
HAL Id: hal-04176670
https://hal.science/hal-04176670v1

Submitted on 8 Nov 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Two approaches to compute unsteady compressible
two-phase flow models with stiff relaxation terms

Jean-Marc Hérard, Guillaume Jomée

To cite this version:
Jean-Marc Hérard, Guillaume Jomée. Two approaches to compute unsteady compressible two-phase
flow models with stiff relaxation terms. ESAIM: Mathematical Modelling and Numerical Analysis,
2023, 57 (6), pp.3537-3583. �10.1051/m2an/2023090�. �hal-04176670�

https://hal.science/hal-04176670v1
https://hal.archives-ouvertes.fr


Two approaches to compute unsteady compressible two-phase flow
models with stiff relaxation terms

Jean-Marc Hérard (1,2), Guillaume Jomée (1,2)

(1) EDF Lab Chatou, 6 quai Watier, 78400, Chatou, France
(2) Institut de Mathématiques de Marseille, Technopôle Château-Gombert 39, rue Frédéric

Joliot-Curie 13453 Marseille Cedex 13, France

Abstract
The paper deals with the numerical modeling of two-phase flows while using Baer-Nunziato type models.
Focus is given here on the numerical treatment of source terms that involve three (or four) relaxation time
scales. A new coupled approach relying on the continuous analysis of the system of ODEs is compared with a
more widely used strategy grounded on the fractional step approach. Properties of schemes are given in both
cases. Several numerical applications show that the coupled approach should be preferred for both stability
and accuracy reasons.

Introduction
Many industrial studies urge the development of suitable models and reliable numerical tools, in order to
predict two-phase or even multiphase flows. While restricting to two-phase flows, at least two different
modelling strategies may be considered.

A first one basically assumes that inner processes involving various relaxation time scales are such that a full
instantaneous equilibrium is reached everywhere in the flow. This has led to a rather broad class of so-called
homogeneous two-phase flow models, among which we may at least cite [1, 4, 22, 47, 39].

When very fast transients are at stake or when droplet atomization occurs, a second strategy, which is
grounded on full disequilibrium models, may be retained. The present contribution clearly lies within this
framework. More precisely, focus will be given on a class of two-phase flow models that is now well-known,see
[3, 60, 15, 13, 26, 32, 48, 55, 29, 30, 38] among others. It must be recalled that three (respectively four)
relaxation time scales are embedded in these gas-liquid (respectively liquid-vapour, thus including mass
transfer) flow models. The latter time scales obviously require suitable closure laws, that can be found in the
literature, see [28, 7, 8, 4, 19, 46, 54] among others. These relaxation time scales may be quite distinct and
may depend on the application. Assumptions regarding some relaxation time scales may lead to relaxation
models such as [24, 51, 23, 34] among others. In the present work, no hypothesis concerning the relaxation
time scales is retained, in order to preserve the widest range of applications.

Moreover, the dynamics of the underlying relaxation process in Baer-Nunziato type models has not been
thoroughly studied yet. This question is often (implicitly) addressed by seeing the total entropy as a Lyapunov
function. In the homogeneous case, i.e. without convective terms, that ensures the stability close to the steady
state, or equivalently here, close to the mechanical and thermodynamic equilibrium between the two-phases.
However, in many cases, such as vapour explosion or loss-of-coolant accidents, the initial conditions may be
set far from thermodynamic equilibrium. Thus, a better understanding of the effective relaxation process is
crucial, in order to guarantee the return to equilibrium. In this paper, conditions of effective relaxation are
exhibited and discussed for various equations of state (EOS).
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Up to now, most of the numerical strategies that have been proposed in order to obtain approximate solutions
of these non-equilibrium two-phase flow models, are grounded on the use of a two-step algorithm. The latter
includes:

(i) an explicit evolution step that treats all convective contributions together with help of Riemann
solvers, relaxation solvers or Discontinuous Galerkin methods, see for example [15, 26, 59, 61, 62, 64,
2, 14, 17, 35, 55, 58], and

(ii) an implicit step that deals with source terms associated with the former relaxation time scales,
as in [2, 17, 18, 25, 26, 35, 36, 52, 53, 55, 58] among others.

It seems worth emphasizing that, in the framework of immiscible three-phase flow models, such as those
proposed in [40], the problem of the preservation of admissible states through the convective subsystem
(step (i)) has been addressed in section 2.2.4 of [6], while focusing on simple Stiffened Gas EOS. This result
obviously applies in the framework of two-phase flow models considered here. The first explicit step (i)
introduces some constraint on the time step for obvious stability issues. This, in turn, renders the implicit
treatment of step (ii) mandatory.

Concerning the second implicit step (ii), a fractional step approach has been widely applied up to now, that
treats separately the distinct relaxation time scales, see [17, 25, 55, 18, 2, 35] among others. In addition,
the numerical treatment of the source terms, using strong hypothesis on some relaxation time scales, has
been investigated in the literature, see for example [53, 52, 36]. However, the fractional step approach used
for handling the source terms may suffer from deficiencies, and even lead to a blow-up of the code in some
extreme situations, see for example [6] which tackles the problem of vapour explosion. Hence, this motivates
to investigate further on the set of coupled ODEs accounting for source terms, and meanwhile derive relevant
and more coupled schemes in order to tackle extreme situations. In the present work, a new robust numerical
scheme without any assumption on the relaxation time scales is presented.

In the following, emphasis is given on the stability of the scheme. We will also examine whether the accuracy
of the new scheme is improved, or not, on a given mesh size, by comparing it with the fractional step approach.

The paper is organised as follows. The governing set of equations is recalled first, and the main properties of
the model are given. A few results are then provided and discussed, which concern the true inner relaxation
process with respect to temperature, pressure, and velocity in gas-liquid flow models. Afterwards, two distinct
algorithms will be considered. The first one is classical. It takes the three (respectively four) relaxation
effects into account in a fractional step approach involving three steps when dealing with gas-liquid flows
(respectively four in the case of liquid-vapour flows). The second one relies on the investigation of coupled
relaxation effects, as discussed in section 1. Some important properties of the latter schemes are detailed.
Both schemes are tested against Chauvin experiment, and a more complex situation arising from the vapour
explosion framework. As expected, the comparison of the two schemes is clearly in favour of the coupled
algorithm. Appendices complete the paper. In particular, Appendix 7 discusses the influence of the ratio
of pressure and thermal relaxation time scales, whereas Appendix 8 highlights the influence of the interfacial
area.

1 Governing equations of the two-phase flow model and main prop-
erties

We first introduce the set of governing equations of the two-phase flow models examined in the sequel. These
include the mass balance equations, the momentum and energy balance equations, together with the evolution
of the statistical fractions. We also refer the reader to some companion references [3, 13, 25, 27, 29, 30, 32,
37, 34, 48, 38, 55, 60] that may help and provide additional details.

Both gas-liquid flows (without any mass transfer), and liquid-vapour flows, which involve a unique component
(basically water in our framework), will be examined in the sequel. Thus, we introduce rather logical notations
as follows.
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The statistical fractions of the immiscible liquid phase and the gas/vapour phase are noted αlpx, tq and
αg,vpx, tq(for gas and vapour respectively). They are such that:

αlpx, tq ` αg,vpx, tq “ 1 (1)

In order to ease notations, we will favour the liquid phase (indexed by l) in both cases. All variables in the
gas (respectively the vapour) phase will be indexed by g (respectively by v).

Within the k´phase, and for k P pl, gq or k P pl, vq, Uk, Pk, ρk, mk “ αkρk and Ek will respectively denote
the phasic mean velocity, mean pressure, mean density, mass fraction and mean total energy, setting:

Ek “ ρkpϵkpρk, Pkq ` U2
k {2q (2)

where ϵkpρk, Pkq denotes the internal energy within phase k. The gas-liquid state variable W lg will be noted:

W lg “ pαl,ml,mg,mlUl,mgUg, αlEl, αgEgq (3)

while the liquid-vapour state variable will correspond to:

W lv “ pαl,ml,mv,mlUl,mvUv, αlEl, αvEvq (4)

In the sequel, in order to ease notations, the state variable is called W ; W can refer to W lg or W lv, depending
on the current treated case. If no precision is given, then the results stand true for both cases.

1.1 Open set of equations
We may now write the governing set of PDE, which correspond to balance equations for mass, momentum
and energy, within phase k, and for the statistical fraction αl. These are:

$

’

’

&

’

’

%

Bt pαlq ` VIpW q∇αl “ ϕlpW q ;
Bt pmkq ` ∇ ¨ pmkUkq “ ΓkpW q ;
Bt pmkUkq ` ∇ ¨ pmkUk ˆ Uk ` αkPkI q ´ ΠIpW q∇αk “ SQk

pW q ;
Bt pαkEkq ` ∇ ¨ pαkUkpEk ` Pkqq ` ΠIpW qBt pαkq “ SEk

pW q .

(5)

for k P pl, gq, or k P pl, vq.
When focusing on gas-liquid flows, we obviously have:

ΓlpW q “ ΓgpW q “ 0 , (6)

whereas for liquid-vapour flows, the following constraint holds:

ΓlpW q ` ΓvpW q “ 0 . (7)

For k P pl, gq, or k P pl, vq, interfacial transfer terms arising in momentum and energy balance equations,
comply with:

ÿ

k

SEk
pW q “ 0 (8)

together with:
ÿ

k

SQk
pW q “ 0 (9)

1.2 Entropy-consistent closure laws
We assume that the interfacial velocity VIpW q takes the form:

VIpW q “ βpW qUl ` p1 ´ βpW qqUv,g (10)

with βpW q P r0, 1s. Hence, it satisfies Galilean invariance. We will specify later on some scalar functions
βpW q that will guarantee unique field by field jump conditions (see also the reference paper [13]). The next
definitions require introducing phasic entropies Skpρk, Pkq and temperatures Tkpρk, Pkq, which are such that:

c2kBPk
pSkpρk, Pkqq ` Bρk

pSkpρk, Pkqq “ 0 , (11)
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where:
ρkc

2
k “ p

Pk

ρk
´ ρkBρk

pϵkpρk, Pkqqq{pBPk
pϵkpρk, Pkqqq (12)

and:
1

Tk
“

BPk
pSkpρk, Pkqq

BPk
pϵkpρk, Pkqq

. (13)

Using the latter definitions, we get the admissible interfacial pressure ΠIpW q as:

ΠIpW q “ χpW qPl ` p1 ´ χpW qqPv,g (14)

where the function χpW q is obtained straightforwardly:

χpW q “
p1 ´ βpW qqTv,g

p1 ´ βpW qqTv,g ` βpW qTl
(15)

We emphasize that this enables to recover the standard Baer-Nunziato closure ΠIpW q “ Pl,VIpW q “ Ug,v.
It also guarantees the Realisable Interfacial Pressure condition (see appendix 7 and [43]). We recall now some
classical results.

Property 1: (Structure of the one-dimensional convective subset)
We restrict to the one-dimensional framework. We have the following results:

• The homogeneous convective part (left-hand side) of system (5) is hyperbolic. The seven real eigenvalues
read:

λ0pW q “ VIpW q ;
λ1pW q “ Ul ´ cl ; λ2pW q “ Ul ; λ3pW q “ Ul ` cl ;

λ4pW q “ Uv,g ´ cv,g ; λ5pW q “ Uv,g ; λ6pW q “ Uv,g ` cv,g .
(16)

Right eigenvectors span the whole space away from the resonance state:

|Uk ´ VIpW q| “ ck (17)

• For k P pl, vq or k P pl, gq, waves associated with eigenvalues Uk ˘ ck are Genuinely Non-Linear, and
waves associated with eigenvalues Uk are Linearly Degenerate.

