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A B S T R A C T   

The Faidherbia tree (Faidherbia albida) is frequently used as an intercrop in Sahelian agroforestry parklands due 
to its multi-purpose advantages and reverse phenology. However, its effect upon the water balance remains 
unclear, due to the challenges in directly measuring water fluxes in the underlying vadose zone. Mechanistic 
hydrological models can be inversely calibrated on transient observations and used to partition different hy
drological components, but the computational burden of the analysis can become impractical if the model itself is 
computationally expensive. To overcome this limitation, and to provide novel insights into the hydrological role 
of Faidherbia, we combine a low-fidelity, one-dimensional hydrological model (HYDRUS-1D) with a kriging- 
based correction function to emulate the response of a high-fidelity, two-dimensional axisymmetric descrip
tion of the system (HYDRUS-2D). Multiannual measurements of soil moisture and sap flow in a Senegal agro
forestry parkland are used in conjunction with Bayesian inference to calibrate the resulting validated 
multifidelity surrogate, and to inversely estimate soil hydraulic and root water uptake parameters. Results show 
that the model can reproduce observations with good accuracy and limited uncertainty for both the calibration 
and the validation phases, and also confirm the phreatophytic behaviour of Faidherbia by indicating the exis
tence of a moderately compensated root water uptake. Moreover, a local sensitivity analysis suggests that a fully 
compensated uptake could potentially reduce groundwater recharge by 13%. Interestingly, estimated soil hy
draulic parameters hint at the possibility of root-induced changes in soil hydraulic properties that mimic pref
erential and/or macropore flow, resulting in sustained recharge fluxes (≈ 26% of the annual precipitation). The 
analysis indicates that overall, Faidherbia could have a net positive effect upon the water balance in arid areas.   

1. Introduction 

Arid and semi-arid regions cover>40% of the Earth’s land area 
(Koutroulis, 2019), and host about 3 billion people worldwide (Van der 
Esch et al., 2017). These regions are home to unique biodiversity and 
rich cultural heritages (Maestre et al., 2015), and provide essential 
ecosystem services (Bidak et al., 2015; N. Lu et al., 2018). However, the 
sustainable development of these areas may be seriously jeopardized by 

ecological issues that accrue from scarcity of water resources (e.g., lack 
of surface water, and low amounts of precipitation) (Kuriqi et al., 2019). 
In Sub-Saharan Africa (SSA), arid regions are predicted to expand due to 
climate change (Feng & Fu, 2013). The resulting combination of high 
temperatures, extremely variable rainfall, low soil fertility, and recur
rent but unpredictable droughts will threaten agriculture and food 
production. In addition, the rapid growth of megacities increases 
competition for water resources (Cherlet et al., 2018). Because the 
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region lacks perennial surface water, groundwater is often the only 
source for meeting urban, industrial, and agricultural needs (Lapworth 
et al., 2017; MacDonald et al., 2012). Therefore, optimal use of 
groundwater is crucial for SSA’s development—including the region’s 
rural economies (FAO, 1999). 

Optimizing that use requires an understanding of the hydrological 
impact of the region’s agricultural practices. One such practice is 
agroforestry parklands, which are widespread because of their eco
nomic, social, and environmental benefits (Mbow et al., 2014). In the 
agroforestry parklands of Senegal, pearl millet and groundnut are often 
the major crops. However, the parklands’ impact upon water balance is 
still unclear. Jackson et al. (2005) suggest that transpiration by the 
parklands’ large, intercropped trees is detrimental to that balance, but 
other studies show that the trees’ roots increase groundwater recharge 
by altering soil hydraulic properties (Bargués Tobella et al., 2014; Ilstedt 
et al., 2016). The intercropped tree species Faidherbia albida (Del.) A. 
Chev. (syn. Acacia albida Del.) is investigated extensively in the agri
cultural and ecological literature (Barnes & Fagg, 2003). Its uncommon 
reverse phenology (shedding all of its leaves at the beginning of the 
rainy season (Wickens, 1969)) benefits the major crops by providing a 
significant nitrogen input to the topsoil at the growing season. A further 
benefit for the major crops is that the leafless tree canopies intercept less 
light and rainfall (Rhoades, 1995). 

Because of these benefits, much effort has been devoted to under
standing the “Faidherbia effect” upon ecosystem services and crops 
(Louppe et al., 1996; Tschakert et al., 2004; Roupsard et al., 2020; 
Leroux et al., 2020; Faye et al., 2021; T. Lu et al., 2022; Dierks et al., 
2022). To understand how Faidherbia’s sustains its peculiar reverse 
phenology in an arid region, Roupsard et al. (1999) studied the species’ 
sap flows and water potentials, and the isotopic compositions of relevant 
water fractions. The results showed that Faidherbia obtains most of its 
water from the groundwater, thus enabling this species to grow during 
the dry season with little indication of drought stress. However, Faid
herbia’s hydrological impact remains poorly understood despite all of 
this scientific effort. The main difficulty lies in measuring water fluxes in 
the vadose zone beneath the trees. These fluxes can be inferred from 
other measurements, but the results frequently fail to tie together all 
components of the hydrological balance coherently. 

An additional challenge to understanding these fluxes is the multi
dimensional morphological complexity of the tree roots’ spatial distri
bution. A comprehensive theoretical framework for reproducing that 
complexity is offered by mechanistic vadose-zone hydrological models 
such as HYDRUS or SWAP (van Dam et al., 2008; Šimůnek et al., 2016). 
These models can discriminate the different water-balance components, 
but to do so, the models must describe the system’s hydrologic func
tioning satisfactorily. Satisfactory descriptions can be generally ach
ieved by combining data from multiple transient observations (e.g., 
transpiration rates and volumetric water content) with specific numer
ical techniques (e.g., Bayesian inference and optimization strategies) to 
calibrate and validate the model, and therefore to assess its predictive 
uncertainty (Brunetti et al., 2019a; Vrugt et al., 2008; Wöhling and 
Vrugt, 2011). Once the model is calibrated, it can be used to probabi
listically separate all hydrological components (e.g., recharge and 
evapotranspiration fluxes), and to discern the effects of physical factors 
such as roots and soil. 

At present, this type of approach presents multiple general and case- 
specific challenges. One of these challenges is that the calibration pro
cedure requires thousands of model executions in order to assess the 
models’ uncertainties. The computational burden of that assessment can 
easily become prohibitive if the model itself is computationally expen
sive. Modelling of fluxes in the soil-tree domain is especially susceptible 
to this problem because the above-mentioned morphological complexity 
of root systems requires a numerical model that is at least 2D axisym
metric (i.e., that has cylindrical symmetry). (See, for example, Deb et al., 
2013). Supercomputers or distributed computing clusters might be able 
to handle the job, but are not widely available. An appealing alternative 

is to reduce the computational workload by using surrogate-based 
models in place of the complex original high-fidelity model (Razavi 
et al., 2012). When used for calibration purposes, surrogate modelling 
frequently aims to build an emulator that can calculate the objective 
function (or the likelihood) for different input parameters as if the 
function were being computed using the original high-fidelity model (e. 
g., a 2D axisymmetric one). Because the emulator can do the calculations 
in much less time, the calibration procedure is made feasible (Brunetti 
et al., 2017). 

A diversity of water-related studies have used so-called “response- 
surface surrogates” successfully; including kriging, radial basis func
tions, and polynomial chaos expansion (Asher et al., 2015; Keating et al., 
2010; Laloy et al., 2013; Razavi et al., 2012; Zeng et al., 2018; X. Zhang 
et al., 2009). However, when the dimensionality of the inverse problem 
is moderately high (e.g., >10), the necessary training of these surrogates 
requires an impractically high number of executions of the high-fidelity 
model in order to achieve a good coverage of the parameters space 
(O’Hagan, 2006). A possible remedy is to use low-fidelity, physically 
based surrogates, which are essentially cheaper-to-run approximations 
of the original complex models. For example, the surrogate model can be 
1D instead of 2D (Razavi et al., 2012). When the surrogate uses the same 
theoretical framework and parameters as the high-fidelity model, the 
discrepancy between their respective response surfaces is expected to be 
limited. This discrepancy can be corrected by using an appropriate 
function that relates the responses of the low- and high-fidelity models. 
The so-called multifidelity approach develops the necessary correction 
function by using response-surface surrogates, which is generally easier 
to reconstruct because the low-fidelity response surface is supposedly a 
good approximation to the high-fidelity one. By thus reducing compu
tational cost while mimicking the output of a high-fidelity forward 
model simulation, multifidelity surrogate analysis makes itself highly 
attractive for calibrating vadose zone hydrological models. 

