This report describe the research done during the first ESPERANTO/JSALT workshop from the 13 th June 2022 to the 5 th of August 2022.

Participants

Table 1: List of participants to the JSALT 2022 workshop in ESPERANTO team and authors of this report.

Global scope of the project

Seamless communication between people speaking different languages is a long term dream of humanity. Artificial intelligence aims at reaching this goal. Despite recent huge improvements made for Machine Translation, Speech Recognition and Speech Translation, Speech to Speech Translation (SST) remains a central problem in natural language processing, especially for under-resourced languages. A solution to this problem is to gather and share information across modalities and large resource languages to create a Common multi-modal multi-lingual representation space that could then be used to process under-resourced one through transfer learning, as depicted in Figure 1. The main goal of our project is twofold 1. Develop a fully multi modal system for which speech and text can be the input or output modalities in any considered language. 2. Adapt to under-resourced language

• avoid catastrophic forgetting • transfer learning with incomplete data (when not all modalities are available)

A fully multi-modal/multilingual system, as depicted in Figure 1, allows to train with multiple objectives (driven by the available data). Tasks such as machine translation (text to text), speech translation (speech to target language text), speech recognition (speech to source language text) and text to speech will be considered as auxiliary tasks to drive the learning of the joint space as well as to ensure a good transfer for the under-resourced languages (where by definition, labeled data in all modalities are not always available).

The following issues have been addressed during the workshop:

• Project speech and text modalities in the same space Currently, SSL models exist for multi-modal mono-lingual representations in English [START_REF] Ao | Speecht5: Unified-modal encoder-decoder pre-training for spoken language processing[END_REF] but are difficult to produce in many languages. On the other hand, mono-modal multilingual representations exist for speech [START_REF] Babu | XLS-R: Self-supervised Cross-lingual Speech Representation Learning at Scale[END_REF] and text modalities [START_REF] Feng | Language-agnostic bert sentence embedding[END_REF]. During the workshop we started working from the SAMU-XLS-R encoder that has been trained to merge those two representation spaces into a single multi-model / multi-lingual space. Part of our work consisted in analysing the space produced by this encoder to better understand its behaviour

• Align modalities with different temporalities An important issue when aligning speech and text sequences is the temporality and granularity of the sequences. More precisely, speech is a long, continuous and redundant audio sequence while the text is shorter and made of discrete tokens. Thus, the following research questions arose: How to design the space? Initial idea consists in combining some language-specific sub-spaces and a shared common space as was done for image translation [START_REF] Gonzalez-Garcia | Image-to-image translation for cross-domain disentanglement[END_REF]. We've tried different approaches to align spaces from different modalities across languages.

• Transfer knowledge to under-resourced languages It is common to develop language technologies for under-resourced languages by transferring knowledge from a model pre-trained on a large quantity of data. Exploiting the multi-modal/multi-lingual paradigm, we investigated the adaptation for low-resourced languages (Tamasheq).

Context at the beginning of the workshop

A large part of the work described in this report has been built on top of recent works from some team members [START_REF] Khurana | SAMU-XLSR: Semantically-Aligned Multimodal Utterance-level Cross-Lingual Speech Representation[END_REF]. More precisely, our initial baseline to project both speech and text in a cross-lingual and cross-modal space was based on the SAMU-XLS-R encoder, a selfsupervised model.

Self-supervised representation learning (SSL) approaches such as Wav2Vec-2.0 [START_REF] Baevski | wav2vec 2.0: A framework for self-supervised learning of speech representations[END_REF], HuBERT [START_REF] Hsu | Hubert: Self-supervised speech representation learning by masked prediction of hidden units[END_REF],

and WavLM [START_REF] Chen | Wavlm: Large-scale self-supervised pre-training for full stack speech processing[END_REF] aim to provide powerful deep feature learning (speech embedding) without requiring large annotated datasets. Speech embeddings are extracted at the acoustic frame-level i.e. for short speech segments of 20 ms duration, and they can be used as input features to a model that is specific for the downstream task. These speech encoders have been successfully used in several tasks, such as automatic speech recognition [START_REF] Baevski | wav2vec 2.0: A framework for self-supervised learning of speech representations[END_REF], speaker verification [START_REF] Chen | Large-scale self-supervised speech representation learning for automatic speaker verification[END_REF][START_REF] Chen | Why does Self-Supervised Learning for Speech Recognition Benefit Speaker Recognition?[END_REF] and emotion recognition [START_REF] Macary | On the use of self-supervised pre-trained acoustic and linguistic features for continuous speech emotion recognition[END_REF][START_REF] Pepino | Emotion recognition from speech using wav2vec 2.0 embeddings[END_REF]. Self-supervision learning for such speech encoders is designed to discover speech representations that encode pseudo-phonetic or phonotactic information rather than high-level semantic information [START_REF] Sanabria | Measuring the Impact of Individual Domain Factors in Self-Supervised Pre-Training[END_REF]. On the other hand, high-level semantic information is particularly useful in some tasks such as Machine Translation (MT) or Spoken Language Understanding (SLU). In [START_REF] Khurana | SAMU-XLSR: Semantically-Aligned Multimodal Utterance-level Cross-Lingual Speech Representation[END_REF], the authors propose to address this issue using a new framework called SAMU-XLSR, which learns semantically-aligned multimodal utterance-level cross-lingual speech representations.

SAMU-XLSR is based on the pre-trained multilingual XLS-R1 [START_REF] Babu | XLS-R: Self-supervised cross-lingual speech representation learning at scale[END_REF] on top of which all the embeddings generated by processing an audio file are connected to an attentive pooling module.

Thanks to this pooling mechanism (which is followed by linear projection layer and the tanh function), the frame-level contextual representations are transformed into a single utterancelevel embedding vector. Figure 2 summarizes the training process of the SAMU-XLSR model. Notice than the weights from the pre-trained XLS-R model continue being updated during the process.

The utterance-level embedding vector of SAMU-XLSR is trained via knowledge distillation from the pre-trained language agnostic LaBSE model [START_REF] Feng | Language-agnostic BERT Sentence Embedding[END_REF]. The LaBSE model2 has been trained on 109 languages and its text embedding space is semantically aligned across these 109 languages. LaBSE attains state-of-the-art performance on various bi-text retrieval/mining tasks, while yielding promising zero-shot performance for languages not included in the training set (probably thanks to language similarities). Thus, given a spoken utterance, the parameters of SAMU-XLSR are trained to accurately predict a text embedding provided by the LaBSE text encoder of its corresponding transcript. Because LaBSE embedding space is semanticallyaligned across various languages, the text transcript would be clustered together with its text translations.

By pulling the speech embedding towards the anchor embedding, cross-lingual speech-text alignments are automatically learned without ever seeing cross-lingual associations during training. This property is particularly interesting in the SLU context in order to port an existing model built on a well-resourced language to another language with zero or low resources for training.

Study on the ability of SAMU-XLSR to extract semantic information in cross-lingual and cross-model scenarios in the context of a Spoken Language Understanding task

In this part of the work, we aim to examine the use of semantically-aligned speech representations for end-to-end spoken language understanding (SLU). Concretely, we employed the SAMU-XLSR model designed to generate a single embedding that captures the semantics at the utterance level, semantically aligned across different languages. We saw that the use of the SAMU-XLSR model instead of the initial XLS-R model improves significantly the performance in the framework of end-to-end SLU. We also proved the benefits of using this model towards language portability in SLU.

Motivations

As defined in [START_REF] Tur | Spoken language understanding: Systems for extracting semantic information from speech[END_REF] , spoken language understanding is the interpretation of signs conveyed by a speech signal. This interpretation refers to a semantic representation manageable by computers. Usually, this semantic representation is dedicated to an application domain that restricts the semantic field. With the massive deployment of voice assistants like Apple's Siri, Amazon Alexa, Google Assistant, etc. a lot of recent papers aim to process speech intent detection as an SLU task [START_REF] Huang | Leveraging unpaired text data for training end-to-end speech-tointent systems[END_REF][START_REF] Thierry Desot | Corpus generation for voice command in smart home and the effect of speech synthesis on End-to-End SLU[END_REF][START_REF] Lugosch | Using speech synthesis to train end-to-end spoken language understanding models[END_REF][START_REF] Müller | In Pursuit of Babel-Multilingual End-to-End Spoken Language Understanding[END_REF][START_REF] Agrawal | Tie your embeddings down: Cross-modal latent spaces for endto-end spoken language understanding[END_REF]. In such a task, only one speech intent is generally expected by sentence: the speech intent detection task could be considered as a classification task at the sentence-level and, in addition, the SLU model has to fill some expected slots corresponding to the detected intent.

SLU benchmarks related to task-driven human-machine spoken dialogue can be more or less complex, depending on the richness of the semantic representation. In this study, we focus on a hotel booking scenario through a telephone conversation, where the semantic representation is not related to speech intent detection, but based on a more complex ontology that derives from frames [START_REF] Baker | The berkeley framenet project[END_REF].

Our experimental work is carried out on the MEDIA SLU benchmark, described in section 4.1.2. We first expect to evaluate the performance of SAMU-XLSR used as a frame-wise feature extractor in comparison to the use of the initial XLS-R. Then we analyse the quality of the semantic encoding for each layer of the SAMU-XLSR and XLS-R model, to better understand the impact of the SAMU-XLSR training on the XLS-R model. We continue this investigation by fine-tuning the SAMU-XLSR and the XLS-R models on the downstream task. We also investigate the capability of SAMU-XLSR to transfer the semantic knowledge captured on French data to Italian data related to the same SLU task, thanks to the PortMEDIA corpus described in section 4.1.2. Last, we focus on the sentence-level embedding produced by the SAMU-XLSR model in order to measure the relevance of its semantic content to the target task, including in a language portability scenario and in a cross-modal setting.

Data

The French MEDIA benchmark [START_REF] Bonneau-Maynard | MEDIA: a semantically annotated corpus of task oriented dialogs in French[END_REF] was created in 2002 as a part of a French governmental project named Technolangue. The MEDIA Evaluation Package 3 4 is distributed by ELRA and freely accessible for academic research. Apart from the data itself, it defines a protocol for evaluating SLU modules, with a task of semantic extraction from speech in a context of human-machine dialogues. 1258 official recorded dialogues were generated from around 250 speakers. Only the user's turns are semantically annotated with both semantic annotation and transcription. Table 2 presents the data distribution, in hours of speech and number of words, into the official training, development and test corpora.

The PortMEDIA corpus 5 was used in order to conduct experiments on language portability from French to Italian for SLU [START_REF] Lefèvre | Leveraging study of robustness and portability of spoken language understanding systems across languages and domains: the PORTMEDIA corpora[END_REF]. It has been produced on the same task as MEDIA, and follows the same specifications. It is made of 604 dialogues from more than 150 Italian speakers. The "full" version of MEDIA and PortMEDIA has been used for all experiments. Around 150 different semantic concepts are used in this version. The following translated sentence is an example of utterance: "I would like to book one double room in Paris". We used annotations containing the transcript, the concepts and the location information of their values: "I (would like to book, reservation), (one, room-number ), (double room, room-type) in (Paris, city )".