• The coupling wave associated with λ0pW q is Linearly Degenerate if:

βpW qp1 ´ βpW qq “ 0 (18)

or if:
βpW q “

ml

ml `mv,g
. (19)

• System (5) can be symmetrized away from resonant states (17).

˝

The proof of the first three points can be found in [13], while the fourth one is available in [16]. Moreover,
details pertaining to Riemann invariants within fields associated with eigenvalues λ1´6 can also be found in
the latter references. Even more, explicit analytic forms of Riemann invariants in the coupling wave can be
found in the particular case βpW q “ 0 in [20] and [13]. Owing to the LD structure of the coupling wave, when
βpW q is chosen in a suitable way, unique jump conditions may be defined in GNL fields for system (5). This
was pointed out in [13], and a direct consequence is that the computation of shocks is meaningful in that
case, since non-conservative products are well-defined in shock waves (in the non-resonant case): convergent
approximations of shocks are not scheme dependent (see [35]).
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Now, coming back to the three-dimensional setting, we introduce the entropy - entropy flux pair pη, Fηq:

η “
ÿ

k

mkSkpρk, Pkq, Fη “
ÿ

k

mkSkpρk, PkqUk, (20)

Considering smooth solutions, we can examine the time evolution of η in system (5). Straightforward calcu-
lations enable to get:

Bt pηq ` ∇ ¨ pFηq “ RHSηpW q . (21)

with an explicit form of the right-hand side RHSηpW q depending on the closure laws for ϕlpW q, ΓlpW q,
SQk

pW q and SEk
pW q.

In order to ease the presentation and calculations, we rewrite source terms in a slightly different form and
define translated unknowns DkpW q and ψkpW q such that:

$

’

&

’

%

DkpW q “ SQk
pW q ´

Ul ` Uv,g

2
ΓkpW q ;

ψkpW q “ SEk
pW q ´ V E

I pW qDkpW q ´
UlUv,g

2
ΓkpW q ;

(22)

Taking interfacial constraints on SQk
pW q and SEk

pW q into account, we must fulfil:

DlpW q `Dv,gpW q “ 0 , (23)

and also:
ψlpW q ` ψv,gpW q “ 0 . (24)

We consider a consistent and Galilean invariant formulation for V E
I pW q, hence:

V E
I pW q “ βEpW qUl ` p1 ´ βEpW qqUv,g . (25)

where βEpW q must lie in r0, 1s. We classically note in the sequel:

µk “ hk ´ TkSk (26)

where the free enthalpy hk writes:

hk “ ϵkpρk, Pkq `
Pk

ρk
(27)

Eventually, considering the notations:
$

’

’

’

&

’

’

’

%

∆P “ Pl ´ Pv,g ,
∆U “ Ul ´ Uv,g ,
∆T “ Tl ´ Tv,g ,

∆µ “
µl

Tl
´
µv,g

Tv,g
,

(28)

we obtain the following classical result ([3, 26, 49, 18, 38, 55]):

Property 2: (Entropy consistent source terms for a class of two-phase flow models)
We consider the following source terms:

$

’

’

&

’

’

%

ϕlpW q “ KpW q∆P ,
DlpW q “ ´dpW q∆U ,
ψlpW q “ ´qpW q∆T ,
ΓlpW q “ ´ΛpW q∆µ ,

(29)

Then smooth solutions of system (5) agree with:

Bt pηq ` ∇. pFηq “ RHSηpW q ě 0 (30)

providing positive functions KpW q, dpW q, qpW q,ΛpW q.
˝
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Proof. :

The proof is simple. The right-hand side term RHSη is simply:

RHSη “
1

TlTv,g
ψlpW q pTv,g ´ Tlq

`

ˆ

1 ´ βEpW q

Tl
`
βEpW q

Tv,g

˙

DlpW qpUv,g ´ Ulq

`

ˆ

1 ´ χpW q

Tl
`
χpW q

Tv,g

˙

ϕlpW qpPl ´ Pv,gq

`p
µv,g

Tv,g
´
µl

Tl
qΓlpW q

(31)

and thus positive, owing to (29).

Note that the second, third and fourth closure laws arising in (29) are also entropy-consistent when focusing
on single-pressure two-fluid six-equation models ([46]). Closure laws for heat transfer and drag coefficients
arising in qpW q and dpW q can be taken from the standard literature (see [46] among others). Besides, refer-
ences [28, 7, 8, 44] provide closure laws for the pressure relaxation time scales τP pW q involved in KpW q.

1.3 Relaxation process in a class of two-phase flow models 1

When focusing on gas-liquid flows, where no mass transfer occurs, a straightforward question arises, which
concerns the (physically expected) decay of velocity, pressure and temperature gaps. Note that this problem
has been investigated recently in [43], while focusing on the sole pressure gaps, though examining several
two-phase or multiphase flow models. While restricting to the present class of gas-liquid two-phase flow
models, the problem at stake here is whether the whole relaxation process is active for the three quantities
∆P , ∆U and ∆T . For that purpose, we consider some homogeneous situation with no gradient of mean
variables, thus considering an initial condition for system (5), such that:

∇ψpx, t “ 0q “ 0 (33)

whatever ψ stands for. Hence, system (5) reduces to:
$

’

’

&

’

’

%

Bt pαlq “ ϕlpW q ;
Bt pmkq “ 0 ;
Bt pmkUkq “ SQk

pW q ;
Bt pαkEkq ` ΠIpW qBt pαkq “ SEk

pW q ,

(34)

for k P pl, gq. This system may be rewritten in a slightly different form:
$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

Bt pαlq “ ϕlpW q ;
Bt pαlElq ` ΠIpW qBt pαlq “ SEl

pW q ;
Bt pmlUlq “ SQl

pW q ;
Bt pmlq “ Bt pmgq “ 0 ;
Bt pmlUl `mgUgq “ 0 ;
Bt pαlEl ` αgEgq “ 0 .

(35)

Equipped with this system (34), we may write the governing equations for the three quantities ∆P , ∆U and
∆T .

1Consider the vector ∆ defined at each point (x,t), the components of which are quantity discrepancies between phases,
corresponding to states that make the source terms vanish. If the solution of the governing equations, without any convective
term, complies with:

Bt p}∆}L2 q ď 0 (32)
then the relaxation process is said to be effective.
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If we note:
∆lg “ p∆U,∆T,∆P qT (36)

simple calculations enable to get:
Bt

`

∆lg
˘

“ ´RlgpW q∆lg (37)

where the matrix RlgpW q P M3pRq is given by:

RlgpW q “

¨

˝

algUU pW q 0 0

algTU pW q algTT pW q algTP pW q

algPU pW q algPT pW q algPP pW q

˛

‚ (38)

Coefficients in matrix RlgpW q read:

algUU pW q “ dpW q

ˆ

1

ml
`

1

mg

˙

, (39)

together with 2:
$

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

%

algTU pW q “ dpW q∆U

ˆ

βEpW q ´ 1

mlBTl
pϵlq |ρl

`
βEpW q

mgBTg
pϵgq |ρg

˙

,

algTT pW q “ qpW q

ˆ

1

mlBTl
pϵlq |ρl

`
1

mgBTg
pϵgq |ρg

˙

,

algTP pW q “ KpW q

˜

ΠI ´ ρ2l Bρl
pϵlq |Tl

mlBTl
pϵlq |ρl

`
ΠI ´ ρ2gBρg

pϵgq |Tg

mgBTg
pϵgq |ρg

¸

,

(40)

and:
$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

algPU pW q “ dpW q∆U

ˆ

βEpW q ´ 1

mlBPl
pϵlq |ρl

`
βEpW q

mgBPg
pϵgq |ρg

˙

,

algPT pW q “ qpW q

ˆ

1

mlBPl
pϵlq |ρl

`
1

mgBPg
pϵgq |ρg

˙

,

algPP pW q “ KpW q

ˆ

Al `Ag ` p
χpW q ´ 1

mlBPl
pϵlq |ρl

`
χpW q

mgBPg
pϵgq |ρg

q∆P

˙

.

(41)

We have used the following notation here for k “ l, g:

Ak “
ρkc

2
k

αk
(42)

Thus, we get:

Property 3: (Relaxation effects in a class of gas-liquid flow models)
We assume that equations of state within each phase are such that, for k “ l, g:

0 ď BTk
pϵkq |ρk

(43)

Considering positive functions KpW q, qpW q, dpW q, the relaxation process is guaranteed for solutions of (34),
if eigenvalues of matrix RlgpW q are real and positive, or if they are complex with a positive real part. This
is guaranteed if the pressure gap ∆P is sufficiently small in the following sense:

pPg ´ Plq

ˆ

pχpW q ´ 1qαg

ρlBPl
pϵlq |ρl

`
χpW qαl

ρgBPg
pϵgq |ρg

˙

ď αgρlc
2
l ` αlρgc

2
g , (44)

and if the following condition holds:

algTT pW qalgPP pW q ´ algTP pW qalgPT pW q

qpW qKpW q
ą 0 . (45)

˝

2Considering the internal energies ϵk, with some abuse of notation, we will note in the sequel every change of variable
of the functions ϵkpPk, Tkq “ ϵ̂kpρk, Skq “ ϵ̃kpρk, Pkq “ ϵ̊kpPk, Skq “ :ϵkpρk, Tkq as ϵkpPk, Tkq “ ϵkpρk, Skq “ ϵkpρk, Pkq “

ϵkpPk, Skq “ ϵkpρk, Tkq.
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Proof. :

The proof is simple and can be found in [42]. We briefly recall it below.

• First, note that λ “ algUU pW q is an obvious real eigenvalue of matrix RlgpW q, and is positive.

• The remaining two eigenvalues of RlgpW q are the two solutions λ˘ of the second-order polynomial:

ppλq “ λ2 ´ palgTT pW q ` algPP pW qqλ` algTT pW qalgPP pW q ´ algTP pW qalgPT pW q (46)

Owing to conditions (43) and (44), the sum algTT pW q ` algPP pW q is positive, thus:

– In case of complex eigenvalues, these are complex conjugate, and their real part a is equal to
palgTT pW q ` algPP pW qq{2, thus positive ;

– If the two eigenvalues λ˘ are real, we have: λ` ` λ´ “ algTT pW q ` algPP pW q, thus the sum is
positive. Moreover, the product λ`λ´ is equal to:

algTT pW qalgPP pW q ´ algTP pW qalgPT pW q (47)

and we can conclude that both λ` and λ´ are positive, owing to (45).

For sake of clarity, conditions (43), (44) and (45) are specified and discussed below for various EOS.

To do so, we consider the specific case used in the sequel which is: χpW q “ 0 and thus ΠI “ Pg.

• First, we note that condition (43) stands true in most EOS as it corresponds to a specific capacity at
constant volume, which is expected to be positive.

• For a mixture of perfect gases:
Pk “ ρkpγk ´ 1qϵk (48)

Conditions (44) and (45) always hold true, whatever the state variable W is.

• For a mixture of Stiffened-Gases we have:
$

&

%

Pk ` γkΠ̂k “ ρkpγk ´ 1qpϵk ´ ϵk0q

CvkTk “ ϵk ´ ϵk0
´

Π̂k

ρk

(49)

where γk ą 1, Π̂k ą 0 and ϵk0
are constants. Admissible states are such that: Pk ` Π̂k ą 0 and

ϵk ´ ϵk0
ą 0.