Few studies to date have calibrated vadose zone hydrological models 
via this approach (Man et al., 2018, 2021; Zheng et al., 2019). Therefore, 
the present study uses it to efficiently calibrate and validate a high- 
fidelity, two-dimensional axisymmetric HYDRUS model of the vadose 
zone underlying a Faidherbia tree in an agroforestry parkland in 
Senegal. The data used in the validation are from multiannual 
comprehensive measurements of sap flows, and of volumetric water 
contents at different depths. The validated multifidelity surrogate 
merges HYDRUS-1D and a kriging-based correction function to emulate 
the response of HYDRUS-2D. The surrogate is coupled with a Monte 
Carlo Markov Chain (MCMC) algorithm to inversely estimate soil hy
draulic and root water uptake parameters, and to assess the model’s 
predictive uncertainty. Parameters that were estimated via the surrogate 
are then transferred into the high-fidelity HYDRUS-2D model for vali
dation purposes. Then, the validated HYDRUS-2D model is used to 
discriminate the different water fluxes; explain their interrelations; and 
assess their effects upon the hydrological balance. The realistic appli
cation of a multifidelity surrogate-based approach to calibrate a hy
drological model of the vadose zone is a novel contribution in this field. 
The results can be valuable for a better understanding of water balances 
in agroforestry parklands in arid areas. 

2. Materials and methods 

2.1. Case study description and data analysis 

The study area is part of the “Faidherbia-Flux“ (FLUXNET/SN-Nkr) 
collaborative platform (https://lped.info/wikiObsSN/?Faidhe 
rbia-Flux), located in the agroforestry parkland of Sob village (135 km 
from Dakar) within the Senegal Groundnut basin (Roupsard et al., 
2020). Soils are predominantly sandy, of a type known locally as “Dior 
soil” (loamy sand or Arenosols according to the USDA and FAO). The 
tree-based cropping system is dominated by Faidherbia albida, planted 
at a density of 13 trees ha− 1. Canopy cover is 9.6% in the main, 1-ha 
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instrumented plot. The annual crop rotation includes rainfed millet and 
groundnut. Climate is of Soudano-Sahelian type, with a four-month 
rainy season from late June to early October, and a long dry period 
for the rest of the year. The average temperature is 29.8 ◦C; reference 
evapotranspiration (ET0) is 1500 mm y-1; and long-term average rainfall 
is around 600 mm y-1. The top unconfined aquifer is a Continental 
Terminal (CT) formation (Oligo-Miocene to Pliocene), with a shallow 
brackish water 4.5–6.0 m below the ground surface. This aquifer over
lies an impervious Eocene marl-limestone bedrock at a depth of around 
40 m. 

The data that the authors used to design this research work and to 
validate the resulting model were collected during an intensive, three- 
year field experiment (from 2019 to 2021). Meteorological data were 
provided by an automatic station (CR1000, Campbell Sci.) equipped 
with classical automatic sensors that made measurements every 30 sec, 
and averaged them to every 30 min. Measured parameters included 
rainfall events (TE25MM); air temperature and relative humidity at 2 m 
above the ground (CS215); and wind speed at 4.5 m above ground level 
(Wind Master sonic anemometer (Gill Instruments, Lymington, UK). 
Wind speeds at 2 m were then estimated. ET0 was computed according 
to the FAO-56 Penman-Monteith equation (Allen, 1998). 

To estimate the amount of water used by Faidherbia trees, we 
neglected water storage, and assumed that the water use was equal to 
the transpiration, which was estimated from sap flows. These flows had 
been measured during 2019–2021 via the single-probe, transient-ther
mal-dissipation method (Do et al., 2011), with a cyclical heating of 600 
sec every 30 min. The total sap flow [LT− 1] was calculated for each tree, 
and averaged between trees to yield a mean flow for an average tree of 

the stand. The 2019–2021 experiments also monitored the Leaf Area 
Indices (LAIs) of 15 Faidherbia trees, including the four whose sap flows 
were being measured. The LAIs were measured every 10 days, using a 
LAI2200 device (Li-Cor, USA) to measure transmittances. 

During 2019–2021, volumetric soil–water contents were measured 
in shaded areas (under tree canopies) at depths of 20, 40, 60, 80, 120, 
140, 160, 180, 280, and 380 cm. These data were recorded using 
automated time-domain reflectometers (TDR, type CS655 Campbell), 
which were installed horizontally in a well that was dug close to the tree. 
The TDRs installed at a depth − 180 < z ≤ 0 cm were locally calibrated 
with data on gravimetric water contents and bulk densities. The cali
bration procedure is explained in details in the Supplementary Material. 
In contrast, TDR sensors installed at a depth z < -180 cm used the factory 
calibration curve, which leads to an accuracy of ± 3%. Levels of the 
groundwater table were continuously recorded from August of 2019 by 
using pressure sensors (Rugged TROLL 100, coupled with Baro-TROLL 
100 for barometric compensation, In-Situ, USA). The sensors were 
emplaced in a piezometer close to the locations of the above-mentioned 
TDRs. Missing data were gap-filled via cubic interpolation. A linear 
interpolation was used to extrapolate data back to January 2019, based 
upon dry-season recession curves. 

Soil profiles were sampled at different depth intervals to analyse for 
dry bulk density and soil texture (percentages of sand, silt, and clay). 
Textural analyses were performed at the Institute of Soil Physics and 
Rural Water Management, University of Natural Resources and Life 
Sciences, Vienna. The sand fractions were determined by sieving; silt 
and clay fractions were determined via sedimentation. The analyses 
revealed that in the 0–100 cm depth interval, the texture was loamy 

Fig. 1. Boundary conditions used for the following quantities during the three phases of modelling: (A) rainfall (P); (B) potential soil evaporation (Ep); potential crop 
transpiration (Sp crop); potential tree transpiration (Sp tree); tree leaf area index (LAI tree); (C) groundwater level (GWL); and depth below the ground surface (bgs). The 
three phases and their respective time intervals are: spin-up (from 01 to 01-2019 to 10–04-2019), calibration (from 11 to 04-2019 to 30–06-2020), and validation 
(from 01 to 07-2020 to 31–12-2021). 
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sand, with an average bulk density of 1.7 g cm− 3. The clay percentage 
was uniform at about 2.2%, but the sand percentage decreased from 
85.4% at the soil surface to 77.8 % at 60 cm. In contrast, the soil from 
100 down to 500 cm had a sandy-loam texture. Contents of clay 
(2.9–5.5%) and silt (29.3–34.7%) were higher than in the 0–100 cm 
layer, but the sand content was lower (67.8–59.8%). 

Densities of tree root lengths were characterized underneath tree 
canopies and far from them, per. For this purpose, those authors exca
vated 1-m-square sampling pits to a depth of 1.5 m. Results showed that 
about 62% of Faidherbia’s fine roots were distributed within the deep 
soil layer (100–150 cm), versus 35% in the 30–100-layer depth, and only 
3% in the upper layer (0–30 cm). Interestingly, root densities in the 
50–100 cm depth interval were significantly higher outside of the can
opy. Although no root-density data for depths > 150 cm were investi
gated via excavation, field observations that were made during 
installation of TDRs indicate that Faidherbia roots extend far into the 
deep layer and the capillary fringe. This agrees with what reported in 
Roupsard et al. (1999). 

Because we would use the above-described data set (i.e., from all of 
the 2019–2021 observations) to perform a multifidelity surrogate 
analysis, we partitioned that data into three chronological groups (one 
for each phase of the modelling): spin-up (from 01 to 01-2019 to 10–04- 
2019); calibration (11–04-2019 to 30–06-2020); and validation (01–07- 
2020 to 31–12-2021) (Fig. 1). 

