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ABSTRACT
We present a new method aimed at simplifying the cosmological analysis of X-ray cluster sur-
veys. It is based on purely instrumental observable quantities considered in a two-dimensional
X-ray colour–magnitude diagram (hardness ratio versus count rate). The basic principle is that
even in rather shallow surveys, substantial information on cluster redshift and temperature is
present in the raw X-ray data and can be statistically extracted; in parallel, such diagrams can
be readily predicted from an ab initio cosmological modelling. We illustrate the methodology
for the case of a 100-deg2 XMM survey having a sensitivity of ∼10−14 erg s−1 cm−2 and fit at
the same time, the survey selection function, the cluster evolutionary scaling relations and the
cosmology; our sole assumption – driven by the limited size of the sample considered in the
case study – is that the local cluster scaling relations are known. We devote special attention to
the realistic modelling of the count-rate measurement uncertainties and evaluate the potential
of the method via a Fisher analysis. In the absence of individual cluster redshifts, the count rate
and hardness ratio (CR–HR) method appears to be much more efficient than the traditional
approach based on cluster counts (i.e. dn/dz, requiring redshifts). In the case where redshifts
are available, our method performs similar to the traditional mass function (dn/dM/dz) for the
purely cosmological parameters, but constrains better parameters defining the cluster scaling
relations and their evolution. A further practical advantage of the CR–HR method is its sim-
plicity: this fully top-down approach totally bypasses the tedious steps consisting in deriving
cluster masses from X-ray temperature measurements.

Key words: methods: observational – galaxies: clusters: general – cosmology: observations
– X-rays: galaxies: clusters.

1 IN T RO D U C T I O N

Discriminating between different cosmic scenarios requires preci-
sion cosmological studies relying on well-controlled observables. In
parallel to the cosmological microwave background (CMB), bary-
onic acoustic oscillations (BAO), Type Ia supernovae and weak-
lensing analyses, galaxy clusters, as the most massive bound entities
in the universe, are expected to provide independent complemen-
tary constraints (Eke, Cole & Frenk 1996; Henry 1997; Oukbir &
Blanchard 1997; Borgani et al. 2001; Rozo et al. 2007; Allen, Evrard
& Mantz 2011; Sehgal et al. 2011). In particular, they appear to be
quite sensitive to the properties of the dark energy (Haiman, Mohr
& Holder 2001; Battye & Weller 2003; Pierre et al. 2011). Cluster
cosmological studies are usually based on the cluster number counts
as a function of redshift and mass. This quantity can be easily in-
ferred from the halo model formalism and is confirmed by the most

�E-mail: nclerc@mpe.mpg.de

recent N-body simulations (Press & Schechter 1974; Lacey & Cole
1993; Sheth & Tormen 1999; Jenkins et al. 2001; Springel et al.
2005; see Cooray & Sheth 2002 for a review). Theoretically, its
high sensitivity to the initial density fluctuation power spectrum as
well as its time evolution makes it a powerful probe of structure for-
mation. Its dependence on geometrical effects (surveyed volume)
further strengthens the constraints on key cosmological quantities
such as the matter content in the Universe (�m) and the dark energy
equation of state. From the observer’s point of view, however, clus-
ter masses are not quantities easily measurable (contrary to cluster
redshifts), a fact that often leads to question the actual use of clusters
as cosmological probes.

Galaxy clusters can be studied in a variety of ways, in particular
through their X-ray emission. The gas trapped in the deep cluster
potential is heated up to X-ray emitting temperatures. Free–free
emission is the dominant mechanism from the hot plasma hav-
ing a heavy element abundance of ∼0.3 Z�; at low temperatures
(�2 keV) a significant fraction of the energy is emitted via recombi-
nation lines (Sarazin 1988). Because extended X-ray sources at high
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galactic latitude almost unambiguously point towards cluster poten-
tial wells, hence minimizing projection effects, X-ray surveys have
long been considered as the ideal way of constructing cosmological
cluster samples.

The Einstein Observatory Extended Medium Sensitivity Survey
(Gioia et al. 1990) provided the first flux-limited, X-ray-selected
sample of galaxy clusters, allowing pioneering cluster count analy-
ses. It was then followed by REFLEX (Böhringer et al. 2001) and
NORAS (Böhringer et al. 2000) based on the ROSAT all-sky sur-
vey (Truemper 1993) as well as by a number of cluster searches
in the deep ROSAT archival pointings (Scharf et al. 1997; Rosati
1998; Vikhlinin et al. 1998; Romer et al. 2000). Preliminary cos-
mological constraints resulted from these studies involving not only
cluster counts but also their 3D spatial distribution (Schuecker et al.
2003); at this stage, however, the main observable quantity that was
dealt with was the cluster luminosity function, rather than the mass
function (Borgani et al. 2001; Mantz et al. 2008). Parallel analy-
ses invoking the distribution of temperatures in ROSAT and ASCA
clusters also provided cosmological constraints, however somewhat
debated (Henry 1997, 2004; Eke et al. 1998; Viana & Liddle 1999;
Pierpaoli, Scott & White 2001; Pierpaoli et al. 2003; Henry et al.
2009), but consistent with findings from the X-ray luminosity func-
tion. One of the major shortcomings of these studies rapidly turned
out to be a lack of reliable mass-observable relations, ideally in the
form of scaling relations, and how these would evolve as a function
of cosmic time.

With the advent of XMM–Newton and Chandra, previous sam-
ples underwent deep observations and, in parallel, the interest in
X-ray surveys for cosmological analyses increased. A very signifi-
cant amount of observing time was devoted to the determination
of the cluster scaling relations, for samples a priori thought to
be representative of some cluster population (see Pratt et al. 2009
and references therein). In particular, the 400-d survey (Burenin
et al. 2007) provided a sample of some 90 clusters selected
in the RASS and followed up by deep Chandra observa-
tions, allowing precise mass measurements based on high-quality
X-ray data. The cosmological analysis presented in Vikhlinin et al.
(2009b) relies on the mass and redshift distribution of clusters.
Mantz et al. (2010a) used more than 200 X-ray-selected clusters,
some of them having a deep follow-up, in an analysis that com-
bines the gas mass fraction in clusters with their abundance per
mass and redshift bin. Simultaneously, new cluster samples have
been assembled either from dedicated XMM surveys (Pierre et al.
2004) or from the XMM and Chandra archival data: e.g. ChaMP
(Barkhouse et al. 2006) and XCS (Romer et al. 2001; Mehrtens et al.
2012). Corresponding cosmological analyses are still in progress
(Sahlén et al. 2009), but one of the major outcomes was to realize
that selection effects can be as critical as the proper knowledge
of the cluster scaling relations. Pacaud et al. (2007) have shown
that, unless a high flux limit is assumed, X-ray cluster samples
are best characterized by a 2D selection function (analogous to
a surface brightness limit). Furthermore, because of the steepness
of the cluster mass function and of the (currently poorly deter-
mined) dispersion in the scaling laws, these relations appear to be
always biased towards the most luminous objects with respect to the
mean, unless a thorough treatment of the selection function is in-
troduced; this becomes especially challenging as redshift increases.
Ideally, for a given cluster sample, one would need to simultaneously
model (i) the selection effects, (ii) the scaling relations and (iii) the
cosmology.

From the observer’s point of view, the bottleneck in building
large cosmological samples is the time-consuming optical follow-

up to obtain spectroscopic redshifts for each cluster. However,
redshift (and mass) information is already encoded in the X-ray
spectra of the clusters. In principle, it is possible to make use of
this information in a statistical way, even in the low-count regime,
thanks to a dedicated formalism (Lloyd-Davies et al. 2011; Yu
et al. 2011). The goal of this paper is to investigate such a new
approach to the cosmological analysis of large samples of X-ray
clusters: the count rate and hardness ratio (CR–HR) method. In
contrast to methods requiring redshift information for each cluster
and inferring the cluster mass distribution through various X-ray
proxies, we handle X-ray instrumental observables only, namely
the count rates in several energy bands. In the scientific analysis,
we self-consistently model the cosmology, scaling laws, selection
effects and the instrumental responses to predict count rate distri-
butions that can be directly compared to the purely observational
data.

The structure of this paper is as follows. We begin by presenting
the motivations of the CR–HR method and describe its principle.
We then give the key ingredients involved in the construction of
the CR–HR diagram that we illustrate for a shallow XMM survey
(Section 3). Then, we explain the modelling of measurement errors
and their inclusion in the analysis (Section 4). Next, we describe the
formalism adopted in our Fisher analysis used to evaluate the CR–
HR method; we present the expected constraints for a set of selected
parameters (Section 5). We discuss and summarize our results in
Section 6.