Historically, on the MEDIA corpus, two metrics are jointly used: the Concept Error Rate (CER) and the Concept-Value Error Rate (CVER). The CER is computed similarly to Word Error Rate (WER), by only taking into account the concepts occurrences in both the reference and the hypothesis files. The CVER metrics is an extension of the CER. It considers the correctness of the complete concept/value pair. Since our models generate transcript with semantic concepts, we also evaluate our systems in terms of Character Error Rate (ChER) and WER.

Both datasets are distributed by ELRA and freely accessible for academic research.

Layer-wise analysis of frame-level embeddings

Figure 3 presents the general architecture of the end-to-end model used. To make a layer-wise analysis, we removed the upper layers of each encoder, one by one, and extracted our speech embeddings. The encoder kept layers are frozen with their initial weights for the "Frozen" architecture, or fine-tuned by supervision to solve the MEDIA task, leading to the "Fine-Tuned" results. Figure 4 illustrates how the linguistic information is encoded through each layer of both encoders. First, we observed that in terms of WER, SAMU-XLSR gets better results than XLS-R.

We also could see that the minimum WER is achieved with higher layers for SAMU-XLSR than it is for XLS-R, both frozen and fine-tuned. We assume this is due to the fine-tuning made on SAMU-XLSR by forcing its highest representations to be aggregated to LaBSE's text embeddings.

Figure 5 presents results measured with the Concept Error Rate metric, relevant to the specific semantics of the downstream task. We observed that the original frozen XLS-R model lost almost 7 points of CER between its best generated embeddings for semantic extraction task, layer 15, and its final generated embeddings, layer 24. On the other hand, since learning SAMU-XLSR consists on projecting its sentence-level embedding into the semantic multilingual LaBSE's encoding space, the highest layers of its encoder tend to capture and encode the semantics until the top layer. Both speech encoders give best CER results in middle layers. As expected, fine-tuning the speech encoders allows the models to extract as much semantic information as possible from the audio signal. Even if the semantics extracted from the frozen SAMU-XLSR middle layers were already mostly kept through upper layers, performances were enhanced by fine-tuning the encoder.

Language portability

Zero-shot

To evaluate the multilingual portability of the SAMU-XLSR encoder compared to the original XLS-R, we applied zero-shot learning on our French (MEDIA) and Italian (PortMEDIA) data.

We first trained each end-to-end SLU model on the French data, by freezing or fine-tuning the speech encoder, and then made a simple inference on the Italian data. We also aimed to measure how fine-tuning the speech encoder on the French data impacts the language portability capabilities. Results in Table 3 show that the use of a frozen SAMU-XLSR speech encoder gives strongly better performance than other setups for concept recognition in these conditions: a CER of 54.62% is attained while with the other configurations performs at more than 83% error rate. We noticed that, as expected, the performance related to the transcription itself is very bad: SAMU-XLSR is able to extract general semantics, but is not designed to provide languagedependent information useful to transcribe speech.

ChER

It also appears that fine-tuning SAMU-XLSR on French degrades the capability of the module to generate good semantic embeddings on Italian. It was not the case with the XLS-R speech encoder: a fine-tuning on same-family language enhanced the CER and other metrics of our Italian inference. We can deduct that the SAMU-XLSR forced its embeddings from different languages to be represented in the same space clusters, thanks to LaBSE. It allows the module to be a lot more efficient when dealing with multilingualism and language portability.

Low resource

Tables 4 and5 illustrate the potential of portability of both encoders from French to Italian, with or without fine-tuning. We processed by training our model with frozen and fine-tuned XLS-R and SAMU-XLSR with PortMEDIA to have a baseline. Then, we made the same experiments on MEDIA for 100 epochs, before continuing the training on PortMEDIA for 100 epochs.

In both tables, IT means the SLU model has been trained from scratch on the Italian data.

FR→IT means the SLU model weights have been initialized with the French model before being trained on the Italian data.

We can observe that using SAMU-XLSR as a speech encoder still outperforms XLS-R, with a CER of 33.01% (resp. 42.66% for XLS-R) without fine-tuning and without the use of French data. With both fine-tuning and use of French data, SAMU-XLSR is able to reach 26.18% of CER, but the gap with XLS-R -that reaches 26.92% -is less significant. 

Semantic analysis of sentence-level embeddings

We then examined if the pooled sentence embeddings produced by SAMU-XLSR contain enough semantic information according to the MEDIA and PortMEDIA tasks, and we analyze their cross-modal and cross-lingual abilities.

We simplify the MEDIA and PortMEDIA benchmark tasks to a bag-of-concepts classification task. For each segment, the system has to predict all the concepts that are present in the speech segment. We use a multi-hot representation for the output. This simplification is necessary to be able to compare the model outputs with LaBSE's, which doesn't have frame-level embeddings. It also allows us to have a less complex model that does not require the order of concepts and, therefore, can do a more efficient knowledge transfer to new languages. Reminder that it is important for this SLU task to be able to estimate the values of the concepts and know the placement and number of times a concept appear in the transcription.

Figure 6 illustrates the architecture we implemented for this sentence-level analysis.

We applied L 2 -normalisation on the embeddings. Fixing the norm (both in training and evaluation) is critical; unnormalized embeddings with large norm generate many false positives, while unnormalized embeddings with small norm generate many false negatives. Note also that the norm of the SAMU-XLSR embeddings may not be that informative, since the network is trained using cosine similarity between SAMU-XLSR and LaBSE embeddings, which is a norm-invariant objective function.

In order to test both the cross-modal and cross-lingual properties of the embeddings, we trained our classification models only on the French dataset. The Italian dataset is only used for testing, to obtain cross-lingual results. For the cross-modal properties, we trained a model on SAMU-XLSR (speech) embeddings, and tested it on both SAMU-XLSR and LaBSE (text) embeddings.

We also trained a second model on LaBSE embeddings in order to observe the difference when testing it with SAMU-XLSR speech embeddings. The results, in terms of micro F 1 -score are given in Table 6. We also reported the frame-wise baseline results obtained in the previous experiments, by converting the sequence outputs of the models to a bag-of-concepts output. We observed that both LaBSE and SAMU-XLSR models obtained comparable results with their corresponding test embeddings when tested on the MEDIA dataset (77.52% for SAMU-XLSR, 82.15% for LaBSE). The capacity of SAMU-XLSR to reproduce sentence-level embeddings close to the LaBSE ones is noticeable, and validates the strategy used to train SAMU-XLSR.

By comparing the results from the previous experiments with the frame-wise embeddings and this sentence-level embedding analysis, we also observed that the sentence-level embeddings are better in extracting cross-lingual representations than the frame-level ones.

Conclusion

In this work, we investigated the capacity of the recently introduced SAMU-XLSR in addressing a challenging SLU task. SAMU-XLSR is a speech encoder is a fine-tuned version of the XLS-R model, using LaBSE embeddings as targets. In addition to its promising performance, we demonstrated how this speech encoder differs from the XLS-R model in the way it encodes the semantic information in its intermediate hidden representations. We also showed the real potential of the SAMU-XLSR for language portability. We also showed its capacity to build a sentence-level embedding able to highlight the semantic information of the task and its promising cross-lingual and cross-modal properties.

It is important to notice that the capacities given to the SAMU-XSLR model come from out-ofdomain data: no data related to the final semantic task were needed to train the model. This is really important since SLU tasks often suffer of being low resourced, especially in a multilingual scenario.

What audio information goes through SAMU-XLSR?

We propose to study and quantify audio information contained in the different layers composing a speech encoder. And compare layers by layers the information contained in SAMU-XLSR and XLS-R. In order to realise this study, a set of tasks has been identified, making it possible to probe the presence (or absence) of specific information in the speech encoder using several targeted classification tasks carried out with parameters extracted from several hidden layer.

Our goal is to reveal the link between the features given by the speech encoder hidden layers and the tasks. The classification tasks are carried out, each time with parameters extracted from specific hidden layers of the speech encoder. High performance should then reveal important task-related characteristics contained in these layers, and vice versa. Figure 7 summarizes the protocol of our approach based on an speech encoder model architecture. 

Probing tasks

We propose to probe the presence (or absence) of specific information in the speech encoder using several targeted classification tasks carried out with parameters extracted from several hidden layers. Thus, if a pattern of these tasks is present in hidden layers of speech encoder, we can train a classifier to recognize it and the performance of the classifier should depend on how well the pattern is embedded in speech encoder.

For every classification tasks, we use an ECAPA-TDNN classifier [START_REF] Desplanques | ECAPA-TDNN: Emphasized Channel Attention, Propagation and Aggregation in TDNN based speaker verification[END_REF]. The ECAPA-TDNN architecture uses cutting-edge techniques: Multilayer Feature Aggregation (MFA), Squeeze-Excitation (SE) and residual blocks. This model has recently shown impressive performance in the speaker verification [START_REF] Thienpondt | The IDLab VoxSRC-20 submission: Large margin fine-tuning and quality-aware score calibration in DNN based speaker verification[END_REF][START_REF] Thienpondt | The IDLab Short-duration Speaker Verification Challenge 2020 System[END_REF] and speaker diarization [START_REF] Dawalatabad | ECAPA-TDNN embeddings for speaker diarization[END_REF] domains. Except for the Automtic speech recognition task, we use an ASR system based on Kaldi.

The 3 different tasks studied for probing information contained in speech encoder are: speaker identification, automatic speech recognition and speech emotion.

• Speaker identification : Speaker identification aims to determine which registered speaker provides a given utterance from amongst a set of known speakers. This task is used to answer the question : "Who is speaking?". The system has been trained on the VoxCeleb1 dataset [START_REF] Nagrani | Voxceleb: a large-scale speaker identification dataset[END_REF], only on the development partition. Systems are evaluated on Voxceleb1 test dataset. We report the classification in terms of accuracy.

• Automatic speech recognition : Automatic speech recognition (ASR) aim to to transcribe spoken words into written text. The system has been train on Librispeech train dataset corpus [START_REF] Panayotov | Librispeech: an asr corpus based on public domain audio books[END_REF] and we evaluate on . We report the results in terms of Word Error Rate (WER).

• Emotion recognition : Speech Emotion Recognition (SER) aim to classify speech records in seven-classes (anger, disgust, fear, joy, neutral, sadness and surprise). The system has been train on Multimodal EmotionLines Dataset (MELD) corpus [START_REF] Poria | MELD: A Multimodal Multi-Party Dataset for Emotion Recognition in Conversations[END_REF]. This corpus is composed of 13,000 utterances from Friends TV (sitcom). We report the classification in terms of F1-score. Figure 8 summarizes the performance given by the speaker identification task. Scores are expressed in terms of accuracy. We compare the performance obtained by different speech encoder (SAMU-XLSR and XLSR) and baseline system (Filter-bank) at different layers.

Results

Speaker identification

Globally, speech encoders (SAMU-XLSR or XLSR) obtain lower performance than baseline Deliverable D6.1 system (Filter-bank). These results tends to say that speech encoders remove speaker information (speaker-specific traits).