2.2. Modelling theory 

2.2.1. Water flow 
The variably saturated water flow in a 2D axisymmetric domain is 

described by the following Richards equation: 

∂θ(h)
∂t

=
1
r

∂
∂r

[

rK(h)
∂h
∂r

]

+
∂
∂z

[

K(h)
(

∂h
∂z

+ 1
)]

− Sa(h) (1) 

where θ is the volumetric water content [L3L-3]; h is the pressure 
head [L]; t is time [T], r is the radial space coordinate [L]; z is the vertical 
coordinate [L]; K is the unsaturated hydraulic conductivity [LT− 1]; and 
Sa(h) is a sink term [L3L-3T− 1], defined as a volume of water removed 
from a unit volume of soil per unit of time, due to plant water uptake. By 
setting r = 0, eq. (1) reduces to the one-dimensional Richards equation. 
Soil hydraulic properties are parameterized via the unimodal van 
Genuchten-Mualem (Mualem, 1976; van Genuchten, 1980) (VGM) 
model, as follows: 

θ =

⎧
⎪⎨

⎪⎩

θs − θr

(1 + (α|h|)n
)

m + θr if h ≤ 0

θs if h > 0
(2)  

Θ =
θ − θr

θs − θr
(3)  

K =

⎧
⎨

⎩

KsΘL
[(

1 − (1 − Θ1
m)

m
]2

if h ≤ 0

Ksif h > 0
(4)  

m = 1 −
1
n

(5) 

where θr [L3L-3] is the residual soil water content; θs [L3L-3] is the 
saturated soil water content, Ks [LT− 1] is the saturated hydraulic con
ductivity; α [L-1] and n [-] are empirical shape parameters; L indicates 
the tortuosity [-], which is frequently assumed equal to 0.5 (Mualem, 
1976); and Θ is the effective saturation [-]. 

Compensated Root Water Uptake and Soil Water Evaporation. 
The reference evapotranspiration demand is partitioned into poten

tial transpiration (Sp) and potential soil water evaporation (Ep) using the 
measured LAI (Brunetti et al., 2019b; Ritchie, 1972; Sutanto et al., 
2012). The following equation converts Sp to actual transpiration, Sa: 

Sa(h)
Sp

=
1
Sp

∫

R
Sa(h, x, y, z)dxdydz =

∫

R
a(h, x, y, z)b(x, y, z)dxdydz = ω (6) 

where Sa(h,x,y,z) is actual root water uptake [L3L-3T− 1]; a(h,x,y,z) is 
a dimensionless water-stress response function; b(x,y,z) is a dimen
sionless root-density distribution function; and ω is a dimensionless 
water-stress index. Eq. (6) describes root water uptake for a general 
three-dimensional problem, but can be easily particularized for 1D 
vertical and 2D axisymmetric domains. Because this study models the 
hydrological effects of two vegetation species (i.e., Faidherbia and 
groundnut-millet), their effects are distinguished in the model by first 
specifying the root density and the potential transpiration rate for each 
vegetation (using the time series of LAI), and by then using eq. (6) to 
calculate their respective actual root water uptakes. Their sum of the 
two uptakes constitutes the actual sink term in eq. (1). 

Based upon results from isotope methods, Roupsard et al. (1999) 
suggested that Faidherbia behaves mostly as a phreatophyte, but alter
natively uses all root compartments along the vadose-zone profile. To 
account for this effect, the two models incorporate a dimensionless root 
adaptability factor, ωc (which modulates the index ω that is presented in 
eq. (6)). ωc is a threshold value above which any reduction in root water 
uptake that occurs in stressed parts of the root zone is fully compensated 
by an increased uptake from unstressed parts. The range of values for ωc 
is 0 ≤ ωc ≤ 1. Root water uptake is not compensated when ωc = 1, but is 
fully compensated when ωc = 0. For a detailed explanation, please see 
Šimůnek and Hopmans (2009). 

The root water stress response (a, in eq. (6)) depends upon the soil 
pressure head h. To model this stress, we used Skaggs et al.’s (2006b) 
smooth, s-shaped function: 

a(h) =
1

1 +
(

h
h50

)p (7) 

where h50 is the pressure head value at which the root water uptake 
is reduced by 50% [L], and p is a dimensionless empirical shape 
parameter. The a value ranges from 0 to 1. Because actual root water 
uptake depends upon root density, the models include a spatially explicit 
root-density function (b(x,y,z) in eq. (6)). This function modulates the 
uptake at each mesh node in the soil-domain models, and is based on the 
formulation proposed by Vrugt et al. (2001). Both models neglect the 
effect of salinity upon root water uptake, because no comprehensive 
measurements from the area of study are available to characterize solute 
distribution in the soil domain. 

Potential soil water evaporation (Ep) is converted to actual evapo
ration (Ea.) as long as the surface is sufficiently moist and the pressure 
head at the soil surface doesn’t exceed the minimum allowed pressure 
head hCrit [L]. This value (hCrit) is estimated from the relative humidity 
and air temperature. However, to avoid numerical-convergence issues 
when solving the Richards equation, the models restrict values of hCrit 
such that the corresponding soil water contents are at least 0.005 higher 
than the residual water content θr [L3L-3]. 

2.3. Model calibration and uncertainty assessment 

2.3.1. Inverse estimation of soil hydraulic and root water uptake 
parameters 

The Richards equation and the root water uptake equations [i.e., eq. 
(1) and (6)] include several parameters that must be defined. In the 
present study, we fixed the values of some of these parameters, and 
calibrated the others based upon the volumetric water content and sap 
flow observations from 2019 to 2021. Specifically, the residual water 
content, θr, is set to 0 for all soil horizons because the soil is mainly sandy 
(Brunetti et al., 2020). The tortuosity factor, L, is set to the common 
value of 0.5 (van Genuchten, 1980). For groundnut-millet, the root 
water uptake parameters h50 and p are set equal to − 800 cm and 3, 
respectively. These values provide a good approximation to the 
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piecewise linear Feddes function used by Diongue et al. (2022b) to 
describe the actual root water uptake of groundnut-millet. By using 
these assumptions, only 15 model parameters needed to be calibrated, 
including the saturated water content, θs, the VGM shape parameters, α 
and n, the saturated hydraulic conductivity, Ks, for three soil horizons; 
the root adaptability factor, ωc; and root water uptake parameters, h50 
and p. 

2.3.2. Bayesian inference 
The Bayesian inference is used to inversely estimate soil hydraulic 

and root water uptake parameters and to therefore assess their uncer
tainty. The definition of a parameters’ prior distribution and a likelihood 
function are required to infer the parameters posterior distribution. The 
prior distribution is set to be bounded uniform for all parameters. Upper 
and lower bounds (Table 1) are chosen based on the prior information 
available regarding the soil textural composition, followed by a 
comprehensive literature review. 

Selection of the likelihood functions took into consideration the 
types of observations that are included in the Bayesian framework, and 
the characteristics of each observation’s measurement errors. To a large 
degree, those observations consisted of soil-moisture measurements. 
Because the final, calibrated model is intended to reproduce the deter
ministic part of each observed signal, the error model for each mea
surement should approximate the properties of the measurement’s 
remaining stochastic part. That part depends upon the measurement 
device. The TDR CS655 that was used to measure soil moisture during 
the 2019–2021 field study determines the velocity of electromagnetic 
pulses as they traverse a wave-guide that is inserted into the soil. The 
pulses are independent of each other, thereby excluding the possibility 
of autocorrelation in the measurements’ errors. Moreover, the proced
ure that was used for calibrating the TDR CS655 in the upper soil layers 
led to Gaussian homoscedastic residuals (Caldwell et al., 2018) with σ =
0.015 (Supplementary Material). 

For these reasons, we assumed that the error residuals are uncorre
lated and normally distributed, with constant variance, σ2. Those as
sumptions lead to the following form for the log-likelihood function 
ℓ(u): 

ℓ(u) = −
k
2

ln(2π) − k
2

ln
(
σ2) −

1
2σ2

∑k

i=1

(

yi(u) − ỹi

)2

(8) 

where k is the number of observations, yi(u) and ỹi(u) are the ith 

model realization and its corresponding measured value, respectively. It 
is worth noting that although other forms of the likelihood function [e. 
g., first-order autoregressive (Wöhling & Vrugt, 2011)] might improve 
the quality of the model’s fitting, they could also compromise the ob
jectivity of subsequent assessments of the model’s adequacy. For that 
reason, we opted to use a traditional, measurement-motivated Gaussian 
likelihood function, followed by model predictive checks for both the 
calibration and validation period to discuss the model adequacy. 

Because the calibration procedure includes sap flows, and locally and 
factory calibrated TDR measurements, the final log-likelihood function L 
(u) is the aggregated sum of single log-likelihoods for each jth mea
surements set: 

L(u) =
∑3

j=1
ℓj(u) (9) 

σ are assumed equal to 0.01 cm/day for the sap flow, 0.015 and 0.03 
(-) for the locally (i.e., − 180 < z ≤ 0 cm) and factory (i.e., z < -180 cm) 
calibrated volumetric water contents, respectively. 