Throughout the paper, we assume a flat (�k = 0) � cold dark mat-
ter (�CDM) cosmology with parameters given by 5-year Wilkin-
son Microwave Anisotropy Probe (WMAP5) best-fitting values
(Dunkley et al. 2009).

2 TH E C R – H R M E T H O D

In this work, we consider a shallow X-ray survey and assume that
a robust procedure allows the construction of well-defined samples
of clusters of galaxies. By definition, the survey selection function
is based on X-ray observable criteria only. The survey is supposed
to be shallow in the sense that a few hundred photons, at most, are
collected for each cluster and, thus, may enable a mean temperature
estimate of the intracluster medium (ICM) but no radial tempera-
ture profiles. This is the case for most of the current analyses to
date (Barkhouse et al. 2006; Pacaud et al. 2006; Burenin et al.
2007; Sahlén et al. 2009). Given a cluster sample, we populate a 2D
observable parameter space defined by the measured X-ray CR and
HR. CR and HR, which contain (partially degenerate) information
on the temperature and the redshift of the clusters, are defined for
adequately chosen X-ray bands. Specifically, we construct a CR–
HR diagram from the selected cluster sample, building a 2D density,
which behaves like an X-ray colour–magnitude diagram. In the case
where optical (photometric or spectroscopic) redshifts are available
for each cluster, we divide the sample in redshift bins and associate a
CR–HR diagram with each of these slices leading to a 3D z-CR–HR
diagram.

Such a diagram can, in turn, be obtained using an ab initio for-
malism: (i) setting a cosmological model, we compute the number
of clusters as a function of mass and redshift; (ii) each cluster is
ascribed an X-ray temperature and luminosity as well as a physical
characteristic size according to empirical scaling laws; (iii) these
quantities are subsequently converted into CR, HR for a given X-ray
survey and into an apparent size; (iv) finally, only clusters passing
the X-ray selection function are retained, enabling the construc-
tion of theoretical CR–HR diagrams. We compute such (z)-CR–HR
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diagrams for a wide range of cosmological models and possible
cluster evolutionary scenarios in order to determine which one is
the most likely, by comparing with the observed diagram.

Count rates are purely instrumental quantities; thus, in order to
test the ability of the CR–HR method to constrain both the cosmol-
ogy and cluster evolutionary physics, we need to explicit the calcu-
lations for a given X-ray survey instrument such as XMM–Newton
or eRosita (Predehl et al. 2010) for instance. In this paper, we as-
sume a 100 deg2 XMM survey performed with the European Photon
Imaging Camera (EPIC) instruments with a sensitivity of ∼10−14

erg s−1 cm−2 in the [0.5–2] keV band for cluster-type sources, i.e.
consisting of 10-ks exposures. The CR–HR method is evaluated by
a Fisher analysis and its efficiency is compared to the traditional
method relying on the redshift–mass distribution of clusters. Spe-
cial emphasis is given to modelling of measurement errors in the
Fisher analysis.

3 IN G R E D I E N T S E N T E R I N G
T H E C R – H R M E T H O D

3.1 Modelling the CR–HR distribution of clusters

This section describes the steps entering the computation of CR–
HR diagrams. We illustrate our method under realistic conditions
and qualitatively show its sensitivity to relevant parameters enter-
ing the model. Measurement errors are considered in Section 4. A
schematic view of the method is given in Fig. 1.

3.1.1 Cosmological mass function

We start from a scale-invariant primordial spectrum with slope ns =
0.961 and the Eisenstein & Hu (1998) transfer function to obtain
the z = 0 power spectrum P(k, z = 0), which is subsequently
normalized by σ 8. The linear power spectrum P(k, z) is evaluated
using the redshift-dependent growth factor computed by numerical
integration of the partial differential equation. We then compute the
rms variance σ (M, z) of the field smoothed at a comoving scale
R = (3M/4πρm)1/3 and inject it into the following functional form
describing the differential comoving density of haloes per mass
interval dM about M at redshift z:

dn

dM
= f (σ )

ρm

M

d ln σ−1

dM
(1)

where ρm is the mean matter density at redshift z. We calculate the
mass function in terms of M200b, the mass within a radius R200b,
inside which the mean mass density is 200 times the matter density
in the Universe.

We use the Tinker et al. (2008) fit for to obtain f (σ ) for the
corresponding mass definition and then compute the sky-projected,
redshift-dependent mass function dn/d�/dM200b/dz. The equation
of state of dark energy is parametrized through a single parameter
w0 = P/ρ, whose value in the case of a cosmological constant is −1.

We further transform the mass function in terms of M200c, defined
relative to the critical density of the Universe. This conversion
(M200b to M200c) is motivated by the fact that M200c is the mass

Figure 1. Schematic view of the CR–HR method (right part of the block diagram), illustrating the top-down approach used to link X-ray observables to
a cosmological model. The left part of the block diagram shows the more traditional method based on individual cluster mass measurements using e.g. a
temperature proxy (TX) and a mass–temperature scaling relation (TX−M200c). The L symbol indicates the comparison between model and data (based on e.g.
a minimization of the likelihood function): the CR–HR method directly compares X-ray observables.
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definition entering our scaling-law formulae (see Section 3) and is
performed using the fitting formula from Hu & Kravtsov (2003); for
this purpose, we assumed an NFW mass profile (Navarro, Frenk &
White 1997) and a concentration model from Bullock et al. (2001).

3.1.2 Cluster X-ray emission: scaling laws and brightness profiles

The X-ray emissivity of clusters basically depends on three quan-
tities: the redshift z, the cluster X-ray temperature T integrated
over the whole cluster extent, and its total bolometric luminosity
LX (along with some dependence on the metallicity of the ICM).
Scaling relations between cluster masses and these quantities have
been extensively studied in the local Universe (Arnaud & Evrard
1999; Arnaud, Pointecouteau & Pratt 2005; Vikhlinin et al. 2006;
Pratt et al. 2009) down to the low-mass end (Sun et al. 2009). As
usual, we model the cluster scaling relations by power laws. Given
that the physical processes determining the evolution of these rela-
tions are still a matter of debate, we parametrize the evolution by
the factor (1 + z)γ (e.g. Voit 2005). Our mass-observable relations
read

M200c

1014 h−1 M�
= 10CMT

(
T

4 keV

)αMT

E(z)−1(1 + z)γz,MT , (2)

LX

1044 erg s−1
= 10CLT

(
T

4 keV

)αLT

E(z)(1 + z)γz,LT . (3)

Furthermore, the intrinsic scatter in those relations is an important
ingredient for modelling the cluster population (e.g. Stanek et al.
2006; Pacaud et al. 2007). We introduce σ ln T|M and σ lnL|T , the scatter
in T at fixed M200c (respectively in LX at fixed T) and assume they
are independent of redshift, mass and temperature.

Finally, we assume a surface brightness profile given by a
β-model (Cavaliere & Fusco-Femiano 1976) with β = 2/3 and
a varying core radius rc. The scaling of rc with other cluster quanti-
ties is complex and depends on the details of the ICM physics (see
e.g. Sanderson & Ponman 2003; Ota & Mitsuda 2004; Alshino et al.
2010) but it can reasonably be assumed that rc scales with the size
of the dark matter halo. We thus take a xc,0 = rc/R500c parameter,
constant at all redshifts and masses (with R500c being defined as the
radius enclosing a mean density of 500 times the critical density of
the Universe).

3.1.3 An instrumental model for XMM observations

Most of the cluster detection algorithms in the X-ray waveband are
based on a two-step procedure: source detection is run on a filtered
image, followed by fitting a cluster emission model on the raw
photon image, accounting for the Poissonian nature of the signal
(e.g. Böhringer et al. 2001; Burenin et al. 2007; Pacaud et al. 2007;
Lloyd-Davies et al. 2011). The efficiency of such an algorithm, in
terms of completeness and purity, is evaluated by extensive image
simulations. This finally enables the determination of cluster se-
lection functions based exclusively on X-ray criteria, which are, in
general, more complex than a simple flux limit. Following Pacaud
et al. (2006), we use a 2D parametrization involving the count rate
in the [0.5–2] keV band and the apparent core radius. Fig. 2 shows
our adopted selection function (the C1 selection; Pacaud et al. 2006)
which corresponds to an uncontaminated cluster sample, for XMM
exposure times of the order of 10 ks.

