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Abstract

Linear regression and classification methods with repeated functional data are con-
sidered. For each statistical unit in the sample, a real-valued parameter is observed over
time under different conditions related by some neighborhood structure (spatial, group,
etc.). Two regression methods based on fusion penalties are proposed to consider the
dependence induced by this structure. These methods aim to obtain parsimonious coef-
ficient regression functions, by determining if close conditions are associated with com-
mon regression coefficient functions. The first method is a generalization to functional
data of the variable fusion methodology based on the 1-nearest neighbor. The second
one relies on the group fusion lasso penalty which assumes some grouping structure
of conditions and allows for homogeneity among the regression coefficient functions
within groups. Numerical simulations and an application of electroencephalography
data are presented.
Keywords. classification, fused lasso, group lasso, linear models, multivariate func-
tional data, regression, repeated functional data, variable fusion

1 Introduction

Let X be a functional random variable valued in some Hilbert space of real-valued functions
defined on the time interval [0, T ], T > 0. Without loss of generality, we assume that this
space is the set of squared integrable functions L2([0, T ]) (Ramsey and Silverman, 2005). The
setting we consider in this paper assumes that X is observed under p different conditions
{C1, . . . , Cp}, p ≥ 1. For instance, these conditions can represent times or/and locations
(regions) in some metric space (S , d), typically (Rs, ∥ · ∥2), for some natural integer s ≥ 1.
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Thus, proximity or grouping structures of conditions can be considered through the distance
d(·, ·) which, depending on the space S , could be the Euclidean distance or some other
well-suited distance (for example the great circle distance if S is a sphere). An example
of this type of data model comes from the field of neuroscience: electroencephalography
recordings (EEG) (Ruiz et al., 2021) represent the brain activity through the electric field
intensity over a time interval of T = 500ms at different regions of the brain, using p = 28
electrodes/sensors evenly distributed (Figure 1).

F1: F2:

F3: F4:

...
...

O1: O2:

Figure 1: FingerMovements data. Each subject is represented by p = 28 EEG recordings
(right). The sensors are disposed on the scalp according to the map in the left figure. F, C,
P and O stand respectively for the Frontal, Central, Parietal and Occipital regions.

Let denote with X(j) the observation of X under the condition Cj, j = 1, . . . , p, and with
X, the random vector

X = (X(1), . . . , X(p))⊤.

The realizations of X are known as repeated functional data: the functional random variable
X is repeatedly observed p times under different conditions. In this framework, the first
major contribution is due to Chen and Müller (2012) for the development of the principal
component analysis (PCA) method. The authors use a double PCA exploiting the metric
structure of the space of conditions {C1, . . . , Cp} belong. In Jacques and Preda (2014) that
structure is ignored and X is viewed as a p-dimensional functional random vector of which
principal components are used for visualization and unsupervised classification.

To the best of our knowledge, supervised learning with repeated functional data has not
been specifically addressed in the literature. In the existing works on supervised models,
the repeated feature of data is taken into account as in the classical multivariate functional
setting, through the covariance operators of X (see e.g Yi et al. (2022), Górecki et al. (2015),
Beyaztas and Lin Shang (2022), Moindjié et al. (2024)). These methods ignore that the
components of the random vector X have a common underlying model (X) endowed with
some dependence structure given by the conditions {C1, . . . , Cp}.
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In this work, we propose methods that can consider, through the (observed) conditions
{C1, . . . , Cp}, the topology of (S , d) in the estimation procedure of the linear regression
model with univariate response Y (scalar or binary random variable) and X as a predictor.
In particular, neighborhood relationships or group membership among the components of X
are used for the estimation of the regression function.

Taking into account the topology of (S , d) enhances the interpretability of the proposed
model, especially in the context of brain activity data: since neighboring brain regions
often exhibit correlated activity patterns, the components X(j) that are spatially close are
likely to provide similar information in the regression model. Therefore, considering the
spatial proximity of sensors allows for a more accurate and meaningful representation of
the underlying neural processes, as adjacent sensors are expected to capture related brain
activity. This approach takes into account the inherent spatial structure of brain data to
improve the robustness and interpretability of the model’s estimates. As an example, in the
EEG classification application, each subject is writing a text and the electric field intensity
X is measured simultaneously at p = 28 spatial positions (sensors) of the scalp during
T = 500ms. Two groups of subjects are considered: the right-handed (Y = 0) and left-
handed (Y = 1) writers. The question is to know and interpret in what measure a person’s
ability to be left or right-handed is associated with some different activity of the brain. Our
hypothesis is that close sensors might share/provide similar information in this classification
problem.

The proposed methodologies rely on the standard functional linear regression model. It
assumes that there exist β(0) ∈ R and a regression coefficient function β = (β(1), . . . , β(p))⊤ ∈
Hp = {L2([0, T ])}p such that

E(Y |X) ≈ β(0) +

p∑
j=1

⟨X(j), β(j)⟩L2 (1)

where

⟨X(j), β(j)⟩L2 =

∫ T

0

X(j)(t)β(j)(t)dt,

for j = 1, . . . , p. If {(Xi, Yi)}i=1:n is an i.i.d. sample of size n, n ≥ 1, drawn from the same
distribution as (X, Y ) and {(xi, yi)}i=1:n is an observation of that sample, the estimation of
the model (1) is based on the minimization of the mean of the squared errors (MSE), that
is,

(β̂(0), β̂) = arg min
(ψ(0),ψ)∈R×Hp

1

n

n∑
i=1

(
yi −

(
ψ(0) +

p∑
j=1

⟨x(j)i , ψ(j)⟩L2

))2

. (2)

Because of the non-invertibility of the covariance operator, the direct estimation of the
coefficient β under the minimization of the MSE criterion is an ill-posed problem (Cardot
et al., 1999). The principal component regression (PCR) and the partial least squares (PLS)
have been successful alternatives in this case (see e.g Escabias et al. (2005), Aguilera et al.
(2006), Preda and Saporta (2002), Moindjié et al. (2024)). However, in these approaches,
the estimated coefficient functions are sometimes difficult to interpret: why do two com-
ponents X(j) and X(j′) that are associated to close conditions Cj and Cj′ , i.e. the distance
d(Cj, Cj′) is small, have very different associated coefficient functions β(j) and β(j′)? This
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situation occurs especially when p is large. In Godwin (2013), the authors propose to add
the constraint P =

∑p
j=1 ||ψ(j)||

L2
in the regression model. In this case, P is a generalization

to functional multivariate variables of the group lasso penalty (GL), originally introduced in
the multivariate data case (Meier et al. (2008), Yuan and Lin (2006)).

This penalty leads to achieving a trade-off between a minimum number of contributing
components X(j) and model fit. Our hypothesis is that closeness between components X(j),
in the sense of the distance d between the corresponding conditions Cj, can help for a
better interpretation of β. For this purpose, the fusion penalty was introduced in the finite
multivariate setting in Land and Friedman (1997).

Let v be a surjective function, v : {C1, . . . , Cp} 7→ {1, . . . , K}, K ≤ p, and define the
fusion penalty (in the functional framework) as

P(β) =
K∑
k=1

√∑
j∈Ik

∣∣∣∣β(j) − β̄Ik
∣∣∣∣2
L2
,

where for each k = 1 : K, Ik = {j : v(Cj) = k} and β̄Ik(t) = 1
|Ik|
∑

j∈Ik β
(j)(t) for t ∈ [0, T ]

and |Ik| denotes the cardinal of Ik for k = 1, . . . , p.
Then, the proximity between conditions C1, . . . , Cp can be integrated through the function

v and the distance d : v−1(k) represents all conditions closest to Ck. This penalty favors
close dimensions of X to have similar corresponding dimensions of the regression function
(the β(j)’s functions).

To our knowledge, this penalty has not been explored in the case of regression with
repeated functional variables (nor multivariate functional variables). In the classical multi-
variate setting, the models that have this penalty are known as the variable fusion model
(FU) (Land and Friedman, 1997) and, when a lasso penalty is added, as the fused lasso
method (FL) (Tibshirani et al., 2005). More recently, the group fusion method introduced
in Bleakley and Vert (2011) extended this penalty from unique conditions to groups of con-
ditions. However, in these cases, the function v was defined as a way to integrate consecutive
conditions (or dimensions), i.e. v is defined as v(Cj) = j+1, for 1 ≤ j ≤ p−1 and v(Cp) = p.
Even if this case can be well-suited for the setting S ⊂ R (s = 1), it limits the number of
applications for multivariate locations, i.e. s ≥ 2.