Having selected the prior distribution and likelihood function for 
each of the 15 parameters, we then used a hybrid Monte Carlo Markov 
Chain (MCMC) ensemble sampler to estimate the parameters’ posterior 
distributions. The algorithm combines the differential evolution snooker 
move developed by Ter Braak and Vrugt (2008) with the affine-invariant 
stretch move proposed by Goodman and Weare (2010). To improve the 
algorithm convergence, chains were initialized by random sampling 
from a multivariate normal distribution that is centred upon the global 
optimum, xopt. This optimum was identified via the Gradient-based 
Comprehensive Learning Particle Swarm Optimization (G-CLPSO) that 
Brunetti et al. (2022) developed for the HYDRUS model. The main 
diagnostic for monitoring the convergence of the MCMC sampler was 
the Integrated Autocorrelation Time (IAT), which is the number of steps 
(ensemble moves) required for the chain to produce independent sam
ples from the true parameter’s posterior distribution. After convergence, 
the Python package ArViz (Kumar et al., 2016) is used to calculate 
further diagnostic metrics, such as the High-Density Intervals (HDIs) and 
the effective sample size. Further details about MCMC sampling and 
convergence assessment are reported in the Supplementary Material. 

Table 1 
Calibrated model parameters and their prior bounds; calculated means; 3%, and 97% High-Density Intervals (HDIs); and the ESS of the parameters’ posterior dis
tributions from the Bayesian analysis.  

Parameter† Parameter description Parameter bounds Posterior distribution Effective Sample Size 
HDI 3% Mean HDI 97% 

Soil layer (1): 0 ≤ z ≤ -100 cm 
θs1 [cm3cm− 3] Saturated water content (0.2, 0.5) 0.35 0.45 0.49 780 

α1 [cm− 1] VGM shape parameter (0.001, 0.3) 0.01 0.013 0.02 459 
n1 [-] VGM shape parameter (1.1, 5) 2.2 2.5 2.7 621 

Ks1 [cm day− 1] Saturated hydraulic conductivity (100, 10,000) 200 750 1,500 543 
Soil layer (2): − 100 < z ≤ -200 cm 

θs2 [cm3cm− 3] Saturated water content (0.2, 0.5) 0.21 0.24 0.3 578 
α2 [cm− 1] VGM shape parameter (0.001, 0.3) 0.01 0.014 0.025 710 

n2 [-] VGM shape parameter (1.1, 5) 1.8 2.05 2.1 756 
Ks2 [cm day− 1] Saturated hydraulic conductivity (100, 10,000) 700 1,500 1,900 480 

Soil layer (3): − 200 < z ≤ -600 cm 
θs3 [cm3cm− 3] Saturated water content (0.2, 0.5) 0.24 0.31 0.47 865 

α3 [cm− 1] VGM shape parameter (0.001, 0.3) 0.04 0.065 0.09 761 
n3 [-] VGM shape parameter (1.1, 5) 1.35 1.43 1.6 672 

Ks3 [cm day− 1] Saturated hydraulic conductivity (100, 10,000) 500 1,300 1,900 501 
Roots 

h50 (cm) S-shaped function’s parameter (-50, − 800) − 140.1 − 71.8 − 54.5 497 
p (-) S-shaped function’s exponent (1.01, 4) 1.1 1.3 1.6 598 

ωc (-) Roots adaptability factor (0, 1) 0.31 0.39 0.48 731  

†The subscripts 1, 2, and 3 indicate the first, second, and third soil horizons, respectively. 
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2.4. Multifidelity surrogate analysis 

2.4.1. The multifidelity approach 
A schematic of the multifidelity modelling approach is shown in 

Fig. 2. As noted above, this study sought to produce both a high-fidelity 
model and a cheap-to-run low-fidelity model. Because our purpose was to 

elucidate the hydrological role of an intercropped Faidherbia tree in the 
underlying vadose zone, our high-fidelity model was designed to (1) 
reproduce field-scale observations, and (2) describe variably saturated 
water flows and root-water uptakes of crops as well as the tree. To 
overcome the lack of detailed information about root distribution, 
crown morphology, and soil heterogeneity, the high-fidelity model 

Fig. 2. A schematic of the modelling approach. The framework combines a low-fidelity cheap-to-run 1D model with a kriging-based correction function to 
approximate the log-likelihood function computed using a high-fidelity 2D axisymmetric model. The approximated log-likelihood is then used in conjunction with a 
Monte Carlo Markov Chain algorithm to inversely estimate soil hydraulic and root water uptake parameters, and quantify their uncertainty. Estimated parameters are 
then used in the high-fidelity 2D model for validation purposes and model exploitation. 

Fig. 3. Schematic of the high-fidelity axisymmetric 2D model (A) and low-fidelity 1D vertical model (B), showing also the approximate position of the naturally 
fluctuating water table, the position of soil moisture sensors and sap-flow meter, and the approximate distribution of roots for crops and the tree. The tree’s root 
distribution extends beyond the dripline area; its density increases with depth until the capillary fringe. 
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assumes that these aspects of the tree-soil domain are two-dimensionally 
axisymmetric. Deb et al., (2013) showed that this assumption is effective 
and accurate. The resulting pseudo-3D discretization uses a dense 2D 
finite-element mesh, and allows the modeler to infer the spatial vari
ability of water fluxes and root-water uptake [(A) in Fig. 3]. 

In contrast, the low-fidelity model conceptualizes processes in the 
soil-tree domain as strictly one-dimensional [(B) in Fig. 3]. This strong 
simplification of the domain’s spatial variability reduces computing 
time, but risks biasing the calibration procedure. The present study 
mitigates this issue (at least partially) in two ways. We start by using the 
same theoretical framework for both models (high- and low-fidelity). 
Then, we correct the response of the low-fidelity model by using a 
multifidelity surrogate approach with an embedded response-surface 
emulator. In this way, it is possible to maximize the computational ef
ficiency while maintaining the theoretical accuracy of the high-fidelity 
model. 

To reduce the computational cost of the Bayesian analysis, the 
multifidelity approach that is used here combines the computationally 
efficient, low-fidelity 1D vertical model [(B) in Fig. 3 and Fig. 4] with an 
additive correction function to approximate the response of the 
computationally intensive high-fidelity, 2D axisymmetric model [(A) in 
Fig. 3 and Fig. 4] (Gano et al., 2006; Leary et al., 2003; Viana et al., 
2009; Wu et al., 2020; J. Zhang et al., 2018). Specifically, the aggregated 
log-likelihood obtained from the high-fidelity model, Lh (u), is approx
imated by adding a correction function, g(u), to the aggregated log- 
likelihood that is calculated via the low-fidelity model, Ll (u): 

Lh(u) = Ll(u)+ g(u) (10) 

Because the exact form of g(u) is unknown, an approximation to it is 
built by using a Gaussian process that is based on the kriging technique, 
which is trained on a relatively low number of high- and low-fidelity 
model executions. Kriging, belonging to the class of Gaussian process 
emulators (Rasmussen & Williams, 2006; Sacks et al., 1989), combines a 
polynomial model with a localized deviation model that is based upon a 
spatial correlation of samples: 

g(u) = f (u)+ Z(u) (11) 

where f(u) is a function that approximates the response surface 
through a set of points in the parameters’ space. The vector Z(u) is the 

result of a stochastic process with zero mean and nonzero covariance. 
The parameters in Z(u) are optimized. For the sake of brevity, mathe
matical details about kriging are not reported here. Thorough theoret
ical descriptions of using the kriging method for surrogate analysis are 
given in Forrester et al. (2008) and Kennedy and O’Hagan (2001). 

2.4.2. Training and validation of the multifidelity surrogate 
The preliminary training and validation phases verify the capability 

of the surrogate to accurately reproduce the response of the high-fidelity 
model. The training/validation procedure is iterative, as described 
below: 

The Latin hypercube sampling generates a set of parameters (McKay 
et al., 1979), which is used to initially train the kriging-based correction 
function. The training sample size, s, is set based on the relation pro
posed by Jones et al. (1998) [eq. (12)]: 

s = 10D (12) 

where D is the dimensionality of the parameters’ space, equal to 15 
in the present study, thus leading to a total of 150 initial training sites. A 
for loop is used to iterate through the training samples, and calculate the 
aggregated log-likelihood [i.e., eq. (9)] for both the high and low- 
fidelity models and for each parameters’ set. 

The training set is used to optimize hyperparameters of the kriging- 
based correction function, and obtain a first multifidelity surrogate. The 
surrogate is combined with the MCMC to estimate a first approximation 
of the parameters posterior distribution. 

The final position of the chains (i.e., 100 solutions) is used to 
calculate the aggregated log-likelihood for both the original high- 
fidelity 2D model and the multifidelity surrogate. 