Each cluster is characterized by a redshift z, a temperature T
and a bolometric luminosity LX. Count rates are derived from

Figure 2. Selection function used throughout this analysis, obtained from
realistic simulations of XMM cluster observations (Pacaud et al. 2006). The
detection probability is expressed as a function of two observable quantities:
the total count rate collected by the three detectors and the core radius of
the input β-model (β = 2/3).

physical fluxes for a given spectral emission model and using the
proper instrumental responses. In this work, we assume a thermal
plasma model (APEC; Smith et al. 2001) having a metal abun-
dance of 0.3 Z� along with a galactic absorption corresponding to
NH = 3 × 1020 cm−2 (Grevesse & Sauval 1998). Response matrices
for the three EPIC detectors on-board XMM (MOS1 and MOS2:
Turner et al. 2001; and PN: Strüder et al. 2001) and THIN fil-
ter are used to produce an observed spectrum (number of counts
collected by second in each energy channel) which is in turn
integrated over specific energy bands to yield the desired count
rates.

For the purpose of our analysis, we define three working energy
bands: [0.5–2] keV (band ‘tot’, which is also the detection band),
[1–2] keV (band ‘1’) and [0.5–1] keV (band ‘2’). The choice of
these bands is documented in Appendix B. In all what follows, we
assume that we measure total count rates, i.e. over the full cluster
extent (see the discussion in Appendix D).

We define the cluster hardness ratio by HR = CR1/CR2, where
CR1 and CR2 are count rates measured in [1–2] and [0.5–1] keV,
respectively. We neglect possible spatial variations of the HR across
the cluster’s X-ray extent. In practice, for the type of surveys con-
sidered here, both the faintness and the small extent of the ob-
jects (compared to the instrumental point spread function, PSF)
prevent us from resolving such a detailed structure. We thus treat
the cluster emission as equivalent to that of a single-temperature
plasma and this is consistent with the fact that reference scaling
relations have been computed by fitting a single plasma model
to various cluster spectra. For a given spectral model depending
on parameters (z, T , LX), the HR does not depend on luminos-
ity. Fig. 3 shows the redshift and temperature dependence of the
HR values: a pure bremsstrahlung spectrum would exhibit a de-
generacy of the T/(1 + z) type; however, the presence of metal-
lic lines entering the energy bands at different redshifts induces
more subtle effects, especially at low temperatures where they are
prominent.

3.1.4 Summary of the model parametrization

Table 1 summarizes the main parameters used in our analysis. Be-
sides the WMAP5 cosmological model, parameters governing the
cluster M−T and L−T scaling relations are defined by equations
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Figure 3. Lines of iso-hardness ratio CR1/CR2 in the plasma temperature–
redshift plane for the XMM-EPIC instrument. CR1 is the count rate in
[1–2] keV and CR2 in [0.5–1] keV. An APEC plasma model with abundances
0.3 Z� and a galactic absorption NH = 3 × 1020 cm−2 is used. Changes in
the abundance value from 0.1 to 0.6 Z� are indicated by the dotted coloured
lines.

(2) and (3). The local M−T relation was taken from Arnaud et al.
(2005) using their relation for hot clusters and δ = 200. Following
Alshino et al. (2010), we set xc,0 = 0.1, the ratio between the core
radius of the X-ray β-model and R500c. The local LX−T relation
is taken from Pratt et al. (2009) using their L1−T1 relation for
‘non-cool-core clusters’. We justify this choice by finding that our
fiducial model along with the selection function of Fig. 2 yields 5.7
clusters deg−2, consistent with the observed density of clusters in
the 10-ks XMM-LSS survey (Pacaud et al. 2007). Choosing their
relation for ‘All’ clusters would lead to a higher density of 10.6
clusters deg−2, indicating an incompatibility between this relation
and the XMM-LSS selection function, possibly originating from
the different fractions of cool-core clusters in the samples under
study. A typical cluster at z = 0.4 with M200c = 1014 h−1 M� has a
temperature of T = 2.2 keV, a total bolometric luminosity of LX =
0.55 × 1044 erg s−1, and radii R500c = 0.6 Mpc and rc = 11 arcsec;

with a 10-ks XMM exposure, we collect ∼500 photons for this
object.

3.2 Illustrative examples

We show in Fig. 4 the CR–HR distribution computed for our fidu-
cial set of parameters and illustrate the effect of a parameter change
on this diagram. The most obvious effect of modifying one of the
parameters is a variation in the total number of observed clus-
ters. This is particularly striking for �m and σ 8 which strongly
impact the amplitude of the distribution and thus are relatively
well constrained by the total number count alone (as pointed out
in Haiman et al. 2001; Sahlén et al. 2009). Parameters governing
scaling laws (γz,MT, γz,LT) enter at the cluster selection stage: e.g.
γz,LT increases the luminosity and thus the detectability of clusters at
higher redshifts. Beyond this first-order overall change in amplitude,
the shape of the distribution is affected in various ways when the
model parameters are varied. If one is able to detect these changes
within the measurement uncertainties and systematic errors, degen-
eracies between parameters can be broken. For instance, a change
of 20 per cent in the value of �m uniformly changes the amplitude
of the CR–HR distribution while a +1 modification in γz,LT also
shifts the centre of the distribution towards lower HR and lower
CR.

3.3 Generalizing: adding redshift information

We also consider the case where the survey benefits from an
optical spectroscopic follow-up, providing cluster redshifts. To
model this case, we define thin redshift slices and repeat the
procedure described above in each of these slices to derive
the corresponding 3D quantity dn/dz/dCR/dHR. The resulting
distributions are illustrated in Fig. 5 for given redshift ranges.
Such diagrams almost fully characterize the whole cluster popu-
lation using purely observable (instrumental) quantities: the red-
shift distribution, the evolution of the CR–HR distribution as a
function of redshift and how these quantities are related in the
sample. In fact, the dn/dz/dCR/dHR distribution is analogous to the

Table 1. Fiducial parameters used in this study. The last column shows the standard priors used in the
Fisher analysis (see Section 5). References: 1, Dunkley et al. (2009); 2, Arnaud et al. (2005); 3, Pratt et al.
(2009); 4, Alshino et al. (2010).

Parameter Fiducial value Description Reference Prior

�m 0.249 1 No
�� 1 − �m (Flat Universe) – –
�b 0.043 1 0.003
σ 8 0.787 1 No
w0 −1 – No
ns 0.961 1 0.014
h 0.72 1 0.026

αMT 1.49 M−T power-law index 2 0.17
CMT 0.46 M−T logarithmic normalization 2 0.023
γz,MT 0 M−T evolution index – No
σ ln T|M 0.1 M−T constant logarithmic dispersion 2 0.064

αLT 2.89 L−T power-law index 3 0.21
CLT 0.40 L−T logarithmic normalization 3 0.026
γz,LT 0 L−T evolution index – No
σ lnL|T 0.267 L−T constant logarithmic dispersion 3 0.058

xc,0 0.1 β-model core radius scaling with respect to R500c 4 No
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3550 N. Clerc et al.

Figure 4. Dependence of the CR–HR diagram on the six free model parameters. The fiducial model (Table 1) is represented by the black dashed contours and
predicts 570 clusters over 100 deg2 (a 10-ks XMM exposure, C1 cluster selection). The red solid contours represent the model obtained when one parameter at a
time is varied. The corresponding values for each parameter are �m = 0.30 (+20 per cent), σ 8 = 0.94 (+20 per cent), w0 = −0.6 (−40 per cent), γz,MT = −1,
γz,LT = 1 and xc,0 = 0.2 (+100 per cent). Contour levels stand for the number of clusters enclosed by each curve, labelled by steps of 200. The differential
quantity dn/dCR/dHR is constant along each contour.

dn/dz/dLX/dT distribution but can be readily obtained from the avail-
able data without any assumption on scaling laws and cosmological
parameters.