We can observe that the best performance of SAMU-XLS and XLSR are obtained by using the sixth hidden layer (they obtained respectively 66% and 55% of accuracy). The baseline system obtained 75% of accuracy. We can observe that by using hidden layers higher than 6, the performance deteriorates.

Automatic speech recognition

Layer WER(%) Figure 9 summarizes the performance given by the automatic speech recognition task. Scores are expressed in termes of WER. We compare the performance obtained by different speech encoder (SAMU-XLSR and XLSR) and baseline system (Filter-bank) at different layers.

Globally, speech encoders (SAMU-XLSR or XLSR) obtained better results than baseline system. The best performance are obtained for SAMU-XLSR and XLSR by using the sixteenth hidden layer (they obtained respectively 4.13% and 3.61% of WER). The baseline system obtained 4.75% of WER. Speech encoder can better convey phonemes information. Globally, speech encoders (SAMU-XLSR or XLSR) obtained better results than baseline system (Filter-bank). The best performance are obtained for SAMU-XLSR and XLSR by using the eighth hidden layer (they obtained respectively 42% and 45% of F1-Score). 

Emotion recognition

Conclusions

We proposed a protocol that aims at highlighting audio information contained in speech encoder. By analyzing the performance obtained by each specific task in the different hidden layers of speech encoder, we were able to realize the information contained at various levels of the speech encoder, whether at the speaker, at the phonetic, or at the emotion information.

We observe that speech encoder provide phoneme and emotion information. The information provided by speech encoders are much better than Filter-banks or MFCC. But unfortunately speaker information are suppressed in the speech encoder. And if we want to use speaker information in a machine translation system we will have to find an another way to convey this information.

Does SAMU-XLSR perform well for all language families?

A language-family wise approach on SAMU-XLSR performances

SAMU-XLSR [START_REF] Khurana | SAMU-XLSR: Semantically-Aligned Multimodal Utterance-level Cross-Lingual Speech Representation[END_REF] is a cross-lingual speech encoder, fine-tuned from a base XLS-R [START_REF] Babu | XLS-R: Self-supervised cross-lingual speech representation learning at scale[END_REF] model to maximise the cosine similarity of its embeddings to the ones produced by the cross lingual text encoder LaBSE [START_REF] Feng | Language-agnostic BERT Sentence Embedding[END_REF]. Those 3 models were respectively trained on sets of 51, 128 and 101 languages, with respectively 8 327 and 435 482 hours of speech and 23 014 061 000 sentences. However, as shown in the graph 11, the amount of data available for each language is far from balanced for each of those sets.

Cross lingual models trained on massive amount of data usually get better results on lower resources languages than those only trained on one language [START_REF] Johnson | Google's Multilingual Neural Machine Translation System: Enabling Zero-Shot Translation[END_REF]. Those models use knowledge transfer across the different languages to leverage knowledge from higher resource to improve performances on lower resource languages. The structures of languages are not uniform across the world, so we looked at a way to sort languages. Ethnologue [START_REF] Campbell | Ethnologue: Languages of the world[END_REF] proposed a classification of languages in Families, Sub-families and other sub-divisions. We used that classification on the languages used for the pre-training of the cross lingual models. The amount of data available by Family and Sub-Family is presented in the table 7.

As shown in the table 7, there is high variation in the quantity of training data available across all models. However, a higher amount of data does not mean the system has been trained more on that language, as the re-balancing samplers used in pre-training use a parameterised upsampling algorithm to balance the datasets. This can lead to repetition of samples for lowresource languages, and so a higher amount of data means that the systems will have seen more data variation from one language than from another.

To improve the performances for different sub-families, we propose to train different version of SAMU-XLSR only on the data from a given family, to improve the performances on downstream tasks applied on this family.

Training sub-families versions of SAMU-XLSR

We decided to train different versions of SAMU-XLSR [START_REF] Khurana | SAMU-XLSR: Semantically-Aligned Multimodal Utterance-level Cross-Lingual Speech Representation[END_REF] for different subfamilies included in its base training set. The 7 subsets chosen are presented in the table 8.

For each of those subsets, we started from a SAMU-XLSR [START_REF] Khurana | SAMU-XLSR: Semantically-Aligned Multimodal Utterance-level Cross-Lingual Speech Representation[END_REF] model pretrained from Com-monVoice v8.0 [START_REF] Ardila | Common voice: A massively-multilingual speech corpus[END_REF] dataset, and trained it further using the exact same protocol, only with smaller set of data. As a comparison, the total amount of speech used for the initial pretraining is 8327 hours. Once our seven specialized models trained, we evaluated them on multiple downstream tasks. Each model was trained on 4 V100 GPU cards for 20hours. Given the variable amount of data used, them number of epochs varies from one model to another, the exact numbers being provided in table 9

Application on downstream tasks

To evaluate our model, we choose three downstream tasks on which we fine-tuned it, to measure the improvement of each specialized model from the base SAMU-XLSR.

SLU task

We performed the same french SLU task presented in the subsection 4.1 on each of the specialized model. This task consist of fine-tuning a given pre-trained model on the train subset of the french MEDIA dataset [START_REF] Bonneau-Maynard | MEDIA: a semantically annotated corpus of task oriented dialogs in French[END_REF] to predict concepts. The results in Concept Error Rate (CoER) are presented in the table 10 for every specialized model, as well as for the original SAMU-XLSR model, measured on the eval subset of the french MEDIA dataset. The train/eval split used here is described in [START_REF] Bonneau-Maynard | MEDIA: a semantically annotated corpus of task oriented dialogs in French[END_REF], where they are respectively described as the "Adaptation set" and the "Test set".

As we can see in the 10 table, we got no significant improvement on the different families, except for the Indo-Iranian model. All the improvements are in the confidence interval, so we can not conclude on any progress here.

Translation task

We decided to evaluated the different models performances on a Speech to Text translation task. As explained in the section 5.5.3, the Tamasheq to French translation was one of the targets of our team during the workshop. We focused at first on this task, finetuning SAMU-XLSR and different versions of the models on this translation task with the data of IWSLT 2022 (see section 5.5.3), then we computed the BLEU score [START_REF] Papineni | Bleu: a method for automatic evaluation of machine translation[END_REF] over the translations generated. The results for tamasheq to french are presented in the table 11.

From the table 11, we can see that no model outperformed the base model on the translation task, but from the different specialized versions, the Indo-Iranian is still the best.

Following the end of the workshop, we plan to measure the performances of those models on speech to text translation from 11 languages (French (Fr), German (De), Dutch (Nl), Russian(Ru), Spanish (Es), Italian (It), Turkish (Tr), Persian (Fa), Swedish (Sv), Mongolian (Mn) and Chinese (Zh)) to English (En), using the CoVoST [START_REF] Wang | CoVoST 2 and Massively Multilingual Speechto-Text Translation[END_REF] dataset.

ASR task Another task is planned : Automatic Speech Recognition over 61 languages of CommonVoice v8.0 [START_REF] Ardila | Common voice: A massively-multilingual speech corpus[END_REF]. We have chosen the languages that contained more than 1000 utterances in their evaluation set, and computed their embeddings for the seven specialized version of SAMU-XLSR plus the base version. The complete list of those languages using the ISO 639-1 code is : ar, be, bg, ca, cs, cy, da, de, el, en, eo, es, et, eu, fa, fi, fr, fy-NL, ga-IE, gl, hi, hu, id, it, ja, ka, km, ky, lt, lv, mn, mt, nl, pl, pt, ro, ru, rw, sk, sl, sv-SE, sw, ta, th, tr, tt, ug, uk, uz, zh-CN, zh-HK, ab, ba, br, ckb, cv, dv, ia, kab, lg, rm-sursilv, rah, zh-TW.

The train set for each of those languages was used to train a different ASR system [] for each of the models . Then each model was evaluated on the first 1000 utterances of each evaluation set.

The results are not accessible yet because of the computation time, but will be at some point.

Comparing models using cosine similarity on embeddings

In the order to get access to a better analysis of the system for a minimal computation time, we propose a method of analysis directly on the embeddings produced. This method is applied on our test test : the speech utterances and associated transcriptions contained in the Common-Voice v8.0 [START_REF] Ardila | Common voice: A massively-multilingual speech corpus[END_REF] evaluation subset described in the previous section : 1000 utterance of speech for 61 languages.

The models XLS-R [START_REF] Babu | XLS-R: Self-supervised cross-lingual speech representation learning at scale[END_REF] is a cross-lingual model taking speech utterances and generating sequences of embeddings of variable length. LaBSE [START_REF] Feng | Language-agnostic BERT Sentence Embedding[END_REF] is a cross-lingual model taking text utterances and generating sentence embeddings. SAMU-XLSR [START_REF] Khurana | SAMU-XLSR: Semantically-Aligned Multimodal Utterance-level Cross-Lingual Speech Representation[END_REF] is a version of XLS-R that has been trained further, and has been added an attentive pooling layer that allows it to produce sentence embeddings as well as sequences of embeddings from speech utterances. Our base SAMU-XLSR version (base) and family flavoured versions (balto, berber , chinese, germanic, indo, italic, volta) will be characterized by the v variable.

Computing the embeddings Given S L n the n th ∈ [0, 999] utterance of speech from a language L in the test set, and T L n its associated transcription, we use : • a pretrain version of XLS-R to compute the sequence of embeddings of length l L n :

XLSR L n = (x L n,i ∈ R 1024 ) i∈[1,l L n ] from S L n .
• a pretrain version of LaBSE to compute the associated sentence embedding :

labse L n ∈ R 768 from T L n .
• our base version of SAMU-XLSR and different family versions to compute the associated sequence of embeddings of length l L n :

v SAMU L n = ( v y L n,i ∈ R 1024 ) i∈[1,l L n ]
and the pooled embedding:

v samu L n ∈ R 768 both from S L n .
Computing the cosine similarities Then for a given utterance (S L n , T L n ), we compute two cosine similarities (using the cos function defined as cos : x, y → x•y ||x||•||y || ): • The cosine similarity between sentence embeddings, for a version v of SAMU-XLSR :

v d L n = cos(labse L n , v samu L n ).
• The average of the element-wise cosine similarities computed between elements of the sequence of embeddings of length l L n from XLS-R and from a given version v of SAMU-XLSR :

v D L n = 1 l L n l L n i=1 cos(x L n,i , v y L n,i ) | (x L n,i , v y L n,i ) ∈ XLSR L n × v SAMU L n
For a given language and a given version of SAMU-XLSR, we use the average cosine similarities for all the utterances.

• For a comparison with LaBSE :

v d L = 1 1000 999 n=0 v d L n .
• For a comparison with XLS-R :

v D L = 1 1000 999 n=0 v D L n .
The first metric gives us the mean similarity between LaBSE and trained SAMU-XLSR, so we can measure how well the latest fitted its embedding to LaBSE for each language. The second gives us the same for XLS-R and SAMU-XLSR, so we can measure how the embeddings were moved during training. However, for the second, further training on the model can change the order of the embeddings in the sequence, giving poor frame-wise similarities.