Close to thermodynamic equilibrium, (44) is obviously satisfied. Condition (44) may be rewritten as:

αgpPl ` Π̂lq ` pαlγg ` αgpγl ´ 1qq pPg ` Π̂gq ` αgpγl ´ 1qpΠ̂l ´ Π̂gq ą 0 (50)

Equation (50) shows that, if Π̂l ą Π̂g, condition (44) holds true, even far from thermodynamic
equilibrium, in the admissible range: Pk ` Π̂k ą 0 , k P tl, gu.

Condition (45) is equivalent to:

pmlCvl `mgCvg q

«

ρlc
2
l

αlγl
`
ρgc

2
g

αgγg

ff

ě

´

Π̂l ´ Π̂g

¯

«

Π̂g ´ Π̂l

Tg
`
Pg

Tg
´
Pl

Tl
`

Π̂lpTl ´ Tgq

TlTg

ff

(51)

It must be emphasized that, close to the thermodynamic equilibrium, the right-hand side of (51)
behaves as ´pΠ̂l ´ Π̂gq2{Tg, and thus condition (45) is satisfied. This is an expected property as the
entropy may be understood as a Lyapunov function of our system, owing to the closure of source
terms (see property 2). Condition (51) -and thus (45)-, no longer holds, for any admissible state W ,
far from equilibrium.
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• For a mixture of Noble-Abel Stiffened-Gases [50] we have:
$

’

’

&

’

’

%

Pk ` γkΠ̃k “
ρkpγk ´ 1q

1 ´ ρkbk
pϵk ´ ϵ̃k0

q

CvkTk “ ϵk ´ ϵ̃k0 ´
p1 ´ ρkbkqΠ̃k

ρk

(52)

where γk ą 1, Π̃k ą 0, bk ą 0 and ϵ̃k0
are constants. Admissible states are such that: Pk ` Π̃k ą 0,

p1 ´ ρkbkq ą 0 and ϵk ´ ϵ̃k0
ą 0.

Condition (44) writes as:

pγl ´ 1qpPl ´ Pgq ă p1 ´ ρlblq

ˆ

ρlc
2
l `

αl

αg
ρgc

2
g

˙

(53)

Condition (45) is identical to the one exhibited for a mixture of Stiffened Gases (51).

In practice, for complex EOS, conditions (44) and (45) have to be checked in computer codes, in particular
far from the thermodynamic equilibrium.

Remark 1:

• We may also note that the threshold effect on ∆P arising in condition (44) has already been pointed
out in [6]. It arises when taking energy balance into account, and it does not exist when restricting
to the barotropic case (see [41]). Its counterpart in the framework of immiscible three-phase flows and
miscible two-phase flows is discussed in [43]. Straightforward numerical applications show that it can
be hardly violated in practice. Thus, the latter constraint is indeed very weak. Actually, we may note
that a simpler sufficient condition guarantees that it holds, whatever the values of statistical fractions
are, which is:

|∆P |p|
1

ρlBPl
pϵlq |ρl

| ` |
1

ρgBPg
pϵgq |ρg

|q ď minpρlc
2
l , ρgc

2
gq (54)

• Moreover, a glance at the precise form of condition (45) shows that the relative amplitudes of time
scales τP pW q and τT pW q respectively involved in closure laws of KpW q and qpW q have no impact on
the latter condition.

• When accounting for mass transfer terms arising in liquid-vapour flow models, some additional con-
straints may arise, as emphasized in [42].

˝

1.4 Relaxation time scales: τP , τT , τm and τU

In order to close system (5), the functions qpW q, KpW q, ΛpW q and dpW q are to be given and thus, four
positive relaxation time scales τP , τT , τm and τU must be introduced.

• Pressure relaxation coefficient:
KpW q “

αlαg,v

τPP0
(55)

with P0 a positive reference pressure.

• Heat transfer relaxation coefficient:

qpW q “
mlCvlmgCvg,v

τT pmlCvl `mg,vCvg,v q
(56)

9



• Mass transfer relaxation coefficient :

ΛpW q “
mlmv

τmpml `mvqΓ0
(57)

with Γ0 a positive reference fraction of
µ

T
.

• Drag relaxation coefficient:
dpW q “

mlmg,v

τU pml `mg,vq
(58)

Different forms of τP , τT , τm and τU arise from the literature ([46], [28], [7], [8], [54],[4], [19]). Some of them
will be detailed in the following sections.

2 Finite volume techniques to compute system (5)
We restrict herein to the computation of unsteady two-phase flows, while applying the two-fluid approach,
and considering (5). Before going further on, we rewrite in a quite formal way system (5) as follows:

Bt pW q ` ∇ ¨ pF pW qq ` CpW q∇αl “ SpW q (59)

where W denotes the so-called conservative variable introduced in (3) or (4). Thus, F pW q denotes the
conservative flux accounting for convective effects, while CpW q collects non-conservative contributions arising
from the left-hand side of (5). Eventually, SpW q accounts for the right-hand side source terms in (5).

We emphasize that, in the sequel, we assume that shock relations are uniquely defined in model (5), and thus
we will restrict for our applications to closure laws for the interfacial velocity VIpW q detailed in Property 1,
or other suitable laws that comply with the LD structure of the coupling wave λ0pW q “ VIpW q. Of course,
this provides a suitable framework in order to verify algorithms (while computing the error), when shocks
occur in the flow.

Due to specific applications including water-hammer, loss of coolant accidents, steam explosion and other
extreme situations including shock structures and high energy transfers between fluids or phases, robust
algorithms are required, and for that purpose, focus is usually given first on low-order time-space Finite
Volume schemes (see [21, 33]).

In this framework, a simple way to compute approximate solutions of system (5) consists in using the following
hybrid implicit/explicit time scheme:

volpΩiq
`

Wn`1
i ´Wn

i ´ ∆tnpSpW qq
n`1
i

˘

“ ´

ż

Ωi

ż tn`1

tn
p∇ ¨ pF pW qq ` CpW q∇αlq

ndxdt (60)

setting: ∆tn “ tn`1 ´ tn, noting volpΩiq the volume of cell Ωi, and using an explicit approximate Riemann
solver associated with the hyperbolic system (evolution step):

Bt pW q ` ∇ ¨ pF pW qq ` CpW q∇αl “ 0 (61)

in order to get W#
i solution of:

volpΩiq

´

W#
i ´Wn

i

¯

` ∆tn
ż

Ωi

p∇ ¨ pF pW qq ` CpW q∇αlq
ndx “ 0 (62)

in such a way that the entropy inequality holds true. Afterwards, the solution Wn`1
i of the relaxation step:

volpΩiq

´

Wn`1
i ´W#

i ´ ∆tnpSpW qq
n`1
i

¯

“ 0 (63)

must be found within each cell.
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This strategy has been used by many authors, in order to compute two-phase or multiphase flows (see among
others [6, 18, 26, 55]). Actually, it is rather well-suited for transient flows including shock waves, owing to
the fact that:

• the implicit relaxation step enables to get rid of too heavy constraints linked with upper bounds on the
time step ;

• the explicit scheme involved in the evolution step is in some sense optimal in terms of accuracy, when
focusing on fast pressure waves impinging solid structures, and meanwhile it automatically provides the
dynamical time stepping.

Obviously, as it occurs in the single phase framework for weakly compressible flows, other numerical strategies
should be preferred when aiming at computing low velocity flows, as proposed for instance quite recently in
[56].

Before going further on, we would like to recall some suitable algorithms that provide meaningful approxima-
tions in the evolution step (61). Among others, note first that the simple Rusanov solver [57] may be applied
for that purpose. Moreover, four distinct schemes providing accurate approximations of the homogeneous
part of the Baer-Nunziato model are:

• an approximate Godunov scheme, which has first been proposed in [61] ;

• a relaxation scheme that was then introduced in [15, 58] and extended in [59] for three-phase flow ;

• an HLLC approximate Riemann solver, which was proposed in [64] ;

• another relaxation scheme that was described in [2].

The reader is referred to the paper [14] which provides a detailed comparison of L1 norm of errors for the latter
schemes, while focusing on test cases involving difficult Riemann problems. It also seems worth mentioning
the recent Discontinuous Galerkin scheme described in [17]. Eventually, we point out the recent work [63]
dedicated to the analysis of the Riemann problem associated with the Baer-Nunziato model.

For all the simulations run in this paper, a robust Rusanov scheme [57] adapted for the handling of non-
conservative products is used.

We will now focus on two different strategies in order to get approximations of the set of coupled ODE:

Bt pW q “ SpW q (64)

In the sequel, we will consider:
"

VIpW q “ Ul

ΠIpW q “ Pg,v
(65)

2.1 Discrete source terms for gas-liquid flow models

The strategy consists in simulating the drag effects and thermodynamic effects separately. This approach
can be justified by the block triangular structure of matrix Rlg, see (38). Hence, the simulation of the source
terms contains two steps:

I: W# V elocity relaxation
ÝÝÝÝÝÝÝÝÝÝÝÝÝÑ Wn`1´

II: Wn`1´ Thermodynamic relaxation process
ÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÑ Wn`1

The same time step ∆tn is used within each step. The velocity relaxation process is taken from [26] and
recalled in Appendix 2.

For sake of readability, in sections 2.1 and 2.2, the state Wn`1´ will be referred as Wn and ∆tn will be
mentioned as ∆t.
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2.1.1 Two approaches for the computation of the thermodynamic source terms

First, we recall that for a quantity Ψ, ∆Ψ is set as:

∆Ψ “ Ψl ´ Ψg (66)

Two algorithms are detailed in order to simulate the thermodynamic part of the model (5) in the case of a
mix of liquid and gas (i.e. without mass transfer).

A- Fractional step algorithm

A first possible approach in order to account for source terms (34) is to use a fractional step scheme, which
decouple (35). System (35), without the velocity relaxation (dpW q “ 0), is simulated in two implicit steps:

I: Wn Pressure relaxation
ÝÝÝÝÝÝÝÝÝÝÝÝÝÑ Wn˚

II: Wn˚ Heat transfer
ÝÝÝÝÝÝÝÝÝÝÑ Wn`1

The time step ∆t, given by the evolution step, is used for computing step I and step II. This idea of decoupling
system (34) is quite standard and is already used in the literature (see [56], [25] for example).

I- The pressure relaxation algorithm:

This step is similar but different to the one used in [25]. It simulates the solution of the following system:
$

’

’

’

’

&

’

’

’

’

%

Bt pαlq “ KpW q∆P ;
Bt pmkq “ 0 ; pk P tl, guq

Bt pmkUkq “ 0 ; pk P tl, guq

Bt pmlϵl `mgϵgq “ 0
mlBt pϵlq ` PgBt pαlq “ 0.

(67)

The equation (67.4) allows writing:

ξn “ mn
l ϵ

n
l `mn

g ϵ
n
g “ mn˚

l ϵn˚
l `mn˚

g ϵn˚
g ą 0 (68)

Solution of (67) also complies with:
Bt pSgq “ 0 (69)

Thus:
Sn˚
g “ Sn

g (70)

Using the definition of the sound speed, one can derive from (67):

Bt p∆P q “ ´aPP∆P (71)

setting:

aPP “ KpW q

˜

ρlc
2
l

αl
`
ρgc

2
g

αg
´

1

mlBPl
pϵlq |ρl

∆P

¸

(72)

It can be noted that the coefficient aPP is the one arising in Rlg, see (38).

