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Abstract 

Increased flexibility in job shops leads to more complexity in decision-making for shop floor 

engineers. Partial Flexible Job Shop Scheduling (PFJSS) is a subset of Job shop problems and 

has substantial application in the real world. Priority Dispatching Rules (PDRs) are simple and 

easy to implement for making quick decisions in real-time.  The present study proposes a novel 

method of integrating Multi-Criteria Decision Making (MCDM) methods and the Discrete 

Event Simulation (DES) Model to define job priorities in large-scale problems involving 

multiple criteria. DES approach is employed to model the PFJSS to evaluate Makespan, Flow 

Time, and Tardiness-based measures considering static and dynamic job arrivals. The proposed 

approach is implemented in a benchmark problem and large-scale PFJSS. The integration of 

MCDM methods and simulation models offers the flexibility to choose the parameters that 

need to govern the ranking of jobs. The solution given by the proposed methods is tested with 

the best-performing Composite Dispatching Rules (CDR), combining several PDR, which are 

available in the literature. Proposed MCDM approaches perform well for Makespan, Flow 

Time, and Tardiness-based measures for large-scale real-world problems. The proposed 

methodology integrated with the DES model is easy to implement in a real-time shop floor 

environment. 

 

Keywords: Partial Flexible Job Shop Scheduling Problem (PFJSSP), Multi-Criteria Decision 

Making (MCDM), Discrete Event Simulation (DES), Priority Dispatching Rules (PDR) 

 

1. Introduction  

Production scheduling plays a significant role in the production and service industry as a 

decision-making operation. It involves a determination of the order of processing a set of tasks 

on resources over a period of time. Scheduling aims to maximize the efficiency of the operation 
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and reduce costs in the manufacturing and service industries. Owing to the increasing 

complexity of the production systems, the scheduling techniques have evolved in parallel. 

Dynamic scheduling is preferred to static scheduling owing to the ability to incorporate 

uncertainties over time. Dolgui and Proth (2010) presented two algorithms capable of giving 

dynamic delivery date for assembly and linear production systems. Various types of important 

scheduling problems include Single Machines, Parallel Machines, Flow Shops, and Job Shops. 

Gordon et al. (2002) exhaustively reviewed the single and parallel machine models to provide 

a unified framework for scheduling and due date assignment problem scenarios. A holistic view 

of the models, algorithms, and properties have been discussed. In Flow Shops, every job 

follows the same trajectory and gets processed by all the machines in a predefined sequence. 

In Job Shops, ‘n’ jobs are to be processed on ‘m’-machines, each with a unique operating sequence. 

Each work can only be handled by one machine at a time, and each machine can only do one job 

at a time. The need for efficient scheduling has recently increased owing to market demand for 

product quality, flexibility, and timely delivery of the product to the customers.  

Owing to the importance of real-time scenarios, the Job Shop Scheduling Problem (JSSP) has 

been the focus of many researchers. JSSPs are defined such that a set of machines, say Mj (j = 

1, 2, m) are scheduled to a given set of jobs, say Ji (i = 1, 2, n), to optimize the performance 

measures (Pinedo, 2005). The objective of JSSP is to find an optimal schedule based on criteria 

such as Makespan, Flow Time, Tardiness, etc. JSSP is one of the hardest Combinatorial 

Optimization (CO) problems. JSSPs can be categorized as NP-Hard problems wherein an 

optimal solution cannot be derived even for small-scale instances due to its large solution space. 

An extension of JSSP is the Flexible Job-Shop Scheduling Program (FJSSP), which is also an 

NP-Hard problem with more practical applications. Modern production facilities have managed 

to grow more effectively and efficiently to accommodate the demands of consumers and allow 

machinery to do multiple operations with flexibility. The FJSSP involves two sub-problems, 

one that assigns each job to a specific machine (routing) and the other that schedules 

jobs onto machines over time (scheduling).  The FJSSP can be classified into two categories, 

i.e., Total FJSSP (T-FJSSP) and Partial FJSSP (P-FJSSP). The former allows each operation 

to be processed by all machines, while the latter has a compatible set of machines for each 

operation (Kacem et al. 2002).   

1.1 Flexible Job Shop Scheduling  

Solving FJSSP has attracted interest among researchers and shop floor engineers due to their 

similarities and proximity to real-time problems. The process of manual scheduling in flexible 
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job shops is extremely difficult and time-consuming for industries (Xie et al. 2019) owing to 

the larger solution space and complexity of using mathematical and other meta-heuristic 

approaches (Lunardi, and Ronconi 2021). Hillion and Proth (1989) developed an integer linear 

programming model based on a timed event-graph model to achieve a near-optimal solution to 

steady state job shops. The study aimed at maximizing the utilization of the bottleneck 

resources while minimizing their WIP inventories. The JSSP has been solved using exact and 

heuristic methods with different objectives minimizing Makespan, Flow Time and Tardiness-

based measures (Rameshkumar and Rajendran 2018). Chen et al. (1996) employed a branch-

and-bound approach to arrive at an optimal solution considering the earliness and tardiness in 

scheduling. Due to computational complexity, it is difficult to achieve the best solution for 

large-scale FJSSPs, and it is recommended to obtain near-optimal solutions utilizing heuristic 

approaches (Zhang et al. 2020). According to Pongchairerks (2021), industries cannot make 

quick decisions effectively, given the enormous computational time of meta-heuristics. The 

literature shows that Priority Dispatching Rules (PDRs) and Discrete Event Simulation (DES) 

approaches are used to solve large-scale FJSSP to obtain approximate solutions with less 

computational time. 

 

1.2 Priority Dispatching Rules (PDR) 

Many researchers have proposed PDRs over the years for ranking jobs due to their lower 

complexity, ease of implementation, lack of tools and technology, and capacity to generate 

effective results in less time (Zhang and Wang, 2018). PDRs are frequently used to solve real-

world scheduling problems due to the large number of jobs and machines, the complexity of 

the scheduling environment, and the lack of scheduling software (Jayamohan and Rajendran, 

2004). There are several scheduling rules in the literature, but no rule, such as Makespan, mean 

Tardiness, and Flow Time, can perform well across all performance metrics. Three novel 

dispatching rules such as PT+WINQ/TIS (Process time +Work in next queue/Time in Shop, 

PT/TIS (Process time + Time in Shop and AT-RPT(Arrival time + Remaining Process Time), 

were proposed for improving Tardiness and Flow time-based performance measures, with 

increased efficiency and accuracy in dynamic Job shops and Flow shops (Rajendran and 

Holthaus 1999). Tay and Ho (2008) classified dispatching rules into Simple Priority Rule 

(SPR), Weighted Priority Indices (WPI), Composite Dispatching Rule (CDR), and Heuristic 

Scheduling Rule (HSR). Simple dispatching rules utilize only one criterion: processing time, 

the number of processes, arrival time, or due date-based parameters.  CDR is a combination of 
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two or more SPRs. SPRs use a single rule for a resource/work center to select a job for 

processing based on specific criteria such as due date, number of operations, arrival time etc. 

CDRs are a combination of SPRs used on a shop floor. CDRs are implemented by a) different 

SPRs are utilized at different workstations/resources separately and b) the Composition of 

several SPRs to evaluate the priorities of jobs waiting in the queue for processing. Composition 

is achieved by assigning suitable weights for SPRs. They are deploying different SPRs at 

resources produced better results than applying a single SPR across all the machines for the 

shop scheduling problems (Barman,1997). The composition of SPRs improved shop 

performance for large-scale problems, as studied by Holthaus and Rajendran (1997). CDRs can 

also be used to solve real-time problems with multiple objectives. The challenge lies in getting 

the right combination of SPRs to design the CDR.  It is observed from the literature that a 

combination of SPRs gave better results than using individual rules. Ozturk et al. (2018) solved 

multi-objective FJSSP by minimizing Makespan, Mean Flow Time, and Mean Tardiness using 

CDRs. Results revealed that CDRs outperformed the SPRs for the benchmark problem. The 

literature review shows that PDRs are used to solve large-scale problems to overcome 

computational costs without compromising the solution quality. The limitations of individual 

rules are improved by implementing CDRs. 