The results

The cosine similarities scores measured for each version and each language are presented in the table 14 and 15 for the sequences comparison and 12 and 13 for the sentence embeddings.

Those tables are difficult to read, so we decided to compute the mean and standard deviation of the similarity for each model, for the languages in and out of their respective training sets. Those in-domain and out-domain similarities are available in the graph 12.

The left graph in the figure 12 shows three main points about the LaBSE embeddings :

1. All the dots are under the x = y line, so SAMU-XLSR embeddings are always closer to LaBSE for the seen languages. 2. All the specialized versions have their points to the right of the base one, so more training on a subset means you get closer to the languages of this family.

3. The specialized versions have different distances to the out-domain families, meaning you can get a better or worst generalisation depending on the subset on which it was fine-tuned.

It can be noted that the best is the Indo-Iranian here (which got the best performances in the previous sections) and the worst is the Berber (which was one of the worst in the previous sections).

The right graph in the figure 12 shows three main points about the XLSR embeddings : 1. Almost all the dots are over the x = y line, so SAMU-XLSR embeddings are always further to XLSR for the seen languages.

With the exception of the Berber one, that got further for out-domain than for in-domain.

2. Almost all the specialized versions have lower similarities than the base one, so more training means you get further from the XLS-R model.

With the exception of the Indo-Iranian one, that managed to get closer to XLS-R during its pretraining.

The results obtained on this cosine analysis were mostly expected, but we can underline that they are coherent with the results obtained on downstream tasks earlier, and that it might be 

What speech can we generate from existing representations?

TODO: "resp: Thibault" One of our goals is to generate speech corresponding to an input, whether this input is speech or text. We used some Speech Generation systems to do some experiments about speech synthesis from different pretrained embedding spaces, in order to get an idea of how well we can expect to generate speech from our common space. To do so, we trained some TTS systems and vocoders to generate speech from these embedding spaces.

Datasets for Speech Synthesis

To perform speech generation, we used different datasets to train our systems. 

Description of the systems used

Tacotron2 [START_REF] Shen | Natural tts synthesis by conditioning wavenet on mel spectrogram predictions[END_REF] is a common Text-to-Speech system that usually produces mel-spectrogram from a sequence of characters. It is used with a vocoder, that generates raw audio according to the generated mel-spectrogram. For these experiments, we trained Tacotron2 to generate mel-spectrograms from the different sets of embeddings. Then, we used Waveglow [START_REF] Prenger | Waveglow: A flow-based generative network for speech synthesis[END_REF] as a vocoder, which had been previously trained on LJSpeech dataset, to produce raw audio from those mel-spectrograms.

HifiGAN [START_REF] Kong | Hifi-gan: Generative adversarial networks for efficient and high fidelity speech synthesis[END_REF] is a vocoder, which generates a waveform from a spectrogram using Generative Adversarial Networks, but we used it to generate raw audio directly from quantized representations extracted from embedding spaces.

Embedding spaces used for synthesis

We performed speech generation from different pretrained embeddings, which are coming either from text representations or from raw audio. We used as representations coming from text:

• Raw text (Usual Text-to-Speech)

• LabSE embeddings (Multilingual, one sentence-level embedding or token-level sequence of embeddings)

• SpeechT5 textual embeddings (Multimodal system, english only)

• XLM-R embeddings (Cross-lingual representation of text)

Coming from speech, we used the following representations:

• WavLM embeddings (Audio english only, frame-level sequence of embeddings)

• SAMU-XLSR embeddings (Sentence-level embedding and frame-level sequence)

• SpeechT5 speech embeddings (Multimodal system, english only, is supposed to match those coming from text

• XLS-R embeddings (Cross-lingual representation of speech)

We mostly focused on English language at first, since some of these systems have only been trained with English data. We used LJSpeech dataset to generate speech with a single speaker.

Improving over the initial model

In this section we describe the work done in order to build a multi-modal and multi-lingual encoder-decoder. Several approaches have been investigated either building on top of the SAMU-XLSR encoder or trying another approach to produce the common representation space.

Pre-trained LMs for low-resource machine translation

We conducted an empirical study to understand and quantify the effect of pre-trained LMs and multilingual ASR in low-resource MT and ST respectively. Regarding the experimental study, we first simulate low-resource scenarios using data from high-resource category, and apply our knowledge on the real low-resource scenario. We looked into three different axes in the simulation experiments:

1. Resources / data for pre-training.

2. Architectures / models for pre-training.

3. Amount of fine-tuning data.

The Table 16 presents more details on the kind of resources available in our setup. In our scenario, we always assume that the source languages come from low-resource category, whereas the target languages come from high-resource category. Given, the above scenario, we studied how various pre-training objectives can affect the downstream MT / ST performance. More precisely, we experimented with two architectures for pretraining LMs, apart from using already trained models available on the internet. The following sub-section briefly explains the two pre-training LM architectures. 

LM architectures for pre-training

The first one is called XLM [START_REF] Conneau | Cross-lingual Language Model Pretraining[END_REF], which is based on transformer encoder architecture training to maximize the log-likelihood of true tokens at masked positions from the input tokens. Figure 13 illustrates two variants of XLM. The one on the left is trained with text from one language at a time, whereas the one on the right, called TLM is trained with parallel text from two languages as input. This allows the model to learn semantic relations across the input languages. However the TLM can only be trained in the presence of parallel text, which we assume is not available for languages from low-resource category.

Fig. 14 compares the BLEU scores on MT trained from scratch on various amounts of data, with the ones relying a pre-trained model. The model was pre-trained only on the in-domain data, i.e., the entire training corpus with MLM objective. Additionally, we also used an existing pre-trained model, namely XLM-17 6 that was pre-trained on Wikipedia text from 17 languages. From Fig. 14 we can observe that as the amount of training data decreases, the performance drops. However, the degradation is much lower when relying on a pre-trained model. Finally, we can see that pre-training only on in-domain data (368k sentences) yields decent results as compared to the one pre-trained on a much larger model pre-trained on 17 languages from Wikipedia.

Pseudo parallel data for pre-training LMs

While many low-resource languages lack monolingual data for pre-training LMs, it is relatively easier to obtain a bilingual dictionary. Under such scenario, one can create pseudo (noisy) parallel data, i.e., by simply replacing words in the monolingual text from a high-resource language, using the bilingual dictionary. Such a pseudo (noisy) parallel data could be used for pre-training [START_REF] Duan | Bilingual Dictionary Based Neural Machine Translation without Using Parallel Sentences[END_REF][START_REF] Wang | Expanding Pretrained Models to Thousands More Languages via Lexicon-based Adaptation[END_REF]. We conducted low-resource simulation experiments under this category. We used high-quality dictionaries for English-Portuguese and English-German 7 .

Each sentence in Portuguese (high-resource) was tokenized to split words and other tokens from each other, but case was preserved. First average overall ratio was counted to know ratio upper bound. For each line in data the ratio 'how many of tokens are replaceable' was counted, if this ratio was lower than desired ratio, whole line was deleted, otherwise words was randomly replaced by words from dictionary until the ratio was equal or higher than desired ratio. The size of pt-en vocabulary is 108686, and the Given the overlap, we can create various amounts of noising (word replacement). Table 19 presents the percentage of noising (word replacement) and resulting amount of retained sentences. Higher replacement, results in lower amount of sentences. For the experiments, we considered only the in-domain data, i.e., the entire training set of 184k sentences per language (see Table 17).

Noise The pseudo parallel data with different amounts of noising was used to different pre-train the transformer based encoder using MLM. Then each of the model was fine-tuned on the 10k parallel sentences (Table 17) as prepared for the low-resource simulations. The Fig. 15 Comparison of BLEU scores after fine-tuning on 10k parallel sentences, while the model was pre-trained on various amounts of (noised) pseudo-parallel data. The lower-bound represents the model that was pre-trained only on target language, where as upper-bound represents the model that was pre-trained on monolingual data from both the source and target languages.

Pre-training a multilingual ASR for low-resource speech translation

In order to quantify the affect of amount of labelled data on speech translation, we emulated low-resource scenarios using HOW2 dataset. We used the same data splits as presented in Table 16 and conducted experiments. One of the ways of training a encoder-decoder speech translation system is by training independent encoder-decoder based ASR and MT systems, and then combining speech encoder from ASR with text decoder from MT and fine-tune on the labelled speech translation data. This scheme is illustrated in Fig. 16 Fig. 17 shows the evaluation of speech translation in terms of BLEU scores, when using various amounts of training data. In all the cases we train an ASR, and MT followed by fine-tuning for ST. We can see that the BLEU score drops from 44 to 9 as the amount of training data decreases from 300 hr to 17 hr. The current speech translation pipeline is difficult to fine-tune given low-amounts of data (17hr).

A sequence-to-sequence encoder-decoder framework for automatic speech recognition models both acoustic and language information into a single end-to-end trainable model. The decoder also acts as an internal language model. This motivated us to explore a multilingual ASR for speech translation in low-resource settings. We hypothesize that the internal language model of the multilingual ASR can be beneficial, when translating from speech in low-resource language to text in high-resource language. For initial experiments, we selected 6 languages (es, pl, fr, de, it, nl) and pooled 50 hours of speech, together with corresponding transcriptions for each language from Mozilla common voice v8 corpus. All the languages are written in Latin script, which allowed us to build a shared sub-word vocabulary using uni-gram algorithm from sentencepiece toolkit. The multilingual ASR was trained on 300 hr (50 hr ×6 languages = 300 hr) in total and then fine-tuned on 17 hr split from HOW2 corpus (en → pt). Note that the initial ASR model has not seen any Portuguese text, but it could still generate text sequences as all the prior languages are written in Latin script. To compare with different initialization schemes, we also trained ASR on source language (en) which is then used to initialize for speech translation system. Also, we trained a speech translation system with random initialization, which shows the benefit of pre-trained ASR for initialization. The results of the speech translation experiments are given in Table 20. We can see that random initialization (1) yields worse results, which is followed by system (2) that is initialized from ASR and MT trained on 17 hr and 10k (low-amounts) respectively. The next systems (3), ( 4) and ( 5) represent the scenario, where we have varying amounts of training data for ASR in source language (en). Systems ( 6) and ( 7) assume that training ASR in source language is infeasible and instead relies on multilingual ASR. From these experiments, we could see that initializing ST with source language ASR or an multilingual ASR is beneficial in low-resource settings.

We used the same multilingual ASR and trained speech-translation system from Tamasheq (taq) speech to French (fr) text using training data from IWSLT 2022. We also compare with other baselines provided by the organizers. The results are shown in right sub-plot of Fig. 18. We see that our system is slightly better than other systems based on self-supervised training, nevertheless all the systems are have relatively low BLEU scores. We plan to investigate further into this direction.

Can we disentangle modalities from the common space?

Assuming that our encoders can produce multi-lingual speech and text representations that all in the same common joint embedding space, it is now necessary to develop a decoder that System Speech Encoder Init. can disentangle the information to project it in a space that is more suitable to generate text or speech in the target language. Figure 19 depicts a framework in which each couple of target modality and language is generated from this common space by using a specific decoder. This approach is highly sub-optimal as it requires to train two decoder (speech and text) for each target language and doesn't allow any mutualisation during the training step.