4 AC C O U N T I N G FO R M E A S U R E M E N T
E R RO R S

Up to this point we did not include measurement errors arising from
the cluster’s individual measurements. This is however a key issue in

the interpretation of the CR–HR diagrams. In this section, we detail
our procedure for modelling the measurement errors in the synthetic
distributions. We first describe how count rate measurement errors
impact the CR–HR diagrams. In the second step, we also estimate
what would be the uncertainties in the cluster mass estimates (based
on an M−T proxy) for exactly the same set of XMM observations.
This step is intended to allow us to eventually compare the efficiency
of the CR–HR method with the traditional method based on cluster
masses, in the ideal case where redshifts are available.
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Figure 5. The CR–HR diagram resolved in redshift bins for the fiducial model. Each contour from the innermost to the outermost encloses 10, 20, 30, . . . ,
clusters detected over 100 deg2 (a 10-ks XMM exposure, C1 cluster selection). Measurement errors are neglected for this figure. Practically, we compute a 3D
differential density dn/dz/dCR/dHR which is then integrated in defined bins (�z�CR�HR) to provide a histogram of the clusters in the observable space. This
representation can be built straight from the observable data, without any assumption on cosmological or scaling law parameters, and captures the key features
of the sample (see text).

4.1 Including measurement errors in the CR–HR
and z-CR–HR diagrams

CR–HR diagrams involve three measurements for each detected
cluster: the wide-band ([0.5–2] keV) count rate CRtot, and two
narrow-band ([1–2] keV and [0.5–1] keV) measurements, CR1 and
CR2 such that HR = CR1/CR2.

Errors on these measurements come mostly from Poisson fluc-
tuations in the signal, from the background level hampering flux
measurement up to large projected radii and from the lack of spher-
ical symmetry amplified by PSF distortion effects. Errors on a mea-
sured quantity X knowing the true underlying value X̂ are expressed
through a distribution P (X|X̂). For the purpose of this demonstra-
tive paper, we assume a Gaussian error model for CRtot, CR1 and
CR2, without bias and having a non-constant scatter of the form

σCR|ĈR = σ0

(
Texp

10 ks

)−1/2( ĈR

ĈR0 counts s−1

)1/2

. (4)

For ĈRtot, ĈR1 and ĈR2 we assume ĈR0 = 0.03 counts s−1 and
σ 0 = 0.003 counts s−1 (i.e. a 10 per cent relative error in count
rate measurement for 300 collected photons). This simple model
allows us to account for the dependence of measurement errors
on the number of photons as ∝ √

N . We checked its validity for
measurements of C1 clusters in the 10-ks deep XMM-LSS field

Figure 6. Count rate measurement errors as a function of the measured
count rate, for the 32 C1 clusters detected in the 10-ks XMM-LSS field
(Pacaud et al. 2007). The plain black line shows the model adopted in
equation (4) for a 10-ks survey and the dashed line is for a 40-ks exposure
time.

presented in Pacaud et al. (2007), see Fig. 6. We note that including
lower flux systems in the diagram would imply a more precise
model describing the increased influence of background on these
errors. Errors on HR = CR1/CR2 are estimated by simulating (200)3
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3552 N. Clerc et al.

Figure 7. Effect of count rate measurement errors on the predicted CR–HR
distribution. Shaded contours: predicted cluster distribution without mea-
surement errors for a 10-ks XMM exposure, C1 cluster selection. Unshaded
contours: the same distribution after taking into account measurement errors
on both the [0.5–2] keV count rate and the hardness ratio. Contours enclose
respectively 30, 60 and 90 per cent of the total expected number of clusters.

realistic cluster spectra on a fine (z, LX, T) grid, then computing their
(true) ĈRtot,1,2 and simulating CRtot,1,2 following the Gaussian error
model presented above. Then, at fixed (ĈR, ĤR) values we compute
the standard deviation σCR,HR|ĤR from this set of simulated values.
Fig. 7 shows how σCR|ĈR and σHR|ĈR,ĤR impact the predicted CR–HR
distribution of clusters in the sample. As expected from propagating
the errors, the relative uncertainty on HR is larger than that on CR
and it increases as the number of collected photons is lower.

Using this error model, we ‘blur’ the expected dn/dCR/dHR dis-
tribution, in the same way as a varying PSF would affect an image.
Practically, this is done by dividing the initial diagram into fine bins,
then redistributing the information in each bin into its neighbours
using a 2D Gaussian distribution with scatters σCR|ĈR and σHR|ĈR,ĤR.

In the case where individual cluster redshifts are available, a
similar procedure is applied to the 3D dn/dz/dCR/dHR distribution.
As count rate measurements are independent of redshift precision,
measurement errors consist of two independent components. Errors
on CR and HR are applied on each redshift slice in the same way
as for the 2D dn/dCR/dHR distribution.

Finally, redshift measurement errors are accounted for by nar-
rowing or enlarging redshift bins when integrating the density in
cubic cells (see Section 5).

4.2 Comparison exercise: errors on the estimated
cluster masses

A traditional method for the cosmological handling of X-ray cluster
samples is to compute a mass proxy for each cluster and, subse-
quently, analyse the resulting redshift and mass distribution. Since
in Section 5 we will compare the CR–HR method with the tradi-
tional approach, we need to model the cluster mass accuracy that is
obtainable with exactly the same X-ray information. Appendix A
reviews our assumed procedure for deriving dn/dM/dz, the mass
proxy being the cluster X-ray temperature. Apart from the intrin-
sic scatter in the M–T relation, errors on the mass determination
mainly arise from temperature measurement errors. Considering
the parameter set from Table 1, we derive at each (z, M200c) the
expected number of photons Nphot collected in the [0.5–10] keV

Figure 8. Assumed errors on the measured mass ln M200c as a function
of redshift and M200c. For each cluster we suppose that M200c is obtained
by converting the X-ray temperature estimate through the M−T scaling
law evolved at the cluster redshift. Red dashed lines: lines of constant
measurement errors on ln (M200c) in the M200c–z plane; black dotted lines:
net number of photons collected in the [0.5–10] keV band used for the
spectral fit; shaded contours: fiducial distribution of detected clusters (a
10-ks XMM exposure, C1 selection). Each contour encloses respectively 30,
60 and 90 per cent of the total expected number of clusters.

band with a given exposure time Texp. We compute

�lnM200c � αMT�lnT

� αMT

(
Nphot

400

)−1/2
�T

T

∣∣∣∣∣
N=400

, (5)

where �T/T|N =400 is the relative temperature error that would be
obtained with a 400 photons spectrum. This quantity is taken from
fig. A1 of Willis et al. (2005) considering their error bars only.

Fig. 8 illustrates our projected errors on mass measurements for
a 10-ks XMM observation. At high redshifts, the main source of
uncertainty comes from the number of collected photons, and the
more massive the cluster, the better is the mass measurement. At
lower redshifts, the relative measurement error is almost indepen-
dent of the mass for the clusters being studied. This is because the
temperature of massive, hot clusters is more difficult to determine
as they lack emission features (e.g. Willis et al. 2005).

Assuming that redshifts are poorly determined – i.e. if only pho-
tometric redshifts are available – mass measurements are further
degraded. First, for a pure bremsstrahlung spectrum with T(1 + z)
∼constant at very first order, the spectral fit yields a temperature es-
timate with a relative dispersion �T/T ∼ �z/(1 + z). Secondly, the
conversion from temperature to mass depends on redshift through
the (1 + z)γz,MT factor in equation (2) and a poor knowledge of z im-
pacts the mass estimate. We neglect the latter source of uncertainty
as our fiducial model is computed at γz,MT = 0. The former is added
in quadrature to the statistical error described in equation (5), and
we take �z/(1 + z) = 0.07 when considering photometric redshifts.

5 T H E F I S H E R A NA LY S I S

In this section, we evaluate the level of performance of the method
based on the knowledge of dn/dCR/dHR and dn/dz/dCR/dHR. We
quantify this performance in terms of constraints on cosmological
parameters and on scaling law related parameters. We describe the
Fisher formalism used in this analysis and its results. In the ideal
case where redshifts are available for each cluster, we compare the
efficiency of the CR–HR method with the traditional approaches
using dn/dz and dn/dM/dz.
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The CR–HR method for X-ray cluster surveys 3553

5.1 Fisher formalism

The principle of Fisher matrices applied to cosmological forecasts
is thoroughly discussed in e.g. Tegmark, Taylor & Heavens (1997),
Eisenstein, Hu & Tegmark (1999) and Heavens (2009). Here we
briefly recall the approach and show how we applied it to evaluate
our method.