 

1.3 Multi-Criteria Decision Making 

Many priority rules are based on single criteria for job prioritization instead of considering 

many realistic factors. In any decision-making process, various factors that influence the 

objectives are identified, and weightage is assigned to each of these factors (Çelen 2014). 

Multi-Criteria Decision Making (MCDM) is one of the most prominent branches of decision-

making. It has grown rapidly and is one of the important tools to arrive at decisions for 

problems involving multiple criteria (Sun, 2010). An Analytic Hierarchy Process (AHP) based 

MCDM model was proposed by Kumar et al. (2017) for selecting the foremost PDR in 

sustainable energy. Seven different PDRs were considered and the authors used AHP to 

evaluate and choose the best rule. A total of eight performance measures were considered for 

the evaluation of sequencing rules. The weights for each criterion were assigned using the AHP. 

The closeness coefficient for each sequencing rule was calculated, and the rules were ranked. 

Güçdemir and Selim (2018) used MCDM based simulation modelling approach to select the 

best dispatching rule in a job shop to minimize Makespan, mean Flow-Time, tardy jobs, and 

variation from customer expectations for different types of problems; many MCDM 
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approaches have been used to make decisions in the field of engineering (Zavadskas et al. 

2014). MCDM approaches considered in this study are TOPSIS, EDAS, CP, and WAM. Fuzzy 

AHP (FAHP) is often used to determine the proper weights for criteria and the MCDM 

approaches are used to prioritize the jobs. The literature shows that MCDMs should be explored 

more for shop scheduling applications considering the variety of criteria that affect the system's 

performance measures. 

1.4 Discrete Event Simulation  

Industries have utilized simulation-based methodologies to model real-time systems and 

analyze operational performance measurements (Mostafa and Chileshe 2017).  Makespan, 

Flow Time, and Tardiness-related measures are among the well-known performance measures 

examined by DES. Queue statistics, inventory, resource utilization, and throughput are other 

performance metrics discussed (Jilcha et al., 2015). To solve a real-time JSSP for decreasing 

the Makespan, Habib Zahmani and Atmani (2021) suggested a novel method integrating 

dispatching rules, data mining, and simulation. Kulkarni and Venkateswaran (2017) used DES 

to perform Simulation-based Optimization (SbO) and compared it to a mathematical technique; 

they observed that the SbO approach successfully deals with large complex problems with 

stochastic processing times.  From the literature, it is noticed that simulation-based models are 

useful in solving large-scale real-world problems and have gained popularity as computer 

capability has advanced. The industrial problem can be represented in a DES model without 

violating real-world constraints. 

1.5 Research gap  

In this paper, the simulation model has been integrated with the MCDM technique for solving 

benchmark and large-scale real word problems. Multiple criteria such as due date, process time, 

setup time, customer priority and number of operations are considered in this paper to prioritize 

the jobs. Not much research has been done on the composition of the criteria and their influence 

on the performance measures using MCDMs for a large-scale real-world problem. Discrete 

event simulation models are developed to capture the dynamic and probabilistic nature of the 

shop floor. Jobs are prioritized using the well-known MCDM approaches and integrated with 

a simulation model for evaluating the performance measures of the shop floor by dynamically 

updating the job priorities. In this paper, we have validated the proposed approach by 

considering a large-scale (114 jobs & 27 Machines) real-world problem. 
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Many studies have focused on solving static problems without considering real-world criteria. 

For arriving at solutions to a real-world problem, criteria such as the number of operations, 

setup time, predefined sequence of operations, machine flexibility, stochastic activity times, 

dynamic job arrival patterns and demand, etc., are essential to incorporate in the model. Meta-

Heuristics are used to solve FJSSPs to arrive at optimal or near-optimal schedules for a static 

problem. Most real-world problems involve dynamic and stochastic activities. Simple PDRs 

and simulation-based approaches are increasingly used to arrive at quality decisions without 

much computational complexity. SPRs have produced quality solutions for small-size 

problems involving a single criterion. CDRs combined with multiple SPRs are improving the 

performance of the shop floor for different measures, namely Makespan, Flow Time, and 

Tardiness-related measures for problems involving multiple criteria. CDRs have not been well 

explored to solve scheduling problems involving real-world constraints. MCDM approaches 

appear to be effective in comparing alternatives and making decisions in various applications 

involving multiple criteria. However, MCDM approaches were also not been effectively 

studied for the FJSSPs problems. DES models are helpful in evaluating the performance 

measures of large-scale problems with stochastic and dynamic activities. Integrating the DES 

approach with MCDM or CDRs will help the shop floor engineers solve real-world problems 

involving multiple criteria. The flexibility of the MCDM approach allows industries to assign 

weights based on the importance of each criterion in their system. 

This work is focused on developing PDRs based on MCDM approaches for large-scale PFJS 

involving static and dynamic job arrivals. The proposed work integrates the MCDM approach 

with the DES model for PFJSSP containing realistic constraints. Benchmark instances and real-

world, large-scale industrial problems are studied using best-known CDRs selected from the 

literature and proposed MCDM methods. A Fuzzy AHP (FAHP) is applied to assign the 

weights of realistic criteria considered in this study, and job prioritization is done using MCDM 

methods. FAHP processes are well-suitable for problems involving bias or preferences 

whenever human factors assign weights for the criteria. FAHP is an integration of AHP and 

Fuzzy Logic theory. Unlike in AHP, where the scale of relative importance is represented by 

the crisp set numerical, FAHP uses fuzzy numbers.  DES model is used to compute the 

Makespan, Flow time, and Tardiness-based performance measures. This study presents four 

MCDM methods: TOPSIS, EDAS, CP, and PROMETHEE. The best-performing CDRs are 

employed to prioritize the jobs to minimize Makespan, Mean Flow Time, Mean and Mean and 

Maximum Tardiness.  
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1.6 Objectives  

Based on the detailed literature review, research gaps are identified, and the following 

objectives are framed: 

a. To develop a DES model for PFJSSP to evaluate Makespan, Flow Time and Tardiness-

based performance measures 

b. To study the performance of CDRs for large-scale PFJSSP 

c. To develop hybrid PDRs for job prioritization by integrating the DES model and 

MCDM methods  

d. To implement proposed PDRs based on the MCDM method in a large-scale real-world 

PFJSSP 

The simulation model proposed in this study is modular and flexible, incorporating industry-

specific parameters such as the number of resources, number of job variants, static and dynamic 

job arrival patterns, sequence of the jobs, processing time, and job flexibility. The model 

proposed in this study is generic and can be used to conduct a ‘what if type’ analysis 

considering different scenarios. This analysis will help optimize the available resources and 

choose the best strategy based on their objective. The DES model developed in this study is 

integrated with MCDM-based rules and dynamically updates the job ranking as the simulation 

progresses based on the chosen criteria. The computational complexity of PDRs/CDRs 

proposed in this study is relatively lesser than heuristics/metaheuristics. The industries can 

quickly adapt and implement the proposed approach for decision-making. Further, a decision 

support system for shop floor scheduling can be developed using the proposed methodology 

based on the industry requirement. The main contribution of this work is summarized as 

follows: 

• Developed Discrete Event Simulation (DES) Model of a large-scale Partial Flexible 

Shop consisting of Static and Dynamic job arrival scenarios and deterministic and 

stochastic activity times  

• Implemented best-performing Composite Dispatching Rules (CDRs) available in the 

literature to solve benchmark and large-scale real-world Partial Flexible Shop problem  

• Developed Multi-Criteria based Priority Dispatching Rules (PDRs) to solve benchmark 

and large-scale real-world Partial Flexible Shop problem  

• The results obtained in this study could be used as benchmark solutions for the 

researchers working on developing new PDRs for PFJS. 
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The remainder of the paper is structured as follows. The mathematical formulation of the FJSSP  

is given in section 2. The methodology for developing the simulation model is presented in 

section 3. The proposed MCDM approaches and their implementation methodology for ranking 

jobs based on real-world criteria are discussed in section 4. Performance evaluation of PFJS 

using the best-known CDRs available in the literature and proposed MCDMs are presented in 

section 5. The proposed MCDMs are implemented in a real-world PFJS. Their performances 

are compared by evaluating well-known performance metrics, namely Makespan, Flow Time 

and Tardiness-based measures presented in section 6. Conclusions and future directions of the 

research are presented in section 7. 