A dimensionless error metric, E, compares the response of the orig
inal model and the multifidelity surrogate: 

E =

∑K
i=1

⃒
⃒
⃒L(u)high− fidelity − L(u)multifidelity

⃒
⃒
⃒

∑K
i=1

⃒
⃒
⃒L(u)high− fidelity

⃒
⃒
⃒

(13) 

If the error metric is lower than 1%, it is assumed that the surrogate 
well approximates the response of the original model in high-likelihood 
regions and the validation is successful. 

If the error metric is higher than 1%, the posterior solutions are 

Fig. 4. Schematic of the distribution of boundary conditions for the high-fidelity axisymmetric 2D model (A) and the low-fidelity 1D vertical low-fidelity model (B). 
The main differences are that: (1) the spatial root distribution is simplified in 1D by assuming a linear increase with depth, and (2) the entire soil surface in 1D is 
assumed to be within the dripline. 
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added to training set and the process restarts from step 2. 
By iteratively adding posterior solutions to the training set (active 

learning) (Zhang et al., 2020), the training procedure guarantees that the 
surrogate well approximates high-likelihood areas in the parameters’ 

space. This, together with the initial well-spaced Latin hypercube sam
ple, assures an efficient coverage of the parameters’ space. 

Fig. 5. Diagnostic plot of the MCMC algorithm, showing: (A) the average (blue solid line) and the standard deviation band of the integrated autocorrelation times 
(grey band) as a function of the number of algorithm steps. The black dashed line in (A) corresponds to the convergence threshold value of 20 IAT. (B) and (C) show 
the position of the chains in the ensemble as a function of the number of algorithm steps for the parameters α1 and ωc, respectively (each colour indicates individual 
runs). (A) shows that IAT is reaching its true value asymptotically, and that the length of the chains has reached the threshold value of 20 IAT. (B) and (C) com
plement that information by highlighting the good mixing in the ensemble and the absence of any significant trend, as confirmed by the IAT analysis. 

Fig. 6. Model calibration: a comparison be
tween the model predictive uncertainty 
bands (blue and green areas); the mean 
posterior solution (solid lines); and measured 
values (grey circles) for sap flow (Sa) and 
volumetric water contents (θ) at eight 
different depths. Predictive bands and the 
mean posterior solution were obtained by 
propagating the calculated High-Density In
terval and mean solutions (Table 1), respec
tively, into the high-fidelity axisymmetric 
HYDRUS-2D model. The hatched areas indi
cate the model spin-up period, while the grey 
bands represent the sensor accuracy. Each 
plot shows the RMSE that was calculated 
from the mean soil hydraulic and root water 
uptake parameters, as taken from the pa
rameter’s posterior distributions (Table 1).   
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2.4.3. Model setup and boundary conditions 
The previously described equations for water flow and root water 

uptake were solved using the finite-element model, HYDRUS (Šimůnek 
et al., 2016). More specifically, we used a non-standard version of 
HYDRUS model that can simulate root water uptake from two plant 
species (Faidherbia and crop rotation of groundnut and pearl millet) in 
2D. The high-fidelity, axisymmetric 2D domain is discretized into 4,000 
2D triangular elements, and the low-fidelity 1D vertical domains is 
discretized into 200 1D finite elements. Both models use a finer mesh 
near the soil surface in order to provide accurate simulations of pressure- 
head gradients that are induced by atmospheric conditions. Based upon 
preliminary soil-texture information, both models discretize the vadose 
zone profile into three separate soil horizons: (1) an upper soil layer 
from 0 to − 100 cm (i.e., to the 100 cm depth); (2) an intermediate soil 
layer between − 100 and − 200 cm; and (3) a deeper soil layer from − 200 
to − 600 cm. In both models, the spatial distributions of the densities of 
crop and tree roots are constant in time. However, the spatial distribu
tions are more detailed in the high-fidelity model than in the low-fidelity 
one. In particular, the high-fidelity model assumes that Faidherbia roots 
extend beyond the dripline area; that the root density is higher outside of 
the canopy; and that the root density increases with depth until the 
capillary fringe [(A) in Fig. 4] (Roupsard et al., 1999). At any distance 
from the tree, the root density of crops at the surface is assumed to in
crease linearly with depth, down to the maximum rooting depth of 100 
cm. The simpler low-fidelity model, too, assumes that root densities of 
crops increase linearly with depth [(B) in Fig. 4], but also assumes that 
the distribution is the same for all distances from the tree. 

Fig. 4 also shows the distribution of the boundary conditions (BCs) 
for the two models. The atmospheric boundary condition at the soil 
surface includes precipitation, potential soil evaporation, and potential 
transpiration. The pressure head at the soil surface cannot exceed (in 
absolute value) the minimum allowed pressure head, hCrit. No flux is 
allowed through the vertical sides of the transport domain due to sym
metry. Finally, a Dirichlet-type variable head BC is set at the bottom of 
the domain to simulate measured water table fluctuations. 

3. Results and discussion 

3.1. Model calibration 

3.1.1. MCMC diagnostic 
The surrogate training required, in total, 250 runs of the high-fidelity 

axisymmetric HYDRUS-2D model to reduce the surrogate approxima
tion error (E) to 0.94%. The validated multifidelity surrogate was then 
used for the Bayesian inference via the MCMC algorithm, which 
required 4,000 steps, and a total of 400,000 surrogate model evalua
tions, to achieve the IAT convergence threshold [(A) in Fig. 5]. The mean 
acceptance fraction was 0.19, which is considered to be a satisfactory 
value if the posterior distribution is multivariate Gaussian (Gelman 
et al., 2004). The satisfactory performance of the sampler is further 
demonstrated by the good mixing of the chains in the ensemble [(B) and 
(C) in Fig. 5], and is proven statistically by the average ESS value (=637; 
Table 1). 

It must be emphasized that performing 400,000 simulations with the 
high-fidelity axisymmetric HYDRUS-2D model would require approxi
mately 90 days on the available computer (IntelI CITM) i7-8750H CPU 
2.20 GHz, RAM 16 GB). In contrast, only four days were necessary to 
complete the Bayesian analysis with the multifidelity surrogate. 

3.1.2. Model predictive checks 
Fig. 6 shows a comparison between the model predictive uncertainty 

bands (blue and green areas); mean posterior solutions (solid lines); and 
measured values (grey circles) of sap flow (Sa) and volumetric water 
contents (θ) at eight different depths. The predictive bands and the mean 
posterior solutions were obtained by propagating the calculated High- 
Density Intervals (HDIs) and mean solutions, respectively (Table 1), 

into the high-fidelity axisymmetric HYDRUS-2D model. The results 
indicate that the model reproduces, with satisfactory accuracy and low 
predictive uncertainty, both the water distribution in the soil and the 
actual transpiration dynamics during the calibration period. Although 
the deviation between modelled and predicted volumetric water con
tents increases with depth, the error remains limited, as confirmed by 
the root mean square errors (RMSEs) calculated for the mean solution 
from the parameters’ posterior distributions. 

The predicted sap flows exhibit a time-shift error, especially during 
November 2019 and January 2020. Those periods coincide with the end 
of the rainy season and Faidherbia’s re-greening period. The time shift 
can be partially attributed to inconsistencies between the actual sap flow 
and the measured LAI, which the model used to partition evapotrans
piration fluxes. In particular, the underestimation of the actual sap flows 
may be the numerical result of the underestimated LAIs, which in turn 
led the model to predict low potential transpiration fluxes. We also note 
that the macroscopic root water uptake approach used in HYDRUS ap
proximates the actual transpiration process only conceptually. In 
contrast, sap-flow measurements are a good—albeit imper
fect—indicator of transpiration (Meinzer et al., 2004). Therefore, the 
model’s time-shift error appears to be a consequence of the nature of the 
LAI data, rather than an indication of deficiencies in the models. 

In summary, the model interpret the dynamics of Faidherbia’s 
transpiration well, and the model predictive checks (on the whole) do 
not indicate significant systematic discrepancies between model pre
dictions and observations (Gelman et al., 2004). Thus, results from the 
calibration phase suggest that the model can explain the underlying 
hydrological processes satisfactorily. 

3.1.3. Assessment of the parameters 
The calculated mean, and 3% and 97% High-Density Intervals (HDIs) 

of the parameters’ posterior distributions are reported in Table 1. They 
indicate that the inverse problem is well-posed, with an acceptable level 
of uncertainty. HDIs are generally narrow, except for the saturated soil 
water contents (θs) and hydraulic conductivities (Ks), which have larger 
uncertainties. Those uncertainties can be partially explained by the 
limited range of the volumetric water contents (measured during 
2019–2021), which never approached the saturated values. Thus, those 
measurements were mainly informative of the dry end of the retention 
and conductivity curves. 