In this setting we define the function v through the distance d and the 1-nearest neighbor
graph (1-NN). Thus, it extends the variable fusion method (Land and Friedman, 1997) to
such a spatial structure of components of X. We show that under this penalty, after a
convenient reformulation of the optimization problem, the regression parameter functions
can be estimated using the algorithm of the group lasso method (Godwin (2013), Meier
et al. (2008)). Moreover, as the 1-NN case can be restrictive in practice, we introduce a
second penalty that considers a more general grouping structure of conditions, yielding to
what we call a group fusion lasso model. This second penalty allows testing the equality
among the dimensions of the regression coefficient function belonging to the same cluster of
conditions.

The paper is organized as follows. Section 2 presents the proposed methodologies and
their estimation strategies using basis function expansion techniques. A comparison study of
the two methods and the group lasso approach is performed using simulated data in Section

4



3.1. A real data application from the EEG classification task is presented in Section 3.2.
The paper ends with a discussion in Section 4.

2 Two new fusion methods for linear regression with

multivariate functional data

Without loss of generality assume that X and Y are zero mean random variables. Moreover,
we consider that {(xi, yi)}i=1,...,n is an observation of {(X i, Yi)}i=1,...,n, an i.i.d. sample of
size n ≥ 1 drawn from the joint distribution of (X, Y ).
Under the zero mean assumption of X and Y , the intercept β(0) in (1) vanishes and the mean
square criterion (2) becomes:

β̂ = arg min
ψ∈Hp

1

n

n∑
i=1

(
yi −

p∑
j=1

⟨x(j)i , ψ(j)⟩L2

)2

.

Remind that for each i = 1, . . . , n, yi ∈ R and xi is a multivariate function defined on [0, T ],

xi(t) =
(
x
(1)
i (t), . . . , x

(j)
i (t), . . . , x

(p)
i (t)

)⊤
, t ∈ [0, T ],

where each dimension x
(j)
i is observed under the condition Cj, j = 1, . . . , p.

Let us now introduce our first model of the penalty based on the distance among condi-
tions.

2.1 Fusion method based on the neighbor relationship among con-
ditions

The basic idea is that if two conditions Cj and Cj′ are close in the space S (with respect to
distance d), then the contributions brought by the components X(j) and X(j′) in the linear
model (1), i.e., β(j) and β(j′), might be comparable. Allowing for identical coefficients β(j)

associated with close conditions, the variable fusion methodology is a candidate to obtain
a parsimonious model and to compete with existing linear model approaches (Land and
Friedman (1997), Tibshirani et al. (2005), Bleakley and Vert (2011)).
When the conditions Cj belong to Rs with s ≥ 2, the distance d defines a neighbor relationship
between conditions and thus it can be used to estimate the regression coefficient functions
accordingly. More precisely, following the ideas in Land and Friedman (1997), the 1-NN
variable fusion model (FU) can be formulated as the following optimization problem:

β̂λ = arg min
β∈Hp

1

2

n∑
i=1

(
yi −

p∑
j=1

⟨x(j)i , β(j)⟩L2

)2

+ λ

p∑
j=1

||β(j) − β(v(Cj))||L2 , (3)

where λ ≥ 0, v : {C1, . . . , Cp} → {1, . . . , p} denotes the neighbor function

v(Cj) = arg min
i∈{1,...,p}\{j}

d(Ci, Cj), j = 1, . . . , p. (4)
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The function v helps to integrate into the estimation process of β the information brought
by the conditions (locations, spatial distributions). Notice that if the set of arg min in (4) is
not unique, then we choose randomly or experimentally an element of this set.
For ease of notation, let denote with ⟨·, ·⟩Hp the inner product in Hp defined by:

⟨f , g⟩Hp =

p∑
i=1

⟨f (i), g(i)⟩L2 ,

for all f , g ∈ Hp.
The penalty function in (3) can then be rewritten as

p∑
j=1

||β(j) − β(v(Cj))||L2 = ||Lβ||L2,1,

where L = W − Ip×p and W = (wi,j)1≤i≤p,1≤j≤p is the adjacency matrix with elements

wi,j =

{
1 if v(Ci) = j
0 otherwise.

Ip×p is the p× p identity matrix and || · ||L2,1 is the norm on Hp defined as:

||f ||L2,1 =

p∑
i=1

||f (i)||L2 , f ∈ Hp.

For illustrative purposes, consider the toy example shown in Figure 2, with S ⊂ R2 and
p = 8. It represents p = 8 points corresponding to the conditions Cj ∈ R2, j = 1, . . . , p.
The neighborhood relationship among the conditions is given by the following v function:
v(C1) = 8, v(C2) = 5, v(C3) = 4, v(C4) = 5, v(C5) = 4, v(C6) = 1, v(C7) = 1 and v(C8) = 1.

Remark that the rank of the matrix L is generally lower than p, since symmetric rela-
tionships are possible (contrary to consecutive conditions case, see e.g Land and Friedman
(1997)). For example, Figure 2 shows that C1 is the neighbor of C8 and C8 is the neighbor of
C1, the same for the couple (C5, C4).

Lemma 1. If r is the rank of the matrix L, there exists a r× p full rank matrix L0 such as

||Lf ||L2,1 = ||L0f ||L2,1, f ∈ Hp. (5)

Thus, L0 avoids redundancy. Its construction consists of finding the couples of rows
corresponding to symmetric relations and, for each such a couple, replacing it with a row
representing the double of the replaced ones. The rank of the matrix L coincides with the
number of vertices of the undirected version of the 1-NN graph.
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Figure 2: 1-NN graph: a→ b means b is the neighbor of a.

As an illustration, in our toy example (Figure 2), we have the following matrices

L =



−1 0 0 0 0 0 0 1
0 −1 0 0 1 0 0 0
0 0 −1 1 0 0 0 0
0 0 0 −1 1 0 0 0
0 0 0 1 −1 0 0 0
1 0 0 0 0 −1 0 0
1 0 0 0 0 0 −1 0
1 0 0 0 0 0 0 −1


and

L0 =


−2 0 0 0 0 0 0 2
0 −1 0 0 1 0 0 0
0 0 −1 1 0 0 0 0
0 0 0 −2 2 0 0 0
1 0 0 0 0 −1 0 0
1 0 0 0 0 0 −1 0

 .

Hence, Lemma 1 implies that there’s an alternative reformulation of (3). Similarly to
the variable fusion methodology (Land and Friedman, 1997), Proposition 1 shows that (3)
can be resolved using a lasso method.

Proposition 1. The solution of (3) is given by

β̂λ = D−1ψ̂λ,

where

ψ̂λ = arg min
f∈Hp

1

2

n∑
i=1

(
yi − ⟨(D−1)⊤xi,f⟩Hp

)2
+ λ

r∑
j=1

||f (j)||L2 , (6)

D =

(
L0

T

)
, L0 is the r × p reduced matrix of L and T is a (p − r) × p matrix which rows

form a basis of the null space of L0, L0T
⊤ = 0r×(p−r) and 0r×(p−r) is the r × (p− r) matrix

of zeros.
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Note that the estimation of the non-penalized part of f in (6), f (r+1), . . . , f (p), might
lead (by putting maximum weights on the non-constrained part of β) to model overfitting,
especially in the functional context. This is because the penalty only considers the difference
between the coefficients and not the overall norm of β. To avoid the issue of overfitting, we
propose to constrain the overall norm Dβ by modifying the penalty term in (6) as:

||Lβ||L2,1 +

√
p− r

η
||Tβ||L2,2,

where η is the Frobenius matrix norm of T, and || · ||L2,2 denotes the Frobenius norm of Hp:

||f ||L2,2 =

√√√√ p∑
i=1

||f (i)||2L2
,

for f ∈ Hp.
Thus, the optimization problem (6) becomes:

ψ̂λ = arg min
f∈Hp

1

2

n∑
i=1

(
yi − ⟨(D−1)⊤xi, f⟩Hp

)2
+λ

 r∑
j=1

||f (j)||L2 +

√
p− r

η

(
p∑

j=r+1

||f (j)||2L2

)1/2
 .