The pressure relaxation algorithm consists in three steps 3.

3Given a thermodynamic function Ψ, with some abuse of notation, we still note in the sequel every change of variable of the
function ΨpP, T q “ Ψ̂pρ, Sq “ Ψ̃pP, ρq “ Ψ̊pP, Sq “ :Ψpρ, T q as ΨpP, T q “ Ψpρ, Sq “ ΨpP, ρq “ ΨpP, Sq “ Ψpρ, T q.
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Pressure relaxation algorithm:

Step 1: Compute an approximate solution of (71) with an implicit Euler time discretization by considering the
frozen coefficient aPP at time tn:

∆Pn˚ “
1

1 ` anPP∆t
∆Pn (73)

Step 2: Using the constraint (70) on the entropy Sn˚
g “ Sn

g and the conservation law of the sum of the internal
energies (67.4), define:

$

’

’

&

’

’

%

Pn˚
g :“ Pn˚

l ´ ∆Pn˚

ρn˚
g :“ ρgpPn˚

g , Sn˚
g q

ϵn˚
l :“

ξn ´mn
g ϵgpPn˚

g , Sn˚
g q

mn
l

(74)

Then compute Pn˚
l by inverting the immiscible constraint:

mn
l

ρlpP
n˚
l , ϵn˚

l q
`
mn

g

ρn˚
g

´ 1 “ 0 ô GpPn˚
l q “ 0

(75)

Step 3: Update the statistical fractions αn˚
l and αn˚

g :
$

&

%

αn˚
l “

mn
l

ρlpP
n˚
l , ϵn˚

l q

αn˚
g “ 1 ´ αn˚

l

(76)

and the total energies:
#

αn˚
l En˚

l “ mn
l ϵ

n˚
l `

1

2
mn

l pUn
l q2

αn˚
g En˚

g “ αn
l E

n
l ` αn

gE
n
g ´ αn˚

l En˚
l

(77)

˝

Thus, we have:

Property 4: (Pressure relaxation algorithm)

• The pressure relaxation process is effective during step 1 if the pressure gap satisfies condition (44).

• For any mixture of two generalized stiffened gas EOS, the solution Pn˚
l of step 2, in the admissible

range, exists and is unique. Moreover, αn˚
l P r0, 1s.

˝

Proof. :

• If the pressure gap satisfies (44), then the coefficient aPP is positive and the discrete equation (73) is
a contraction whatever the time step is.

• Let us consider a mixture of two generalized stiffened gases:
$

’

&

’

%

pγk ´ 1qρkpϵk ´ ϵk0
q “ Pk ` γkΠ̂k

Sk ´ sk0
“ Cvk log

˜

pϵk ´ ϵk0
´

Π̂k

ρk
qρ1´γk

k

¸

(78)

with Π̂k a positive constant and ϵk0
and sk0

constants.
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Let us recall the constraint for the pressure in the case of a generalized stiffened gas:

Pk ` Π̂k ą 0 (79)

Thanks to (70), one can obtain:

αn˚
g “ mn

g

pγk ´ 1q
1
γk expp

Sn
g ´sg0
γgCvg

q

´

Pn˚
l ´ ∆Pn˚ ` Π̂g

¯
1
γg

(80)

By enforcing (67.4) one can deduce:

ϵn˚
l “

1

mn
l

˜

ξn ´ αn˚
g

Pn˚
l ´ ∆Pn˚ ` γgΠ̂g

γg ´ 1
´mn

g ϵg0

¸

(81)

The immiscible constraint (1) can then be rewritten as follows:

pγl ´ 1q ppmlϵlq
n˚ ´mn

l ϵl0q

Pn˚
l ` γlΠ̂l

`mn
g pγg ´ 1q1{γg

expp
Sn
g ´sg0
γgCvg

q

´

Pn˚
l ´ ∆Pn˚ ` Π̂g

¯
1
γg

´ 1 “ 0 (82)

Which can be seen as:
HpPlq “ 0 (83)

Standard calculations show that the function H is decreasing and, using (79), that the bounds are:
$

&

%

lim
PlÑ`8

HpPlq “ ´1

lim
PlÑmaxp´Π̂l,∆P´Π̂gq

HpPlq “ `8
(84)

which enables to conclude for Pn˚
l , such that Pn˚

l ` Πl ą 0 and Pn˚
g ` Πg ą 0.

Thus, αn˚
l P r0, 1s, owing to (80) and (82).

II- The temperature relaxation algorithm:

It simulates the solutions of the following system:
$

’

’

’

’

&

’

’

’

’

%

Bt pαlq “ 0
Bt pmkq “ 0 pk P tl, guq

Bt pmkUkq “ 0 pk P tl, guq

Bt pmlϵl `mgϵgq “ 0
mlBt pϵlq ` PgBt pαlq “ ´qpW q∆T.

(85)

The evolution of the temperature gap ∆T can be deduced from (85), it reads:

Bt p∆T q “ ´aTT∆T (86)

setting:

aTT “ qpW q

ˆ

1

mlBTl
pϵlq |ρl

`
1

mgBTg
pϵgq |ρg

˙

(87)

With aTT arising in the matrix Rlg, see (38).

The temperature relaxation algorithm consists in three steps.
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Temperature relaxation algorithm:

Step 1: Compute an approximate solution of the equation (86) with an implicit Euler time discretization by
considering the coefficient aTT frozen at the time tn˚:

∆Tn`1 “
1

1 ` an˚
TT∆t

∆Tn˚ (88)

Step 2: Since αl is constant throughout this step, and considering the conservation law of the sum of the internal
energies (85.4), Tn`1

l is solution of:

mn
l ϵlpρ

n˚
l , Tn`1

l q `mn
g ϵgpρn˚

g , Tn`1
l ´ ∆Tn`1q “ ξn (89)

Step 3: Update the thermodynamic quantities Tn`1
g “ Tn`1

l ´ ∆Tn`1, and the total energies:

#

pαlElq
n`1 “ mn

l ϵlpρ
n˚
l , Tn`1

l q `
1

2
mn

l pUn
l q2

pαgEgqn`1 “ αn˚
l En˚

l ` αn˚
g En˚

g ´ αn`1
l En`1

l

(90)

˝

We get:

Property 5: (Temperature relaxation algorithm)

• Step 1 guaranties the relaxation process for the temperature throughout this algorithm, whatever the
time step is.

• Considering a mixture of two generalized stiffened gas EOS, the solution Tn`1
l of step 2 in the

admissible range exists and is unique.

˝

Proof. :

• As the coefficient aTT is positive, the discretized equation of evolution of ∆T (88) is a contraction.

• For a mixture of two generalized stiffened gases, the temperature at time tn`1 is:

Tn`1
l “

1

mn
l Cvl `mn

gCvg

´

ξn `mn
gCvg∆T

n`1 ´ pmn
l ϵl0 `mn

g ϵg0 ` Π̂lα
n˚
l ` Π̂gp1 ´ αn˚

l qq

¯

(91)

B- Coupled algorithm

The basic idea of this new algorithm consists in simulating the thermodynamic relaxation effects in one step.
The governing set of equations is as follows:

$

’

’

’

’

&

’

’

’

’

%

Bt pmkq “ 0 pk P tl, guq

Bt pmkUkq “ 0 pk P tl, guq

Btpmlϵl `mgϵgq “ 0
Bt pαlq “ KpW q∆P
mlBt pϵlq ` PgBt pαlq “ ´qpW q∆T

(92)
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Using (92) one can obtain:

Bt

ˆ

∆P
∆T

˙

“ ´RPT

ˆ

∆P
∆T

˙

(93)

with:
RPT “

ˆ

aPP aPT

aTP aTT

˙

(94)

Matrix RPT is a sub-matrix of matrix Rlg (38):
$

’

’

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

’

’

%

aPP “ KpW q

ˆ

Al `Ag ´
1

mlBPl
pϵlq |ρl

∆P

˙

aPT “ qpW q

¨

˚

˝

1

ml
Bϵl
BPl

ˇ

ˇ

ˇ

ρl

`
1

mg
Bϵg
BPg

ˇ

ˇ

ˇ

ρg

˛

‹

‚

aTP “ KpW q

«

p
Bϵl
BTl

ˇ

ˇ

ˇ

ˇ

ρl

q´1

˜

Pg

ml
´
ρl
αl

Bϵl
Bρl

ˇ

ˇ

ˇ

ˇ

Tl

¸

` p
Bϵg
BTg

ˇ

ˇ

ˇ

ˇ

ρg

q´1

˜

Pg

mg
´
ρg
αg

Bϵg
Bρg

ˇ

ˇ

ˇ

ˇ

Tg

¸ff

aTT “ qpW q

ˆ

1

mlBTl
pϵlq |ρl

`
1

mgBTg
pϵgq |ρg

˙

(95)

The coupled algorithm reads as follows:

Coupled (P-T) relaxation algorithm:

Step 1: Compute an approximate solution of system (93), with the evolution matrix RPT frozen at time tn,
using an implicit Euler scheme:

ˆ

∆P
∆T

˙n`1

“ pI2 ` ∆t Rn
PT q

´1

ˆ

∆P
∆T

˙n

(96)

where I2 is the identity matrix in M2pRq.

Step 2: Set:
$

&

%

ξn “ mlϵlpP
n
l , T

n
l q `mgϵgpPn

g , T
n
g q

Tn`1
g “ Tn`1

l ´ ∆Tn`1

Pn`1
g “ Pn`1

l ´ ∆Pn`1
(97)

Compute Pn`1
l and Tn`1

l , solutions of the following system:
$

&

%

mn
l ϵlpP

n`1
l , Tn`1

l q `mn
g ϵgpPn`1

g , Tn`1
g q “ ξn

mn
l

ρlpP
n`1
l , Tn`1

l q
`

mn
g

ρgpPn`1
g , Tn`1

g q
“ 1

(98)

Step 3: Update αn`1
l :

αn`1
l “

mn
l

ρlpP
n`1
l , Tn`1

l q
(99)

and the total energies:
#

pαlElq
n`1 “ mn

l ϵlpP
n`1
l , Tn`1

l q `
1

2
mn

l pUn
l q2

pαgEgqn`1 “ αn
l E

n
l ` αn

gE
n
g ´ pαlElq

n`1
(100)

˝

Before going further on, we introduce the following lemma:
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Lemma 1:
For a system of the form:

BtY pW q “ ´ApW qY pW q (101)

with Y P Rj and A P MjpRq, j P N, discretized by using an implicit Euler scheme as:

pIj ` ∆tAnqY n`1 “ Y n (102)

with Ij the identity of MjpRq. If the real part of every eigenvalue of An is positive, then system (102)
ensures that:

}Y n`1}2 ď }Y n}2 (103)

and that system (102) is invertible, whatever the time step is.

Proof. :

As An P MjpRq, its eigenvalues λ1, . . . , λj are in C:

@k P J1, jK , λk “ ak ` ibk (104)

Then, the eigenvalues λr1, . . . , λ
r
j of the matrix pIj ` ∆tAnq´1 are:

@k P J1, jK , λrk “
1

1 ` ak∆t` ibk∆t
(105)

Assuming that the real parts of the eigenvalues of An are positive:

@k P J1, jK , ak ą 0 (106)

then,
@∆t ą 0 , @k P J1, jK , |1 ` ak∆t` ibk∆t| ą 1 . (107)

Whatever the time step is, this ensures that system (102) is invertible and that:

}Y n`1}2 ď }Y n}2 (108)

Then, one can obtain:

Property 6: (Coupled P-T relaxation algorithm)

• If the pressure gap satisfies condition (44), then equation (96) ensures the relaxation process of the
pressure and the temperature over time whatever the time step is, if (45) holds.