The relatively high estimated values of Ks might be explained by the 
finding of Lu et al. (2020) that in coarse soils, tree roots can increase Ks 
up to 1,085% by inducing the formation of macropores. Therefore, the 
high Ks values that we found suggest that in the area of study, macropore 
formation and/or preferential flow was occurring in the root zone. This 
behaviour was already observed by Bargués Tobella et al. (2014), who 
investigated the effect of scattered trees upon soil infiltrability in an 
agroforestry parkland in Burkina Faso. In that study, dye-tracer exper
iments demonstrated that preferential flow and infiltrability were 
significantly higher under Shea trees’ canopies than in the surrounding 
open areas. In particular, the joint action of tree roots and high organic- 
matter contents from litter inputs increases the macroporosity, thus 
creating preferred pathways for water flow. Moreover, the potential 
effect of other occurring mechanisms, such as stemflow and film flow 
along roots (Nikodem et al., 2010), are not properly accounted in the 
model, but lumped in the soil hydraulic parameters. Nevertheless, the 
relatively high uncertainty in the estimation of Ks suggests that more 
specific measurements are required to better characterize the hydraulic 
behaviour of the system. 

Overall, estimated soil hydraulic parameters are consistent with the 
measured soil textural composition, in that the parameters reproduce 
the hydraulic properties of a highly permeable sandy soil whose fine 
fraction increases with depth. The corresponding decrease of the coarse 
material is reflected in the lower value of the shape parameter, n3, for 
the deeper soil layer, which contains more clay (2.9–5.5%) and silt 
(29.3–34.7%), but less sand (67.8–59.8). Estimated saturated water 
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contents (θs) range between 0.2 and 0.45, which would be typical for the 
soil that is investigated in the present study. 

More interesting are the root water uptake parameters. The value of 
the estimated root adaptability factor, ωc, indicates that root water up
take is moderately compensated. This finding supports the hypotheses of 
Roupsard et al. (1999); Roupsard et al. (2022) about the phreatophytic 
behaviour of Faidherbia. In particular, results from the calibration 
procedure indicate that roots are able to meet the transpiration demand 
by extracting more soil water via the less-stressed part of the roots, until 
ωc reaches a value between approximately 0.31 and 0.48. At that point, 
the roots as a whole start to experience some stress. Deb et al. (2013) 
used a similar value of ωc to simulate the compensated root water uptake 
of a Pecan tree. In another study, Wang et al. (2022) showed how a ωc 
value between 0.3 and 0.7 led to optimal results when simulating 
transpiration dynamics of the phreatophyte Tamarix ramosissima. 

The estimated pressure head at which the root water uptake is 
reduced by 50% (h50) is relatively low (in absolute value): it ranges from 
− 140.1 to − 54.5 cm. Similar values were used by Yin et al. (2018) to 
simulate transpiration patterns in the phreatophyte Salix matsudana. 
Our h50 values, together with the estimated value of the shape parameter 
p, suggest that the model treats the uptake reduction as essentially a step 
function: under moderately wet conditions, the actual and potential 
transpiration are close (according to the model), but they will diverge as 
the pressure head increases (in absolute value) and soil pores desaturate 
(Skaggs et al., 2006a). This prediction is physically realistic for sandy 
soils (Zhu et al., 2009) like the one investigated in the present study. 

It must be emphasized that because this study presents the first 
detailed simulation (to our knowledge) of Faidherbia’s phreatophytic 
behaviour, it is not possible to make meaningful comparisons between 

our estimated root water uptake parameters and those from other 
existing studies on Faidherbia. However, comparisons with the existing 
literature on other phreatophytes, as well as the discussion about the 
physical meaning of the root water uptake parameters, suggest that the 
model provides a good approximation of Faidherbia’s macroscopic 
behaviour of and its influence upon water fluxes in the vadose zone. 

3.1.4. Model validation 
To validate the high-fidelity 2D axisymmetric HYDRUS-2D model, 

we propagated into it the parameters’ estimated posterior distributions 
(Table 1). Fig. 7 shows a comparison between the model-predictive- 
uncertainty bands (blue and green areas); the mean posterior solution 
(solid lines); and measured values (grey circles) of sap flow (Sa) and 
volumetric water contents (θ) at eight different depths. The model 
predictive performance generally remained satisfactory, but the bias 
was greater than during the calibration period. This observation is 
confirmed by the RMSE values that were calculated for the mean solu
tion from the parameters’ posterior distributions. Those values now 
range between 0.014 and 0.021 cm3 cm− 3 for the volumetric water 
content, and reach 0.019 cm day− 1 for the sap flow. While the model 
approximates water distribution well in the upper soil horizons, the 
deviation between model predictions and measurements is greater for 
deeper soil layers. In particular, the model seems to systematically 
anticipate the arrival of the moisture front for z < -100 cm, while still 
reproducing the peak timing and soil drying well for − 100 cm < z <
-200 cm. This result suggests an imperfect modelling of the soil-wetting 
process—a deficiency that can be partially explained by the higher 
frequency of soil-drying data in the calibration dataset (Fig. 6). Nor is it 
possible to rule out possible effects of soil heterogeneity, macropore 

Fig. 7. Model validation: comparisons be
tween the model predictive uncertainty 
bands (blue and green areas), the mean 
posterior solution (solid lines); and (grey 
circles) measured sap flow (Sa) and volu
metric water contents (θ) at eight different 
depths. Predictive bands and the mean pos
terior solution were obtained by propagating 
the calculated High-Density Interval and 
mean solutions (Table 1), respectively, into 
the high-fidelity axisymmetric HYDRUS-2D 
model. Each plot shows the corresponding 
RMSE that was calculated by using the mean 
values of soil hydraulic and root water up
take parameters, as taken from the parame
ters’ posterior distributions (Table 1).   
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flow, and measurement inaccuracies. More evident is the model’s 
overestimation of the sap flow (compared to during the calibration 
phase), although the transpiration pattern is again well reproduced. 

The fitting could probably have been improved through a different 
apportioning of computation time between the calibration and valida
tion periods (e.g., by extending the calibration and shortening the 
validation), as well by making the model more detailed (e.g., increasing 
the soil layering). However, greater detail would have increased the 
computational cost of the analysis by increasing both the dimensionality 
of the inverse problem and the complexity of the multifidelity surrogate 
training. Overall, results from the validation phase do not provide 
grounds for rejecting the model. Instead, the model’s predictive per
formance remains satisfactory for the purpose of the analysis, which is to 
understand water fluxes in the vadose zone below Faidherbia trees. 

3.1.5. Hydrological interpretation of water fluxes 
The interpretations that follow are based upon results from the 

validated high-fidelity axisymmetric HYDRUS-2D model, using the 

parameters’ estimated posterior distributions. 

3.1.6. Partitioning of the water fluxes 
A study of Fig. 8 shows that the model predictive uncertainty is low, 

except for the actual transpiration of Faidherbia (Sa tree) and the 
groundwater recharge (R). The uncertainty of these parameter is 
attributable to the relatively high uncertainties of the root parameters 
themselves. 

The predicted daily actual evaporation fluxes (Ea) are low during the 
December-to-June dry seasons (mean: 6.6 ± 0.4 × 104 cm3 d-1). These Ea 
values are representative of second-stage evaporation, during which 
high pressure heads at the surface limit the upward water fluxes. 
Conversely, the model predicts higher Ea values during the wet seasons, 
as expected because of the moister soil conditions. Specifically, the 
average predicted Ea for the wet season is 5.32 ± 1.0 × 105 cm3 d-1, and 
the maximum (which occurs during rainy days) is 1.55 ± 0.7 × 106 cm3 

d-1 [(A) in Fig. 8]. 
Wet seasons are also the times when local farmers practice the 

Fig. 8. Water flux partitioning as predicted by the high-fidelity axisymmetric HYDRUS-2D model: daily time series of water volume in (A) actual evaporation (Ea); 
(B) non-compensated root water uptake of the crops (i.e, Sa crop when the roots adaptability factor ωc = 1); (C) compensated root water uptake of the tree (i.e., Sa tree 
when the roots adaptability factor ωc = 0.39); (D) groundwater recharge (R); and (E) yearly water budget. The uncertainties of the model parameters that were 
derived from the Bayesian analysis are propagated into the water fluxes as the error band for the daily series and the error bar for the yearly water budget. 
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rainfed rotation of groundnut (as they did in 2019 and 2021) and pearl 
millet (in 2020). The simulated daily actual transpiration of those crops, 
Sa crop, ranges from 5.7 ± 0.0 × 103 to 8.2 ± 1.7 × 104 cm3 d-1 in the 
early growing stage (late July, early August), versus 1.72 ± 0.0 × 104 to 
5.4 ± 0.02 × 105 cm3 d-1 during the vegetative stage (September). 
Predicted values of Sa crop are higher under groundnut (max: 4.95 ±
0.45 × 105 cm3 d-1; mean: 0.52 ± 0.03 × 105 cm3 d-1) than under pearl 
millet (max: 3.58 ± 0.01 × 105 cm3 d-1; mean: 0.37 ± 0.08 × 105 cm3 d- 

1). This outcome is the result of groundnut’s higher LAI. The partition
ings of Ea and Sa crop, as derived from the high-fidelity 2D model, are 
similar to those which Diongue et al. (2022b) computed via HYDRUS-1D 
for location at the study area that are outside of the trees’ radius of in
fluence (i.e., > 30 m away from any tree). 