2.  Mathematical Formulation of Partial Flexible Job Shop Scheduling Problem  

 

A PFJSSP is a scenario that handles n jobs using m machines, with each operation eligible to 

be performed on a set of alternate machines. The jobs are processed based on a predefined 

sequence using any of the feasible machines for each operation. FJSSP involves assigning 

operations to a machine and finding the processing order of jobs on each machine. The key 

objective is to improve the performance indicators Makespan, Maximum Tardiness, and total 

Flow Time. The mathematical model of Partial Flexible Job Shop Scheduling (PFJSS) was 

derived by De Araujo and Previero, 2019.  

Notations used in the mathematical model: 

Mmax      : Makespan 

Fmean                            : Mean Flow time 

Tmean                           : Mean Tardiness 

Tmax      : Maximum Tardiness  

n  : Number of jobs; set of jobs: J = {J1, J2, … , Jn} 

m  : Number of machines; set of machines: M = {M1, M2, … , Mm} 

p  : Number of operations; set of operations: O = {O1, O2, … , Op} 

i  : Job index: i=1,…n 

i’  : Preceding job index: i’=1,…,n 

j  : Machine index: j=1,…m 

k  : Operation index: k=1,…p 

fj                                                   : Flexibility level of machine ‘j’ 

L   : Upper bound on the Makespan of the best solution 

P  : Set of operation k and its preceding operation k' 
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M  : Set of all machines for operation k 

E  : Set of all compatible machines 

Ci  : Completion time for job i 

Ti  : Tardiness of job i 

Fi                                 : Flow time of job i 

Di                    : Due date of job i 

Pti                 : Total Processing time of job i 

Pti’     : Total Processing time of preceding job i’ 

Si  : Start time of an operation of job i 

𝑆𝑖′   : Start time of a preceding operation of job i’ 

Eik  : Number of compatible machines for operation k of job i 

Ptijk  : Processing time of operation k of job i on machine j 

xijk                                 : Binary variable with value 1 if operation k of job i is assigned on 

    machine j; 0 otherwise 

𝑦𝑘𝑘′   : Binary variable with value 1 if operation k precedes the operation k’ on  

    a given machine. Else, holds value 0 or 1 

Minimization of  

𝑀𝑚𝑎𝑥 = Min(Max(𝐶𝑖)) ; Fmean = (∑Fi)/n; Tmean =  ∑
𝑇𝑖

𝑛

𝑛
i=1  ;Tmax= maxiTi ---------------(1) 

The objective function is to minimize Makespan, Mean Flow time and Tardiness-related 

measures described in equation (1) 

Subject to: 

∑ 𝑥𝑖𝑗𝑘
𝑗∈𝑚

= 1, ∀ⅈ 𝜖 𝐽 ∀𝑘 𝜖 𝑂 -----------------------------------------------------------------(2)  

Where  𝑥𝑖,𝑗,𝑘 represents operation k of job i, on machine j. Sum of probability of an operation 

of a job across machines is always 1. This is because an operation of a job can be processed by 

one and only one of the set of all feasible machines. 

𝑃𝑡𝑖 = ∑ 𝑃𝑡𝑖𝑗𝑘
𝑘∈𝑝,𝑗∈𝑚 

⋅ 𝑥𝑖𝑗𝑘 ,∀ⅈ 𝜖 𝐽 ∀𝑘 𝜖 𝑂 --------------------------------------------------(3)  

Where 𝑃𝑡𝑖𝑗𝑘 represents processing time of operation k of job i, on machine j. Given the 

constraint one, and that the term 𝑥𝑖𝑗𝑘  is binary and takes value 1 only in one instance for any 

job-operation-machine combination, it is clear that that process time can only be a single term 

and is equal to 𝑃𝑡𝑖 or 𝑃𝑡𝑖𝑗𝑘 for operation k in the feasible machine j that performs the particular 

job i  
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𝑆𝑖 + 𝑃𝑡𝑖 ≤ 𝑀𝑀𝑎𝑥 , ∀ⅈ 𝜖 𝐽--------------------------------------------------------------------------(4)  

Where 𝑆𝑖 and 𝑃𝑡𝑖are the start time and process time of job i 

The maximum possible value that a process can take after the start of an operation for a job in 

the system is always such that the time elapsed is less than or equal to makespan. 

𝑦𝑘𝑘′ + 𝑦𝑘′𝑘 ≥ 𝑥𝑖𝑗𝑘 + 𝑥𝑖′𝑗𝑘 − 1,  

                                     ∀𝑘 ∈ 𝑀, (𝑘, 𝑘′) ∈ 𝐸𝑖𝑘-------------------------------------------------(5)  

Precedence checked for all machines. There can be only one possible assignment to any process 

of job in the system. Also, there can be maximum precedence of only one operation when 

comparing between two operations of a job.  

𝑆𝑖′ + 𝑃𝑡𝑖′  − 𝐿(1 − 𝑦𝑘𝑘′) ≤ 𝑆𝑖 , ∀ (𝑘, 𝑘′) ∈ 𝐸𝑖𝑘----------------------------------------------(6) 

The start time of all preceding operations (𝑆𝑖′) and total Processing time of preceding job i’ 

 is always less than or equal to the total time elapsed before next operation. Where Si represent 

the start time of job i and constant L is an upper bound on the best solution's Makespan. 

𝑆𝑖′ + 𝑃𝑡𝑖′ ≤ 𝑆𝑖, ∀ (𝑘, 𝑘′)  ∈ 𝑃------------------------------------------------------------------(7) 

The start time of a preceding operation (𝑆𝑖′) and the processing time is always less than or 

equal to the start time of the next operation. 

∑ 𝑥𝑖𝑗𝑘
𝑖∈𝑂

≤ 𝑓𝑗 . 𝑟, ∀𝑘 𝜖 𝑀----------------------------------------------------------------------(8)  

Includes the flexibility factor of the job shop. r=1 when an operation can be performed by all 

the machines; 0<r<1 as some machines cannot perform some operations.  

𝑆𝑖 𝑎𝑛𝑑 𝑃𝑡𝑖 ≥ 0, ∀ⅈ ∈ 𝑂--------------------------------------------------------------------------(9) 

The start time and processing time of all the operations of all jobs are non-negative 

𝑥𝑖𝑗𝑘 𝜖 {0,1}, ∀𝑘 ∈ 𝑀, ∀ⅈ ∈ 𝑂𝑘------------------------------------------------------------------(10)  

Binary variable takes the value 0 when an operation is not performed on a machine and takes 

value 1 when an operation is performed on a machine.  

𝑦𝑘𝑘′  𝜖 {0,1}, ∀ (𝑘, 𝑘′)  ∈ 𝐸----------------------------------------------------------------------(11) 

Binary variable that indicates the precedence of operation k over operation k’. Takes the 

value 1 if k precedes k’; 0 otherwise 

 

3. Simulation Model Development of Partial Flexible Job Shop 

Arena, a DES software package, has been used to develop the simulation model of PFJSSP. 

The simulation model developed in this study has been used to a) Simulate the job shop 

production scenario, b) Implement the decision given by MCDMs to evaluate the performance 
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measures, c) Scheduling of jobs and d) Simulate dynamic and probabilistic activities of the 

shop floor. A discrete event simulation software ‘Arena’ has been used to model the benchmark 

and real-world problem. The model is flexible enough to accommodate variations in the 

Number of jobs, Number of machines, activity times and job priorities. The simulation model 

proposed in this study can be easily integrated with the MCDM approach to prioritize the jobs. 