• Given a mixture of two perfect gas EOS, the solution of (98) in the admissible range, exists and is
unique. Moreover, the discrete statistical fraction αn`1

l belongs to r0, 1s.

˝

Proof. :

• If conditions (44) and (45) are verified, then the real parts of the eigenvalues of RPT are positive. Thus,
Lemma 1 applies and equation (96) ensures the relaxation process over time, whatever the time step
is.
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• Let us consider a mixture of two perfect gases:
"

pγk ´ 1qρkϵk “ Pk

ϵk “ CvkTk
(109)

Then it can be deduced from the conservation law of the sum of the internal energies (92.3) that:

Tn`1
l “

ξn `mn
g Cvg∆T

n`1

mn
l Cvl `mn

g Cvg

(110)

Inserting (109) and (110) in (98.2), one can obtain:

ΘpPn`1
l q “

mn
l pγl ´ 1qCvlT

n`1
l

Pn`1
l

`
mn

g pγg ´ 1qCvg pTn`1
l ´ ∆Tn`1q

Pn`1
l ´ ∆Pn`1

´ 1 “ 0 (111)

Standard calculations show that the function ΘpPl) is decreasing and that its bounds are:
$

&

%

lim
PlÑ`8

ΘpPlq “ ´1

lim
PlÑmaxp0,∆P q

ΘpPlq “ `8
(112)

which enables to conclude for Pn˚
l , such that Pn˚

l ` Πl ą 0 and Pn˚
g ` Πg ą 0. Moreover, as k P

tl, gu, Tk “
Pk ` Πk

ρkCvkpγk ´ 1q
, temperatures Tl and Tg are in the admissible range.

Thus, αn˚
l P r0, 1s, owing to (111).

Remark 2: For a mixture of Stiffened Gas EOS, system (98) is fully coupled. Equation (98.1) writes:
$

’

’

’

’

&

’

’

’

’

%

Tn`1
l

˜

mn
l Cvl

«

1 `
pγl ´ 1qΠ̂l

Pn`1
l ` Π̂l

ff

`mn
gCvg

«

1 `
pγg ´ 1qΠ̂g

Pn`1
l ´ ∆Pn`1 ` Π̂g

ff¸

“ ξn ` Ên`1

Ên`1 “ ´mn
l ϵl0 ´mn

g ϵg0 `mn
gCvg∆T

n`1

«

1 `
pγg ´ 1qΠ̂g

Pn`1
l ´ ∆Pn`1 ` Π̂g

ff (113)

Moreover, equation (98.2) reads:

mn
l

pγl ´ 1qCvlT
n`1
l

Pn`1
l ` Π̂l

`mn
g

pγg ´ 1qCvg pTn`1
l ´ ∆Tn`1q

Pn`1
l ´ ∆Pn`1 ` Π̂g

“ 1 (114)

2.1.2 Verification and comparison between the two approaches in a homogeneous case

The basic idea for the two approaches detailed before is to deduce from system (34) an equation of evolution
of the gap of the thermodynamics quantities. The main advantage of this idea is that it can ensure the
relaxation process between the phases over time, giving conditions that can be easily verified inside a code.
The main difference is whether system (34) is simulated in one step or "decoupled". In this section, the two
approaches are numerically compared. To do so, the flow is supposed to be homogeneous:

@ΨpW q, BxΨpW q “ 0 (115)

and velocities within each phase are assumed to be null. This simulation can be viewed as the return to
thermodynamics equilibrium of a two-phase flow inside a box. The different simulations are performed with
time steps ranging between 10´10 s and 10´2 s. All relaxation time scales are supposed to be constant. Their
values, the initial conditions and the coefficients of the EOS for the different cases are given in Appendix
1. Moreover, in order to ensure an effective relaxation time of each separated effect close to the relaxation
time scale given by the user, the value of P0 has to be set at t “ 0 to:

P0 “ }α0
vρ

0
l pc0l q2 ` α0

l ρ
0
vpc0vq2 ´ α0

v

∆P 0

ρ0l pBPl
pϵlq |ρl

q
0 } (116)
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The fractional step algorithm obviously does not capture the correct behaviour of the pressure Pl at the
origin for coarse time steps in some cases (see Figure 1). Actually, it can lead to a huge overestimation of
the pressure, whereas the coupled algorithm better follows the monotony of the exact solution (see Figure
2). For example, in Figure 1, the pressure Pl for large time steps can be ten times bigger than the one
obtained with the coupled approach. The relaxation process overtime is effective in case 1 as it can be seen
in Figures 3 and 4. Here, owing to (50), and since Π̂l ą Π̂g, condition (44) is automatically satisfied.
Nonetheless, condition (45) must be checked inside the code -see Section 1.3-. Figures 5 and 6 show that
the two numerical methods give similar results on the temperature profiles in this case. The main difference
between the two numerical approaches here lays in the liquid pressure profiles.
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Figure 1: Homogeneous case: evolution of the pressure Pl in case 1 (τP “ 10´5s and τT “ 10´3s), computed
with the fractional step algorithm. The initial conditions are given in Appendix 1.
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Figure 2: Homogeneous case: evolution of the pressure Pl in case 1 (τP “ 10´5s and τT “ 10´3s), computed
with the coupled algorithm. The initial conditions are given in Appendix 1.

0 0,01 0,02 0,03 0,04

Time (s)

0

5e+05

1e+06

∆
P

 (
P

a
)

dt = 10
-8

s

dt = 10
-4

s

dt = 10
-3

s

dt = 10
-2

s

Figure 3: Homogeneous case: evolution of ∆P “ Pl ´ Pg in case 1 (τP “ 10´5s and τT “ 10´3s), computed
with the fractional step algorithm. The initial conditions are given in Appendix 1.
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Figure 4: Homogeneous case: evolution of ∆P “ Pl ´ Pg in case 1 (τP “ 10´5s and τT “ 10´3s), computed
with the coupled algorithm. The initial conditions are given in Appendix 1.
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Figure 5: Homogeneous case: evolution of Tl and Tg in case 1 (τP “ 10´5s and τT “ 10´3s), computed with
the fractional step algorithm. The initial conditions are given in Appendix 1.

In order to evaluate the performance of these two numerical schemes, a convergence study has been conducted.
Let us introduce the error EΨpt,∆tq of a thermodynamic quantity Ψ for a time step ∆t at time t. Given the
numerical approximate solution Ψap of Ψex, the error EΨpt,∆tq is calculated as follows:

EΨptt,∆tq “
|Ψexpttq ´ ΨappN∆tq|

|Ψexpt “ 0q|
(117)
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Figure 6: Homogeneous case: evolution of Tl and Tg in case 1 (τP “ 10´5s and τT “ 10´3s), computed with
the coupled algorithm. The initial conditions are given in Appendix 1.

with:
tt “ N∆t. (118)

In our cases we set tt “ 2.0 10´3s.
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Figure 7: Homogeneous case: Convergence curve for case 1. The initial conditions are given in Appendix
1.
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The convergence curves (see Figures 7 and 8) show a speed of convergence close to 1 for the two approaches,
as expected theoretically. It is worth noting that the value of the error can be quite large for the fractional
step algorithm, as it can be two hundred times bigger than the error of the coupled algorithm for the pressure
Pl, see Figure 8. The plateau of convergence for large time steps corresponds to simulations where ∆t ą tt.

Moreover, for a given value of ∆t, the ratio of computational costs is between 2 and 8 in favour of the coupled
algorithm, depending on the mesh size, see Table 1.

dt Coupled algorithm Fractional algorithm

10´2s 2.92 10´6 7.51 10´6

10´4s 6.26 10´5 1.26 10´4

10´6s 1.38 10´3 1.1 10´2

10´8s 1.21 10´1 1

Table 1: CPU normalised by the CPU of the fractional step algorithm using ∆t “ 10´8s for case 1

Remark 3: It is also worth noting that the accuracy of the fractional step algorithm decreases when the
ratio

τP
τT

tends to zero (see Appendix 7).

2.1.3 Application: shock wave through a two-phase gas-liquid medium [12]

A- Experimental set up and numerical settings:

This part aims at validating the coupled scheme by comparing its results with the experiment [12] (see [10]
for further details). The experimental set-up is made up of a one-dimensional shock tube composed of air
and a layer of liquid droplets. It contains, at t “ 0 (see Figure 9 for a sketch of this set up), a high pressure
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chamber (HP), followed by a zone at atmospheric pressure. Inside the low pressure chamber, a cloud of
droplets (CD) with a unique diameter (Dd “ 500µm) lies between x “ 3.0m and x “ 3.40m.

Figure 9: Sketch of the data settings in meters

The initial conditions are set as follows [12]:

Abscissa interval (m) Pl (bar) Pg (bar) αl αg Tl (K) Tg (K)

x P r0.0 , 0.75s 7 7 ϵα “ 10´10 1 ´ ϵα 293 293

x P r3.0 , 3.4s 1 1 0.0104 0,9896 293 293

x P ps0.75 , 3.0r Y s3.4 , 3.75sq 1 1 ϵα 1 ´ ϵα 293 293

In the experimental set-up, several pressure probes are set throughout the tube [12]. They give the value of
the total pressure. The total pressure Pmix is defined as:

Pmix “
ÿ

k

αkPk (119)

Indeed, setting:
Q “

ÿ

k

mkUk (120)

and using (5), we have:
Bt pQq ` ∇ ¨ p

ÿ

k

mkUk b Ukq ` ∇Pmix “ 0 (121)

Integrating (121) over a closed domain shows that the pressure applied on the walls is precisely Pmix, i.e.
the total pressure measured experimentally.

The value of Pmix is compared with the experimental data on three probes:

• S1 located at x “ 1.77m. This station is located inside the initial gaseous area.

• S2 located at x “ 3.08m. This station is located at the beginning of the initial layer of droplets.

• S3 located at x “ 3.19m. This station is located in the middle of the initial cloud of droplets.
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In this configuration, the fragmentation of the water droplets plays a substantial role in the dynamic, ac-
cording to [31]. That is why an interfacial area A is introduced for the liquid phase:

A “
6αl

Dd
(122)

The equation of evolution of the interfacial area (see Appendix 3) and its numerical treatment are taken
from [5]. The velocity relaxation process has to be computed too. To do so, the algorithm detailed in [26]
has been used and is recalled in Appendix 2. In order to simulate this shock tube, stiffened gas EOS (see
(78)) are used in each phase. The values of the thermodynamic coefficients are given in Appendix 1.

Moreover, the relaxation time scales τU , τP and τT are chosen as follows.

Velocity relaxation time scale:
1

τU
“

0.125pml `mgq}Ul ´ Ug}

ρlDd
; (123)

This expression of τU is derived from the Stokes formula [46].

Pressure relaxation time scale:
τPP0 “

4π

3
µg ô

1

τP
“

3P0

4πµg
(124)

where µg “ 1.8 .10´5 kgm´1s´1 is the dynamic viscosity of the air at 1 bar and 293K. It is the limit of the
closure law proposed in [28] for small diameter droplets.