(7)
In other words, the r first values of ψ̂λ are constrained using the || · ||L2,1 penalty and the
p−r remaining are considered as a new synthetic group. Hence, this modified penalty favors
β̂λ = D−1ψ̂λ to not take values arbitrary large.

This methodology is based on only one neighbor. In the next section, we introduce a
similar methodology based on more than one neighbor, we call it the group fusion lasso.

2.2 The group fusion lasso

Let consider the example represented in Figure 3. In this example, we assume that the
conditions are labeled according to K = 3 groups: the yellow group (C3, C4, C7), the red group
(C1, C6, C8) and the blue group (C2, C5). For this configuration, more than one neighbor must
be considered. Indeed, the following sets (C1, C6, C8) (C3, C4, C7), (C2, C5) have symmetric
neighborhood relations (i.e. C8 has (C1, C6) as neighbours, C6 has (C1, C8) as neighbours,
etc.). Rather than examining the interactions of conditions individually, we propose in this
section to test the resulting group relations.
The grouping structure of conditions is now given by the surjective function v:

v : {C1, . . . , Cp} → {1, . . . , K}, (8)

where K is a number of groups, K ≤ p.
We recall the definition of the sets of index

Ik = {j ∈ {1, . . . , p}, v(Cj) = k}, k = 1, . . . , K.

Let denote the size of each group by

pk = |Ik|, ∀k ∈ 1, . . . , K.

8



Figure 3: Conditions with grouping structure

The idea behind the group fusion methodology is to introduce criteria that favor similar
coefficients for components corresponding to conditions belonging to the same group. In the
example presented in Figure 3, p = 8, K = 3 and

- v(C1) = v(C6) = v(C8) = 1, the ”red” group,

- v(C2) = v(C5) = 2, the ”blue” group

- v(C3) = v(C4) = v(C7) = 3 the ”yellow” group.

Then, as in the lasso regularization framework, this estimation methodology forces the clus-
ters of conditions to have close coefficient functions and, eventually, some of them be the
same:

{β(1) = β(6) = β(8)} and/or {β(2) = β(5)} and/or {β(3) = β(4) = β(7)}.
For this purpose, let modify the criterion (3) by adding a term penalty for each group k of
coefficient functions, Pk(·), k = 1, . . . , K, as follows:

β̂λ = arg min
β∈Hp

1

2

n∑
i=1

(yi − ⟨xi,β⟩Hp)2 + λ
K∑
k=1

Pk(β), (9)

where Pk(β) =
√
pk

√∑
i∈Ik

||β(i) − β̄Ik ||2L2
and β̄Ik(t) = 1

pk

∑
j∈Ik

β(j)(t), t ∈ [0, T ].

Remark 1. If for some k ∈ 1, . . . , K, Ik = {j}, then there is no penalty on the j-th
component (dimension) of the corresponding coefficient function, β(j).

As in the previous criterion (3), the optimization criterion (9) might lead to model over-
fitting (see Proposition 2): the fusion penalties have no control over all terms in the norm
of β. To overcome this difficulty, we introduce the group fusion lasso (GFUL) methodology
as a modified version of the elastic-net strategy (Zou and Hastie, 2005), that is,

β̂λ,α = arg min
β∈Hp

1

2

n∑
i=1

(yi − ⟨xi,β⟩Hp)2 + λ

K∑
k=1

Pα,k(β), (10)

with
Pα,k(β) = (1 − α)Pk(β) + α||β̄Ik ||L2 , α ∈ (0, 1).
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The purpose of GFUL is related to the group lasso methodology where, given some
grouping structure of predictor variables, the objective is to force to zero all the coefficients
of variables within some group(s) (for more details see Meier et al. (2008), Yuan and Lin
(2006)). From this perspective, GFUL aims to obtain some group(s) of conditions with the
same coefficient functions, which is a more general statement.

Remark 2. The penalty function is composed of two terms: the first one, Pk(β) is of fusion
type; Pk(β) is zero if only if β(j) = β(k), ∀j, k ∈ Ik; the second term, ||β̄Ik ||L2 is a group-
lasso-like penalty.

As for FU methodology (see Proposition 1), we show now that GFUL estimation reduces
to a group-lasso one.

In the GFUL methodology, the membership of conditions to groups is a central notion.
Let define the indicator matrix M = (mk,j)1≤k≤K,1≤j≤p as

mk,j =

{
1 if j ∈ Ik
0 otherwise.

In the toy example (Figure 3), the matrix M is given by1 0 0 0 0 1 0 1
0 1 0 0 1 0 0 0
0 0 1 1 0 0 1 0

 .

In a general case, up to a permutation of columns, M can be written as

M =


1⃗⊤
p1

0⃗⊤
p2

... 0

0⃗⊤
p1

1⃗⊤
p2

... 0
... ...

0⃗⊤
p1

0⃗⊤
p2

... 1⃗⊤
pK

 ,

where 1⃗pk ,⃗0pk are respectively the pk column vector of ones and the pk column vector of zeros.
Let denote by M̄ the standardized version of M, i.e. M̄ = diag(1/p1, 1/p2, . . . , 1/pK)M.
Then, similarly as in Lemma 1, the following result holds.

Lemma 2. Let f ∈ Hp, α ∈ (0, 1) and pk ≥ 2, for k = 1, . . . , K. Consider 2K synthetic
groups {Ĩk}2Kk=1, defined as

Ĩk =


{
j ∈ {1, . . . , p}

∣∣∣1 +
∑k−1

l=1 (pl − 1) ≤ j ≤
∑k

l=1(pl − 1)
}

k = 1, . . . , K

{k + p− 2K} k = K + 1, . . . , 2K.

Up to a permutation of dimensions, the penalty function of GFUL can be written as

K∑
k=1

Pα,k(f) =
2K∑
k=1

√∑
i∈Ĩk

||(Gαf)(i)||2L2
, f ∈ Hp (11)
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where Gα is the p× p non-singular matrix given by:

Gα =

(
(1 − α)R
αM̄

)
,

with R is the block diagonal matrix composed of the following elements
√
p1R1, . . . ,

√
pKRK,

and for k = 1, . . . , K, Rk is the upper triangular (pk − 1) × pk matrix obtained from the

reduced rank QR decomposition of Pk = Ipk×pk −
1

pk
1pk×pk ; here 1pk×pk denotes the pk × pk

matrix of ones.

Using the non-singularity of Gα, the following proposition provides a way to estimate
GFUL using a simpler model.

Proposition 2. For α ∈ (0, 1), the solution of (10), holds β̂α,λ = G−1
α ψ̂λ, where

ψ̂λ = arg min
f∈Hp

1

2

n∑
i=1

(yi − ⟨(G−1
α )⊤xi,f⟩Hp)2 + λ

2K∑
k=1

√∑
i∈Ĩk

||f (j)||2L2
, (12)

The proof of this proposition follows as a direct consequence of the non-singularity of Gα

and Lemma 2.

Remark 3. The case of α = 1 or α = 0 can be resolved using the same technique as in
Proposition 1. Indeed, the non-null part of Gα is full rank for α ∈ {0, 1}

The direct estimation of β, under least squares regression, is generally an ill-posed inverse
problem (Cardot et al. (1999), Aguilera et al. (2006)). The basis expansion technique, a well-
known dimension reduction technique as an alternative to solve this problem, is presented
in the next section.

2.3 Computational aspect: Basis expansion

The basis expansion technique assumes that there exists a set of linearly independent func-
tions {ϕk}Mk=1, such as, for each i = 1, . . . , n, xi can be written as

x
(j)
i (t) =

M∑
k=1

a
(j)
i,kϕk(t) = (a

(j)
i )⊤ϕ(t), t ∈ [0, T ] (13)

where a
(j)
i,k ∈ R for i = 1, . . . , n, j = 1, . . . , p and

• a(j)
i =

(
a
(j)
i,1 . . . a

(j)
i,M

)⊤
,

• ϕ =
(
ϕ1 . . . ϕM

)⊤
is the vector of functions. The most common choices of ϕ are

Fourier or B-splines functions, depending on the periodicity of X (Ramsey and Silver-
man, 2005).
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Note that for each xi, we have that

xi =

x
(1)
i
...

x
(p)
i

 = Φai

where

ai =

a
(1)
i
...

a
(p)
i

 and Φ =


ϕ1 . . . ϕM 0 . . . 0 . . . 0 . . . 0
0 . . . 0 ϕ1 . . . ϕM . . . 0 . . . 0
...