Based on the priority, a simulation will be carried out, and the performance of the shop floor 

will be measured. The simulation methodology of PFJS is depicted in Figure 1.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1 Caption: The trajectory of jobs during the simulation 

 

Figure 1 Alt Text: Functional Flow chart indicating the various steps undergone by incoming 

jobs, decisions, and collection of performance measures. 
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Key for Modules  

1. Define the arrival pattern of incoming jobs  

2. Assignment of attributes, start time, and 

index for iteration  

3. List and compare the queue lengths for 

each eligible machine. Is the queue time in 

a current machine the least? 

a. If Yes: Route to module 4  

b. If No: Determination of queue 

time on each machine and finding 

the shortest queue time 

4. Machine assignment based on queue  

5. Assignment of process time  

6. Job selection based on priority rule chosen  

7. Job processing  

8. Check if all the operations are completed?  

9. Increment the attributes to next operation 

10. Route to exit station  

 

11. Route to Machines (Job Prioritization) 

12. Exit Station  

13. Computing completing time of Jobs  

14. Recording Makespan  

15. Checking the completion time of jobs  

16. Counting the late jobs  

17. Computing the Tardiness  

18. Dispose (Leave the system) 

Figure 2 Caption: Simulation model of Partial Flexible 

 

Figure 2 Alt Text: The Snapshot of the DES model drawn using Arena, with 

descriptions to each module in the Simulation model 
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A machine loading rule is triggered for choosing a machine for operating when a new job has arrived, 

when an existing operation is finished, or when its successive operation becomes “operation ready”. 

During this process, a sequencing rule is triggered for choosing the job to be processed subsequently. 

In this way, each job is mapped to one of the feasible machines based on the least waiting time machine 

loading rule. Once the sequencing criterion is met, routing action is executed. This signifies that there’s 

an active interplay between both the routing and sequencing processes. For every job operation, the 

queue time in a set of all feasible machines is iterated, and the assignment is done to the machine with 

the least queue time. Similarly, iteration happens for all the jobs waiting in each machine to be sent 

for processing.  

An overview of the simulation model, including all the stages, is shown in Figure 2. The model allows 

flexibility to incorporate changes in job arrival patterns, cycle time, setup time, number of jobs and 

operations, and priority rules as required. The scalability allows the users to use the model for different 

problem instances. A statistical tool in Arena DES software generates the distributions for setup time.  

The model variables, job attributes, and ranks are updated after every operation. This allows the 

ranking of jobs dynamically as the simulation progresses.  

Table 1: Benchmark data and real-world problem instances used for simulation experiments 

 

FJSSP Instances   

Instances (n×m×k)** NOP 
Flexibility 

Factor 

Processing 

time (T.U) 

Extension (T.U) 

Due 

Date 
Setup time 

MK1 10×6×55 5 to 7 3 1 to 7 16-42 0.35-1.14 

MK2 10×6×58 5 to 7 6 1 to 7 20-48 0.54-1.68 

MK3 15×8×150 10 to 10 5 1 to 20 42-84 6.24-10.23 

MK4 15×8×90 3 to 10 3 1 to 10 21-93 3.42-10.55 

MK5 15×4×106 5 to 10 2 5 to 10 53-107 8.71-17.74 

MK6 10×15×150 15 to 15 5 1 to 10 64-116 5.92-12.48 

MK7 20×5×100 5 to 5 5 1 to 20 80-130 3.62-13.27 

MK8 20×10×225 5 to 10 2 5 to 20 76-148 6.45-16.34 

MK9 20×10×240 10 to 15 5 5 to 20 80-154 5.78-18.62 

MK10 20×15×240 10 to 15 5 5 to 20 84-162 8.74-20.45 

Real-World 

FJS problem* 
114×28×245 1 to 14 4 2 to 32 120-360 0.12-0.48 

Note: ** n – Number of Jobs, m- No of Machines and k- Number of Operations, NOP- Number. of 

operations. T.U- Time Units. *Time units for real-world FJS problems are in hours  
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The simulation is run for ten benchmark problems (MK1 to MK10),  selected from the literature and 

illustrating FJSSP with various sizes (Brandimarte,1993). The number of jobs, machines, and 

operations vary from 10 to 20, 6 to 15, and 55 to 240, respectively, and real-time large-scale PFJSSP 

involving 114 jobs and 28 machines details are given in Table 1. The simulation model developed in 

this study can be extended as a decision support system for shop floor decision-makers. One static and 

four dynamic job arrival patterns are simulated to study the effectiveness of the proposed rules. In the 

static case, it is assumed that all the jobs are available at the beginning of the process. 

Table 2: Dynamic Arrival Pattern Scenario 

Dynamic Arrival Pattern Description Equation for arrival of jobs 

Equal Interval arrival Jobs arrive at equal time 

intervals. ∑ 𝑗 × 𝐿𝑝

𝑛

𝑗=1

 

An increasing rate of arrival  Jobs arrive with an increasing 

rate of arrival within a defined 

time frame. 
∑ 𝑡 ×  √

𝑗

𝑛

𝑛

𝑗=1

 

Decreasing rate of arrival  Jobs arrive with a decreasing rate 

of arrival within a defined time 

frame. 

∑ 𝑡 ×  (
𝑗

𝑛
)

3𝑛

𝑗=1

 

Random arrival  Job arrivals follow Uniform 

Distribution. 

 
Unif [0, t] 

Note:‘t’ – Total time interval for jobs to arrive, ‘n’ – Total number of jobs. 

 

The dynamic arrival patterns have been used as defined by Sels et al. (2012) and are shown in Table 

2. MCDM approaches such as PROMETHEE, CP, EDAS, and TOPSIS are employed to rank and 

prioritize the jobs considering the benchmark problems and the case instance. The results were 

compared with the best-known CDRs available in the literature. Table 3 shows the details of CDRs 

and proposed heuristics to solve the FJSSPs. The composite dispatching rule for multiple objective 

dynamic scheduling combines different strengths of simple rules for addressing respective objectives. 

Development of such CDR involves three steps firstly, identifying the elementary practices, then 

combining them into a single rule, and then estimating the proper values of weights to ensure maximal 

production performance. Rules C1- C4 are based on weighted priority index rules. These rules are a 

linear combination of SPRs described with computed weights (Sels et al. 2012). The weight is 

determined based on the specific business domain and the importance of the job. Similarly, rules C5-

C7 are retrieved based on Automatically Defined Functions (ADF). This approach is made by using 

gene expression programming (GEP) and simulation established by Ozturk et al. (2018). Finally, 
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proposed rules (C9-C12) are developed using a combination of various MCDM methods and the DES 

model.  

Table 3: Composite Dispatching Rules (CDRs) and MCDMs-based priority rules 

 

Rules CDRs Reference 

C1 2PT+LWR+FDD 

(Sels et al. 2012)  
C2 2PT+LWR+Slack 

C3 SPT+LWR+Slack 

C4 2PT+LWR+EDD 

C5 (7*LTWC)+(11*SPT)+12*(LNOP+AT) 

(Ozturk et al. 2018)  
C6 LTWC/(3+LNOP-LRNOP) 

C7 ODD+RT 

C8 [EDD+[(LRNOP+LTWC)/(LRWC-LTWC)]*LNOP]*LRNOP 

C9 FAHP + TOPSIS  

Proposed MCDM 

approach  

C10 FAHP + CP 

C11 FAHP + EDAS 

C12 FAHP + PROMETHEE 

 
Note: PT- Processing Time, LWR- Least Work Remaining, FDD – Flow Due Date, EDD- Earliest Due Date, 

LTWC- Least Total work content, SPT- Shortest Processing Time, LNOP- Least No of Operations, LRWC- 

Least Remaining work content, EDD- Earliest Due Date, LRNOP- Least Remaining number of operations, PT 

– Process Time, RT- Remaining Time, ODD – Operational Due Date 

 

4   Development of MCDM-based PDR 

In this work, MCDM-based PDRs are developed and integrated with the simulation model for arriving 

job priorities in a PFJS. The PFJSSP identifies factors that influence the system's performance and 

assigns the corresponding criterion weights. Figure 3 shows the methodology adopted to create a 

ranking of jobs using the MCDM approach. Delphi method (Dalkey and Helmer, 1963), a powerful 

technique to assess multiple criteria/factors that influence a decision-making process, is utilized in this 

study for ranking the criteria. In the Delphi approach, a questionnaire is prepared and circulated to the 

shop floor engineers and managers to get their feedback. The feedback from shop floor Engineers and 

Managers is consolidated by FAHP to arrive at the weightage for the criterion. The criteria for ranking 

jobs are due date, setup time, number of operations, processing time, and slack time per remaining 

operation. These parameters are selected based on literature review, and data collection carried out in 

the industry, and discussion with the subject experts. Assigning weights to the criteria is probably the 

most important part of MCDM, as it allows different views and their impact on ranking alternatives to be 

explicitly expressed. 