Temperature relaxation time scale:

1

τT
“

6αlNuλgpmlCvl `mgCvg q

mlCvlmgCvg
D2

d

; (125)

where Nu = 10 is the Nusselt number and λg “ 0.6 pWm´1K´1q is the thermal conductivity of the gas
phase. This form is taken from [54].

The simulations have been performed using one-dimensional meshes including 1 000, 10 000 and 20 000 cells.
The CFL number is set to 0.45 and provides the time stepping.

B- Numerical results and comparison with experimental data:

We recall that the Weber number, We, is a dimensionless number that quantifies the atomization of the
droplets. Introducing σd, a positive reference surface tension, We is defined as:

We “
ρl}Ul ´ Ug}2Dd

σd
. (126)

More precisely, if the Weber number is smaller than a certain threshold called the critical Weber number
Wec, then the atomization does not occur (see Appendix 3). Two critical Weber numbers will be tested
in the simulations: Wec “ 3 and Wec “ 12. These values, respectively suggested for liquid water and liquid
aluminium droplets, are taken from [54]. The total pressure Pmix obtained through numerical simulations is
compared with the experimental data.

First, let us note that on Figures 10, 11 and 12, the experimental data have been translated of a fixed value
ttranslate “ 0.0019s, so that the experimental and simulated incident shock waves are synchronized on station
3. As the experimental and numerical shock waves arrive almost at the same time at the station 1 and 2, it
can be concluded that the simulation captures well the celerity of the shock wave. On fine meshes, Figures
10 and 11 show a pressure drop right after the incident shock wave of 2.4 bar. The amplitude of the incident
shock wave is overestimated by the simulation by 10% at station 3 (Figure 10), whereas there is almost no
discrepancy between the simulation and the experimental data at stations 1 and 2. The pressure loss right
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Figure 10: Chauvin experiment: Evolution of the pressure PmixpPaq “ αlPl ` αgPg at station 3, using two
different critical Weber numbers: Wec = 3 or 12. Meshes contain: 1 000 cells, 10 000 cells or 20 000 cells.
CFL = 0.45 .
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Figure 11: Chauvin experiment: evolution of the pressure PmixpPaq at station 2 for various meshes and Wec

after the shock wave is expected as it accounts for the atomization of the water droplets, see [31]. A coarse
mesh with 1000 cells is not sufficient to properly capture this phenomenon. In Figure 10, after the pressure
loss, the total pressure increases and then plateaus around 3.5bar, considering Wec “ 3 and a 20 000 cells
mesh. Focusing on this mesh, the numerical results overestimate the experimental data on Pmix by about 7
% on station 3, 10 % on station 2 and 2 % on station 1. Eventually, the total pressure decreases due to the
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Figure 12: Chauvin experiment: evolution of the pressure PmixpPaq at station 1 for various meshes

arrival of the reflected rarefaction wave coming from the left wall boundary. It is also worth noting that ∆P
remains lower than 2. 10´3 % of the initial phasic pressure throughout the simulation. On the other hand,
∆T remains lower than 2 % of the initial phasic temperature gap.

The numerical simulation of Chauvin experiment [12] using the fractional step approach can be found in
section 4.3 of [6]. On a fine mesh, discrepancies between the two approaches on the total pressure profile are
less than 1 % on the incident shock wave amplitude, and about 5 % on the pressure plateau.

In addition, these numerical simulations also show the influence of the critical Weber number - i.e. how the
interfacial area is taken into account - on the overall behaviour of the solution after the shock wave, inside
the cloud of collapsible droplets. Indeed, as shown in [11], an accurate modelling of the inter-facial area
evolution is a key ingredient in order to capture the correct behaviour of the pressure profile after the shock.
Herein, computational results are closer to the experimental data when using Wec “ 3 on a refined mesh, as
anticipated.
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Figure 13: Chauvin experiment: evolution of the velocities at station 3 for a mesh of 20 000 cells. Index
number 1 corresponds to the liquid phase and index number 2 corresponds to the gaseous phase.
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Figure 14: Chauvin experiment: evolution of the diameter Dd at station 3 for a mesh of 20 000 cells.

According to Figure 13, the velocity of the liquid phase (labelled one) and the gas phase (labelled two) are
completely distinct, with a maximum gap of more than 200m.s´1, right after the incident shock wave. The
structural hypothesis of velocity disequilibrium between phases is thus retrieved in the numerical results.
Figure 14 shows the impact of the value of the critical Weber number on the atomization process. Indeed, a

28



four times bigger critical Weber number results here in a twice larger droplet’s diameter on the first plateau
after the shock.

In Appendix 8, the Chauvin experiment [12] is also computed, assuming rigid particles, as conducted by
authors in [11]. In that case, as the diameter of the droplets is constant, no pressure drop arises right after
the incident shock wave, as expected (see Figure 3 of [11], and also [6]), even for a refined mesh.

2.2 Discrete source terms for a mixture of liquid water and vapour

As in the liquid-gas section, the velocity relaxation is taken into account before the thermodynamic part of
the source terms.

2.2.1 Two algorithms for the simulation of the thermodynamic source terms

We recall that for Ψ P tP, T, Uu, ∆Ψ is set as:

∆Ψ “ Ψl ´ Ψv (127)

And for clarity, we note:
∆µ “

µl

Tl
´
µv

Tv
(128)

A- Fractional step approach

For a mixture of water and vapour, the relaxation effects, which are presented for a mixture of liquid and
gas, must be complemented with the mass transfer terms. This fractional step scheme is thus composed of
three steps, one for each thermodynamic effect. The sequence is as follows, still using the same time step ∆t
within each step:

I: Wn Pressure relaxation
ÝÝÝÝÝÝÝÝÝÝÝÝÝÑ Wn˚

II: Wn˚ Heat transfer
ÝÝÝÝÝÝÝÝÝÝÑ Wn˚`

III: Wn˚` Mass transfer
ÝÝÝÝÝÝÝÝÝÝÑ Wn`1

The first two steps are identical to the ones presented for a mixture of liquid and gas in Section 2.1.1.A.
Besides, step III is taken from [18] and recalled in Appendix 4.

B- Coupled approach

Once more, the basic idea of this approach is to account for all the thermodynamic effects in one step.

First, the global system of source terms is recalled:
$

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

%

Bt pαlq “ KpW q∆P
Bt pmlq “ ΓlpW q

Bt pmlUlq “
Ul ` Uv

2
ΓlpW q

Bt pαlElq ` PvBt pαlq “
UlUv

2
ΓlpW q ´ qpW q∆T

Btpml `mvq “ 0
BtpmlUl `mvUvq “ 0
BtpαlEl ` αvEvq “ 0

(129)

From system (129), it can be obtained:
$

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

%

Bt pαlq “ KpW q∆P
Bt pmlq “ ΓlpW q

Bt pmlUlq “
Ul ` Uv

2
ΓlpW q

Bt pmlϵlq ` PvBt pαlq “ ´qpW q∆T
Btpml `mvq “ 0
BtpmlUl `mvUvq “ 0
BtpαlEl ` αvEvq “ 0

(130)
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It can also be deduced from system (130) that:

Bt pmlϵl `mvϵvq “ 0. (131)

since:
Bt

`

mlU
2
l

˘

“
UlUv

2
Γl “ ´Bt

`

mvU
2
v

˘

(132)

System (130) can be recast in two subsystems, which are:
$

’

’

’

’

&

’

’

’

’

%

Bt pαlq “ KpW q∆P
Bt pmlq “ Γl

Bt pmlϵlq “ ´PvKpW q∆P ´ qpW q∆T
Btpml `mvq “ 0
Btpmlϵl `mvϵvq “ 0

(133)

and:
#

Bt pmlUlq “
Ul ` Uv

2
Γl

BtpmlUl `mvUvq “ 0
(134)

System (133) can be solved first, independently of system (134).

From system (133), an equation of evolution for the thermodynamic quantity gaps can be derived, see [42]:

Bt

¨

˝

∆P
∆T
∆µ

˛

‚“ ´RPTµ

¨

˝

∆P
∆T
∆µ

˛

‚ (135)

The coefficients of RPTµ P M3pRq are detailed in [42] and recalled in Appendix 5.

Using an implicit Euler method, system (135) is discretized as follows:
¨

˝

∆P
∆T
∆µ

˛

‚

n`1

“ p1 ` ∆tRn
PTµq´1

¨

˝

∆P
∆T
∆µ

˛

‚

n

(136)

The conservation laws included in (133) imply:
"

Mn “ mn
l `mn

v “ mn`1
l `mn`1

v

ξn “ pmlϵlq
n ` pmvϵvqn “ pmlϵlq

n`1 ` pmvϵvqn`1 (137)

and the one included in (134) gives:

QU
n “ pmlUlq

n ` pmvUvqn “ pmlUlq
n`1 ` pmvUvqn`1 (138)

Coupled (P-T,µ) relaxation algorithm:

Step 1: Compute ∆Pn`1, ∆Tn`1 and ∆µn`1, solution of system (136). The matrix RPTµ is considered frozen
at time tn.

Step 2: Compute mn`1
l as:

mn`1
l “

Mn

1 `
pMn´mn

l q

mn
l

expp
∆µn`1

τn
mΓ0

∆tq
ą 0 (139)

Deduce mn`1
v “ Mn ´mn`1

l ą 0 and set Γn`1
l “

mn`1
l ´mn

l

∆t
.

Step 3: Compute Pn`1
l and Tn`1

l , solutions of the following system:
$

&

%

mn`1
l ϵlpP

n`1
l , Tn`1

l q ` pMn ´mn`1
l qϵvpPn`1

l ´ ∆Pn`1, Tn`1
l ´ ∆Tn`1q “ ξn

mn`1
l

ρlpP
n`1
l , Tn`1

l q
`

Mn ´mn`1
l

ρvpPn`1
l ´ ∆Pn`1, Tn`1

l ´ ∆Tn`1q
“ 1

(140)
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Step 4: Update Pn`1
v , Tn`1

v , αn`1
l and αn`1

v as:
$

’

’

’

’

&

’

’

’

’

%

Pn`1
v “ Pn`1

l ´ ∆Pn`1

Tn`1
v “ Tn`1

l ´ ∆Tn`1

αn`1
l “

mn`1
l

ρlpP
n`1
l , Tn`1

l q

αn`1
v “ 1 ´ αn`1

l

(141)

Update ϵn`1
l and ϵn`1

v in agreement with (140).

Step 5: Then compute Un`1
l and Un`1

v solutions of:
$

’

&

’

%

pmlUlq
n`1 ´ pmlUlq

n “ ∆t
Γn`1
l

2
pUn`1

l ` Un`1
v q

pmvUvqn`1 ´ pmvUvqn “ ´∆t
Γn`1
l

2
pUn`1

l ` Un`1
v q

(142)

Step 6: Update the total energies as:
#

pαlElq
n`1 “ mn`1

l ϵlpP
n`1
l , Tn`1

l q `
1

2
mn`1

l pUn`1
l q2

pαvEvqn`1 “ pαvEvqn ` pαlElq
n ´ pαlElq

n`1
(143)

˝

Remark 4:

• Equation (139) is deduced from the mass conservation (133.2), with ∆µ frozen at time tn`1.

• System (140) is derived from the conservation law of the sum of the internal energies (131) and the
immiscible constraint (1).

• System (142) is derived from system (134) by using an implicit Euler scheme.

Thus, we have:

Property 7: (Coupled P-T-µ algorithm)

• System (142) is invertible whatever the time step is.