The predicted seasonal variations of Faidherbia’s actual transpira
tion (Sa tree) are opposite to those of the crops, as is consistent with the 
species’ reverse phenology. Faidherbia’s predicted flux becomes negli
gible during the rainy season, but increases after the onset of leafing. 
Specifically, Faidherbia’s predicted flux is around 1.48 ± 0.56 × 102 

cm3 d-1 in late September and early October, and the maximums (mean: 
5.17 ± 3.75 × 104 cm3 d-1) occur during January-February. Interest
ingly, the onset of leafing of this phreatophyte species is paced with the 
groundwater recharge rate, R, (Roupsard et al., 2022), which varies 
from 0.44 ± 0.15 × 106 cm3 d-1 in 2021 to 1.14 ± 0.01 × 106 cm3 d-1 in 
2019 [(C) and (D) in Fig. 8]. 

The model predicts that at the annual scale, Ea is the main compo
nent of the water balance, ranging from 8.4 ± 2.6 × 107 cm3 y-1 in 2019 
(=52.3 ± 16.4% of the year’s total precipitation, P) to 11.1 ± 2.4 × 107 

cm3 y-1 in 2020 (=58.7 ± 13% of P). The second-largest component is R, 
which varied between 3.7 ± 2.7 × 107 cm3 y-1 in 2021 (=24.4 ± 17.6% 
of P) and 5.1 ± 1.1 × 107 cm3 y-1 in 2019 (=31.3 ± 7.1% of P) [(D) in 
Fig. 10]. The fluxes Sa crop and Sa tree are the smallest components. Sa crop 
ranged from 1.3 ± 0.1 × 107 cm3 y-1 (7.8 ± 0.7% of P) in 2019 to 2.6 ±
0.1 × 107 cm3 y-1 (17.2 ± 1.0% of P) in 2021. Sa tree was even smaller: 8.8 
± 7.2 × 106 to 1.2 ± 0.7 × 107 cm3 y-1, corresponding to 5.5 ± 4.5 to 7.7 
± 4.9% of P. 

Groundwater recharge rates (R) predicted by the high-fidelity 
axisymmetric HYDRUS-2D model are higher than those which have 
been reported for other semiarid regions (e.g., Boumaiza et al., 2021; 
Gaj et al., 2016; Koeniger et al., 2016; Skrzypek et al., 2019). The pre
dicted rates are also higher than those calculated for Senegal’s 
Groundnut Basin by researchers who used unsaturated-zone approaches 
(e.g., profiles of chloride, deuterium, and tritium in soil water). For 
example, Edmunds and Gaye (1994); Gaye and Edmunds (1996), who 

studied chloride profiles at 15 separate sites and tritium profiles at two 
sites, showed that R averaged 5% of P in northern Senegal’s Louga re
gion, where the annual precipitation is around 290 mm y-1. Similarly, 
Diongue et al. (2022a) found that the average R in the Groundnut Basin 
during 2021 was less than 2% of P, based upon stable-isotope profiles of 
bulk soil water. 

To understand why the R values predicted by the model are higher 
than those from unsaturated-zone approaches, it is important to note 
that the latter approach postulates that none of the recharge occurs via 
localized (focused) paths such as tree-induced macropores. Instead, the 
unsaturated-zone approach assumes that all of the recharge occurs 
diffusely, from soil water that percolates through the vadose-zone ma
trix by advection-dominated flow. Therefore, the model’s high R values 
highlight the potential impact of Faidherbia roots in generating paths for 
localized recharge (Bargués Tobella et al., 2014; Ilstedt et al., 2016). 
This impact is consistent with results reported recently by Bargués- 
Tobella et al. (2020). These authors, who assessed deep drainage in the 
openings among trees, report that deep drainage in smaller openings 
(where the soil is more likely to contain root-induced macropores) is>10 
times higher than in openings whose centres are>22 m distant from the 
nearest tree trunk. Thus, Bargués-Tobella et al. (2020) highlight the 
decisive role that tree cover plays in promoting recharge by increasing 
macropore flow and deep percolation, especially near the tree trunk. 

3.1.7. Effect of root adaptability upon the water budget 
To further investigate the influence of root adaptability factors (ωc) 

upon the water budget, the validated high-fidelity 2D model was used to 
calculate and compare Sa crop, Sa tree, and R under conditions in which 
Faidherbia’s root water uptake (RWU) was (variously) compensated (ωc 
= 0.39; a value that is based upon calibration results, and used as 
baseline), fully compensated (ωc = 0.01), and uncompensated (ωc =

1.0). The tree’s cumulative transpiration (the line labelled Sa tree in 
Fig. 9) is significantly influenced by ωc, with values ranging from 1.03 ×
107 cm3 in uncompensated conditions to 2.60 × 107 cm3 for compen
sated RWU. Transpiration remains high (4.58 × 107 cm3) and similar to 
potential rates in fully compensated condition, resulting in increases of 
43.2 and 77.6% compared to compensated and uncompensated root 
water uptake, respectively. This large increase is due to the low water- 
holding capacity of sandy soils, such as the one investigated in the 
present study. Some authors have reported that the enhanced compen
sated uptake occurs after significant water depletion, or after distribu
tion of water stress over the soil profile (Deb et al., 2013; Šimůnek & 
Hopmans, 2009). For example, Deb et al. (2013) reported that the 

Fig. 9. (From the high-fidelity axisymmetric HYDRUS-2D model.) Time dependence of cumulative water volumes that are recharged (R), transpired by crops (Sa), 
and transpired by Faidherbia (Sa tree) when Faidherbia’s root water uptake is compensated (ωc = 0.39, based on calibration results), fully compensated (ωc = 0.01), 
and uncompensated (ωc = 1.0). 
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Fig. 10. Spatial-distributions of pressure head (h), soil water content (θ), and root water uptakes of the pearl millet crop and tree (RWUcrop and RWUtree, respectively) 
as derived from validation of the high-fidelity axisymmetric HYDRUS-2D model. Plots in (A) and (B) are the distributions at the onset of Faidherbia’s leafing (Oct. 
6–10-2020). The plots in (A) show the distributions that occur without compensation (ωc = 1.0). Those in (B) show the distributions that occur with compensation for 
Faidherbia (ωc = 0.39). The plots in (C) and (D) are for the time of maximum leaf density (Feb, 26–02-2020). The plots in (C) show the distributions that occur 
without compensation (ωc = 1.0). Those in (D) show the distributions that occur with compensation for Faidherbia (ωc = 0.39). 
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compensated RWU of pecan trees increased by only 8% compared to the 
uncompensated RWU. The small magnitude of that increase was 
attributed to the water-holding capacity of the orchard’s silty clay loam 
soil. Still, the increase was sufficient to avoid severe water stress during 
the growing season. 

In the present study, the compensated RWU had no significant 
impact upon the crop’s cumulative transpiration (Sa crop in Fig. 9), which 
decreased by only 0.2% under fully compensated condition. This result 
is due to Faidherbia’s reverse phenology, because of which the tree 
competes very little for water with adjacent crops. Conversely, increased 
RWU by Faidherbia in the fully compensated condition results in lower 
groundwater-recharge rates, with the cumulative value decreasing by 
12.7% and 24.7%, respectively, compared to uncompensated and 
compensated RWU. This result suggests that root water uptake has an 
appreciable but moderate effect upon recharge fluxes. At the same time, 
Faidherbia can alter and potentially increase recharge fluxes through 
root-induce changes in the soil’s hydraulic behaviour. 