We propose in this part to develop a unique decoder that could take as input a sequence of embeddings from the multi-modal, multi-lingual joint space and that produces either a sequence of embeddings that is suitable to generate speech or text in the target language. This decoder would address the difficulty of the length of the sequence of embedding that is usually much shorter for text than for speech. Ideally, such a decoder would then allow the use of a unique multi-lingual vocoder that would generate speech from the pseudo-speech embeddings and a unique ASR system that would do the equivalent job for text generation. The architecture of such a framework is depicted in Figure 20 In this framework, a first decoder is responsible of disentangling the modality and translate the sequence at the same time.

Proposed architecture

Deliverable D6.1 

Training data and process

Duration estimation

TODO: "Ioan, veux tu ajouter quelque chose ici?"

Preliminary results on text generation

TODO: "resp text generation: Ioan"

Can we build a common space by aligning sequences instead of single embeddings?

TODO: "resp: Peter" As discussed in the Global Scope of the Workshop topic, the alignment of modalities with differing temporalities is complex. Our primary system considers alignment through self-attentive pooling cosine minimisation. We also considered sequence alignment following both empirical results in a mono-lingual setting [START_REF] Ao | Speecht5: Unified-modal encoder-decoder pre-training for spoken language processing[END_REF] and to consider the relative advantages of a joint multimodal spaces [START_REF] Guo | Deep Multimodal Representation Learning: A Survey[END_REF] over the coordinated ones produced bu SAMU-XLS-R [START_REF] Khurana | SAMU-XLSR: Semantically-Aligned Multimodal Utterance-level Cross-Lingual Speech Representation[END_REF].

The proposed architecture is based on SpeechT5 [START_REF] Ao | Speecht5: Unified-modal encoder-decoder pre-training for spoken language processing[END_REF], a shared space speech and text encoderdecoder model that is trained to align sequences of embeddings from English utterances. The main contributions of this system are :

• To take speech and text inputs by using two different pre-nets, one for each modality, producing sequential representations with equal hidden feature dimensions.

• To force a convergence of speech and text embeddings within a joint space by using a restricted size common codebook and randomly mapping a fixed proportion of utterance frames into the codebook.

• To reconstruct speech and text by using two different post-nets.

Unlike prior translation work, we enforce a joint space across speech and text sequences, with 20ms speech frame features and BPE word token hidden states both passed to the same encoder-decoder transformer architecture. In order to generate informative cross-lingual representations for our system we use the cross-lingual XLM-R text encoder [START_REF] Conneau | Unsupervised Cross-lingual Representation Learning at Scale[END_REF] (100 languages) and the XLS-R speech encoder [START_REF] Babu | XLS-R: Self-supervised cross-lingual speech representation learning at scale[END_REF] (128 languages) as 'pre-nets'. Furthermore, we use the codebook objective to close representations across modalities and languages, with non-aligned multilingual speech and text data.

We proposed a set of experiments to progress from an uni-lingual multi-modal system [START_REF] Ao | Speecht5: Unified-modal encoder-decoder pre-training for spoken language processing[END_REF] to a cross-lingual multi-modal system, by increasing step by step the amount of languages used for training. We speculate that our model can learn powerful cross-lingual representations, even if the time allowed during the workshop was not enough to get comprehensive results.

Model Architecture

The architecture we use is informed by both SAMU-XLS-R, and by SpeechT5.

Text Pre-Encoder We replace the base SpeechT5 text pre-net with a multilingual different encoder.

We tokenize raw input text with Sentence Piece [START_REF] Kudo | SentencePiece: A simple and language independent subword tokenizer and detokenizer for Neural Text Processing[END_REF] in a unigram setting. We follow the XLM-R [START_REF] Conneau | Unsupervised Cross-lingual Representation Learning at Scale[END_REF] authors in setting a vocabulary size of 250K. As an initial text pre-encoder, we take the pretrained XLM-R Base model with 270M parameters. XLM-R is trained on 100 languages with a multinomial sampling distribution parameterised by α [START_REF] Conneau | Cross-lingual Language Model Pretraining[END_REF]. This model generates sequences of hidden representations of hidden dimension 768 at the character level. During training, we freeze XLM-R for the first 10 epochs, before allowing a scaled loss lr s = 0.1 • lr update to the final 4 layers for the rest of ESPERANTO pretraining.

Speech Pre-Encoder

We changed the base SpeechT5 speech pre-net using a different encoder, described here.

We accept Mel-filterbanks as an input for the speech prenet. We then use XLS-R [START_REF] Babu | XLS-R: Self-supervised cross-lingual speech representation learning at scale[END_REF], an architecture inheriting from wav2vec 2.0 [START_REF] Baevski | wav2vec 2.0: A framework for self-supervised learning of speech representations[END_REF]. We initialise the speech encoder with this XLS-R model, pretrained using speech data from 128 languages with a total of duration of 436K hours. Log Mel-filterbank reconstruction(2) is a sequence reconstruction objective seeking to minimise the sum of the L1 distances between source and target log Mel-filterbank features with a dimension of 80.

Sequence length prediction (3) is a binary cross entropy loss on the stop token of the log Mel-filterbank sequence reconstruction

Masked language prediction (4) is an auto-regressive language reconstruction loss over randomly masked input text tokens.

Multimodal multiligual objectives

The shared codebook objective (5) is inherited from SpeechT5. Frames from either speech or text are mapped to a fixed size codebook with a prodiversity loss. SpeechT5 [START_REF] Ao | Speecht5: Unified-modal encoder-decoder pre-training for spoken language processing[END_REF] proposes 1K codebook entries. We scale the size of the codebook C by number of languages L ∈ N * with the following :

C = 1000 + 250 log 2 (L) (1) 
We intuit that this objective encourages the alignment of semantic representations between cross-lingual and cross-modal frames with similar content. [START_REF] Babu | XLS-R: Self-supervised cross-lingual speech representation learning at scale[END_REF] requires aligned sentences and is designed to encourage the model to share information across languages and modalities. The objective is heavily masked sequence reconstruction (Text or Speech) with a guiding semantically aligned statement X a from a different language or modality, where X is a masked sequence:

Shared sequence reconstruction objective

L SR = t n=1 logp(y t n |y y <n , Xt , X a )
Sequence mixing objective [START_REF] Baevski | wav2vec 2.0: A framework for self-supervised learning of speech representations[END_REF] is based on the intuition that across languages and modalities, utterances with the same semantic content should have the same quantized states in the codebook. It is enforced by randomly sampling α = 10% of the codes C a m in an aligned target X a . The objective is to minimize L2 distance between theα = 10% of the closest source frames H s to target code centroids C a m , using each source frame at most once. This objective may be approximated by:

L = αn min n,m (||H s n -C a m ||)
with the provision that each frame H s n is only used once.

Experimental Setup

Data The model is trained on a cleaned custom assembled Common-Crawl [START_REF] Conneau | Unsupervised Cross-lingual Representation Learning at Scale[END_REF] with 100 languages. We also the CommonVoice Dataset [START_REF] Ardila | Common voice: A massively-multilingual speech corpus[END_REF] to leverage unaligned data. For the Aligned Loss objectives -We use aligned data from the CovostV2 dataset [START_REF] Wang | CoVoST 2 and Massively Multilingual Speechto-Text Translation[END_REF]. We use task-specific corpora for finetuning and evaluating on the downstream tasks which are described in Subsection 3.

Models trained

We train and evaluate our model progressively across a 3 Setups that are presented in the table 21. 

Version Languages Comment

Mono-Lingual EN Baseline SpeechT5 [START_REF] Ao | Speecht5: Unified-modal encoder-decoder pre-training for spoken language processing[END_REF] Bi-Lingual EN, FR To compare with EN to FR translation perfs.

Multi-Lingual EN, FR, DE, ES, IT, Toward multi-linguality. AR, JP, ZH-CH, TA, TU

Expected Results

During the workshop we implemented the model as described in the preceding section. We are currently working on moving from SpeechT5 baseline results to a multilingual setting with the cross-lingual encoders. Unfortunately, we did not produce usable multilingual results within the timeframe of the workshop.

From SAMU-XLSR to Translation

Semantically-Aligned Multimodal Cross-lingual Speech Representations

In [START_REF] Khurana | SAMU-XLSR: Semantically-Aligned Multimodal Utterance-level Cross-Lingual Speech Representation[END_REF] we proposed the SAMU-XLSR: Semantically-Aligned Multimodal Utterance-level Cross-Lingual Speech Representation learning framework. Unlike previous works on speech representation learning, which learns multilingual contextual speech embedding at the resolution of an acoustic frame (10-20ms), this work focuses on learning multimodal (speech-text) multilingual speech embedding at the resolution of a sentence (5-10s) such that the embedding vector space is semantically aligned across different languages. We combine state-of-the-art multilingual acoustic frame-level speech representation learning model XLS-R with the Language Agnostic BERT Sentence Embedding (LaBSE) model to create an utterance-level multimodal multilingual speech encoder SAMU-XLSR. Although we train SAMU-XLSR with only multilingual transcribed speech data, cross-lingual speech-text and speech-speech associations emerge in its learned representation space. To substantiate our claims, we use SAMU-XLSR speech encoder in combination with a pre-trained LaBSE text sentence encoder for cross-lingual speechto-text translation retrieval, and SAMU-XLSR alone for cross-lingual speech-to-speech translation retrieval. We highlight these applications by performing several cross-lingual text and speech translation retrieval tasks across several datasets. A more detailed description of the model can be found in the original paper [START_REF] Khurana | SAMU-XLSR: Semantically-Aligned Multimodal Utterance-level Cross-Lingual Speech Representation[END_REF].

Speech to Text Translation

Task Overview X→EN Text Translation: We use the CoVoST-2 [START_REF] Wang | CoVoST 2 and Massively Multilingual Speechto-Text Translation[END_REF] X-EN speech-translation dataset for this task. The task consists on the translation from input language X∈{RU, IT, FR, ES, TR, DE, ET, CY, NL, ID, CA, FA, AR, ZH, SV, MN, SL, JA, TA, LV} into English. We propose to use SAMU-XLSR and XLS-R to perform speech to text translation.

Models

The model uses the classical encoder decoder framework. The encoder is either initialized with SAMU-XLSR or XLS-R and fully-fine tuned or fine-tuned using adapters layers.

The decoder is either randomly initialized or initialized with mBart [START_REF] Liu | Multilingual denoising pre-training for neural machine translation[END_REF] and partially fine-tuned using different strategies (encoder attention and layer norm fine-tuning [START_REF] Li | Multilingual Speech Translation from Efficient Finetuning of Pretrained Models[END_REF]).

Data

The previous SAMU-XLSR was trained on 21 languages. We trained a new version of the model using 51 languages, as the intersection between the languages supported by LaBSE and the languages included in the common voice 8.0 corpus.

The languages are reported in table 22.