...
0 . . . 0 0 . . . 0 . . . ϕ1 . . . ϕM

 .

Notice that in the expression in (13), we use the same basis ϕ for all dimensions of X.
This seems realistic since X(1), . . . , X(p) measure the same parameter X. However that is
not mandatory, each dimension X(j) can be expressed on its own basis.
We assume that the coefficient function β can also be expressed as

β(t) = Φ(t)b, t ∈ [0, T ]

where

b =

b
(1)

...

b(p)

 , with b(j) ∈ RM .

Remark that the predictors xi and β admit also the equivalent matrix notations

β(t) = Bϕ(t) and xi(t) = Aiϕ(t) (14)

where Ai and B are the following matrices of size p×M ,

B =
(
b(1) . . . b(p)

)⊤
and Ai =

(
a
(1)
i a

(2)
i ... a

(p)
i

)⊤
, for all i = 1, . . . , n.

Proposition 3. The following statements hold

1. ||β||L2,1
.
=

p∑
j=1

||β(j)||L2 = ||BF
1/2
ϕ ||2,1, where || · ||2,1 is the (2, 1) matrix norm and F

1/2
ϕ

is the square root matrix of Fϕ= {⟨ϕi, ϕj⟩}i,j.

2. Let k be an integer in {0, . . . , p − 1} and Z be a matrix of size (p − k) × p. Define
β0(t) = Zβ(t), for all t ∈ [0, T ]. Then

β0(t) = b0Φ(t), ∀t ∈ [0, T ],

where b0 = (Z⊗ IM×M)b and ⊗ denotes the Kronecker product.
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The first point states that the norm of β depends on the vector b and the basis {ϕk}Mk=1 via
the matrix Fϕ. As an example, consider the following group lasso problem (each dimension
represents a group):

β̂λ = arg min
β∈Hp

1

2

n∑
i=1

(yi − ⟨xi,β⟩Hp)2 + λ

p∑
j=1

||β(j)||L2 . (15)

Since ⟨x(j)i , β(j)⟩ = (a
(j)
i )⊤Fϕb

(j) and ||β(j)||L2 =
(

(b(j))⊤Fϕb
(j)
) 1

2
, the problem in (15) is

equivalent to the one of finding the vector

b̂λ =


b̂
(1)

λ

b̂
(2)

λ
...

b̂
(p)

λ


such that

b̂λ = arg min
b∈RpM

1

2

n∑
i=1

(
yi −

p∑
j=1

(a
(j)
i )⊤Fϕb

(j)

)
+ λ

p∑
j=1

||F1/2
ϕ b(j)||2. (16)

Let denote by γ̂(j) = F
1/2
ϕ b(j). Then, obtaining γ̂λ as solution of

γ̂λ = arg min
γ∈RpM

1

2

n∑
i=1

(
yi −

p∑
j=1

(a
(j)
i )⊤F

1/2
ϕ γ(j)

)
+ λ

p∑
j=1

||γ(j)||2

therefore allows to estimate b(j) as

b̂
(j)

λ = (F
1/2
ϕ )−1γ̂

(j)
λ , j = 1, . . . , p.

The problem (15) is studied in Godwin (2013) using principal component analysis to avoid
multicollinearity and high-dimension issues (Aguilera et al. (2006), Escabias et al. (2005)).

The second statement in Proposition 3 shows the correspondence (relationship) between
expansion coefficients in the basis ϕ after linear transformation of a function in Hp, in par-
ticular for the coefficient function β. In the next section, this relationship helps to estimate
the coefficient regression function under the FU methodology by reducing the problem to a
group-lasso-like, as in (18).

2.3.1 FU estimation

To obtain the solution β̂λ of the FU criterion (7), we use the second statement in Proposition
3 and Proposition 1. Let γ̂λ be the solution of the minimization problem

γ̂λ = arg min
γ∈RpM

1

2

n∑
i=1

(
yi − a⊤

i (D⊗ IM×M)−1F1/2γ
)2

+ λ

 r∑
j=1

||γ(j)||2 +

√
p− r

η

√√√√ p∑
j=r+1

||γ(j)||22

 ,

(17)
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where F1/2 =


F

1/2
ϕ 0 . . . 0

0 F
1/2
ϕ . . . 0

...
...

0 0 . . . F
1/2
ϕ

 .

Then, the coefficient function β̂λ is given by

β̂λ = Φ(D⊗ IM×M)(F1/2)−1γ̂λ.

2.3.2 GFUL estimation

We use a similar procedure as in Section 2.3.1 for the estimation of β̂λ,α.
Let define the sets G1, . . . ,G2K as follows.

Gk =

{
j

∣∣∣∣∣1 +M
k−1∑
l=1

(pl − 1) ≤ j ≤M
k∑
l=1

(pl − 1)

}
k = 1, . . . , K,

Gk = {j |p′ +M(k − 1 −K) + 1 ≤ j ≤ p′ +M(k −K)} k = K + 1, . . . , 2K,

where p′ = M(p −K), and K is the number of groups in GFUL. Note that {Gk}2Kk=1 corre-
spond to {Ĩk}2Kk=1 (see Lemma 2) under the basis expansion hypothesis, i.e when each β(j) is
represented by M expansion coefficients.

For convenient notation, let define the permutation matrix S = (su,v ∈ {0, 1})(u,v)∈{1,...,p}2 ,
such that

Sβ =


βI1
βI2
. . .
βIK

 ,

where βIk is the vector of components of β corresponding to the set of indexes Ik, k =
1, . . . , K.

Then, the group fusion lasso problem reduces to determine γ̂λ,α as solution of the following
problem:

γ̂λ,α = arg min
γ∈RpM

1

2

n∑
i=1

(
yi − a⊤

i (GαS⊗ IM×M)−1F1/2γ
)2

+ λ

2K∑
k=1

||γGk
||2. (18)

Therefore, β̂λ,α is given by

β̂λ,α = Φ(GαS⊗ IM×M)(F1/2)−1γ̂λ,α.

Remark 4. The binary response case can be naturally considered in our proposed method-
ologies. More precisely, as in Meier et al. (2008), the MSE criterion is replaced by the
likelihood one (multiplied by -1) whereas the penalized terms are the same. In this case, the
optimization problem in (3) becomes:

β̂λ = arg min
β∈Hp

−
n∑
i=1

(yi⟨xi, β⟩Hp − log(1 + ⟨xi, β⟩Hp)) + λ

p∑
j=1

||β(j) − β(v(Cj))||2. (19)
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Remark 5. As GFUL and FU, under the basis expansion hypothesis, can be reduced to
a classical group lasso optimization problems, the use of post-interference techniques (in
particular the work of Yang et al. (2016)) allows testing the statistical significance of the
equality among coefficients. More specifically, the null hypotheses in the group lasso (which
state that coefficients among some groups are null) have the following correspondences in our
methods.

• For FU, the null hypotheses (H0,j) are

H0,j : β(j) = β(v(Cj)), j = 1, . . . , p.

• For GFUL, the null hypothesis H0,k are given by

H0,k : (l,m) ∈ I2
k , β(l) = β(m) , k = 1, . . . , K.

3 Numerical experiments

3.1 Simulations

We present a simulation study that compares the performance of the proposed methods,
FU and GFUL, with competitor lasso methods. Notice that all our models are estimated
by using Meier (2009) R package. The R code sources of our simulations are available at
https://github.com/imoindjie/GFUL-FU.

3.1.1 The simulation setting

The setting of the simulation is as follows. To show the efficiency of taking into account the
grouping structure of conditions, we consider two scenarios. In the first one, the number
of conditions is fixed to p = 12 and we show that all the methods perform similarly in
terms of MSE criteria. In the second one, we increase the number of conditions to p = 80
and then, we show the efficiency of our methodology with respect to the others. In both
scenarios, the number of groups is K = 4 and the number of conditions in each group is

p1 = p2 = . . . = pK =
p

K
.
= κ.

Next, we present the construction of our simulation study.