16 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3 Caption: Methodology of MCDM approach 

 

Figure 3 Alt Text: The overall flow involved in ranking the jobs using MCDM approaches 

 
FAHP processes are suitable for problems involving bias or preferences whenever human factors are 

involved in assigning weights for the criteria. Details of the computational procedure to arrive at 

criterion weights are available in Thenarasu et al. (2022). Fuzzy weight details and Crisp weights are 

shown in Table 4. 

                           Table 4: FAHP Criterion's Weight 

 

Criteria 
Fuzzy Weights Crisp  

Weights 

Crisp Normal  

Weights l m u 

Cr1 0.07 0.10 0.16 0.34 0.10 

Cr2 0.17 0.26 0.43 0.85 0.26 

Cr3 0.09 0.15 0.23 0.47 0.15 

Cr4 0.03 0.04 0.06 0.12 0.04 

Cr5 0.25 0.46 0.77 1.47 0.45 

Sum of Crisp Weight and Crisp Normal Weight 3.26 1.00 

 

Note: Cr1- Process time, Cr2- Due Date, Cr3- Number of operations, Cr4-Setup-time, Cr5- Slack time 

Remaining per Operation, (l m u) – Triangular Fuzzy number, l- Smallest possible value, m-Midpoint 

value u- Largest value 

 

 

 

Identification & Selection of 

Criteria  

Construction & selection of 

criteria hierarchy   

Questionnaire results by 

Delphi method 
Literature Review 

Apply FHAP to obtain 

overall weight of criteria   

 

Apply MCDM methods 

to find the ranking  

 

Final ranking results   

Brainstorming, Expert’s 

opinion by electronic mail 

survey  

Literature Survey   
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4.1 MCDM Methods for Prioritization of Jobs  

This section describes the job ranking methods based on MCDM methods such as TOPSIS, EDAS, 

CP and PROMETHEE. The MCDM methods have been adopted in this study to prioritize the jobs in 

an FJSSP to minimize Makespan, Flow Time, and Tardiness performance measures. Considering the 

robustness of TOPSIS, it is employed to find decision alternatives for the given criteria based on the 

distance from an ideal solution (Hwang and Yoon 1981). The input for the TOPSIS approach includes 

criteria selected for ranking using Delphi and their weights computed using FAHP. Distances from 

the Positive Ideal Solution (PIS) and the Negative Ideal Solution (NIS) are used to rank the jobs. Upon 

completion of an operation in a machine, the ranks are updated dynamically. An external spreadsheet 

is used to compute the job priorities and integrated with the DES model to evaluate the performance 

measures. EDAS is a relatively new MCDM technique used to decide in situations where there is a 

conflict among the criteria (Ghorabaee et al. 2015). The ideal alternate is determined based on the 

distance from the mean solution. Positive Distance from Average (PDA) and Negative Distance from 

Average (NDA) are used to represent the distance between the mean and the alternate solution. Better-

performing alternates are those with higher PDAs and lower NDA. The ranking is done in decreasing 

order of the appraisal score. The CP is used to attain a solution closest to an ideal solution for a 

particular distance measure. The distance between these points is the basis for decision-making and 

transformed evaluation matrix, distance Lp– metric represents the Euclidean distance measure. It is 

computed for all jobs based on the ideal, minimum, and maximum values of each criterion alongside 

the actual and normalized weights of the selected criteria.  The ranking of the alternatives is determined 

by considering the lowest ‘Lp’ metric value from the ideal solution (Diaz-Balteiro et al. 2011). 

PROMETHEE can be easily implemented due to its computational efficiency in prioritizing jobs in a 

large-scale problem (Munda 2005). The evaluation matrix lists all the production parameters for 

developing the PDR. In almost all the practical scenarios, not all parameters would be of the same 

trend, i.e. some parameters need to be minimized, whereas the others need to be maximized.  A good 

solution may be a balance of all the parameters under consideration based on the business 

requirements. Since all data are in various trends, it is always essential to normalize the available data 

to obtain useful and meaningful interpretations. For every job, the preference index and net Flow value 

are computed for ranking the jobs. Note that the pseudocodes of TOPSIS, EDAS, CP and 

PROMETHEE method are given in Appendix 1. The use of pseudocode is to rank the jobs based on 
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the MCDM methods chosen. These ranks serve as the input for simulation. This code is run 

dynamically during the simulation after the completion of each operation.  The code is applicable 

whenever an MCDM is chosen as the preferred PDR. The program runs every time an operation is 

completed and ranks the jobs based on updated attributes. A similar manner for all job instances 

ranking is computed using the MCDM approach. The ranking of jobs is calculated dynamically in the 

external spreadsheet and updated to the DES model. The computation steps of the PROMETHEE 

method are given below, which is used for prioritizing. 

4.1.1 Computation of job ranking using the PROMETHEE method 

The step-by-step approach to implementing the PROMETHEE is discussed subsequently. Firstly, the 

criteria are compared pairwise, followed by the determination of preference function, computation of 

global preference index, calculation of positive and negative outranking flows, and ranking.  

Step1: Determination of deviations based on pairwise comparisons (Equation 12)   

 

𝑑𝑗(𝑎, 𝑏) = 𝑔𝑗  (𝑎) − 𝑔𝑗  (𝑏)                               (12) 

Where 𝑑𝑗(𝑎, 𝑏) is the difference between the evaluations of a and b on each criterion 

 

Step 2: Application and selection of the preference function (Equation 13) 

𝑃𝑗(𝑎, 𝑏) = 𝐹𝑗 [𝑑𝑗(𝑎, 𝑏)] 𝑗 = 1, . . 𝑘.          (13) 

Where 𝑃𝑗(𝑎, 𝑏) denotes the preference of alternative a with regard to alternative b on each criterion as 

function of 𝑑𝑗(𝑎, 𝑏) 

Step 3: Calculation of an overall or global preference index (Equation 14) 

 

∀ 𝑎, 𝑏 ∈ 𝐴, 𝜋(𝑎, 𝑏) = ∑ 𝑃𝑗(𝑎, 𝑏) 𝑤𝑗
𝑘
𝑗=1                 (14) 

Where 𝜋(𝑎, 𝑏) of a over b is defined as the weighted sum 𝑃𝑗(𝑎, 𝑏) of for each criterion, and 𝑤𝑗 is the 

weight associated with jth criterion 

Step 4: Calculation of outranking flow/the PROMOTHEE Partial Ranking Equations (15 & 16) 

 

𝜑+(𝑎) = ∑ 𝜋 (𝑎, 𝑏)𝑥∈𝐴                                (15) 

𝜑−(𝑎) = ∑ 𝜋 (𝑏, 𝑎)𝑥∈𝐴                     (16) 
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Where 𝜑+(𝑎) and 𝜑−(𝑎) denote the positive outranking and negative outranking flow for each 

alternative, respectively 

Step 5: Calculation of net outranking flow/ the PROMETHEE complete ranking (Equation 17) 

𝜑(𝑎) = 𝜑+(𝑎) −  𝜑−(𝑎)                                                      (17) 

Where 𝜑(𝑎) denote the net outranking flow for each alternative. 

Step 6: Select the best/suitable alternative having the highest net value 

PROMETHEE can be easily implemented due to its computational efficiency in prioritising jobs in a 

large-scale problem. Practising engineers can implement this approach with ease to make quick 

decisions. The evaluation matrix lists all the production parameters for developing the priority rule. In 

almost all the practical scenarios, not all parameters would be of the same trend, i.e. some parameters 

need to be minimized, whereas the others need to be maximized. A good solution may be a balance of 

all the parameters under consideration based on the business requirements. Since all data are in various 

trends, it is always essential to normalize the available data to obtain valuable and meaningful 

interpretations.  