We evaluated our models on the 21 CoVoST2 languages. See the details in table 23. In the rest of the section, we consider as high resource languages the one with more than 100h, and the low resource languages the one with less than 10h of data for training.

Evaluation Metric

We evaluated our models using the well known BLEU score.

Results

In this section we report the results that we got using different initialization of the encoder and decoder, we also investigate different fine tuning strategies and zero-shot experiments.

Figure 23 shows results using randomly initialized decoder. We can see that SAMU-XLSR is performing better than XLSR for medium and low resource languages in every configurations. SAMU-XLSR with adapter is slightly less good than XLSR for High resource languages. We believe this is because of the important amount of training data that can not be handled by the adapter layers.

Figure 24 shows the results using mBart decoder initialization. Only the layer norm and the encoder attention layers were fine-tuned. In those experiments we also fine-tuned only adapters when using the SAMU-XLSR model as initialization of the encoder, when using XLSR the encoder is fully fine tuned. We can observe that using mbart to initialize the decoder lead to improvements using XLSR and SAMU-XLSR as encoder. SAMU-XLSR is outperforming XLSR by a big margin in every configurations. As a comparison, we also report the results of mBart initialized and randomly initialized decoder using SAMU-XLSR as encoder initialization and using adaptors for the fine-tuning in figure 25. We also observed that our SAMU-XLSR / mBart model was not performing equally depending on languages, as reported in figure 26.

Language

Source

We performed some experiment in which we built bilingual models (instead of having one 21 to X languages model, we trained 21 models language specific to english). The results, presented in figure 27, are far better for some low resources languages (Latvian and Indonesian for example). For some languages (Arabic and Dutch), performances are degraded. We believe that those languages are close to others in the training set and that they were able to benefit from them in the multilingual training.

We were also interested about zero-shot translation. We performed the training on high resource languages (> 100h) and use the other languages during inference. Once again, results presented in figure 28 shows that SAMU-XLSR performs better than XLSR due to the fact that he is learning semantically aligned representations of speech. Data In order to support the challenge, an annotated corpus with parallel Tamasheq speech and French text was released. Data consists of 17 hours of manually labelled speech from radio recordings translated to French. Additionally, a bigger collection of unlabeled raw audio data was also made available, providing the participants with speech data in Tamasheq language 

Direct (Textless) Speech to Speech Translation

Task Overview The speech to speech translation task seeks to convert speech generated in one language into speech in a different language. Traditional speech to speech systems rely on a cascaded approach that concatenates different systems, namely automatic speech recognition, machine translation and speech synthesis, or a speech to text system concatenated with a speech synthesis model. The idea of direct speech to speech translation has already been explored in the literature [START_REF] Jia | Translatotron 2: High-quality direct speech-to-speech translation with voice preservation[END_REF] [29], showing greats benefits in terms of lower computational costs and inference latency when compared to the cascaded approach. Yet, a performance gap between the direct and the cascaded approaches can still be observed due to the challenges of simultaneously learning the alignment between two languages and the acoustic and linguistic characteristics.

In this work, we adopt the framework originally proposed in [START_REF] Lee | Direct Speech-to-Speech Translation With Discrete Units[END_REF] that performs textless speech to speech translation by extracting a set of discrete acoustic units on the target speech and then training a speech to unit translation model that predicts those discrete representations.

Models An schematic overview of the direct speech to speech translation system is presented in Figure 30.

Data For the direct speech to speech translation task, the English audios from the CVSS-C (canonical voice) dataset were used as target speech. Several Acoustic Unit Discovery Systems were tested for extracting the discrete units from the English audio: XLS-R, SAMU-XLSR, m-HuBERT and SpeechT5. The corresponding source speech audios were obtained from the Common Voice 4.0 corpus for the 21 languages whose translations are available in CVSS. See [START_REF] Jia | CVSS Corpus and Massively Multilingual Speech-to-Speech Translation[END_REF] and table 23 for more details on the CVSS dataset.

Evaluation Metric

In order to evaluate the speech to speech translation, as it is not feasible to directly compare two audio signals, we use open-source ASR models 9 to obtain a transcription for the output audios. Then, the score used to evaluate our system is the BLEU metric between the obtained transcriptions and the normalised reference text.

Results

To evaluate our speech to speech translation system, the BLEU scores in the test partition of the CVSS dataset are obtained and introduced in Figure 31. In this figure, a comparison between the four different systems which have been used to obtain the discrete units as a reference to train the speech to unit translation framework is presented. Moreover, two different speech encoders have been applied in the speech to unit framework to train the different systems with the reference acoustic units from each of the Acoustic Unit Discovery System. According to these results, it is worth mentioning that regardless of the Acoustic Unit Discovery System employed to extract the units, the best speech encoder is the SAMU-XLSR.

On the other hand, in Figure 32, the effect of using a different number of acoustic units has been analysed. As this figure shows, the results improved when a high number of acoustic units are extracted with m-HuBERT as Acoustic Unit Discovery System. While in the case of using SpeechT5, the results achieved are also better than the ones presented in Figure 31 with this kind of system when more acoustic units are extracted.

Text to speech translation

Task Overview Considering that one of the initials goals of the project was to develop a fully multimodal and multilingual translation system, and once the performance of the SAMU-XLSR model has been experimentally validated on the speech to speech translation task, we proposed to extend the speech to speech translation framework so that it can also accept text as input. The task can be then formally defined as a text to speech translation task. Seeking to be able to use the same speech vocoder as the one used in the mentioned speech to speech translation task, we perform the translation in two steps: first a text to acoustic unit conversion and then speech generation through the same HiFi-GAN as described in the previous experiments.

Acoustic Units

Models

In a similar way, as done in the speech to speech translation tasks, we use an encoder-decoder architecture to perform text to speech translation as Figure 33 depicts. Considering that converting text inputs to acoustic units can be considered as a machine translation task, we use a pre-trained text model as initialization for our encoder-decoder architecture. Namely, we consider MBart model in its two variations, MBart25 and MBart50 [START_REF] Liu | Multilingual denoising pre-training for neural machine translation[END_REF][START_REF] Li | Multilingual Speech Translation from Efficient Finetuning of Pretrained Models[END_REF]. After initialization, the full architecture is finetuned on the text to acoustic unit translation task. Finally, the same HiFi GAN unit to speech vocoder as the one described in section 5.5.4 is applied to Data Considering that the CVSS dataset [START_REF] Jia | CVSS Corpus and Massively Multilingual Speech-to-Speech Translation[END_REF], already used in the direct speech to speech translation task, also provides the text transcription for the input audios, we use this dataset to perform a 21 to EN text to speech translation task. Target audios are forwarded through the acoustic unit discovery system to obtain its unit representations. These acoustic units are then used as targets to train the text to unit translation system.

Evaluation Metrics Same evaluation protocol as described in subsection 5.5.4 applies for the text to speech translation system. An ASR system is run to obtain transcriptions for the output audio signals and BLEU score is computed between those transcriptions and the normalised text references.

Results Figure 34 presents the BLEU scores in the test partition of the CVSS dataset for our proposed text-to-speech system. In this figure, the performance is shown separately for high, medium and low resource languages. Moreover, the average of the results is also presented. These results show a large performance improvement in all splits when the MBart50 model is used as a pre-training model to initialize our encoder-decoder pipeline for the text-to-speech system.

For a more in-depth analysis of the differences found between the two types of models employed, we can see the results for each language of the 21 languages available in the CVSS dataset in Figure 35. This figure shows that the performance of each language improves using MBart50, but the improvement achieved in the languages which are not included in MBart25, marked with 1 in the figure, is particularly remarkable. Note that even languages that are not included in either MBart25 or MBart50, marked with 2, benefit from the influence of having more languages in the second model and improve their results. Figure 35: BLEU results on CVSS data test partition for each language available. 1 Languages not present in mBART-25, but present in mBART-50.

2 Languages not present in mBART-25 or mBART-50.

Evaluating Speech-to-speech translation without text

Our goal is to develop a metric in order to compare a speech hypothesis (H) with a speech reference (R) along several axes. Main axis is meaning, i.e similarity score should be high if both utterances convey same message. But other axes are interesting: eg. high similarity if H and R voices are similar (similar speaker, gender, etc.). Our textless metric should have a strong correlation with a conventional similarity metric applied to the transcripts of H and R.

Such textless metric could be interesting for: (a) evaluating a S2S translation system w/o falling back on a transcription of H and R; (b) some languages (eg. Tamasheq) for which we cannot fall back to a transcription (>50% of languages have no written form); and (c) defining a training objective for S2S model learning.

A BLEU for speech

One approach we tried is a baseline approach that tries to leverage text-based translation metrics into speech-based metrics. The idea is to generate audio symbols based on the clustering of audio features, and use those symbols as pseudo-words in standard MT metrics such as BLEU, WER or TER. If the metric based on speech correlates with the same metric on the transcribed text then the approach works.

The training setup is thus:

• Generate features from audio

• Build n k-means cluster centers from those features

The application setup is then:

• Generate features from the two audio sentences to compare

• Map each feature to a k-means cluster, creating audio symbols

• Reduce consecutive repetitions of the same symbol into one instance (de-duplication)

• Compare the two symbol streams using the MT metric And the validation is done by comparing the metric results on audio and on text on sentence pairs.

The experimental corpus used is commonvoice 4.0 english. It is originally an ASR/TTS corpus, with sentences both as text and speech. We normalized and tokenized the transcriptions and pairwise compared them to find pairs with at least one quadrigram in common. That condition ensures that the BLEU score is non-zero, and thus the sentences are not too far away to the point of the comparison being meaningless. 31M pairs were left, giving a little over 850K kept sentences. The standard metrics (WER, TER, BLEU, chrF) were then computed on those pairs.

For creating the clusters the experience plan included:

• Features: cepstrum or wav2vec2

• Distance: l2 or cosine

• Count: 10 to 10000 (10, 20, 50, etc) Not every combination was done within the duration of JSALT but we believe the initial results are representative.

To get a quick "eyeball" estimation of the correlations obtained we created scatterplots with the text BLEU on X and the audio BLEU on Y. The Figure 36 includes example of the results.

A good correlation would put all the points near the diagonal. We can see that the result is essentially random. The lower audio BLEU scores with higher number of clusters also confirm a quasi-randomness of the audio symbol streams.

The conclusion is that this approach, while seductive, fails are producing useful results. Something more elaborate is needed, such as a learned metric as presented in the next section.

A learnt metric (extending the COMET approach)

As we have seen that text-based metrics applied to discretized speech units coming from Hu-BERT or XLSR models are not reliable, we believe that learning a metric that will capture semantic similarity (or all kinds of similarities) between audio hypothesis and reference is an interesting option. To quickly experiment with this idea, we re-used the COMET10 framework widely used in machine translation evaluation. COMET [START_REF] Rei | COMET: A Neural Framework for MT Evaluation[END_REF] can be used for evaluating machine translation systems with currently available high-performing metrics (trained to correlate with human judgements) but also to train and develop new metrics.