(a) the conditions and the grouping structure,

(b) the theoretical regression coefficient functions,

(c) the definition of the predictor and the response variables,

(d) the two simulation settings,

(e) the competitor methods,

(f) the goodness of fit and homogeneity among the coefficient regression functions
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(a) The conditions and the grouping structure.
Let consider the p conditions Cj, j = 1, . . . , p, as points in R2 and their group structure
defined as follows:

Group 1: Cj = ζj + c1, j = 1, . . . , κ,

Group 2: Cj = ζj + c2, j = κ+ 1, . . . , 2κ,

Group 3: Cj = ζj + c3, j = 2κ+ 1, . . . , 3κ,

Group 4: Cj = ζj + c4, j = 3κ+ 1, . . . , p,

where

ζj =

(
cos(2π

jmodκ

κ
), sin(2π

jmodκ

κ
)

)⊤

,

and c1 = (0, 0)⊤, c2 = (3, 3)⊤, c3 = 2c2, c4 = 3c2 are the ”centers” of the groups. Figure 4
presents the conditions for p = 12 and p = 80.
One can imagine that these conditions correspond to the position of p points in a 10 × 10
squared metal piece where one observes in each point Cj, j = 1, . . . , p, the temperature X(j)

over the time interval [0, 1].

(a) (b)

Figure 4: Conditions when p = 12 (a) and p = 80 (b). The colors are associated with each
group of conditions.

(b) The theoretical regression coefficient functions.
The theoretical coefficient regression function β = (β(1), . . . , β(p))⊤ is defined as follows:

Groupe 1: β(j) = 0, j = 1, . . . , κ,
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Groupe 2: β(j) =
√

2
3∑

k=1

∆k, j = κ+ 1, . . . , 2κ,

Groupe 3: β(j) = bj

9∑
k=1

∆k, j = 2κ+ 1, . . . , 3κ,

Groupe 4: β(j) = −
√

2
3∑

k=1

∆k, j = 3κ+ 1, . . . , p,

where bj = (−1)j 1+jmodκ
κ

, the functions ∆1, . . . ,∆9 denote the set of functions defined by:

∆s(t) = (1 − 0.2(10t− s)2)+,

where (.)+ is the positive part function. In this setting, only the third group has different
coefficient functions.

(c) The predictor and the response variables.
For j = 1, . . . , p, X(j) is generated as

X(j)(t) =
9∑
s=1

as∆s(t),

where as ∼ N (0, 1), s = 1, . . . , 9 and t ∈ [0, 1].
The response variable Y is given by

Y = ⟨X, β⟩Hp + ϵ,

where ϵ ∼ N (0, σ2
ϵ ). The values of σ2

ϵ are set such that the noise to signal ratio,
σ2
ϵ

var(Y )
, is

of about 10%.

(d) The two simulation settings.
Two scenarios are presented according to the size of groups, κ:

(S1) κ = 3, σϵ = 1.6

(S2) κ = 20, σϵ = 3.6

The theoretical coefficient regression functions β(j), j = 1, . . . , p for the two scenarios are
presented in Figure 5.
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Group 1
β(1)=β(2)=β(3)

Group 2
β(4)=β(5)=β(6)

Group 3
β(7) ̸=β(8) ̸=β(9)

Group 4
β(10)=β(11)=β(12)

S1 β(j)’s

β(1)=β(2)=...=β(20) β(21)=β(22)=...=β(40) β(41) ̸=β(42) ̸=... ̸=β(60) β(61)=β(62)=...=β(80)

S2 β(j)’s

Figure 5: Theoretical regression coefficient function β for the two scenario

The predictor function X is observed on 100 equidistant sampling time points in the interval
[0, 1]. For all dimensions of X, X(j) j = 1, . . . , p, we use as an approximation their expansion
into a cubic B-splines basis of size M = 20. To assess model performances, a random training
sample of 80% of the data is considered and the remaining 20% is used for prediction. This
experiment is repeated I = 100 times.

(e) The competitor methods.
The variable fusion methodology is employed using the 1-NN relationship among conditions
whereas the grouping structure is used for the group fusion lasso. To evaluate their per-
formances, FU and GFUL are compared with the partial least square regression (MFPLS)
(Moindjié et al., 2024), the principal component regression (MFPCR) (Aguilera et al., 2006)
and two group lasso methods (Godwin, 2013). The first one, denoted by GL1 (”Group Lasso
1”), uses each dimension X(j) of X as a group, as in the classical lasso setting. The second
one, denoted by GL2 (Group Lasso 2), uses the same group definitions as in GFUL (see
equation (8) ).
In addition to these methods, we propose also the regression model HG (Homogeneous
Groups) resuming all the conditions within a group Ik by their mean function,

m(k) =
1

pk

∑
j∈Ik

X(j),

and then fit a multivariate functional linear model

Y =
K∑
k=1

∫ T

0

m(k)(t)γ(k)(t)dt+ ϵ,

using principal component regression methodology (Aguilera et al. (2006)).
The idea behind this method is to obtain the same coefficient regression function for all
conditions within a group, and that for all the groups: ∀k = 1, . . . , K,

β(j) = (1/pk)γ
(k), ∀j ∈ Ik.
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The difference with GFUL is that the latter allows only for some groups to have identical
coefficient functions, whereas HG imposes it for all groups.

Except for the model HG which doesn’t have a penalty term, the hyperparameters (α, λ)
in (10) are tuned by 10-fold cross-validation: λ is chosen from the set

λ ∈
{

0.96iλmax, i = 0, 1, . . . , 148
}
∪ {0}

and
α ∈ {0.1, 0.2, . . . , 1},

with λmax is determined as in Meier (2009).
For MFPLS and MFPCR methods, the retained numbers of components are chosen by

cross-validation. The considered grids comprise 150 equidistant integers from 1 to p(M−1).

(f) the goodness of fit and homogeneity among the coefficient regression functions
For each method, the goodness of fit is assessed by the mean squared error (MSE) computed
on the test set. Their ability to recover the true equality among coefficient functions β(j)

is measured by ”sensitivity” (Sens) and ”specificity” (Spec) metrics. They are defined as
follows. For each pair

(
β(j), β(k)

)
, j, k = 1, . . . , p, we define

Sens(j, k) = P
(
β̂(j) = β̂(k)|β(j) = β(k)

)
,

and

Spec(j, k) = P
(
β̂(j) ̸= β̂(k)|β(j) ̸= β(k)

)
.

Thus, Sens(j, k) measures the capability of the method to obtain identical estimated coeffi-
cient functions β̂(j) = β̂(k) when the theoretical ones verify that equality, β(j) = β(k).

Then, as global measures, let define

Sens =
2

p(p− 1)

p∑
j=1

∑
k<j

Sens(j, k),

Spec =
2

p(p− 1)

p∑
j=1

∑
k<j

Spec(j, k).

3.1.2 Results

Scenario 1 Recall that in this scenario p = 12 and κ = 3. The summary of the obtained
metrics in S1 is presented Table 1.

In this scenario, all models with penalty give close results. The HG model gives the
highest MSE and the estimation of the coefficient functions is inconsistent (see Figure 6).
Thus, the naive hypothesis that ”dimensions in the same group share the same regression
coefficient function” might lead to inconsistent results. Table 1 shows that the variable fusion
and the group fusion lasso methods reach the highest scores of sensibility and specificity. This
demonstrates the ability of these methodologies to find true equalities among coefficients
compared to the group lasso methods (GL1 and GL2). However, their MSEs are higher than
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those of MPFLS and MFPCR. Although these two methods are the best performers in terms
of MSE, they lack interpretability: all their estimated coefficients have different values.

MSE Sens Spec
GL1 6.2(1.59) 0.22(0.13) 1(0.01)
GL2 6.07(1.45) 0.29(0.12) 1(0)
FU 5.97(1.52) 0.82(0.22) 0.99(0.01)

GFUL 5.21(1.81) 0.92(0.22) 1(0)
HG 14.85(3.25) 1(0) 0.95(0)

MFPLS 3.47 (0.85) 0(0) 1(0)
MFPCR 4.10 (1.60) 0(0) 1(0)

Table 1: Scenario S1: MSE mean and standard error (in parentheses), sensibility and speci-
ficity obtained metrics with I = 100 experiments.
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Group 1
β(1)=β(2)=β(3)

Group 2
β(4)=β(5)=β(6)

Group 3
β(7) ̸=β(8) ̸=β(9)

Group 4
β(10)=β(11)=β(12)

GFUL

FU

GL1

GL2

HG

MFPLS

MFPCR

Figure 6: Scenario 1- The estimations of β by the different methods (first simulation).
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Scenario 2: In this scenario p = 80 and κ = 20. Table 2 shows that GFUL is the
best methodology for the MSE metric. The high specificity and the low sensitivity of the
competitor methods indicate that they ignore that some groups share the same regression
coefficient functions (see Figure 7). This is also reflected in the MSE criteria.