• If the three fundamentals minors of matrix RPTµ (135) are positive, then step 1 ensures the thermody-
namic relaxation process over time, whatever the time step is.

• For a given couple of perfect gas EOS, solutions Pn`1
l and Tn`1

l of (140) in the admissible range,
exist and are unique. Moreover, αn`1

l belongs to [0,1] and the partial masses mn`1
l and mn`1

v remain
positive.

Proof. :

• Standard calculations give the determinant δ of system (142):

δ “
1

2
pmn`1

l mn
v `mn

l m
n`1
v q. (144)

As δ is strictly positive whatever the time step is, system (142) is always invertible.

• System (140) is identical to (98), thus it benefits from the same properties.

• If the three fundamentals minors of RPTµ (135) are positive, then according to [42], Lemma 1 applies
and ensures the relaxation process over time, whatever the time step is.
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2.2.2 Verification and comparison between the two approaches in a homogeneous case

In this section, the two schemes presented in the previous part are compared on different test cases. To do
so, the flow is supposed to be homogeneous:

@ΨpW q, BxΨpW q “ 0 (145)

and the velocities within each phase are assumed to be null. The different simulations are performed with time
steps ranging between 10´10 s and 10´1 s. All the relaxation time scales are supposed to be constant. Their
values, the initial conditions and the coefficients of the EOS for the different cases are given in Appendix
1. Moreover, in order to ensure an effective relaxation time of each separated effect close to the relaxation
time scale given by the user, the value of P0 and Γ0 have to be set at t “ 0 to:

$

’

’

&

’

’

%

P0 “ }α0
vρ

0
l pc0l q2 ` α0

l ρ
0
vpc0vq2 ´ α0

v

∆P 0

ρ0l pBPl
pϵlq |ρl

q
0 }

Γ0 “ }m0
vpγlCvl `

ϵl0
T 0
l

p2 `
ϵl0

CvlT
0
l

q `m0
l pγvCvv `

ϵv0
T 0
v

p2 `
ϵv0

CvvT
0
v

q}

(146)

As it occurs in the liquid-gas framework, the fractional step algorithm can in some cases overestimate the
pressure of the liquid phase for coarse time steps. For example, in case 3, (see Figure 15), using a time step
of 10´3s, the latter method leads to pressure values almost one hundred times bigger than the converged
solution. For the same time stepping, the coupled algorithm overestimation is much lower (see Figure 16).
Even if it is not the case here, the overestimation of the pressure Pl by the fractional step algorithm could lead
to the violation of the relaxation conditions detailed in [42]. In addition, when case 3 is computed with a time
step ∆t “ 10´3s, the fractional step algorithm is unable to return to pressure equilibrium, and even stops
just before t “ 0.02s (see Figure 17). The temperature profiles of the liquid water and vapour, computed
with the fractional step algorithm and the coupled algorithm, are given in Figures 19 and 20 respectively.
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Figure 15: Evolution of Pl in case 3 computed with the fractional step algorithm. τP “ 10´5s, τT “ 10´4s,
τm “ 10´6s. The initial conditions are given in Appendix 1.
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Figure 16: Evolution of Pl in case 3 computed with the coupled algorithm. τP “ 10´5s, τT “ 10´4s,
τm “ 10´6s. The initial conditions are given in Appendix 1.

0 0,005 0,01 0,015 0,02

Time (s)

0

5e+06

1e+07

1,5e+07

∆
P

 (
P

a
)

dt = 10
-3

s

dt = 10
-4

s

dt = 10
-5

s

dt = 10
-8

s

Figure 17: Evolution of ∆P in case 3 computed with the fractional step algorithm. τP “ 10´5s, τT “ 10´4s,
τm “ 10´6s. The initial conditions are given in Appendix 1.
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Figure 19: Evolution of Tl and Tv in case 3 computed with the fractional step algorithm. τP “ 10´5s,
τT “ 10´4s, τm “ 10´6s. The initial conditions are given in Appendix 1.
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Figure 20: Evolution of Tl and Tv in case 3 computed with the coupled algorithm. τP “ 10´5s, τT “ 10´4s,
τm “ 10´6s. The initial conditions are given in Appendix 1.

A convergence study is presented below. The error EΨpt,∆tq is defined as in the liquid gas section (117).
The speed of convergence is close to one (see Figure 21) for the two approaches, as expected. Note that
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the value of the error for the fractional step algorithm is about one hundred times bigger for the pressure Pl

than the one obtained with the coupled algorithm.

1e-10 1e-08 1e-06 0,0001 0,01

∆t

1e-15

1e-10

1e-05

1

E
rr

o
r

Error on P
l
 ; coupled algorithm

Error on P
v
 ; coupled algorithm

Error on T
l
 ; coupled algorithm

Error on T
v
 ; coupled algorithm

Error on P
l
 ; fractional algorithm

Error on P
v
 ; fractional algorithm

Error on T
l
 ; fractional algorithm

Error on T
v
 ; fractional algorithm

Figure 21: Homogeneous case: Convergence curve for case 2: τP “ 10´5s, τT “ 10´3s, τm “ 5. 10´3s. The
initial conditions are given in Appendix 1

Besides, the ratio of computational costs is in the range r5, 12s in favour of the coupled algorithm, for a
given ∆t, see Table 2. Moreover, as mentioned before, the fractional step algorithm even blows up on coarse
meshes.

dt Coupled algorithm Fractional algorithm

10´2s 1.28 10´7 Blows up

10´4s 5.8 10´7 2.71 10´6

10´6s 1.29 10´5 1.16 10´4

10´8s 8.64 10´4 9.90 10´3

10´10s 8.03 10´2 1

Table 2: CPU normalised by the CPU of the fractional step algorithm using ∆t “ 10´10s for case 3
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2.2.3 Application: One dimensional shock tube in vapour with a cloud of water droplets

The aim of this section is to test the coupled algorithm for a mixture of liquid water and its vapour. The
application test case is composed of a one dimensional shock tube in vapour. At t “ 0, a cloud of water
droplets lies inside a portion of the tube. The initial conditions along the tube are set as follows:

Abscissa interval (m) αl Pl (bar) Pv (bar) Tl (K) Tv (K)

x P r0.00, 0.75s 10´8 6 6 1000 1000

x P r0.75, 3.00rYs3.40, 3.75s 10´8 1 1 1000 1000

x P r3.00, 3.40s 0.03 1 1 293 1000

Three probes are set inside the tube:

• S1 is located inside the initial vapour layer of the tube: x “ 1.77m

• S2 is located at the beginning of the initial cloud of water droplets: x “ 3.08m

• S3 is located in the middle of the initial zone of liquid - vapour mixture: x “ 3.20m

Relaxation time scales and EOS coefficients are the same as those used for the convergence curves in Figure
21 and can be found in Appendix 1, case 2. In this test case, the particles are supposed to be rigid.

0 0,002 0,004 0,006

Time (s)

1e+05

2e+05

3e+05

4e+05

P
m

ix
 (

P
a
)

S
1
 ; 1 000 cells

S
2
 ; 1 000 cells

S
3
 ; 1 000 cells

S
1
 ; 10 000 cells

S
2
 ; 10 000 cells

S
3
 ; 10 000 cells

Figure 22: Evolution of Pmix for two meshes including 1 000 cells and 10 000 cells
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Figure 23: Evolution of Pl and Pv at station 3 with the initial condition of case 2. A mesh of 10 000 cells
has been used.
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As expected, the solution obtained in the homogeneous case is retrieved at station 3 in the first time steps,
see Figures 22, 23 and 24. Moreover, in this case, the pressure disequilibrium is substantial as ∆P can be
four times larger than the initial pressure, see Figure 23. The temperature disequilibrium is also significant,
as it is still about 70% of its initial value after the shock wave. The difference of velocities ∆U is also quite
large, close to 600 m.s´1 right after the shock wave.

Remark 5: Eventually, it is also worth noting that the fractional step algorithm fails to compute an
approximate solution of this test case.

3 Conclusion:
When focusing on the class of liquid-gas flow models considered here, conditions (43), (44) and (45) are the
true conditions that guarantee the effective relaxation process. For most EOS, conditions (44) and (45) are
not trivial and have to be numerically tested inside the code. In most cases, conditions (44) and (45) also
involve initial conditions. For liquid-vapour flows, four conditions arise, which also involve EOS and initial
conditions.

The coupled algorithm, which has been introduced for the treatment of the sub-system associated with the
source terms (34), is grounded on the analysis of relaxation effects. This new strategy has been compared
with the classical fractional step method. The comparison is clearly in favour of the coupled algorithm, as
it was expected, and this is particularly true when rather coarse time steps are considered, or equivalently
on coarse "industrial" meshes. Indeed, the coupled algorithm is more stable, especially in the liquid-vapour
case. The latter algorithm also provides a higher accuracy for a given mesh size, and a lower computational
cost for a comparable accuracy, than the fractional step approach. Moreover, some particular test cases
exhibit a rather strange behaviour of the fractional approach, and this might in some sense be compared with
what happens when computing shallow-water equations with well-balanced schemes versus the fractional step
method. It also clearly arises that mass transfer terms have a huge impact on the practical stability of the
whole algorithm.

In addition, substantial values of ∆U , ∆P and ∆T can be observed in the transient regime throughout this
paper, which pleads against any hypothesis of instantaneous return-to-equilibrium, for both mechanical and
thermodynamic quantities. A posteriori, it also justifies the investigation of the relaxation process.

Of course, higher-order time schemes, such as the Radau V method presented in [65], might be used to
improve the accuracy of the coupled algorithm, but this lies beyond the scope of the present work. Even-
tually, relaxation solvers such as those presented in [14] and [9] could improve both the accuracy and the
computational cost when accounting for convective terms (61).
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Appendix 1: Numerical parameters

Homogeneous flow: liquid-gas

Case 1 Case 5
τP 10´5s 10´5s
τT 10´3s 5.10´5s
αl 0.3 0.03

Pl(t=0) 105Pa 105Pa
Pg(t=0) 105Pa 105Pa
Tl(t=0) 363 K 2500 K
Tg(t=0) 1000 K 363 K

Table 3: Simulation parameters
for the homogeneous liquid gas
cases and initial conditions

Case 1 Case 5

γl 1.614924811807376e+00 2.2838590974110350e+01

γg 1.085507894797296e+00 1.614924811807376e+00

Cvl 1.452904592629688e+03 1.2872948262582229e+01

Cvg 4.441148752333071e+03 1.452904592629688e+03

Π̂l 3.563521398523755e+08 1.8847923625716622e+09

Π̂g 0.0 3.563521398523755e+08

ϵl0 0.0 -1.3316200000000000e+05

ϵg0 0.0 0.0

sl0 0.0 0.0

sg0 -4.769786773517021e+04 0.0

Table 4: EOS for the homogeneous liquid gas cases

Shock Tube Chauvin [12]

Chauvin experiment

γl 27.07619047619048

γg 1.4

Cvl 10.58283017395257e

Cvg 717.142857143e

Π̂l 8.063584804783680 .107

Π̂g 0.0

ϵl0 0.0

ϵg0 0.0

sl0 0.0

sg0 0.0

Table 5: EOS for the Chauvin experiment [10]
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Liquid-vapour

Case 3 Case 2

τP 10´5s 10´5s

τT 10´4s 10´3s

τm 10´6s 5.10´3s

αl 0.03 0.03

Pl(t=0) 105Pa 105Pa

Pv(t=0) 105Pa 105Pa

Tl(t=0) 363 K 293 K

Tg(t=0) 1000 K 1000 K

Table 6: Numerical parameters for the liquid gas sim-
ulations and initial conditions

