Support Vector Machine For Functional Data Classification - Archive ouverte HAL
Communication Dans Un Congrès Année : 2005

Support Vector Machine For Functional Data Classification

Résumé

Functional data analysis is a growing research field and numerous works present a generalization of the classical statistical methods to function classification or regression. In this paper, we focus on the problem of using Support Vector Machines (SVMs) for curve discrimination. We recall that important theoretical results for SVMs apply in functional space and propose simple functional kernels that take advantage of the nature of the data. Those kernels are illustrated on a spectrometric real world benchmark.
Fichier principal
Vignette du fichier
villa_rossi_ESANN2005.pdf (129.6 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04176766 , version 1 (03-08-2023)

Licence

Identifiants

  • HAL Id : hal-04176766 , version 1

Citer

Nathalie Villa, Fabrice Rossi. Support Vector Machine For Functional Data Classification. XIIIth European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning (ESANN 2005), Apr 2005, Bruges, Belgium. pp.467-472. ⟨hal-04176766⟩
25 Consultations
20 Téléchargements

Partager

More