We adapt the COMET framework to our textless metric as illustrated in figure 37: both audio H and R are transformed in a sequence of speech units (we will use HuBERT [START_REF] Hsu | Hubert: Self-supervised speech representation learning by masked prediction of hidden units[END_REF] in our preliminary experiments). Both sequences of discrete units are then mapped into a sequence of characters and encoded with XLM-Roberta [START_REF] Conneau | Unsupervised Cross-lingual Representation Learning at Scale[END_REF], and then pooled in a single vector. A regression layer will then predict the true (text-based) metric we want to approximate. In our experiments we will use ChrF metric [START_REF] Popović | chrF: character n-gram F-score for automatic MT evaluation[END_REF] as a target and a mean square error loss will be used to train the model parameters. It is important to note that, as done in initial COMET approach, not only the regression layer parameters will be learnt during training but also some parameters of the XLM-Roberta encoder (after 30% of the first epoch and for the rest of the training). We first experiment on the CVSS corpus (English target part) [START_REF] Jia | CVSS Corpus and Massively Multilingual Speech-to-Speech Translation[END_REF]. All H and R are synthetic speech from different speaker voices. They correspond to similar or (slightly) dissimilar transcripts as illustrated by the ChrF distribution displayed in figure 38 (left). To obtain dissimilar audios with different voices, we applied the following process to our original CVSS speech utterances: (a) ASR transcription; (b) BART encoding and decoding;11 and (c) TTS from the noisy transcript (with a different speaker voice).

Our first experiments are summarized in table 25 and show correlations between true ChrF from text and learnt ChrF from audio for different experimental setups. The first two lines display our target (text-based ChrF) and topline (learnt ChrF from text) respectively. The remaining columns use audio H and R inputs: third column is our baseline (ChrF is computed from sequences of HuBERT units) while lines 4-7 display results obtained with our learnt metric. Overall we observe that more speech units (200 instead of 50) improves correlation and that adding training data (207k utterances instead of 14.7k utterances) improves learnt metric as well. Finally our best result on this synthetic dataset is obtained while training longer (10 epochs instead of 5).

Figure 38 (right) displays the distribution of our learnt ChrF scores (with the best configuration; last line of table 25 obtained from audio). We can observe that both distributions are very similar and that COMET has learnt, from training data, to reproduce the scores distribution using audio input only! As a final experiment, we also evaluated on natural speech: we use common voice initial corpus (English part) where H and R are natural speech utterances and most of the time from different speakers. They correspond to similar or dissimilar transcripts pairs and those pairs were selected based on minimum n-gram similarities. Our target is again the ChrF metric obtained from text. We train our learnt textless ChrF on 2M pairs of audio utterances (using 200 HuBERT units) and evaluate on 100k pairs of utterances for which ChrF is known. The training loss is displayed on figure 39 and we obtain very good correlations coefficients on the dev set: ρ(Pearson) = 0.970 and ρ(Spearman) = 0.866. 12 From the loss curve, we clearly see the moment where parameters of the XLM-Roberta encoder (after 30% of the first epoch) start to be adapted in addition to the regression layer parameters: at this moment XLM-R specializes itself at encoding HuBERT units (instead of characters).

Overall, this demonstrates that our approach also works to compare meaning of natural speech utterances. 
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 1 Figure 1: Block diagram of the multi-modal / multi-lingual translation.
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 2 Figure 2: Training process of SAMU-XLSR.
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 3 Figure 3: Neural Architecture for an SLU layer-wise analysis of speech encoders with the MEDIA dataset.
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 4 Figure 4: Layer-wise analysis of WER on the test data.
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 5 Figure 5: Layer-wise analysis of CER on the test data.
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 6 Figure 6: Neural Architecture for an SLU language portability analysis of speech encoders with the ME-DIA and PortMEDIA datasets.
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 7 Figure 7: Proposed protocol for speech encoder information probing.
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 8 Figure 8: Performance obtained for speaker identification task at different speech encoder layer levels.
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 9 Figure 9: Performance obtained for automatic speech recognition task at different speech encoder layer levels.
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 10 Figure 10: Performance obtained for emotion task at different speech encoder layer levels.

Figure 10 summarizes

 10 Figure10summarizes the performance given by emotion recognition task. Scores are expressed in terms of F1-Score.

Figure 11 :

 11 Figure 11: Bar plot of the number of hours available for the pre-training of XLS-R.

Figure 12 :

 12 Figure 12: Average cosine similarity between embeddings, for In-domain languages and Out-domain languages. The base model is represented by a diamond, and the deviation bars are represented by vertical and horizontal bars. The line x = y is plotted, to better visualize the models more similar for in-domain languages than out-domain languages. The left plot is the sentence embeddings similarities, the right plot is the sequences of embeddings similarities.

1. LJSpeech : Monospeaker read english audiobooks 2 .

 2 SynPaFlex : Monospeaker read french audiobooks 3. VCTK : Multispeaker read english newspaper 4. CommonVoice : Multispeaker read multilingual sentences Deliverable D6.1 5. CVSS : Multispeaker sentences in different languages from CommonVoice synthetized using TTS systems

Figure 13 :

 13 Figure 13: Transformer encoder for pre-training language models. The input is text tokens. Masking function will randomly mask 15% of the input tokens. The model is trained to maximize the likelihood of true tokens at the masked positions. (Left) Maksed language model (MLM) trained on text from one language at a time. (Right) Translation language model (TLM) trained on parallel text from pairs of languages.
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 14 Figure 14: Supervised MT vs pre-trained LM followed by fine-tuning on various amounts of data. SUP indicates supervised training. MLM→SUP indicates in-domain MLM pre-training followed by fine-tuning. XLM-17→SUP indicates that model was pre-trained on 17 languages from Wikipedia followed by fine-tuning.
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 15 Figure15: Comparison of BLEU scores after fine-tuning on 10k parallel sentences, while the model was pre-trained on various amounts of (noised) pseudo-parallel data. The lower-bound represents the model that was pre-trained only on target language, where as upper-bound represents the model that was pre-trained on monolingual data from both the source and target languages.
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 16 Figure 16: Block diagram showing the pipeline fro training a typical speech translation system using an encoder-decoder framework.
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 17 Figure 17: Low-resource simulation of speech translation on English (en) → Portuguese (pt) from HOW2dataset. For all the splits, we train both ASR and MT models independently. Then initialize an ST model with encoder from ASR and decoder from MT, followed by fine-tuning.
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 18 Figure 18: BLEU scores for speech translation. (Left) Low-resource simulation in English → Portuguese from HOW2 dataset. (Right) Tamasheq → French from IWSLT 2022 evaluation dataset.
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 19 Figure 19: Framework of a multi-decoder architecture.
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 20 Figure 20: Decoding framework based on a single decoder disentangling both language and modality.
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 21 Figure 21: Architecture of the proposed decoder.
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 22 Figure 22: MSpeechT5 Architecture
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 23 Figure 23: BLEU results on CoVost2 using randomly initialized decoder
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 2425 Figure 24: BLEU results on CoVost2 using mBart initiliazed decoder
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 2627 Figure 26: BLEU results on CoVost2 for different languages
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 29 Figure 29: BLEU results on Tamasheq data test partition.
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 30 Figure 30: Textless speech to speech translation system.
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 3132 Figure 31: BLEU results on CVSS 21 X → EN translation task.
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 33 Figure 33: Text to speech translation system.
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 5034 Figure 34: BLEU results on CVSS data test partition.
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 36 Figure 36: Scatterplots with 10/50/100 clusters and l2 distance (top) or cosine distance (bottom).
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 37 Figure 37: Adaptation of the COMET framework to our textless metric.
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 38 Figure 38: Distributions of ChrF scores on the test set of our prepared CVSS corpus: (left) true ChrF from text and (right) learnt ChrF from audio.
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 39 Figure 39: Training loss during 1st epoch of training textless ChrF on 2M natural audio utterances .

  

Table 2

 2 presents the data distribution, in hours of speech and number of words, into the official training, development and test corpora. The PortMEDIA training corpus is more than four times smaller than the MEDIA one in terms of words, which makes it low resource. If speech duration seems not so low in comparison, this is due to a less precise speech segmentation that includes large portions of silence.

			Train	Dev	Test
	Hours	MEDIA PortMEDIA 07h18m 02h32m 04h51m 10h52m 01h13m 03h01m
	Words	MEDIA PortMEDIA	94.5k 21.7k	10.8k 7.7k	26.6k 14.7k

Table 2 :

 2 Data distribution of the MEDIA and PortMEDIA corpus.

Table 3 :

 3 Zero-shot results (%) from French MEDIA training to Italian PortMEDIA inference.

Train Data ChER WER CER CVER

  

	Frozen	IT FR→IT	14.91 36.90 42.66 54.31 12.78 32.41 35.39 49.60
	Fine-tuned	IT FR→IT	13.36 37.02 42.72 57.47 7.55 20.01 26.92 40.11

Table 4

 4 

	: XLS-R PortMEDIA results (%) of PortMEDIA (IT) training and MEDIA training followed by Port-
	MEDIA fine-tuning (FR→IT).		
		Train Data ChER WER CER CVER
	Frozen	IT FR→IT	12.62 27.92 33.01 46.99 11.01 25.09 26.90 42.70
	Fine-tuned	IT FR→IT	6.47 7.04	16.59 30.66 42.09 17.81 26.18 39.28

Table 5

 5 

	: SAMU-XLSR PortMEDIA results (%) with PortMEDIA (IT) training and MEDIA training followed
	by PortMEDIA fine-tuning (FR→IT).

Test Data Test Encoder Train Encoder

  

			SAMU-XLSR LaBSE
		SAMU-XLSR	77.52%	71.77%
	FR	LaBSE	78.04%	82.15%
		frame-wise*	84.69%	-
		SAMU-XLSR	68.55%	65.14%
	IT	LaBSE	62.05%	69.58%
		frame-wise*	59.76%	-

Table 6 :

 6 Micro F 1 -scores for sentence-level semantic analysis with classification model trained on French and tested on French and Italian data. *Baseline results are obtained with the language portability models on frame-wise embeddings, and converted in bag-of-concepts outputs for evaluation.

Table 7 :

 7 Table of the amount of data available for XLS-R, SAMU-XLSR and LaBSE by languages Family and Sub-Family. LaBSE amounts are in thousands of text sentences, XLS-R and SAMU-XLSR amounts are in hours of speech.