Given a set of measured observables {D1, . . . , Dn} assumed to
be uncorrelated, a parametric analysis aims at constraining a set
of parameters {θ1, . . . , θp} under a physical model M. Defining
the likelihood L = P (Di |θμ,M) and assuming a prior distribution
P (θμ|M), the posterior P (θμ|Di,M) ∝ L × P (θμ|M) contains
all the information needed to derive confidence intervals on θμ. If
we denote by Oi(θμ) the observable predicted by the model and
assuming Poisson distribution in each bin i, the likelihood reads

lnL =
∑

i

lnPPoiss(Di |Oi(θμ)) (6)

=
∑

i

(
−Oi(θμ) + Di lnOi(θμ) − lnDi!

)
. (7)

Defining the Fisher matrix as

Fμν ≡ −
〈

∂2lnL
∂θμ∂θν

〉
, (8)

one obtains under those assumptions

Fμν =
∑

i

1

Oi

∂Oi

∂θμ

∂Oi

∂θν

. (9)

Marginalized parameter uncertainties as well as their mutual cor-
relations are encoded in the covariance matrix Cμν = F−1

μν . For
instance, the 1σ marginalized error on parameter θμ is given by√

Cμμ. External Gaussian priors on parameters can be included
by simply adding together Fisher matrices. Particularly, if θ1 has a
prior σ 1, the resulting Fisher matrix is obtained by adding 1/σ 2

1 to
the F11 term of the original matrix.

We insist on the fact that Fisher matrices only provide the best
constraints attainable by the experiment and neglect all terms above
linear order. The derived constraints must thus be seen as indicative
for e.g. a comparison of two distinct methods. Moreover, a Fisher
analysis is valid around a given model and all constraints derived
from the matrix inversion depend on the assumed model. In our
case, all methods are compared using the fiducial model presented
in Table 1. Finally, we note that the derivation of equation (9) pre-
sented above is valid only if Di does not depend on {θμ}. In some
cases the computation of the data set Di requires the knowledge
of some parameters among {θμ} (e.g. �m is needed to compute
cosmological distances entering the conversion from flux to lumi-
nosity). This problem can be partially overcome by predefining a
set {θ ref} (it can be the same as {θfiducial}), deriving Di with this
reference set and then correcting Oi(θμ) so as to compare both val-
ues in the same reference space. This is typically the case when
deriving constraints from the mass distribution of clusters, since the
mass derivation relies on several key parameters of the analysis (see
Appendix A).

Our predicted observable is built from one of the predicted den-
sities dn/dCR/dHR, dn/dz/dCR/dHR, dn/dz and dn/dz/dM. Mea-
surement errors are applied following the procedure described in
Section 4. A binning scheme is then defined and held fixed, and Oi

are defined as the cell-integrated densities. Binning grids are chosen
so that the bin size at each point is approximately as large as the
1σ error size at the considered point. In such a way, correlations

Figure 9. Predicted integrated density dn/dCR/dHR illustrating the binning
scheme applied in our Fisher analysis (see Section 5). The original distribu-
tion is first ‘blurred’ according to the measurement errors and then binned
into cells. Each bin is approximately as large as the measurement error. The
model parameters are from Table 1. Shading from white to black represents
the expected number of clusters in each cell (white = 0, black = 10 or more
clusters). The total number of clusters is 570 over 100 deg2. The error model
is defined by equation (4) with Texp = 10 ks.

between bins are minimized (we do not consider the effect of sam-
ple or cosmic variance here, see Appendix D for a discussion). We
consider two redshift binnings: �z = 0.1 and �z = 0.03. Observ-
able ranges should span the entire cluster population and we choose
z ∈ [0.05, 1.8], CR ∈ [0.005, 3.5] counts s−1, HR ∈ [0.1, 1.55] and
M200c ∈ [1013, 3.1015] h−1 M�. Fig. 9 shows a typical example of
a CR–HR integrated density. Comparing it to Fig. 4, a substantial
amount of information has been lost by including measurement er-
rors and binning the distribution, but the main characteristics of the
distribution are still present, in particular its normalization which is
the total expected number of clusters in the sample.

Derivatives of the predicted observables with respect to model
parameters are evaluated using the five-point stencil approximation

∂O
∂θμ

� 2

3

O(θ̂μ + δθμ) − O(θ̂μ − δθμ)

δθμ

+O(θ̂μ − 2δθμ) − O(θ̂μ + 2δθμ)

12δθμ

(10)

with steps 5 per cent of the fiducial value for non-zero fiducial
parameters and 0.05 for the other parameters (γz,MT and γz,LT).

5.2 Results

In this section, one assumes a 100-deg2 survey uniformly covered
by a 10-ks XMM integration, thus leading to a selection function
given in Fig. 2. The fiducial model is �CDM with parameters given
in Table 1. Thus, we always consider a sample of 570 clusters (see
Section 3).

The analysis involves 15 varying parameters: {�m,�b, σ8, w0,

ns, h}, {αMT, CMT, γz,MT, σlnT |M}, {αLT, CLT, γz,LT, σlnL|T } and xc,0.
Gaussian priors are applied following Table 1. These priors are un-
correlated, unless for �b, ns and h for which correlations from
WMAP5 are taken into account.1 We highlight constraints ob-
tained on {�m, σ8, w0, γz,MT, γz,LT, xc,0} after marginalization over
the nine remaining parameters.

1 As computed from the Monte Carlo Markov chains available at
http://lambda.gsfc.nasa.gov/
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5.2.1 Effect of measurement errors

In the first step, we study how the precision on count rate measure-
ments impacts the constraints on model parameters. We consider
two situations: (i) count rates are measured on the 10-ks survey
data and (ii) improved accuracy is provided by a subsequent 40-ks
X-ray follow-up on each detected cluster (for both cases we have
identical selection functions, i.e. the same cluster sample). Fig. 10
shows the results for these two cases when redshifts are not avail-
able, thus using CR–HR diagrams only. Constraints on �m, σ 8,
γz,MT and xc,0 show little improvement when dividing measurement
errors by a factor of 2 (i.e. going from 10-ks to 40-ks observations).
In contrast, constraints on w0 and γz,LT are divided by a factor of
∼3. This is a consequence of the deformation they imprint on the
dn/dCR/dHR surface, which is captured better in the presence of
precise measurements.

Furthermore, in the case where cluster redshifts are available,
we investigate the impact of the redshift precision on the z-CR–
HR method. For this purpose, we consider a 10-ks survey (i)
without redshifts, (ii) with very approximate redshifts and (iii)
with photometric-like redshift accuracy. Practically, these config-
urations are rendered by narrowing the redshift bins from �z =
∞, 0.1and0.03 when computing the Fisher matrix. Results are dis-
played in Fig. 11. As expected, we note an overall improvement of
the constraints obtained on model parameters with increasing red-
shift accuracy. Adding redshift information substantially improves
the precision on w0 and γz,LT, by a factor of 5 (respectively 3); the
other parameters also show an improvement. However, refining the
redshift bins does not have a strong impact on the results, and a
�z = 0.1 binning contains almost the full constraining power of the
method.

Figure 10. Effect of the count rate precision on the constraints obtained
by the CR–HR method. Displayed are the constraints on the six unknown
parameters from Table 1, as obtained by the Fisher analysis. Each ellipse
encloses the 68 per cent confidence area of the marginalized posterior dis-
tribution. This figure shows how the uncertainty on each parameter can be
tightened by reducing measurement errors by a factor of ∼2 (i.e. with a 40-ks
XMM follow-up of each cluster). On the diagonal is shown the marginalized
Gaussian posterior distribution normalized so as to yield a total probability
equal to 1.

Figure 11. Effect of redshift precision on the constraints obtained by the (z)-
CR–HR method. Two redshift binnings (accuracies) are considered: �z =
0.1 and �z = 0.03. Red ellipses are the same as in Fig. 10 and show how
those constraints are affected by removal of the redshift information.

Table 2. Marginalized 1σ constraints on the six cosmological and scaling
law related parameters for an XMM 100-deg2 survey at 10-ks depth provid-
ing a sample of 570 clusters. We show results for three different observables
and different measurement errors on CR (count rate), HR (hardness ratio)
and z (redshift). The 40-ks indication on the second row refers to the depth of
a potential X-ray follow-up on individual clusters (10 ks meaning no addi-
tional follow-up). The dn/dz analysis is independent of any X-ray follow-up.
The increase in precision of redshift measurements is rendered by narrowing
the redshift bins �z.