 

Table 5: Decision matrix for MK1 instances 
 

Criterion 

weights 
0.10 0.26 0.15 0.04 0.45 

Jobs Cr1 Cr2 Cr3 Cr4 Cr5 

J1 27.0 49.5 6 1.3 3.8 

J 2 20.0 37.5 5 1.2 3.5 

J 3 27.0 48.0 5 1.6 4.2 

J 4 22.0 40.5 5 1.3 3.7 

J 5 34.0 60.0 6 1.7 4.3 

J 6 26.0 45.0 6 1.3 3.2 

J 7 17.0 33.0 5 1.2 3.2 

J 8 33.0 49.5 5 1.6 3.3 

J 9 24.0 45.0 6 1.2 3.5 

J 10 25.0 46.5 6 1.2 3.6 

 

Note: Cr1- Processing Time, Cr2- Due Date, Cr3- Number of operations, Cr4-Setup time, Cr5- Slack 

Time per Remaining Per Operation;  
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The weights assigned for the criteria based on their relative importance in the ranking have been 

presented. Compute each job's preference index and net φ value for every job. The outranked indices 

of jobs among the alternatives and their corresponding ranks are shown for the MK1 problem instance, 

for a numerical illustration of PROMETHEE is given in Appendix 2. 

4.2 Decision Matrix and Job Ranking of all MCDM Methods 

An example of the four MCDM methods employed for ranking a benchmark problem, MK1, instances 

(10 jobs and 6 machines) is illustrated in this section. The evaluation matrix is shown in Table 5. The 

weights of the Criteria determine the magnitude of their effect. The evaluation matrix provides the 

inputs for all the MCDMs. Initial ranks for a benchmark instance MK1 using TOPSIS, EDAS, CP and 

PROMETHEE are presented in Table 6.  The ranking of jobs is dynamically changing throughout the 

simulation. An external spreadsheet is used for computing the job priorities and interfaced with the 

DES model. The input for the MCDM method includes criteria selected for ranking and their weights 

calculated using FAHP. The ranking of jobs is performed based on the logic explained in the 

pseudocode.  

 

Table 6: Initial Job Ranking for TOPSIS, EDAS, CP and PROMETHEE 

 

Jobs/ MCDM TOPSIS EDAS CP PROMETHEE 

J1 9 9 8 10 

J 2 2 7 4 4 

J 3 8 10 10 3 

J 4 3 4 7 2 

J 5 10 3 9 9 

J 6 4 5 2 6 

J 7 1 1 1 1 

J 8 7 2 3 8 

J 9 5 8 5 6 

J 10 6 6 6 5 
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4.3 Integration of MCDMs with DES  

Integration of DES with MCDM is required to evaluate the performance of PFJSS instances. Initially, 

weights were assigned to the criteria using FAHP based on the chosen criteria. This acts as the input 

for ranking jobs using MCDM, which serves as the input for DES. The schema of integration of the 

simulation model with MCDM is shown in Figure 4. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4 Caption: Integration of MCDM and Simulation Model 

Figure 4 Alt Text: Figure depicting the communication happening between the Simulation model 

and the MCDM, which is the characteristic feature of the study 

 

Development of hybrid MCDM priority rules Input Data: 

Demand, Due date, Cycle 

Time, Sequences, 

Flexibility, Number. of 
Operations, Setup time 

 

Assignment of machine from the set of 

feasible machines for the next operation 
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•Makespan and Mean Flow-Time 

•Mean Tardiness and Max. 

Tardiness   
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Record the best performing rule 
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using FAHP 
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Priority Dispatching 

Rules (PDR) 
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CP, WAM  

i= 9 to 15 

 

Selection of job with the least rank from 
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Machine Assignment 

Decision 2: 

Job selection based on selected 
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Composite Dispatching 

Rules (CDRs) 

i = 1 to 8 

 

 

Discrete Event Simulation 
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22 

 

Table 7: Comparative assessment of measures for various benchmark instances with different arrival patterns 

 

 

 

 

 

 

 

Arrival Pattern  Instances/Measures   MK1 MK2 MK3 MK4 MK5 MK6 MK7 MK8 MK9 MK10 

Static  Arrival Pattern  

Makespan 52.35C9 52.13C12 256.46C5 85.61C1 199.13C5 112.04C12 214.23C7 577.43C3 410.33C7 324.15C10 

Mean Flow time 33.46C7 35.45C2 165.45C8 41.06C12 109.45C9 95.45C1 135.45C7 334.03C5 262.14C11 230.60C10 

Mean Tardiness 8.46C5 14.45C7 45.54C12 18.64C5 41.70C9 23.45C5 56.45C2 65.06C11 76.54C10 65.16C12 

Max Tardiness 20.58C12 28.51C5 120.5C10 26.13C9 76.09C11 25.62C7 136.92C12 125.64C6 195.07C9 160.32C2 

Dynamic 

Arrival 

pattern  

Uniform 

Makespan 47.45C5 48.56C7 240.14C1 60.57C2 180.67C7 105.45C9 182.15C10 574.05C12 357.90C15 300.49C11 

Mean Flow time 27.41C9 35.64C1 150.45C5 34.65C7 95.83C12 87.01C9 123.45C5 316.55C12 243.50C8 214.73C11 

Mean Tardiness 5.53C5 6.26C2 17.63C12 5.14C10 10.37C9 8.26C12 15.95C10 22.20C11 32.03C6 26.95C8 

Max Tardiness 8.42C3 13.04C11 71.56C10 13.56C5 28.51C7 25.65C12 32.36C6 43.56C8 113.49C11 60.35C5 

Increasing 

Makespan 51.45C7 48.91C1 232.64C5 75.40C11 178.35C7 110.94C9 180.05C12 580.30C4 384.08C9 307.36C12 

Mean Flow time 30.77C11 35.18C8 154.65C2 35.47C7 96.47C10 101.61C9 116.54C5 312.10C10 257.65C7 210.14C12 

Mean Tardiness 5.27C3 6.22C6 38.82C11 6.53C1 10.36C9 12.45C12 16.45C10 27.45C5 35.64C8 33.25C7 

Max Tardiness 10.24C10 15.45C1 100.36C8 13.39C5 25.64C7 14.36C6 39.30C9 45.65C5 124.54C11 90.54C8 

Decreasing 

Makespan 45.72C5 47.29C7 242.87C8 63.70C9 186.50C12 105.63C10 182.87C5 530.54C7 362.71C12 281.51C9 

Mean Flow time 34.83C4 37.34C8 162.32C2 35.30C10 93.89C3 100.19C6 116.52C9 312.08C7 250.39C12 215.86C9 

Mean Tardiness 5.05C11 6.13C4 30.57C8 5.01C4 10.02C9 10.21C7 21.26C5 30.18C1 40.43C12 29.74C10 

Max Tardiness 9.51C6 14.66C7 86.11C10 11.65C1 25.17C12 36.44C9 36.01C11 45.21C8 121.98C12 95.02C9 

Random 

Makespan 62.70C2 66.46C5 290.93C1 94.67C7 228.77C9 150.43C2 224.72C8 622.74C10 430.21C7 359.26C12 

Mean Flow time 42.12C2 44.81C8 171.90C10 50.09C9 119.45C7 119.65C3 123.16C12 350.34C6 276.55C9 236.78C5 

Mean Tardiness 8.45C5 8.57C12 46.53C3 10.96C11 14.35C8 20.67C10 26.49C12 44.50C5 51.05C7 42.84C9 

Max Tardiness 17.49C10 25.64C4 122.65C1 25.45C7 50.42C9 50.88C12 70.98C11 80.87C8 142.98C5 135.98C8 

Note: C1-2PT+LWR+FDD, C2-2PT+LWR+Slack, C3- SPT+LWR+Slack, C4-2PT+LWR+EDD, C5-(7*LTWC) +(11*SPT)+12*(LNOP+AT), C6- 

LTWC/(3+LNOP-LRNOP), C7- ODD+RT, C8- [EDD+[(LRNOP+LTWC)/(LRWC-LTWC)]*LNOP]*LRNOP, C9-TOPSIS, C10- EDAS, C11-CP 

C12-PROMETHEE, PT- Processing Time, LWR- Least Work Remaining, FDD – Flow Due Date, EDD- Earliest Due Date, LTWC- Least Total work 

content, SPT- Shortest Processing Time, LNOP- Least No of Operations, LRWC- Least Remaining work content, EDD- Earliest Due Date, LRNOP- 

Least Remaining no of operations, PT – Process Time, RT- Remaining Time, ODD – Operational Due Date 
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5. Results and Discussion  

The performance of the proposed rules is compared with the best-known CDRs to justify the 

effectiveness of the proposed approach. With this view, the proposed MCDM-based rules and the 

chosen CDRs from the literature were tested on ten benchmark instances and real-time problem 

instances for static and different job arrival patterns. The details of the performance evaluation of 

static and dynamic job arrival scenarios of PFJS benchmark instances are discussed in sections 5.1 

and 5.2.  The best-performing rule for every problem instance for each performance criterion is 

shown in Table 7. 