Let observe that all the other methods, including FU, provide quite bad results with
respect to GFUL. This can be explained by the fact that these methods are clearly not
adapted to consider the grouping structure of conditions.

MSE Sens Spec
GL1 88.74(23.75) 0.2(0.19) 0.85(0.18)
GL2 64.29(17.22) 0.08(0.14) 1(0)
FU 70.58(18.53) 0.07(0.01) 1(0)

GFUL 31.68(16.33) 0.73(0.4) 1(0)
HG 69.37(15.61) 1(0) 0.93(0)

MFPLS 70.28(17.81) 0(0) 1(0)
MFPCR 75.76(19.93) 0(0) 1(0)

Table 2: Scenario S2: MSE mean and standard error (in parentheses), Sensibility and speci-
ficity obtained metrics with I = 100 experiments.
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Group 1
β(1)=β(2)=...=β(20)

Group 2
β(21)=β(22)=...=β(40)

Group 3
β(41) ̸=β(42) ̸=... ̸=β(60)

Group 4
β(61)=β(62)=...=β(80)

GFUL

FU

GL1

GL2

HG

MFPLS

MFPCR

Figure 7: Scenario 2- The estimations of β by the different methods (first simulation).
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3.2 Application: FingerMovements

In this section, we are interested in a supervised binary classification problem for Finger-
Movements1 dataset. These data come from the brain-computer interface domain and are
used for binary classification as a benchmark. More precisely, a subject has been asked to
type characters using only the index and the pinky fingers of the right (Y = 0) and the left
(Y = 1) hands. The challenge is to determine, based on their electroencephalography (EEG)
recording (X), the hand that has been used. The EEG signal is recorded during 500 ms by
p = 28 sensors located on the scalp. Thus, for any subject, p = 28 curves are available.
Each curve is summarized by 50 equidistant times points in the interval [0, 500ms]. Figure 1
(see the Introduction section) presents the curves registered by a sample of 6 sensors (named
F1,F2, F3, F4,O1,O2), for a given subject. The dataset comprises N = 416 subjects and is
split into a training set of n = 316 units and a test set of 100 units.

This dataset has been used in Ruiz et al. (2021). The authors showed that the Inception
Time (IT) model (Ismail Fawaz et al., 2020) provides the best predictions among the state-
of-the-art models.

In this section we compare the results obtained by our methodologies (FU and GFUL)
with the competitors, i.e. GL1, GL2, and IT. The relationship between linear discriminant
analysis and regression enables our methods, GL1 and GL2 to perform binary classification.
The latter is based on a convenient re-coding of the response variable (see Moindjié et al.
(2024) for more details). Using this relationship, instead of logistic regression, is intended
to allow the application of the post-inference method proposed in Yang et al. (2016) in the
latent group lasso problems.

For the estimation of FU and GFUL methods, two distances are used: the Euclidean
(de(., .)) and the great circle distance (dc(., .)). The distance de(., .) is computed using the
spatial location of sensors in the 3-D space Cj ∈ R3, j = 1, . . . , 28. For the calculation of
dc(., .), which is the shortest distance between two points on the surface of a sphere, we used
the sensors’ spherical coordinates and assumed that the patient’s head could be considered
as a sphere.

The two computed FU methods (FUEuclidean and FUCircle) are based on the 1-NN graph
built with respectively de(., .) and dc(., .) distances. For the GFUL methods (GFULEuclidean

and GFULCircle), the dissimilarity matrices obtained using the Euclidean distance and the
great circle distance are used for clustering sensors based on their locations. For de(., .),
K = 10 clusters of conditions were obtained from the k-means clustering algorithm applied
to sensor locations. The K = 10 groups correspond to well-defined scalp regions (group 1 =
frontal left, group 2 = frontal right, etc). We use an agglomerative hierarchical clustering
approach with average linkage for clustering based on dc(., .). Using the majority rule, we
determine K = 5 clusters. Figure 8 presents the groups and 1-NN graphs associated with
de(., ) and dc(., .).

1https://www.timeseriesclassification.com/description.php?Dataset=FingerMovements
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Conditions 1-NN Groups

Euclidean distance (de) Great circle distance (dc) Euclidean distance (de) Great circle distance (dc)

Figure 8: Conditions and groups for the FingerMovements Dataset

Three group lasso models are also fitted: GL1Euclidean, GL1Circle and GL2. Similarly to
the simulation study, the GL1 method uses each dimension as a group whereas GL1Euclidean

uses the same grouping structure as GFULEuclidean and GL1Circle uses the same grouping
structure as GFULCircle.

For all dimensions X(j), j = 1, . . . , 28, a basis of M = 30 B-splines is used to reconstruct
the functional form of the predictors. The hyperparameters λ and α are tuned by a 10-fold
cross-validation procedure, on the following grids

λ ∈
{

0.96iλmax, i = 0, 1, . . . , 148
}
∪ {0}

and
α ∈ {0, 0.1, 0.2, . . . , 1},

where λmax is the minimum value such that the penalty term vanishes (P(β̂λ,α) = 0).

3.3 Results

Methods Accuracy
FUEuclidean 62%
GFULEuclidean 68%
FUCircle 59%
GFULCircle 68%
IT 56.7%
GL1 63%
GL2Euclidean 62%
GL2Circle 60%

Table 3: Accuracy obtained on the test dataset

Table 3 shows that our proposed methodologies are competitive or perform better than most
competitors (GL2 and IT) in terms of accuracy (well-classified rate) estimated on the test
sample. In particular, the GFUL models perform best.
Figure 9 shows the grouping structure of the estimated regression coefficient functions ob-
tained with FU and GFUL. Hence, those results provide information about the importance
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of sensors and their locations (also through the grouping structure) for predicting the re-
sponse.
Table 4 presents the p-values associated with post-inference tests for the GFUL methods.
Note that for GFULEuclidean the p-value of Group 2 is missing as dimensions belonging to
this group were identified as sharing the same coefficient.

Although they were computed using the methodology proposed in Yang et al. (2016)
for group lasso problems, the null hypotheses are not the same in the GFUL case (see
Remark 5). These p-values give valuable information on the groups’ pertinence. For example,
Table 4 shows that the first three groups in GFULCircle, and Group 5 and Group 6 for
GFULEuclidean, have significant (with 5% of level significance) different coefficients. This
means that conditions among these groups shouldn’t be considered as equivalent contributors
in the regression model.

For readability purposes, the associated p-values for FU, GL1, GL2, and all estimated
coefficient functions are presented in the appendix A.

FUEuclidean GFULEuclidean FUCircle

Figure 9: Estimated structures. FU: connected points share the same coefficients, GFUL:
groups in red share the same coefficients. The estimated structure of GFULCircle is not dis-
played as the selected model by this method didn’t identify groups with the same coefficient
values.
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GFULEuclidean GFULCircle

Group 1 0.9968 0.0000
Group 2 — 0.0003
Group 3 0.3085 0.0001
Group 4 0.2205 0.8789
Group 5 0.0070 1.0000
Group 6 0.0024 —
Group 7 0.1715 —
Group 8 0.3454 —
Group 9 0.9376 —
Group 10 0.9887 —

Table 4: P-values for GFUL methods

4 Discussion

In this paper, we introduced two new criteria for estimating a linear regression model with
the predictor represented by a functional random variable observed under different conditions
(eventually spatially distributed). We called that data repeated functional data. When some
grouping or neighborhood structure of conditions is present, our methods can integrate it
into the fitting process through specific penalties: fusion and group fusion-lasso.

The numerical simulation study, as well as the application to Finger movements data,
confirm the efficacy of approaches integrating grouping structures of conditions. Our
hypothesis that close sensors might bring similar information helps to obtain competitive
models, especially in the Finger movements dataset as our proposed methodologies give
similar results or outperform the lasso method competitors.