Obs. dn/dCR/dHR dn/dz/dCR/dHR dn/dz

Depth 10 ks 40 ks 10 ks –

�z – 0.1 0.03 0.1 0.03

Parameter
�m 0.09 0.08 0.08 0.08 0.15 0.13
σ 8 0.14 0.13 0.12 0.12 0.98 0.74
w0 2.2 0.73 0.43 0.42 9.0a 5.9a

γz,MT 0.57 0.46 0.44 0.44 11a 9.0a

γz,LT 2.3 0.78 0.76 0.75 41a 28a

xc,0 0.04 0.04 0.03 0.03 0.33 0.18

aThese parameters can be considered as completely unconstrained by the
observable in this configuration.

Table 2 summarizes the 1σ marginalized uncertainties on the six
parameters in the configurations presented above.

5.2.2 Comparison with dn/dz

For comparison purposes, we also present in Table 2 constraints
obtained from an analysis that would only involve the redshift dis-
tribution of clusters in the sample, i.e. the standard dn/dz clus-
ter counts not making use of the spectral information potentially
available in the X-ray data: even if those properties have an im-
plicit impact on the observed dn/dz (through the survey selection
function), they do not interfere with the construction of the
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The CR–HR method for X-ray cluster surveys 3555

Figure 12. Comparison between constraints obtained from a traditional
dn/dz analysis and our proposed observable dn/dCR/dHR, the latter not
involving direct redshift measurements, contrary to dn/dz. The redshift bin
size for dn/dz is �z = 0.03 and measurement errors are computed for a 10-ks
survey for dn/dCR/dHR (see Fig. 7). Plotting ranges have been widened
to ease visualization, as in most of the cases the contour corresponding to
dn/dCR/dHR is very small in comparison to the corresponding green ellipse.

redshift histogram of the sample. Thus, one expects degenera-
cies between parameters to be important and marginalized uncer-
tainties on individual parameters to be large, if not meaningless.
We discuss in Appendix C the comparison between our imple-
mentation of the dn/dz analysis and a slightly different method
based on the simultaneous fit of the redshift histogram and the
L–M relation in several redshift bins as presented in Pierre et al.
(2011).

Fig. 12 illustrates the comparison between this method (based
on dn/dz) and our method (dn/dCR/dHR) which does not make
use of individual cluster redshifts. It turns out that for dn/dz, pa-
rameters w0, γz,MT and γz,LT are totally unconstrained and �m, σ 8

and xc,0 ellipses are considerably widened. Moreover, additional
degeneracies between parameters arise and also participate in di-
luting the constraints. This is particularly true for both parameters
γz,MT and γz,LT whose effects cannot be disentangled by the redshift
distribution alone. As expected, the best strategy is thus to use all
information available in the survey (redshifts and X-ray measure-
ments) as they help in breaking degeneracies related to the selection
function.

5.2.3 Comparison with dn/dz/dM

We now assume that redshifts are available for each cluster, at a
sufficient precision to allow a binning size of 0.03, corresponding
roughly to photometric redshift precision. We compare two ways
of analysing the data: either directly using the observed quantities
(dn/dz/dCR/dHR) or using a mass proxy (dn/dz/dM) as described in
Appendix A. Neglecting measurement errors, intrinsic scatter in the
scaling relations and systematics, we expect constraints on model
parameters to be of the same order of magnitude, as both methods
use identical data sets and rely on the same underlying quantity (the
‘cosmological’ mass and redshift distribution of haloes). Fig. 13

Figure 13. Comparison between constraints obtained from our proposed z-
CR–HR method (blue ellipses) and from a dn/dz/dM200c analysis (orange
ellipses) as from Table 3. The mass M200c is estimated from the X-ray
temperature T then converted via an assumed M−T scaling relation (see
Appendix A for details). The redshift binning is such that �z = 0.03.

compares the efficiency of the two methods, taking into account
measurement errors as presented in Figs 7 and 8. Corresponding
marginalized constraints are presented in Table 3. An additional
column gives the results that would be obtained with a mass pre-
cision of 10 per cent, hence the ultimate constraints attainable with
the traditional dn/dz/dM function.

Interestingly, the accuracy reached on parameters of purely cos-
mological origin (�m, σ 8 and the dark energy parameter w0) is
comparable for the two methods. The relative precision on �m

is about 30 per cent, while σ 8 is constrained to ∼15 per cent in
all cases considered, showing slight improvements when reducing
measurement errors and narrowing the redshift binning. In contrast,
a substantial gain is obtained on both parameters γz,MT and γz,LT

governing the evolution of scaling laws with redshift. Using the

Table 3. Marginalized 1σ constraints on the six cosmological and scaling
laws parameters for an XMM 100-deg2 survey at a 10-ks depth providing
a sample of 570 clusters. We show results for two different observables:
(A) is based on the 3D dn/dz/dCR/dHR diagrams and (B), the traditional
method, relying on the 2D mass and redshift distribution. The survey
depth is 10 ks for both the detection and the measurements. In the last
column, a uniform mass precision of 10 per cent is assumed. The narrow-
ing of the redshift bins �z renders the increase in precision of redshift
measurements.

Observable (A) (A) (B) (B) (B)

Depth 10 ks 10 ks 10 ks 10 ks �M/M = 10 per cent

�z 0.1 0.03 0.1 0.03 0.03

Parameter
�m 0.08 0.08 0.08 0.08 0.07
σ 8 0.12 0.12 0.14 0.14 0.12
w0 0.43 0.42 0.41 0.40 0.23
γz,MT 0.44 0.44 0.69 0.68 0.59
γz,LT 0.76 0.75 1.1 1.1 0.67
xc,0 0.03 0.03 0.06 0.05 0.05
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same data set, a factor of ∼1.5 appears when using the z-CR–HR
representation instead of the z−M200c distribution. Finally, the pa-
rameter xc,0 governing the scaling of the β-model core radius rc

with R500c is constrained twice as well with dn/dz/dCR/dHR, up to
a relative precision of ∼30 per cent.

As mentioned in Section 5.2.1, switching from a redshift accuracy
of 0.03 to 0.1 does not have a strong impact on the final derived
constraints for both methods.

6 SU M M A RY A N D C O N C L U S I O N S

This paper discusses the efficiency of a new method based on strictly
observable quantities (i.e. instrument-dependent measurements) to
analyse the cosmological content of large X-ray cluster samples.
Specifically, for each cluster we only make use of an X-ray count
rate, CR, and of a hardness ratio, HR, plus the cluster redshift, if
available; the 2D (3D) distribution of the CR–HR-(z) values from
the cluster sample constitutes the quantity to be analysed. Compared
to the traditional approaches based on the dn/dz and dn/dz/dM statis-
tics, our method follows a purely top-down procedure, requiring to
derive from an ab initio model the expected CR–HR diagram. The
method constrains in a self-consistent manner the three main ingre-
dients of the model: (1) the cosmology, (2) cluster scaling laws and
their evolution and (3) the selection effects inherent to the survey
design. Moreover, it avoids the tedious intermediate steps involved
in the derivation of the cluster mass estimates for the traditional
methods (for instance, spectral fitting, determination of the mean
cluster temperature and finally mass estimate via a scaling rela-
tion). This study has been carried out for the particular case of a
100-deg2 survey uniformly paved with 10-ks XMM observations.
Below, we discuss our results and the assumptions made throughout
this work.

6.1 Main results

1. The CR–HR method is primary intended for the analysis of
X-ray cluster surveys for which no information is available on in-
dividual cluster redshifts (either from optical spectroscopy or the
X-ray observations are too shallow to yield an X-ray spectroscopic
redshift); this is the case in the early phase of surveys covering
a large fraction of the sky (e.g. pointed observations from archival
data). In such a case, the usual approach is to consider the logN–logS
distribution of the cluster fluxes, in one or, possibly, in two or more
bands. However, the constraints one ought to put on the cosmology
and cluster physics are rather degenerate at this stage. By studying
the CR–HR diagrams, we make use of all X-ray available informa-
tion (as far as allowed by the statistical significance of the HR); that
is, we are not only able to say ‘We have so many clusters in this flux
range and in these detection bands’, but also ascribe an X-ray colour
and count rate to each cluster, which is much more constraining.
At the same time, our top-down procedure avoids the non-universal
count rate ⇒ flux translation step, which is mandatory for studies
based on the logN–logS.