5.1 Performance Evaluation of static arrival pattern 

With respect to Makespan, the CDR C5: (7*LTWC) +(11*SPT) +12*(LNOP+AT), CDR C7: 

ODD + Re, and MCDM C12: PROMETHEE produced the best results for two instances each. The 

problems MK3 & MK5, MK7 & MK9, and MK2 & MK6 are the respective pairs of instances 

where CDRs C5, C7, and MCDM C12 outperformed the other rules considered in this study. 

Considering the Mean Flow time, the CDR C7: ODD + RT outmatched the other rules for MK1 

and MK7 whilst, for all other instances, different rules were producing the best result for each 

instance. The rules that fetched the least Mean Flow time for one instance each include CDRs C1, 

C2, C5, & C8, and MCDMs C9, C10, C11, & C12. Considering the tardiness related measures, 

C5: (7*LTWC) +(11*SPT) +12*(LNOP+AT) achieved the best results across three instances 

MK1, MK4, and MK6 while the rules C2, C7, C9, C10, C11, C12 performed better than other 

rules for one instance each. C9: TOPSIS and C12: PROMETHEE has produced the best result 

concerning maximum Tardiness for two problem instances, each MK4 & MK9 and MK1 & MK7, 

respectively. The rules C2, C5, C6, C7, C10, and C11 gave the best values with respect to 

maximum Tardiness for one instance each. It is observed that for most of the problem instances 

considering static arrival of jobs for benchmark problems, CDRs are performing well compared to 

MCDM-based rules. However, CDRs and MCDM-based rules prove to be toe-to-toe overall.  
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5.2 Performance Evaluation of dynamic arrival pattern 

CDR C7: ODD + RT has produced the best results for MK2 & MK5, MK1 & MK5, MK2 & MK8, 

and MK4 & MK9 problem instances for uniform, increasing arrival rate and decreasing arrival 

rate of arrival, and random arrival patterns, respectively.  CDR C5: (7*LTWC) +(11*SPT) 

+12*(LNOP+AT) produced the best results for MK1 & MK9 for uniform arrival, and MK1 & 

MK7 for decreasing rate of arrival. MCDM C9: TOPSIS has produced the best results for MK6 

&MK9 for an increasing rate of arrival and MK3 &MK10 for decreasing rate of arrival. MCDM 

C12: PROMETHEE has also outperformed other rules for two instances, MK7 and MK10, for the 

increasing rate of arrival of jobs. For the Mean Flow time, MCDM C9: TOPSIS has produced the 

best results for dynamic job arrivals in the greatest number of instances. The TOPSIS MCDM rule 

has given the best results for MK1 & MK6 for uniform job arrivals, MK3 & MK10 for decreasing 

the rate of job arrivals, and MK4 & MK9 for random job arrivals. Besides, the rule CDR C5: 

(7*LTWC) +(11*SPT) +12*(LNOP+AT) has produced the least value of Mean Flow time for two 

instances, MK3 & MK7 for uniform job arrival and MK7 & MK10 for random arrivals. Apart 

from these, the rules CDR C7: ODD + RT and C10: EDAS has produced the best values for MK4 

& MK9 and MK5 & MK8, respectively, for increasing job arrivals. The rules CDR: C2, C4, C5, 

C6, & C8, and MCDM: C10 and C12 have given the best results for one instance each for 

decreasing the rate of job arrivals.  

The tardiness-based measures show a much larger variation in the rules that perform best for each 

instance. MCDM: C12: PROMETHEE, CDR: C7: ODD + RT, MCDM: C10: EDAS, CDR: C4: 

2PT+LWR+EDD, and CDR: C5: (7*LTWC) +(11*SPT) +12*(LNOP+AT) have performed the 

best for two instances each with respect to the mean Tardiness. The MCDM rule C12 has given 

the best results for four instances overall. The MCDM rule produced the best results for MK3 & 

MK6 for uniform arrival and MK2 & MK7 for random arrival of jobs. MK4 & MK9, MK5 & 

MK8, MK2 & MK4, and MK1 & MK8 are the respective pairs of instances for which the rules 

CDR: C7, MCDM: C10, CDR: C4, and CDR: C5 have shown the best values with respect to mean 

Tardiness.  
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Figure 5 Caption: Work Flow of Real-time Simulation  

Figure 5 Alt Text: The real-time simulation framework is presented in three broad steps: data input, arriving job priorities using proposed MCDMs 

and simulation, and recording the performance measures.  
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For maximum Tardiness measure, CDR: C2, C5, & C6, and MCDM: C9, C10, & C11 produced 

best result for uniform job arrival; CDR: C2, C4, C5, C6, & C8, and MCDM: C10 & C12 for 

decreasing rate of job arrivals; and CDR: C3, C7, & C8, and MCDM: C9, C10, & C11 for random 

job arrivals. CDR: C5: (7*LTWC) +(11*SPT) +12*(LNOP+AT) and CDR: C8: 

[EDD+[(LRNOP+LTWC)/(LRWC-LTWC)] *LNOP] *LRNOP showed the best results of 

maximum Tardiness for four instances each. CDR: C5 showed the best results for MK4 & MK10 

and MK4 & MK8 for uniform arrival and increasing arrival rate, respectively. The CDR: C8 

produced the best results for the MK3 & MK10 and MK8 and MK10, respectively, for increasing 

and random arrival of jobs. Apart from these, MCDM: C11: CP, MCDM: C9: TOPSIS, and 

MCDM: C12: PROMETHEE gave the best values for the instances MK2 & MK9, MK6 & MK10, 

and MK5 & MK9 respectively. The rules CDR: C1, C4, C5, & C7, and MCDM: C9, C10, C11, 

and C12 performed the best for one instance each for random arrival scenarios.  

The performance of CDRs is better than MCDMs for small-size benchmarking problems. For 

Makespan, MCDMs perform better than CDRs for 4/10 and 17/40 instances for static and dynamic 

job arrival patterns, respectively. MCDMs perform better for 4/10 and 18/40 instances for static and 

dynamic job arrival patterns for Mean Flow Time. Considering mean Tardiness, CDRs and MCDMs 

produce the best results for five instances each for static arrival patterns. For the dynamic arrivals 

scenario, it is observed that MCDMs are performing well for 19/40 instances. With respect to the 

maximum tardiness measure, the proposed MCDMs are achieving the best results for 6/10 and 17/40 

instances with static and dynamic arrivals patterns, respectively. Mean and average percentage 

deviation statistics are computed and observed that MCDMs are consistent in their performance 

compared to CDRs.  