3.1.8. Spatial distribution of the root water uptake 
To gain further insight into the strategies that Faidherbia employs to 

mitigate water stress, the validated model was used to investigate how 
the root adaptability factor (ωc) affects spatial RWU patterns at two 
times of the year: during October (when Faidherbia begins its leafing, at 
the end of the cropping season), and in February (the time of maximum 
leaf density, and therefore peak transpiration demand). The 2D-contour 
plots in Fig. 10 show that during both periods, the compensated and 
uncompensated root uptakes from trees (RWUtree) vary not only with soil 
depth, but also with radial distance from the tree trunk. The model’s 
output also shows that in early October (6–10-2020), when pearl millet 
crop is in its maturity stage, then harvested a few days later, ωc does not 
affect root uptake from crops (RWUcrop). At that time, RWUcrop averages 
9.28 × 10-4 cm3 cm− 3 d-1. According to results from the model, the 
amount of water extracted by pearl millet follows the millet’s assumed 
root-length distribution. Specifically, RWUcrop is a function of depth, 
exclusively: at any given depth, it is the same at all distances from the 
tree, except within a few cm of the trunk. Moreover, RWUcrop is highest 
at the surface, and decreases linearly with depth. 

During the same period (early October, 6–10-2020), Faidherbia’s 
transpiration demand is low, and the soil is still relatively wet due to 
ongoing redistribution of preceding rainfall infiltration. Faidherbia roots 
do not experience severe water stress at this time, but extract water at 
higher rates in the deep layers, especially outside of the dripline area. 
This result is consistent with Faidherbia’s root-length distribution, 
which is denser outside the tree canopy. The RWUtree rates are minimal 
near the tree trunk and in the upper soil layer, but increase gradually 
with depth from 100 cm downward. The highest values occur within the 
350–450 cm soil layer at radial distances > 300 cm. The rates decrease 
again in the capillary fringe. The magnitude and pattern of RWUtree rates 
for compensated uptake (mean: 1.99 × 10-7 cm3 cm− 3 d-1) and un
compensated uptake (0.77 × 10-7 cm3 cm− 3 d-1) vary slightly during 
early October, particularly with soil depth [(A) and (B) in Fig. 10]. 
Indeed, to compensate the water stress, roots extract water at higher 
rates in the deep layers thanks to the combined effect of (1) higher root 
density, and (2) wetter soil and lower pressure head gradient, compared 
to the shallow layer. 

The spatial pattern of RWUtree in February differs substantially from 
October’s due to soil drying, which is induced by the limited holding 
capacity of the sandy media and the higher transpiration demand of 
Faidherbia. In addition, roots experience more water stress in February 
than during October, and the magnitudes of RWUtree are higher: the 
mean compensated RWU is 2.98 × 10-5 cm3 cm− 3 d-1, and the mean 
uncompensated RWU is 1.17 × 10-5 cm3 cm− 3 d-1. Hence, the depth 
distribution of RWUtree is driven not only by the most densely-rooted soil 
layers, but also by the soil–water conditions. These hydrological be
haviours of Faidherbia confirm its suitability for Sahelian agroforestry: 
Because of its reverse phenology, Faidherbia extracts comparatively 

little water throughout the cropping season, making this tree only a 
minor competing species (for water) with the adjacent crops. (Note that 
ωc has no significant effect upon RWUcrop.) Furthermore, the study 
area’s low-density stands of Faidherbia consume less than 10% of P, and 
use deep water to mitigate water stress. 

4. Summary and conclusions 

The main goal of this study was to provide further insights into the 
hydrological impact of Faidherbia in arid areas, by combining diverse 
experimental data and mechanistic modelling. To overcome the 
computational bottleneck, a multifidelity surrogate-based approach was 
adopted. The proposed surrogate merges a one-dimensional, low-fidelity 
description of the vadose zone beneath Faidherbia (HYDRUS-1D), with a 
kriging-based correction function to emulate the response of a high- 
fidelity, two-dimensional axisymmetric representation of the domain 
(HYDRUS-2D). After training and validation, a probabilistic framework 
based upon Bayesian inference is used to calibrate the surrogate and to 
inversely estimate soil hydraulic and root water uptake parameters. The 
comparison between model predictions and observations confirms the 
good predictive accuracy and limited predictive uncertainty of the 
model during calibration as well as validation, and thus supports the use 
of multifidelity surrogates as an efficient tool for reducing the compu
tational cost of calibrating mechanistic models. 

The values of the surrogate-based estimated soil hydraulic and root 
water uptake parameters suggest that Faidherbia induces changes in the 
soil hydraulic properties. These values also confirm the phreatophytic 
behaviour of Faidherbia. In particular, the high values calculated for the 
saturated hydraulic conductivities (Ks) in all soil horizons support the 
existence of macropore-related and/or root-induced preferential flow, 
which increases recharge rates significantly. This finding has been re
ported in other studies, but should be further investigated by performing 
comprehensive measurements of the root distribution and morphology, 
combined with tracer experiments to provide more-informative data for 
calibrating models. These data would make possible a robust compari
son, via Bayesian modelling, in which the current unimodal Richards- 
based description of the water flow is tested against dual-domain or 
gravity-driven formulations that better describe preferential and mac
ropore flow. By identifying the most appropriate model structure, such a 
comparison might confirm and assess the magnitude of these root- 
induced fast flows, thus further strengthening the findings of the pre
sent study, which indicates that of Faidherbia has a net positive effect 
upon the hydrological balance of arid areas. These detailed mechanistic 
analyses should be theoretically complemented by a watershed hydro
logical modelling to have a broader understanding of water fluxes in the 
agroforestry parkland. 
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Šimůnek, J., van Genuchten, M.T., Šejna, M., 2016. Recent Developments and 
Applications of the HYDRUS Computer Software Packages. Vadose Zone Journal 15 
(7), 25. https://doi.org/10.2136/vzj2016.04.0033. 

Skaggs, T.H., Shouse, P.J., Poss, J.A., 2006a. Irrigating Forage Crops with Saline Waters: 
2. Modeling Root Uptake and Drainage. Vadose Zone Journal 5 (3), 824–837. 
https://doi.org/10.2136/vzj2005.0120. 

Skaggs, T.H., van Genuchten, M.T., Shouse, P.J., Poss, J.A., 2006b. Macroscopic 
approaches to root water uptake as a function of water and salinity stress. 
Agricultural Water Management 86 (1–2), 140–149. https://doi.org/10.1016/j. 
agwat.2006.06.005. 

Skrzypek, G., Dogramaci, S., Page, G.F.M., Rouillard, A., Grierson, P.F., 2019. Unique 
stable isotope signatures of large cyclonic events as a tracer of soil moisture 
dynamics in the semiarid subtropics. Journal of Hydrology 578, 124124. https://doi. 
org/10.1016/j.jhydrol.2019.124124. 

Sutanto, S.J., Wenninger, J., Coenders-Gerrits, A.M.J., Uhlenbrook, S., 2012. Partitioning 
of evaporation into transpiration, soil evaporation and interception: A comparison 
between isotope measurements and a HYDRUS-1D model. Hydrology and Earth 
System Sciences 16 (8), 2605–2616. https://doi.org/10.5194/hess-16-2605-2012. 

Ter Braak, C.J.F., Vrugt, J.A., 2008. Differential Evolution Markov Chain with snooker 
updater and fewer chains. Statistics and Computing 18 (4), 435–446. https://doi. 
org/10.1007/s11222-008-9104-9. 

Tschakert, P., Khouma, M., Sène, M., 2004. Biophysical potential for soil carbon 
sequestration in agricultural systems of the Old Peanut Basin of Senegal. Journal of 
Arid Environments 59 (3), 511–533. https://doi.org/10.1016/j. 
jaridenv.2004.03.026. 

van Dam, J.C., Groenendijk, P., Hendriks, R.F., a., & Kroes, J. G, 2008. Advances of 
Modeling Water Flow in Variably Saturated Soils with SWAP. Vadose Zone Journal 7 
(2), 640. https://doi.org/10.2136/vzj2007.0060. 

Van der Esch, S., Ten Brink, B., Stehfest, E., Sewell, A., Bouwman, A., Meijer, J., et al., 
2017. Exploring the impact of changes in land use and land condition on food, water, 
climate change mitigation and biodiversity: Scenarios for the UNCCD Global Land 
Outlook. The Hague. 

van Genuchten, M.T., 1980. A Closed-form Equation for Predicting the Hydraulic 
Conductivity of Unsaturated Soils1. Soil Science Society of America Journal 44 (5), 
892–898. https://doi.org/10.2136/sssaj1980.03615995004400050002x. 

Viana, F.A.C., Steffen, V., Butkewitsch, S., De Freitas Leal, M., 2009. Optimization of 
aircraft structural components by using nature-inspired algorithms and multi-fidelity 
approximations. Journal of Global Optimization 45 (3), 427–449. https://doi.org/ 
10.1007/s10898-008-9383-x. 
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