2. The power of the method can be qualitatively intuited from
Fig. 3 as follows. The traditional way of reading this figure leads to
the trivial conclusion that redshift is degenerate with temperature,
when only an X-ray hardness ratio is available: lines of iso-hardness
ratio are almost vertical. Conversely, one can use this property to
infer that the HR gives a rough indication of the temperature, inde-
pendent of the redshift; in parallel, for a given temperature the CR
in the [0.5–2] keV band provides the normalization of the spectrum,
which depends on the total cluster emissivity (i.e. luminosity) and

on the distance of the cluster. Assuming a standard M–L relation,
it is thus possible to roughly infer estimates for the mass and the
redshift of a cluster knowing the CR and the HR.

3. Practically, our method requires computation of a grid of CR–
HR diagrams to explore all the parameter ranges one is aiming to
constrain (cosmology, cluster physics and evolution) and to find
which is the one that best fits the observed diagram. To evaluate the
actual power of the method, we performed a Fisher analysis which
first required a realistic modelling of how measurement errors on
CR and HR dilute the information contained in the diagrams. In
parallel, for comparison, we performed a similar analysis for a study
which would be based on exactly the same X-ray data, but would
determine and use the traditional dn/dz and dn/dz/dM distributions.
In this work, because only a few hundred clusters are available, we
assume that the local M–T and L–T scaling relations are known; but
this condition can be easily relaxed in the case of all-sky surveys
(see Clerc et al. 2012 – Paper II). We parametrize the evolution of
the scaling laws by two factors (1 + z)γ .

4. The calculations presented in this paper have been performed
in the case of an XMM/EPIC survey. They can be easily extended
to any X-ray telescope providing comparable spectral-imaging ca-
pabilities, i.e. a spectral resolution of the order of 5–10 per cent
between 0.5 and 2 kev.

5. We summarize our results as follows.

(a) The CR–HR method (not requiring redshifts) allows a
competitive and almost readily available analysis of X-ray sur-
veys without the need to wait for a spectroscopic follow-up of
collected clusters. It appears much more efficient than the dn/dz
statistics (requiring redshift) and thus is a very significant im-
provement over the logN–logS approach.

(b) Refining the precision on CR and HR by multiplying the
X-ray depth by a factor of 4 (without changing the total number
of clusters in the sample) does not significantly impact the deter-
mination of σ 8 and �m, which are mostly dependent on cluster
counts. However, a significant improvement is observed for the
cluster evolution and, interestingly, on the w parameter of the
dark energy equation of state.

(c) We further investigated the CR–HR method, by assuming
that redshifts are available for all clusters. This allows us to add
a third dimension to the diagram: for a redshift accuracy of �z
∼ 0.1, we observe a significant improvement especially for the
cluster evolution and the dark energy parameters. Increasing the
accuracy to dz ∼ 0.03 does not result in a further improvement,
because this is below the cluster evolution time-scale.

(d) We finally compare the CR–HR-z method to the dn/dz/dM
statistics. Both approaches appear relatively equivalent for the
cosmological parameters, while again the CR–HR-z method con-
strains better the cluster evolution parameters.

(e) In all situations, the CR–HR-(z) approach appears to be
uniquely well suited to constrain the cluster’s characteristic size.

In conclusion, the CR–HR method appears optimally suited to
the analysis of the X-ray data in a survey, and the CR–HR-z method
is significantly more efficient than the standard approaches based
on the dn/dz and dn/dz/dM statistics and simpler to implement. We
have attempted to make an account as realistic as possible of the
various sources of uncertainty entering the method. This is however
probably not exhaustive, and we discuss further in Appendix D a
number of pending issues in this respect.
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6.2 Future work

In a future work we will study the impact of the shape of the
selection function on the efficiency of our method. We will also
quantify the effect of the scatter in the scaling relations, especially
focusing on the conversion from observable to mass in the dn/dz/dM
analysis. Another point of interest will be to consider how flux
measurements in fixed apertures can help in a better determination
of model parameters, and in the case of a much deeper survey, how
useful it would be to introduce a second hardness ratio pertaining
to the harder part of the cluster spectrum. In the latter case, we shall
also consider introducing YX as a proxy for the observable to mass
conversion (Kravtsov, Vikhlinin & Nagai 2006).

A major, practical, advantage of our method is that there is no
need to derive individual masses of detected clusters and we want to
investigate how our method can be coupled to future, full hydronu-
merical simulations to constrain cosmological parameters without
requiring the computation of the mass function nor assuming spe-
cific scaling laws.
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APPENDIX A : A REALISTIC MODEL FOR
THE O BSERVED MASS AND REDSHIFT
DISTRIBU TIONS

In this appendix, we describe our modelling of the derivation of
dn/dz/dM, in quantity solely used for comparison purposes in this
paper. In order to realistically introduce the mass error measure-
ments in the Fisher analysis, we carefully reproduce the various
steps involved in the mass determination. In this way, we are able
to model how the mass accuracy depends on the data, namely on
the number of photons collected by the instrument.

Using the same ingredients as presented in Section 3, we com-
pute the expected dn/dz/dT/dLX distribution of the clusters selected
passing the C1 selection, which is based on the total count rate and
apparent extent. We then assume that the observer is able to measure
the temperature T from the collected X-ray photons. The accuracy
of such a temperature measurement depends mainly on the number
of photons but also on the cluster temperature and requires prior
knowledge of the cluster redshift to a relatively good precision. The
influence of these factors on the corresponding observable dn/dz/dM
is discussed in Section 4.

The cluster mass is finally obtained by converting T via a mass–
temperature relation with parameters chosen in advance. The choice
of this ‘reference’ parameter set is necessary to perform the Fisher
analysis described in Section 5. In the real data analysis, one may
also choose to recompute masses with the current parameter values
at which the likelihood is estimated (see e.g. Vikhlinin et al. 2009a;
Mantz et al. 2010a). In practice, we integrate dn/dz/dT /dLX over
LX, then at each z we convert T into M200c using equation (2) and
a ‘reference’ parameter set equals the fiducial model (Table 1).
We finally redistribute the result with a constant scatter σ = αMT ×
σ ln T|M ∼ σ ln M|T to account for the intrinsic scatter in the scaling law.
Thus, throughout this paper, the quantity M200c refers to the mass
obtained from the temperature proxy. The shape of the dn/dz/dM
distribution for the fiducial model is shown in Fig. A1 along with
its dependence on various parameters of the model (to be compared
with Fig. 4).

A P P E N D I X B: EN E R G Y R A N G E S
F O R C R – H R D I AG R A M S

This appendix presents the practical considerations that led to the
particular choice of the energy bands used in the paper.

Fig. B1 displays four synthetic XMM cluster spectra for typical
temperatures and redshifts. The [0.5–2] keV band is optimal for
cluster detection, given the telescope response and background lev-
els (Scharf 2002). Moreover, the flux to count rate conversion in
this energy range weakly depends on the temperature for 0.5 < T <

15 keV and 0 < z < 1. Consequently, the count rate in [0.5–2] keV
reflects the overall normalization of the cluster X-ray spectrum and
is directly related to the cluster bolometric luminosity.

A rough estimate of the cluster spectral shape is the hardness
ratio, basically the ratio between two count rates (or flux mea-
surements) in two energy bands (see e.g. Böhringer et al. 2001 for
ROSAT clusters and a different choice of bands). Because of the par-
ticular shape of cluster spectra, the high particle background above

2 keV and the loss of XMM sensitivity, measurement uncertainties
in hard bands (typically [2–10] keV) are high. Thus, our low-count
clusters (100–1000) are much better characterized at energies be-
low 2 keV. Selected bands must be large enough to minimize the
sensitivity to emission features and to maximize the signal-to-noise
ratio, but sufficiently narrow to be sensitive to changes in the spectral
shape. As shown in Fig. B1, [1–2] and [0.5–1] keV appear as good
compromises.

We note that a deeper exposure (or higher sensitivity) could allow
for complementary measurements in the hard part of the spectrum.

APPENDI X C : C ONSTRAI NI NG POWER O F
T H E C L U S T E R R E D S H I F T N U M B E R C O U N T S

In Pierre et al. (2011) we presented cosmological forecasts based
on the redshift distribution of clusters (and their spatial correlation
function) over 50 deg2. To account for the unknown scaling relations
in the sample, we assumed that a mass–luminosity relation can be
derived in each of the 20 redshift bins considered. We parametrized
the unknown M–L normalizations through 20 parameters αi (one
per redshift bin), further marginalized over when extracting cosmo-
logical constraints. We did not put any prior on the normalization of
the scaling law nor assumed a functional form for their evolution,
but we implicitly supposed that the cluster mass and luminosity can
be derived for each individual cluster in the sample (directly from
X-ray data or from additional, multi-wavelength, observations).