The GFUL method can be seen as a generalization of FU to more than one neighbor.
It relies on the assumption of K known groups. When this is not the case, we suggest to
use clustering algorithms (K-Means, Gaussian Mixture Models, etc.) to obtain meaningful
clusters of conditions.

Notice that FU only requires neighborhood structure in S and this is suitable for the case
where pairs of closest conditions might have the same associated contribution in the linear
model. In the presence of group structure among conditions, GFUL performs better than
FU. Unlike FU, GFUL tests group membership simultaneously instead of testing one-on-one
interactions. This is quite a strong hypothesis, as it assumes that equality relations (among
regression coefficient functions) in a group can be either all true or all false. The use of
smaller overlaps between groups could be an alternative model. In this setting, the solution
is related to the group lasso with overlap, which is more challenging (Yuan et al., 2011). An
extensive study of adapted optimization problems should be done. One can also explore the
model group lasso proposed in Jacob et al. (2009). Yet, it seems that using this approach
leads to losing the diffusion between overlapped groups, the penalty is no longer defined on
the 2, 1 norm (See Jacob et al. (2009) for details). The integration of sparsity conditions
and the study of other types of neighborhood structures in the fusion method can be some
future promising developments.
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Appendices

A Additional figures: FingerMovements

β̂(1) = β̂(2) β̂(2) = β̂(1) β̂(3) = β̂(9) β̂(4) = β̂(5)

β̂(5) = β̂(4) β̂(6) = β̂(7) β̂(7) = β̂(6)
β̂(8)

H0 : β(8) = β(7)

(p=0.997)

β̂(9) = β̂(3)
β̂(10)

H0 : β(10) = β(11)

(p = 1)

β̂(11) = β̂(12) β̂(12) = β̂(11)

β̂(13) = β̂(14) β̂(14) = β̂(13)
β̂(15)

H0 : β(15) = β(14)

(p = 0.998)

β̂(16)

H0 : β(16) = β(9)

(p = 0.995)

β̂(17) β̂(18) = β̂(19) β̂(19) = β̂(18) β̂(20) = β̂(21)

β̂(21) = β̂(20)
β̂(22)

H0 : β(22) = β(21)

(p = 0.996)

β̂(23)

H0 : β(23) = β(16)

(p = 0.999)

β̂(24)

H0 : β(24) = β(25)

(p = 1)

β̂(25) = β̂(26) β̂(26) = β̂(25)
β̂(27)

H0 : β(27) = β(22)

(p = 0.952)

β̂(28)

H0 : β(28) = β(24)

(p = 0.979)

Figure 10: FUEuclidean estimated coefficients and associated p-values
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β̂(1)

H0 : β(1) = β(2)

(p=0.966)

β̂(2) = β̂(9) β̂(3) = β̂(5)
β̂(4)

H0 : β(4) = β(9)

(p=0.919)

β̂(5) = β̂(3)
β̂(6)

H0 : β(6) = β(1)

(p=0.672)

β̂(7)

H0 : β(7) = β(1)

(p=0.857)

β̂(8)

H0 : β(8) = β(7)

(p=0.938)

β̂(9) = β̂(2)
β̂(10)

H0 : β(10) = β(11)

(p=0.983)

β̂(11)

H0 : β(11) = β(5)

(p=0.980)

β̂(12) = β̂(19)

β̂(13) = β̂(20) β̂(14) = β̂(15) = β̂(21) β̂(15) = β̂(14) = β̂(21)
β̂(16)

H0 : β(16) = β(22)

(p=0.832)

β̂(17)

H0 : β(17) = β(18)

(p=0.797)

β̂(18)

H0 : β(18) = β(11)

(p=0.530)

β̂(19) = β̂(12) β̂(20) = β̂(13)

β̂(21) = β̂(14) = β̂(15)
β̂(22)

H0 : β(22) = β(21)

(p=0.644)

β̂(23)

H0 : β(23) = β(22)

(p=0.848)

β̂(24)

H0 : β(24) = β(25)

0.838

β̂(25)

H0 : β(25) = β(18)

(p=0.986)

β̂(26)

H0 : β(26) = β(19)

(p=0.895)

β̂(27) = β̂(28) β̂(28) = β̂(27)

Figure 11: FUCircle estimated coefficients and associated p-values
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Group 1 Group 2 Group 3 Group 4 Group 5
β̂(1) ̸=β̂(2) β̂(4)=β̂(5) β̂(6) ̸=β̂(13) ̸=β̂(20) β̂(7) ̸=β̂(8) ̸=β̂(14) β̂(3) ̸=β̂(9) ̸=β̂(16) ̸=β̂(23)

Group 6 Group 7 Group 8 Group 9 Group 10
β̂(10) ̸=β̂(11) ̸=β̂(17) ̸=β̂(18) β̂(12) ̸=β̂(19) ̸=β̂(26) β̂(15) ̸=β̂(21) ̸=β̂(22) β̂(24) ̸=β̂(25) β̂(27) ̸=β̂(28)

Figure 12: GFULEuclidean estimated coefficients

Group 1 Group 2
β̂(1) ̸=β̂(2) ̸=β̂(3) ̸=β̂(4) ̸=β̂(5) ̸=β̂(6) ̸=β̂(7) ̸=β̂(8) ̸=β̂(9) β̂(10) ̸=β̂(11) ̸=β̂(12) ̸=β̂(17) ̸=β̂(18) ̸=β̂(19) ̸=β̂(26)

Group 3 Group 4
β̂(13) ̸=β̂(14) ̸=β̂(15) ̸=β̂(20) ̸=β̂(21) ̸=β̂(22) β̂(16) ̸=β̂(23) ̸=β̂(24) ̸=β̂(25)

Group 5
β̂(27) ̸=β̂(28)

Figure 13: GFULCircle estimated coefficients
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β̂(1) β̂(2) β̂(3) β̂(4)

(p=0.905) (p=0.654) (p=0.864) (p=0.572)

β̂(5) β̂(6) β̂(7) β̂(8)

(p=0.996) (p=0.245) (p=0.858) (p=0.680)

β̂(9) β̂(10) β̂(11) β̂(12)

(p=0.959) (p=0.991) (p=0.576) (p=0.993)

β̂(13) β̂(14) β̂(15) β̂(16)

(p=0.789) (p=0.259) (p=0.645) (p=0.896)

β̂(17) β̂(18) β̂(19) β̂(20)

(p=0.895) (p=0.839) (p=0.922) (p=0.721)

β̂(21) β̂(22) β̂(23) β̂(24)

(p=0.680) (p=0.561) (p=0.954) (p=0.834)

β̂(25) β̂(26) β̂(27) β̂(28)

(p=0.984) (p=0.991) (p=0.845) (p=0.577)

Figure 14: GL1 estimated coefficients and p-values (H0: the coefficient is zero)
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Group 1 Group 2 Group 3 Group 4 Group 5
β(1) ̸=0, β(2) ̸=0 β(4) ̸=0, β(5) ̸=0 β(6) ̸=0, β(13) ̸=0, β(20) ̸=0 β(7) ̸=0, β(8) ̸=0, β(14) ̸=0 β(3) ̸=0, β(9) ̸=0, β(16) ̸=0, β(23) ̸=0

(p=1) (p=0.998) (p=0.841) (p=0.257) (p=0.078)

Group 6 Group 7 Group 8 Group 9 Group 10
β(10) ̸=0, β(11) ̸=0, β(17) ̸=0, β(18) ̸=0 β(12) ̸=0, β(19) ̸=0, β(26) ̸=0 β(15) ̸=0, β(21) ̸=0, β(22) ̸=0 β(24) ̸=0, β(25) ̸=0 β(27) ̸=0, β(28) ̸=0

(p=0.066) (p=0.797) (p=0.440) (p=0.999) (p=0.999)

Figure 15: GL2Euclidean estimated coefficient model by groups and associated p-values (H0 :
all coefficients in the group are zero)
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Group 1 Group 2 Group 3 Group 4 Group 5
1 2 3 4 5 6 7 8 9 10 11 12 17 18 19 26 13 14 15 20 21 22 16 23 24 25 27 28

(p < 0.001) (p=0.124) (p=0.840) (p=1) (p=1)

Figure 16: GL2Circle estimated coefficient model

B Proofs

Proof of Lemma 1. Let the neighbor function v: {C1, C2, . . . , Cp} → {1, 2, . . . , p}, as de-
fined in Section 2.1 and V0, V1 defined as:

V0 = {i ∈ {1, 2, . . . , p}, v2(Ci) = i}

and
V1 = {i ∈ {1, 2, . . . , p}, i > v(Ci), v2(Ci) = i},

with v2(Ci)= v(Cv(Ci)), for i = 1, . . . , p.
Observe that i ∈ V0 is equivalent to v(Ci) ∈ V0, and i ∈ V1 implies that v(Ci) ̸∈ V1. In other
words, V0 is the set of indexes corresponding to conditions for which a 2-cycle structure is
present in the 1-NN graph. V1 is a subset of V0 with cardV1 = 1

2
card(V0).