	Family	Sub-Family	XLS-R SAMU-XLSR LaBSE
	Abkhaz-Adyge	Abkhaz-Abaza	1	0	0
		Berber	0	50	0
	Afro-Asiatic	Chadic Cushitic	75 82	3 0	8458 11805
		Semitic	9357	93	303167
	Artificial Language	Esperanto	97	1407	74630
	Atlantic-Congo	North-Central Atlantic	0	0	1782
	Atlantic-Congo	Volta-Congo	15918	287	236985
	Austroasiatic	Khmeric Vietic	0 131	0 4	29773 220946
	Austronesian	Malayo-Polynesian	529	25	462141
	Basque	Basque	113	98	52689
		Paleo-Balkan	56	0	89268
		Armenic	55	1	73501
		Balto-Slavic	96451	1366	3610606
	Classical Indo-European	Celtic Germanic	206 145247	120 3440	100604 9650074
		Graeco-Phrygian	17761	15	204252
		Indo-Iranian	1199	413	824158
		Italic	104445	2593	2585127
	Dravidian	South Dravidian	254	217	334132
	Hmong-Mien	Hmongic	0	0	4507
	Japonic	Japanesic	49	40	1410416
	Kartvelian	Georgian-Zan	127	7	68016
	Koreanic	Koreanic	61	0	211037
	Mongolic-Khitan	Mongolic	68	12	45520
		Bodic	81	0	449
	Sino-Tibetan	Burmo-Qiangic	33	0	42850
		Sinitic	325	229	1274737
	Tai-Kadai	Kam-Tai	150	142	125215
	Tupian	Maweti-Guarani	2	0	0
	Turkic	Bolgar Common Turkic	4 550	0 278	0 482992
	Uralic	Finnic Finno-Ugric	24634 17421	40 19	285576 188648

Table 8 :

 8 Table of languages used in the different subsets of training, and the total number of hours of speech available for each subset and the number of files.

	Model Italic Germanic Balto-Slavic Volta-Congo Chinese Berber Indo-Iranian
	Epochs	22	20	12	14	10	36	3

Table 9 :

 9 Number of epochs of training for each model.

	Model	CoER
	Base	20.2%
	Balto-Slavic 20.4%
	Berber	20.8%
	Chinese	20.5%
	Germanic	20.4%
	Indo-Iranian 19.7%
	Italic*	20.1%
	Volta-Congo 19.9%

Table 10 :

 10 CoER for concept extraction on different models, all fine-tuned then evaluated respectively on french MEDIA dataset train and eval subsets. The CoER were computed with a confidence interval of ± 0.8.

Table 11 :

 11 BLEU scores over a Tamasheq to French translation task, evaluated on the IWSLT2022 dataset on various SAMU-XLSR versions.

Table 12 :

 12 Cosine similarities averages by language between LaBSE and SAMU-XLSR sentence embeddings, Part. 1.

		base	indo germanic italic	balto	volta berber chinese
	ab	0.236 0.219	0.220	0.199 0.239 0.213 0.408	0.204
	ar	0.859 0.808	0.532	0.595 0.660 0.610 0.172	0.352
	ba	0.491 0.429	0.279	0.267 0.372 0.287 0.356	0.242
	be	0.914 0.816	0.634	0.604 0.915 0.494 0.158	0.398
	br	0.395 0.380	0.378	0.379 0.384 0.349 0.391	0.303
	ca	0.917 0.822	0.758	0.915 0.765 0.611 0.254	0.460
	ckb	0.316 0.349	0.245	0.280 0.290 0.310 0.339	0.249
	cs	0.766 0.617	0.513	0.517 0.884 0.429 0.168	0.329
	cv	0.222 0.236	0.169	0.168 0.240 0.201 0.314	0.182
	cy	0.772 0.606	0.467	0.428 0.472 0.394 0.185	0.265
	da	0.487 0.458	0.656	0.419 0.449 0.381 0.137	0.294
	de	0.920 0.854	0.916	0.776 0.774 0.650 0.216	0.474
	dv	0.056 0.060	0.035	0.034 0.046 0.093 0.122	0.061
	el	0.431 0.384	0.374	0.389 0.391 0.320 0.120	0.277
	en	0.904 0.857	0.872	0.822 0.804 0.772 0.303	0.655
	eo	0.941 0.881	0.789	0.827 0.867 0.734 0.257	0.434
	es	0.934 0.879	0.815	0.930 0.840 0.720 0.286	0.527
	et	0.717 0.511	0.488	0.449 0.532 0.346 0.197	0.302
	eu	0.758 0.603	0.479	0.466 0.496 0.331 0.201	0.319
	fa	0.929 0.938	0.694	0.699 0.801 0.580 0.133	0.478
	fi	0.396 0.347	0.383	0.346 0.374 0.279 0.150	0.220
	fr	0.928 0.894	0.841	0.917 0.841 0.751 0.286	0.607
	fy-NL 0.805 0.685	0.803	0.574 0.611 0.458 0.232	0.359
	gl	0.910 0.846	0.791	0.928 0.808 0.665 0.245	0.504
	hi	0.553 0.763	0.453	0.462 0.488 0.416 0.210	0.296
	hu	0.451 0.390	0.414	0.403 0.439 0.319 0.178	0.267
	ia	0.793 0.673	0.616	0.815 0.641 0.497 0.321	0.375
	id	0.777 0.639	0.488	0.486 0.525 0.394 0.177	0.247
	it	0.917 0.831	0.771	0.916 0.803 0.657 0.276	0.485
	ja	0.423 0.394	0.336	0.295 0.328 0.258 0.106	0.248
	ka	0.491 0.441	0.479	0.450 0.491 0.380 0.207	0.347
	kab	0.242 0.226	0.222	0.230 0.246 0.233 0.881	0.210
	kmr	0.642 0.701	0.378	0.391 0.436 0.340 0.165	0.289
	ky	0.834 0.668	0.469	0.424 0.569 0.386 0.142	0.301
	lg	0.182 0.160	0.158	0.154 0.168 0.285 0.248	0.099

Table 13 :

 13 Cosine similarities averages by language between LaBSE and SAMU-XLSR sentence embeddings, Part. 2.

Table 14 :

 14 Cosine similarities averages by language between XLS-R and SAMU-XLSR sequences of embeddings, Part. 1.
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Table 15 :

 15 Cosine similarities averages by language between XLS-R and SAMU-XLSR sequences of embeddings, Part. 2.

Table 16 :

 16 Caption

	Resource type

Table 17

 17 

	Dataset name	Language pair	Training	Valid	Test
	HOW2 [50] HOW2-153h HOW2-51h HOW2-17h	en → pt en → pt en → pt en → pt	300 hr (183979 utts) 153 hr (94397 utts) 51 hr (31408 utts) 17 hr (10511 utts)	3 hr (2018 utts) 3.7 hr (2305 utts)
	MUSTC-v1 [11] MUSTC-v1-153h MUSTC-v1-51h MUSTC-v1-17h	en → de en → de en → de en → de	400 hr (229703 utts) 153 hr (87613 utts) 51 hr (29187 utts) 17 hr (9778 utts)	2.5 hr (1423 utts)	4 hr (2641 utts)

presents the data splits for low-resource simulations. Both the HOW2 and MUST-C are speech translation datasets from English to Portuguese and German respectively. These datasets were used in low-resource simulations for both MT and ST experiments.

Table 17 :

 17 Datasets and splits used for low-resource simulation.

Table 18 :

 18 Table 18 presents the overlap in terms on word types (unique) and tokens (overall). Portuguese-English dictionary overlap with HOW2 dataset.

		train		valid		test	
	Language unique [%] overall [%] unique [%] overall [%] unique [%] overall [%]
	pt	42.69	65.32	70.14	65.38	68.11	65.08
	en	53.69	76.67	81.63	76.67	82.15	76.86

Table 19 :

 19 Percentage of data retained after noising (word replacement).

Table 20 :

 20 ASR-XXh-src is trained on source (en) speech, where XX represents the amount of training data in hours (h). MT-10k is source (en) → target (pt). Multi-ASR-300h did not see neither source speech nor target language text.

			Text Decoder Init.	ASR Aux. Loss BLEU
	(1)	Random	Random	YES	1.9
	(2)	ASR-17h-src	MT-10k	YES	9.5
	(3)	ASR-51h-src	ASR-Decoder	YES	16.5
	(4)	ASR-153h-src	ASR-Decoder	YES	17.9
	(5)	ASR-300h-src	ASR-Decoder	YES	19.6
	(6)	Multi-ASR-300h	Multi-ASR-Decoder	YES	15.5
	(7)	Multi-ASR-300h	Multi-ASR-Decoder	NO	14.6

Table 21 :

 21 Versions of SpeechT5 trained.

Table 22 :

 22 Training of SAMU-XLSR: Languages and hours used from Common Voice 8

Table 23 :

 23 Training data in CoVoST 2 and CVSS databases

Input Train Data Encoder Epochs Metric

  

	Text	None	None	-	chrF	1	1
	Text	14.7k utt.	XLM-R	5	learnt chrF 0.902	0.922
	Audio None	Hubert-50	-	chrF	0.431	0.386
	Audio 14.7k utt.	Hubert-50 +XLM-R	5	learnt chrF 0.542	0.480
	Audio 14.7k utt.	Hubert-200 +XLM-R	5	learnt chrF 0.595	0.567
	Audio 207.4k utt.	Hubert-200 +XLM-R	5	learnt chrF 0.755	0.700
	Audio 207.4k utt.	Hubert-200 +XLM-R	10	learnt chrF 0.779	0.733

ρ (Pearson) ρ (Spearman)

Table 25 :

 25 Correlations between true ChrF from text and learnt ChrF from audio, for different experimental setups.

Deliverable D6.1

https://huggingface.co/facebook/wav2vec2-xls-r-300m Deliverable D6.1

https://huggingface.co/sentence-transformers/LaBSE Deliverable D6.1

http://catalog.elra.info/en-us/repository/browse/ELRA-E0024/

International Standard Language Resource Number: 699-856-029-354-6 Deliverable D6.1

http://www.elra.info/en/projects/archived-projects/port-media/ Deliverable D6.1

https://github.com/facebookresearch/XLM#pretrained-cross-lingual-language-models Deliverable D6.1

https://github.com/facebookresearch/MUSE Deliverable D6.1

https://github.com/mzboito/iwslt2022_tamasheq_data Deliverable D6.1

https://huggingface.co/facebook/wav2vec2-large-960h-lv60-self Deliverable D6.1

https://github.com/Unbabel/COMET Deliverable D6.1

To further add noise.

Training on more data (18M utterances instead of 2M) lead to small improvements of correlation coefficients: ρ(Pearson) = 0.99 and ρ(Spearman) = 0.88. Deliverable D6.1

https://esperanto.univ-lemans.fr https://www.clsp.jhu.edu/speech-translation-for-under-resourced-languages/ Deliverable D6.1

Evaluation Metrics As usually done in translation tasks, the original evaluation considered the BLEU metric as its scoring system. We used the same metric in our experiments.

Results

Figure 29 shows BLEU scores on the Tamasheq data test partitions for our proposed system using SAMU-XLSR as speech encoder (both 51 languages and 60 languages versions) compared to previous results reported in the original IWSLT'22 challenge leaderboard. First three results (in orange tones) have been extracted directly from the original post evaluation analysis paper [START_REF] Anastasopoulos | Findings of the IWSLT 2022 Evaluation Campaign[END_REF]. These results feature different approaches used in the evaluation to deal with the task. They mainly rely on the use of large pretrained models, finetuning them on a set of in domain or domain related data. Best result achieved a BLEU score of 5.7 by finetuning a wav2vec 2.0 model using in domain data from the released unlabelled Tamasheq data. Last two results (in green tones) show the performance of our proposed SAMU-XLSR speech encoders in the Tamasheq to French speech to text translation. It can be seen that both the previous
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