The present dn/dz analysis differs in that local scaling laws are
supposed to be known at a fairly good precision, requiring the call
to an external work. This is rendered by putting stringent priors on
the parameters by which they are defined (Table 1). Moreover, the
evolution of their normalization with redshift involves two factors
on the form (1 + z)γz,MT and (1 + z)γz,LT . On the other hand, only
the redshift histogram enters the fitting procedure and there is no
need to compute physical properties of clusters at any moment in
the analysis.

Despite the difficulty of matching Fisher forecasts obtained by
different modelling, we performed a comparison between both ap-
proaches. In the former approach, we let �m and σ 8 free in the
Fisher analysis, while priors on the αi values were set according to
Pierre et al. (2011), i.e. assuming a mass accuracy of �lnM = 0.5
(corresponding to a 10-ks XMM exposure, C1 cluster selection). In
the current analysis, we put priors on the normalization of the L–T
relation as well as on its evolution parameter such that σ (CLT) =
0.02 and σ (γz,LT) = 0.5 with a correlation of ρ(CLT, γz,LT) = −0.9
in order to mimic the priors on the αi values that would come from
the data themselves. We found (��m ∼ 0.03, �σ 8 ∼ 0.06) with
the α method and (��m ∼ 0.02, �σ 8 ∼ 0.07) with the present
method. Keeping in mind the difficulty in accounting for the vari-
ous parameter degeneracies and the modelling differences between
both approaches, we conclude from this comparison that they are
consistent with each other.

A P P E N D I X D : IN V E N TO RY O F T H E S O U R C E S
O F U N C E RTA I N T Y

In this appendix we review a number of sources of uncertainty and
to which extent they were modelled in the present analysis. Note
that most of them are relevant both for the CR–HR approach and
the traditional methods based on cluster mass estimates.
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Figure A1. Dependence of the redshift–mass distribution of clusters on the six free model parameters. The fiducial model (Table 1) is represented by the
black dashed contours and predicts 570 clusters over 100 deg2 (a 10-ks XMM exposure, C1 selection). The red contours represent the model obtained when
one parameter at a time is varied. The corresponding values for each parameter are: �m = 0.30 (+20 per cent), σ 8 = 0.94 (+20 per cent), w0 = −0.6 (−40
per cent), γz,MT = −1, γz,LT = 1 and xc,0 = 0.2 (+100 per cent). Contour levels denote the number of clusters enclosed by each curve and are drawn by steps
of 200. The differential quantity dn/dz/dM is constant along each contour.

D1 Cluster scaling laws

Fitting simultaneously cosmological and scaling laws parameters as
considered here tends to minimize selection biases, as it fully takes
into account the sample selection function and provides values of
the scaling laws for a full range of cosmological parameters (see
Mantz et al. 2010b for a recent application). In particular, strong
correlations exist between cosmological and scaling law parame-
ters, whatever the method used: apart from the well-known �m–σ 8

degeneracy, Figs 10 and 13 show that evolutionary parameters γz,MT

and γz,LT also correlate strongly with cosmological parameters.
However, our procedure requires prior assumption of a model for

the M–T and L–T relations. In this work, we have chosen two power
laws (equations 2 and 3) with constant scatters, motivated by the
observation of individual galaxy clusters (Arnaud & Evrard 1999;
Arnaud et al. 2005; Pratt et al. 2009) and the hydrostatic equilibrium
formalism. However, any physically motivated modification of the
scaling laws could in principle be parametrized and studied along
with the other parameters. In particular, we did not include any
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Figure B1. Synthetic APEC spectra convolved by the XMM response, as
they would be observed at a very high signal-to-noise level. Vertical lines
correspond to 0.5, 1 and 2 keV, i.e. the limits of the three energy bands
of interest. Each of these spectra is defined by z, T (keV) and LX (1044

erg cm−2 s−1) with the following values: black: (0.3, 1.1, 0.5); green: (0.7,
1.1, 0.5); blue: (0.3, 4.7, 5.1); red: (0.7, 4.7, 5.1).

evolution of the scatter in scaling laws, for which observational
evidence is weak, nor did we introduce intrinsic correlation between
luminosity, temperature and mass (Nord et al. 2008; ρ ltm in Mantz
et al. 2010a). For the purpose of comparing different methods, we
consider these extra parameters to have a reduced impact over our
results.

D2 Measurement errors

Our models of measurement errors intend to include the main
sources of uncertainty arising in real X-ray cluster analyses. Our
relative error on the [0.5–2] keV measured count rate amounts to
∼6 per cent for a typical 500 counts cluster, roughly consistent
with past and current analyses (Böhringer et al. 2001; Pacaud et al.
2007). Our assumed measurement error on ln M200c for a typical
1014 h−1 M� cluster at redshift 0.4 (yielding ∼500 counts with
a 10-ks XMM exposure) is ∼0.5, in agreement with Pierre et al.
(2011). We note that mass measurement errors should in principle
depend on the assumed cosmology and scaling laws. Throughout
this analysis, we neglected such variations, as we expect this effect
to be negligible relative to the already high value of the error. This
problem does not affect CR–HR diagrams for which no assumption
on cosmology is needed to derive measurement errors.

D3 Additional systematics

D3.1 Halo mass function uncertainties

Uncertainties in the predicted cosmological mass function are also
a source of systematics in real data analyses. In particular, they may
arise from the different halo finders used by different authors to
analyse numerical simulations (Knebe et al. 2011) and amount up
to ∼10 per cent. In this work, we used the Tinker et al. (2008) mass
function for � = 200, which is calibrated to roughly 5 per cent upon
numerical simulations, provided the cosmological model is close to
�CDM. As we are comparing constraints from different methods
based on the same mass function, we expect such uncertainty to have
negligible impact over our results. We consider this to be true for any

unaccounted-for systematic error occurring before the conversion
from halo mass to observables, in particular the conversion between
different mass definitions.

D3.2 Profiles and X-ray spatial variations

Throughout this work we have assumed a very simple isother-
mal, spherically symmetric, β-model with fixed β for the cluster
X-ray profiles. This assumption enters the selection function as it is
expressed in terms of the apparent core radius rc = xc,0 R500c. It has
been widely shown that β-models do not exactly reproduce the ac-
tual complexity of X-ray cluster profiles. In particular, they cannot
account for the cool-core/non-cool-core discrepancy (see e.g. Pratt
& Arnaud 2002; Cavaliere, Lapi & Fusco-Femiano 2009), which
can lead to selection biases (Eckert, Molendi & Paltani 2011). More
generally, we neglected spatial variations in the cluster X-ray prop-
erties and made the somehow strong assumption that a cluster can
be described by only three global quantities z, T and LX. We justify
this choice by the fact we are considering surveys in which the ob-
served X-ray counts per cluster collected by the detectors are quite
low (between 100 and 1000 counts in general) and do not allow for
a refined morphological analysis.

D3.3 Total count rates in wide apertures

Measured count rates in the three bands of interest assume that the
entire cluster profile can be integrated out to a large radius inde-
pendent of the cluster extent, thus neglecting the uncertainty due
to background misestimation. There are two ways of accounting
for this systematic: either with large simulated samples of realis-
tic cluster observations then correcting for the flux loss (see e.g.
Böhringer et al. 2001), or by individually fitting a PSF-convolved
model on to the measured profile and integrating it up to large
radii (Barkhouse et al. 2006; Pacaud et al. 2007; Vikhlinin et al.
2009a). In the presence of high-quality data, the second option is
often preferred, although it is model dependent. We are currently
investigating how measurements in multiple fixed angular apertures
can help in improving CR–HR diagrams. Even if a model will be
needed, we expect it to be parametric and ‘self-calibrated’ the same
way as we did for xc,0.

D4 Sample variance

Throughout this work we neglected the possible correlations be-
tween neighbouring bins and in particular did not take into account
the sample variance in our analysis. Taking it into account would
modify the likelihood expressed in equation (6) (see e.g. Lima &
Hu 2004) by introducing a covariance matrix linking the binned ob-
servables to each other. The net effect of cosmic variance is to lower
the constraints on the cosmological parameters, but its expression
depends on the exact shape of the window function. In this work we
only consider the total surveyed area (100 deg2) without specifying
a survey geometry. We leave this study for future work, but we
expect the effect of cosmic variance to have the same impact over
each of our observables as they all derive from the same primordial
quantity (the distribution in mass and redshift).
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