Then, for all f ∈ Hp, we have

p∑
j=1

||(Lf)(j)||2 =
∑
j∈V0

||f (j) − f (v(Cj))||2 +
∑
j ̸∈V0

||f (j) − f (v(Cj))||2

=
∑
j∈V1

||2(f (j) − f (v(Cj)))||2 +
∑
j ̸∈V0

||f (j) − f (v(Cj))||2.

Then, there exists a matrix L0 ∈ Rr×p, with r = p− 1
2
card(V0), such as

p∑
j=1

||(Lf)(j)||2 =
r∑
j=1

||(L0f)(j)||2.

Since v is constructed by the one-nearest neighbor graph–only 2-cycle structures can occur
(Eppstein et al., 1997)– then L0 is a full rank matrix.

Proof of Proposition 1. We borrow some reasoning from Tibshirani and Taylor (2011)
(the full-rank matrix case). In their paper, these authors were interested in the case where
the penalty is defined using the l1 norm and a linear transformation of the coefficient in
the multivariate case. We extend their reasoning to the || · ||L2,1 norm and the setting of
multivariate functional coefficients.
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Notice that

||Df ||L2,1 =
r∑
j=1

||(L0f)(j)||L2 +

p∑
j=r+1

||(Tf)(j)||L2 , f ∈ Hp.

Using the definition of L0,

||Df ||L2,1 = ||Lf ||L2,1 +

p∑
j=r+1

||(Tf)(j)||L2,1.

Hence, the problem (3) can be written as

β̂λ = arg min
f∈Hp

1

2

n∑
i=1

(yi − ⟨xi,f⟩Hp)2 +

p∑
j=1

λI(j ≤ r)||(Df)(j)||L2 (20)

with I(·) is the indicator function. The non-singularity of D implies

ψ̂λ = arg min
f∈Hp

1

2

n∑
i=1

(
yi − ⟨xi,D−1f⟩Hp

)2
+

p∑
j=1

λI(j ≤ r)||f (j)||L2 , (21)

with ψ̂λ = Dβ̂λ. The equality ⟨(D−1)⊤xi,f⟩Hp = ⟨xi,D−1f⟩Hp concludes the proof.

Proof of Lemma 2. To simplify the notation, let denote by f Ik the function composed
only of the set of dimensions of f ∈ Hp which belong to Ik.

The proof of the lemma relies on the following statements:

(a) For f ∈ Hp,
||f Ipk

− f̄Ik 1⃗pk ||L2,2 = ||Rkf Ik ||L2,2.

for all k ∈ {1, . . . , K}.

(b) The matrices M̄ and R are such that RM̄⊤ = 0(p−K)×K

For the first point (a), direct calculation shows that

f Ik − f̄Ik 1⃗pk =

[
Ipk×pk −

1

pk
1pk×pk

]
︸ ︷︷ ︸

Pk

f Ik . (22)

The rank of Pk is pk−1. Let Rk be the R reduced rank matrix of size (pk−1)×|pk| obtained
by the QR decomposition of Pk. Since || · ||L2,2 is the Frobenius function norm, we have (a),
i.e. ||Pkf Ik ||L2,2 = ||Rkf Ik ||L2,2.
For point (b), without loss of generality, we assume that

M =


1⃗⊤
p1

0⃗⊤
p2

... 0

0⃗⊤
p1

1⃗⊤
p2

... 0
... ...

0⃗⊤
p1

0⃗⊤
p2

... 1⃗⊤
pK

 .
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Note that 1⃗pk belongs to the kernel of Pk, i.e Pk1⃗pk = 0⃗pk , for all k ∈ {1, . . . , K}. From the

definition of Rk,it follows that Pk = Qk

(
Rk

0⊤
pk

)
, where Qk is an orthogonal matrix. Then,

Pk1⃗k = 0pk implies that Rk1⃗k = 0pk−1. As Rk1⃗k = 0pk−1 for all k ∈ {1, . . . , K}, we have

RM̄⊤ = 0(p−K)×K .

Finally, as a direct consequence of (a), the matrix Gα satisfies the relation (11). Observe
that Gα is non-singular as a consequence of (b). This concludes the proof.

Proof of Proposition 3.

1. The equation (14) implies that for each dimension j, j = 1, . . . , p, we have

β(j)(t) = (b(j))⊤ϕ(t),

where b(j) ∈ RM t ∈ [0, T ].
Define F= {⟨ϕi, ϕj⟩}i,j and F = (F1/2)⊤F1/2. Thus, we have

||β(j)||L2 = ||(F1/2)⊤b(j)||2 = ||(b(j))⊤F1/2||2.

Moreover,

BF1/2 =


(b(1))⊤

(b(2))⊤

...
(b(p))⊤

F1/2 =


(b(1))⊤F1/2

(b(2))⊤F1/2

...

(b(p))⊤F1/2

 ,

and ||β||L2,1 = ||BF1/2||2,1.

2. Notice that ai = vec(A⊤
i ), b = vec(B⊤) with vec(·) denotes the vectorization operator.

It follows that

b0 = vec((ZB)⊤) = vec(B⊤Z⊤)

= (Z⊗ IM×M)vec(B⊤) = (Z⊗ IM×M)b,

with ⊗ denotes the Kronecker Product.
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Preda, C. and Saporta, G. (2002). Régression pls sur un processus stochastique. Revue de
statistique appliquée, 50(2):27–45.

36



Ramsey, J. O. and Silverman, B. W. (2005). Functional Data Analysis. Springer-Verlag, 2
edition.

Ruiz, A. P., Flynn, M., Large, J., Middlehurst, M., and Bagnall, A. (2021). The great
multivariate time series classification bake off: a review and experimental evaluation of
recent algorithmic advances. Data Mining and Knowledge Discovery, 35(2):401–449.

Tibshirani, R., Saunders, M., Rosset, S., Zhu, J., and Knight, K. (2005). Sparsity and
smoothness via the fused lasso. Journal of the Royal Statistical Society: Series B (Statis-
tical Methodology), 67(1):91–108.

Tibshirani, R. J. and Taylor, J. (2011). The solution path of the generalized lasso. The
annals of statistics, 39(3):1335–1371.

Yang, F., Foygel Barber, R., Jain, P., and Lafferty, J. (2016). Selective inference for group-
sparse linear models. Advances in neural information processing systems, 29.

Yi, Y., Billor, N., Liang, M., Cao, X., Ekstrom, A., and Zheng, J. (2022). Classification of eeg
signals: an interpretable approach using functional data analysis. Journal of Neuroscience
Methods, 376:109609.

Yuan, L., Liu, J., and Ye, J. (2011). Efficient methods for overlapping group lasso. Advances
in neural information processing systems, 24.

Yuan, M. and Lin, Y. (2006). Model selection and estimation in regression with grouped
variables. Journal of the Royal Statistical Society: Series B (Statistical Methodology),
68(1):49–67.

Zou, H. and Hastie, T. (2005). Regularization and variable selection via the elastic net.
Journal of the Royal Statistical Society Series B: Statistical Methodology, 67(2):301–320.

37


	Introduction
	Two new fusion methods for linear regression with multivariate functional data
	Fusion method based on the neighbor relationship among conditions
	The group fusion lasso 
	Computational aspect: Basis expansion
	FU estimation
	GFUL estimation 


	Numerical experiments
	Simulations
	The simulation setting
	Results

	Application: FingerMovements
	Results

	Discussion
	Appendices
	Additional figures: FingerMovements
	Proofs

