistence:

• Determination of motion field
• Advection of the latest radar image according to this 

motion field

• Growth and decay of rainfall cells not considered

(Ayzel, G., Heistermann, M., and Winterrath, T.: Optical flow models as an open 
benchmark for radar-based precipitation nowcasting (rainymotion v0.1), Geosci. 
Model Dev., 12, 1387-1402, https://doi.org/10.5194/gmd-12-1387-2019, 2019.)

Nowcast with 
Lagrangian 
Persistence
t0 = 15:42 UTC+01 
(t0 + 30 min)

Radar 
measurement
16:12 UTC+01



Rainfall Nowcasting
AI-based approach

AI Model

Input

Label

Real-time Radar Data of DWD (DX product)
Past radar images (t0-60min, …, t0)

Training:

Real-Time Operation:

Input Nowcasts
Radar images to be predicted 

(t0+5min, …, t0+60min)AI Model

Patterns for rainfall cell development
Optimised weights of the AI model

(Trained AI model)

Post-processed Radar Data (DX-Offline data)
Radar images to be predicted (t0+5min, …, t0+60min)

Real-time Radar Data of DWD (DX product)
Past radar images (t0-60min, …, t0)



Rainfall Nowcasting
Data description and selection
• Radar data from one radar station
• Precipitation Scan
• Radius = 80 km

• Two qualities of data
• Input = Raw corrected to clutter and 

attenuation
• Label = Extensively corrected with adjustment 

to rainfall measurements from WS

• Selection of relevant rainfall events
• T ≥ 3 a
• 15 ≤ D ≤ 240 min



Rainfall Nowcasting
Preliminary results
• Similar performance to Lagrangian Persistence: lower rainfall intensity values are relatively well predicted 

for short lead times

• Extreme imbalanced dataset: circa 7% of the rainfall intensity values greater than 0.5 mm/h

• This result is not adequate for the nowcasting of heavy rainfall events



Rainfall Nowcasting
Preliminary results

• Hourly precipitation sums show 
already promising results, but further 
optimisations are required
• Improvement needed of the classical 

architectures to better predict the 
higher rainfall intensities and heavy 
rainfall events



Conclusions

Flood Nowcasting
• ML-Models are potentially able to predict inundation areas within a few 

seconds
• The quality of the output depends mainly on the accuracy of the rainfall 

nowcasting and the hydrodynamic model used for the data generation
Rainfall Nowcasting
• Rainfall nowcasting model needs to be further optimised to improve the 

performance on relevant rainfall intensity thresholds
• Classical model architectures and loss functions seem to be inadequate to 

deal with the complex high-spatio temporal interdependencies and the 
imbalanced dataset, respectively
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