γl 1.614924811807376e+00

γg 1.085507894797296e+00

Cvl 1.452904592629688e+03

Cvg 4.441148752333071e+03

Π̂l 3.563521398523755e+08

Π̂g 0.0

ϵl0 0.0

ϵg0 0.0

sl0 0.0

sg0 -4.769786773517021e+04

Table 7: EOS for all the liquid vapour simulations

Appendix 2: Velocity relaxation algorithm
During this step, system (5) become, for k P tg, vu:
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’

’

’
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%

Btαl “ 0

Btml “ 0

mlBtUl “ ´dpW q∆U

Bt pαlElq “ ´dpW q
Ul ` Uk

2
∆U

Bt pml `mkq “ 0

Bt pmlUl `mkUkq “ 0

Bt pαlEl ` αkEkq “ 0

(147)

The following algorithm is taken from [26]:

Velocity relaxation algorithm:

Step 1: Compute Un`1´
l and Un`1´

k as:
$

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

%

Un`1´
l “ Un`1˚

l ´ ∆Un`1˚

mn`1˚
k

ˆ

1 ´ e
´ ∆t

τ
n`1˚
U

˙

mn`1˚
k `mn`1˚

l

Un`1´
k “ Un`1˚

l ` ∆Un`1˚

mn`1˚
l

ˆ

1 ´ e
´ ∆t

τ
n`1˚
U

˙

mn`1˚
k `mn`1˚

l

(148)
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Step 2: Compute pmlϵlq
n`1´ and pmkϵkqn`1´ as:

$

’

’

&

’

’

%

pmlϵlq
n`1´ “ pmlϵlq

n`1˚ `
mn`1˚

l mn`1˚
k

mn`1˚
l `mn`1˚

k

`

∆Un`1˚
˘2

2

ˆ

1 ´ e
´ 2∆t

τ
n`1˚
U

˙

pmkϵkqn`1´ “ pmkϵkqn`1˚

(149)

Step 3: Update the total energies as:
$

’

’

&

’

’

%

pαlElq
n`1´ “ pmlϵlq

n`1´ `
1

2
mn`1˚

l pUn`1´
l q2

pαkEkqn`1´ “ pαkEkqn`1˚ ` pαlElq
n`1˚ ´ pαlElq

n`1´

(150)

˝

Appendix 3: Interfacial area
The definition of the interfacial area of the water phase is recalled:

A “
6αl

Dd
(151)

Its equation of evolution is supposed to be:

BA

Bt
` ∇pA Ulq “ gpA ,W q; (152)

with:

gpA ,W q “ C0
A 2

6αl
p
ρl
ρg

q1{2UrfpWeq; (153)

with Ur “ }Ul ´ Ug} and We the Weber number define as follows:

We “
ρlU

2
rDd

σd
(154)

with σd “ 73 .10´3pN.m´1q a reference surface tension [54] . Moreover f(We) is defined as:

fpWeq “ 1 , if We ą Wec ; fpWeq “ 0 otherwise (155)

where Wec is called the critical Weber.

Adding this new equation does not change the structure and properties of the global system (5) according to
[5]. Hence, it is chosen for the simulation. The numerical scheme used to simulate (152) is detailed in [5]. It
consists of a fractional step method, splitting the convective part and the source term part. Those two steps
will respectively be inserted inside the explicit simulation step of the convective part of system (5) and the
implicit simulation of the source terms of the same system.
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Appendix 4: Mass transfer algorithm
During this step, system (5) writes as:
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%

Btαv “ 0

Btmv “ Γv

BtpmvUvq “
Ul ` Uv

2
Γv

Bt pαvEvq “
UlUk

2
Γv

Bt pml `mvq “ 0

Bt pmlUl `mvUvq “ 0

Bt pαlEl ` αvEvq “ 0

(156)

with:
Γv “

1

Γ0τm

mlmg

ml `mg
∆µ (157)

From (156), a conservation law of the internal energies is obtained during this step:
$

’

’

&

’

’

%

Bt pmvϵvq “ 0

Bt pmlϵlq “ 0

(158)

which implies that:
Γv “ Γ̃vpmlq (159)

The following algorithm is taken from [18]. A detailed version in French is also available in [45]:

Mass transfer algorithm:

Step 1: Compute mn`1˚
l , solution of:

mn`1˚
l “ mn˚

l ´ ∆tΓvpmn`1˚
l q (160)

and update mn`1˚
v “ mn˚

l `mn˚
v ´mn`1˚

l .

Step 2: Compute Un`1˚
l and Un`1˚

v as:
$

’

’

&

’

’

%

pmlUlq
n`1˚ “ pmlUlq

n˚ ´ ∆tΓlpm
n`1˚
l qn`1U

n`1˚
l ` Un`1˚

v

2

pmvUvqn`1˚ “ pmvUvqn˚ ` pmlUlq
n˚ ´ pmlUlq

n`1˚

(161)

Step 3: Update the total energies as:
$

’

’

&

’

’

%

pαlElq
n`1˚ “ pαlElq

n˚ ´ ∆tΓlpm
n`1˚
l qn`1U

n`1˚
l Un`1˚

v

2

pαvEvqn`1˚ “ pαvEvqn˚ ` pαlElq
n˚ ´ pαlElq

n`1˚

(162)

˝
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Appendix 5: Coefficients of the matrix RPTµ

Matrix RPTµpW q P R3ˆ3 is as follow, see [42]:

RPTµpW q “

¨

˚

˚

˚

˚

˚

˚

˝

alvPP pW q alvPT pW q alvPµpW q

alvTP pW q alvTT pW q alvTµpW q

alvµP pW q alvµT pW q alvµµpW q

˛

‹

‹

‹

‹

‹

‹

‚

(163)

The above mentioned coefficients are as follows:
$

’

’

’

’

’

’
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&

’

’

’

’

’

’

’

%

alvPP pW q “ KpW q

ˆ

Al `Av ´
∆P

mlBPl
pϵlq |ρl

˙

,

alvPT pW q “ qpW q

ˆ

1

mlBPl
pϵlq |ρl

`
1

mvBPv
pϵvq |ρv

˙

,

alvPµpW q “ ΛpW q

ˆ

´
ϵl ` ρlBρl

pϵlq |Pl

mlBPl
pϵlq |ρl

´
ϵv ` ρvBρv

pϵvq |Pv

mvBPv
pϵvq |ρv

˙

(164)

and:
$

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

%

alvTP pW q “ KpW q

ˆ

Pv ´ ρ2l Bρl
pϵlq |Tl

mlBTl
pϵlq |ρl

`
Pv ´ ρ2vBρv

pϵvq |Tv

mvBTv
pϵvq |ρv

˙

,

alvTT pW q “ qpW q

ˆ

1

mlBTl
pϵlq |ρl

`
1

mvBTv
pϵvq |ρv

˙

,

alvTµpW q “ ΛpW q

ˆ

´ϵl ´ ρlBρl
pϵlq |Tl

mlBTl
pϵlq |ρl

`
´ϵv ´ ρvBρv

pϵvq |Tv

mvBTv
pϵvq |ρv

˙

(165)

Eventually, setting:

Fk “ p
1

ρkBPk
pϵkq |ρk

´
hk

TkBTk
pϵkq |ρk

q (166)

Gk “
hk

TkBTk
pϵkq |ρk

pϵk ` ρkBρk
pϵkq |Tk

q ´
1

ρkBPk
pϵkq |ρk

pϵk ` ρkBρk
pϵkq |Pk

q (167)

Hk “
hk

TkBTk
pϵkq |ρk

p´Pg ` ρ2kBρk
pϵkq |Tk

q ´
1

ρkBPk
pϵkq |ρk

p´Pg ` ρ2kBρk
pϵkq |Pk

q (168)

for k “ l, v, we have:
$
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’
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’

’

&

’

’

’

’

’

’

’

%

alvµP pW q “ KpW q

ˆ

Hl

mlTl
`

Hv

mvTv

˙

,

alvµT pW q “ qpW q

ˆ

Fl

mlTl
`

Fv

mvTv

˙

,

alvµµpW q “ ΛpW q

ˆ

Gl

mlTl
`

Gv

mvTv

˙

(169)

The relaxation process over time is guaranteed if the three fundamentals minors are positive [42].

Appendix 6: The RIP condition
We consider the class of gas-liquid flow models discussed in section 2, thus focusing on immiscible components.
We assume some initial condition W 0pxq “ W px, t “ 0q, such that:

Ukpx, t “ 0q “ 0 , (170)

and with uniform pressure and temperature fields:

Pkpx, t “ 0q “ P0 ; Tkpx, t “ 0q “ T0. (171)
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The flow will remain steady, if:
Bt pψq px, t “ 0q “ 0 (172)

whatever ψ is.

Obviously, the source terms vanish, and we get:
$
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&

’

’

’

’

’

’

’

’

’

’

%

Bt pαkq px, t “ 0q “ 0 ;

Bt pmkq px, t “ 0q “ 0 ;

Bt pmkUkq px, t “ 0q ` P0∇α0
k ´ ΠIpW 0q∇α0

k “ 0 ;

Bt pαkEkq px, t “ 0q “ 0 .

(173)

Thus the flow will remain steady if:
`

P0 ´ ΠIpW 0q
˘

∇α0
l “ 0 (174)

whatever the initial profile of α0
l is, or in other words:

ΠIpW 0q “ P0 (175)

This will be called the Realizable Interfacial Pressure (RIP) condition.

Appendix 7: Behaviour of the fractional step and coupled approaches
when

τP
τT

tends to zero

In this Appendix, the temperature relaxation time scale is set to: τT “ 10´3s. Figures 25, 26, 27 show the
L1 norm of the error on the pressure Pl, at t “ 0.001s in case 1 (see Appendix 1 for details on initial data
and EOS coefficients). Figure 27 highlights that the ratio of errors between the two methods, for a given
time step, is greater than 100, within a very wide range of time steps. This ratio of errors decreases when
τP
τT

“ 1, see Figure 25, but it is still in favour of the coupled approach.
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Figure 25: Convergence curve in case 1 with
τP
τT

“ 1.
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Figure 26: Convergence curve in case 1 with
τP
τT

“ 10´4.
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Figure 27: Convergence curve in case 1 with
τP
τT

“ 10´6.

Appendix 8: Chauvin experiment [12] simulated with rigid particles.
Here, Chauvin experiment [12] is simulated with rigid particles assuming constant interfacial area, associated
with constant particle diameter: Dd “ 500µm. The initial conditions and thermodynamic coefficients are
recalled in Appendix 1. The relaxation time scales are the same as those used in section 2.1.3.

We recall that for collapsible droplets, as in the experiment, a pressure drop occurs right after the incident
shock wave, as expected when droplet atomization arises, see [31]. The simulation captures this phenomenon
quite well, see Figure 10.
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On the other hand, Figure 28 shows that with rigid particles, the simulation exhibits a slow increase of the
total pressure after the incident shock wave. Similar results have already been exhibited in [11] and [6].

0 0,002 0,004 0,006 0,008 0,01

Time (s)

0

1e+05

2e+05

3e+05

4e+05

5e+05

P
re

ss
u
re

 (
P

a
)

P
mix

Figure 28: Chauvin experiment [12] with rigid particles of diameter Dd “ 500µm. Evolution of Pmix at
station 3 using a 10 000 cells mesh and the coupled algorithm.
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