6 Case Study  

An auto-ancillary press shop has been undertaken to evaluate the effectiveness of the proposed 

rules. Data relevant to process mapping, machine details, demand patterns, job sequence, job 

setting time, and job due date are collected from the shop floor. The press shop has 28 

workstations (Press) of varying capacities. Each machine's job material, geometry, and tonnage 

determine the set of jobs that a machine can handle. Demands are considered monthly, and job 

prioritization is done through past experiences and observations. The high number of machines 

and jobs increases the complexity and vulnerability of errors in scheduling. A simulation model 

is developed using DES software to represent the press shop.  
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Table 8: Comparative assessment of MCDM based PDR and CDR for all performance measures 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Job Arrival Pattern 

Performance 

Measures/Priority 

Rules 

Composite Dispatching Rules (Time in Hours) 
MCDM Methods (Time in Hours) 

TOPSIS EDAS CP PROMETHEE 

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 

Static  

Makespan 196.35 209.66 212.38 206.05 191.50 217.13 207.54 197.82 174.65 180.54 185.34 178.68 

Mean Flow time 77.38 87.16 84.98 89.09 78.03 86.06 78.33 87.22 70.14 76.57 80.32 75.64 

Mean. Tardiness 26.53 21.68 21.06 23.11 22.15 23.87 26.46 26.08 20.47 18.87 13.92 16.84 

Max. Tardiness 56.24 54.69 51.63 51.79 57.76 54.46 50.42 57.53 45.34 42.62 41.34 48.47 

Dynamic  

Uniform 

Makespan 186.68 194.8 193.15 180.12 192.47 204.47 201.38 193.64 175.45 184.62 180.14 172.64 

Mean Flow time 90.64 89.21 86.47 87.19 83.36 84.21 82.08 84.20 65.47 72.89 76.17 69.72 

Mean. Tardiness 28.40 32.13 26.67 24.65 25.74 26.56 24.18 21.13 19.33 17.41 14.22 12.39 

Max. Tardiness 51.09 50.50 49.39 47.39 54.27 58.43 52.06 50.19 42.82 44.17 38.47 40.61 

Increasing 

Makespan 192.75 184.05 192.53 194.53 190.68 178.25 181.75 179.74 162.47 170.64 172.92 168.25 

Mean Flow time 83.02 74.35 76.42 81.98 82.19 84.02 82.57 78.05 70.72 78.98 80.41 74.56 

Mean. Tardiness 28.34 18.75 26.53 18.11 22.38 27.73 25.73 27.71 16.28 12.47 14.45 18.63 

Max. Tardiness 51.01 42.91 50.72 53.43 44.12 45.13 52.21 42.60 36.42 30.44 34.78 38.65 

Decreasing 

Makespan 193.83 185.20 196.23 183.79 197.29 180.85 182.82 194.56 164.52 172.62 174.22 168.47 

Mean Flow time 78.58 78.40 79.00 80.28 83.67 82.14 81.41 82.43 68.12 73.45 78.62 65.32 

Mean. Tardiness 30.75 28.96 25.04 29.31 23.45 26.48 23.36 29.78 20.45 17.23 14.24 18.64 

Max. Tardiness 51.38 44.55 54.83 51.41 56.17 45.03 55.72 45.94 42.15 39.64 35.41 40.27 

Random 

Makespan 211.75 222.23 230.47 219.97 214.67 232.30 224.44 226.74 182.34 197.52 192.62 188.64 

Mean Flow time 95.38 92.62 90.58 99.99 97.11 98.25 99.49 94.90 76.61 81.38 85.94 79.47 

Mean. Tardiness 29.48 27.97 27.27 32.00 32.79 22.56 33.12 27.82 24.25 26.88 15.41 19.68 

Max. Tardiness 66.93 56.49 65.61 68.54 62.87 55.67 56.09 65.73 50.21 54.54 42.14 48.41 

Note: C1-2PT+LWR+FDD, C2-2PT+LWR+Slack, C3- SPT+LWR+Slack, C4-2PT+LWR+EDD, C5-(7*LTWC) +(11*SPT) +12*(LNOP+AT), C6- 

LTWC/(3+LNOP-LRNOP), C7- ODD+RT, C8- [EDD+[(LRNOP+LTWC)/(LRWC-LTWC)] *LNOP] *LRNOP, C9-TOPSIS, C10- EDAS, C11-CP C12-

PROMETHEE 
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The values of processing times are directly provided as input to the simulation model using an 

external database. Demand and setup times of jobs are generated using the probability distribution 

function.  The scalability of the simulation model in terms of the number of jobs and its parameters 

makes it applicable to several problems. The real-time simulation framework is schematically 

represented in Figure 5. It explains three steps involved: data input, arriving job priorities using 

proposed MCDMs and simulation, and recording the performance measures. 

6.1 Performance evaluation of static arrival pattern  

Makespan recorded the best value of 174.7 hours for TOPSIS, followed by 178.7 hours for 

PROMETHEE, as shown in Table 8. The CDR: C5: (7*LTWC) +(11*SPT) +12*(LNOP+AT) 

reported the least Makespan of 191.5 hours. The proposed MCDM rules performed well with respect 

to Makespan. Mean Flow Time recorded the least value of 70.14 hours for TOPSIS, followed by 

75.54 hours for PROMETHEE. Among the CDRs, C1: 2PT+LWR+FDD reported the best value of 

77.38 hours for Makespan. Production delays hinder job completion within specified due dates and 

reduce the efficiency of job shops. Mean Tardiness had the least value of 13.92 hours for MCDM: 

CP, with 16.84 hours being the second least value for PROMETHEE. The minimum value of Mean 

Tardiness for CDRs was reported to be 21.06 hours for C3- SPT+LWR+Slack. MCDM: CP was the 

best-performing hybrid rule with respect to Maximum Tardiness with a value of 41.34 hours 

followed by MCDM: EDAS with 42.62 hours. Concerning Maximum Tardiness, CDR: C7 

ODD+RT produced the best result of 50.42 hours. MCDMs rule outmatched the CDRs across all 

performance measures for the chosen case study. The proposed hybrid PDRs effectively improve all 

selected performance measures involving a number of operations, due date, process time, demand 

rate, setup time, and customer priority. 

6.2 Performance evaluation of dynamic arrival pattern 

For the four different dynamic arrival patterns used, the performance measures were recorded to 

evaluate the effectiveness and robustness of the patterns. TOPSIS produced the least Makespan 

values of 162.47 hrs for the increasing rate of arrivals followed by 164.52 hrs for decreasing rate of 

arrival pattern. Mean Flow Time was the minimum for decreasing arrival pattern with a value of 

65.32 hrs for the PROMETHEE rule. The second-best value of 65.47 hrs was achieved for TOPSIS 
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for a uniform arrival pattern. Mean Tardiness produced the least value of 12.39 hrs for 

PROMETHEE when a uniform arrival pattern was followed. Increasing arrival pattern gave a closer 

value of 12.47 hrs for the EDAS priority rule. The fourth measure, maximum Tardiness, showed the 

best value of 30.44 hrs and 35.44 hrs for increasing and decreasing arrival patterns, respectively, for 

the rules EDAS and CP.  

It is observed that the MCDM-based rules have outperformed the Composite rules for all the 

dynamic arrival patterns with respect to all performance measures. This is because the MCDM rules 

have been developed considering multiple parameters that affect scheduling. This also offers the 

flexibility to alter the parameters and their weights. Also, this simulation-based approach that 

accounts for varying job arrivals is more helpful for the scheduling managers to incorporate any 

changes in the arrivals and make quick decisions based on the simulation results. The determination 

of the robustness of the composite rules and MCDMs for the static and dynamic arrivals followed 

this. 

The robustness of each method is summarized with respect to the various performance measure. 

Since TOPSIS involves the normalization of criteria to bring them to comparable scales and it 

performs well for Makespan and mean Flow Time measures, the role of AHP is significant in 

assigning proper weights to these criteria. In the present study, customer priority has been given the 

highest weightage, followed by the number of operations and processing time. This indicates the 

strong dependence of Makespan and Mean Flow Time on these three criteria. Since customer priority 

has the utmost importance, followed by a number of operations and due date, and EDAS produces 

the best results for Tardiness-based measures, it could be attributed that these criteria are vital in 

determining Tardiness-based measures. Since the ranking of jobs is being done without normalizing 

the criteria in CP, the criterion such as demand and due date that are relatively higher in magnitude 

than the other criteria are being given more weightage for the ranking of jobs. Given that CP 

performs better for Tardiness-based measures, it could be inferred that demand and due date play a 

vital role in these measures. PROMETHEE considers the minimum and maximum values of each 

criterion which are used to create the preference function by comparing them with the criterion 

values of each instance. This rule has produced the best results for one instance each in Makespan 

and mean Flow Time and also mean Tardiness. 
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6.3 Effects of criteria weights on performance measures 

In the present study, the weights for the criteria have been assigned using Fuzzy Analytic Hierarchy 

Process (FAHP).  In the Flexible Job Shop, various factors that influence the performance of the 

system are identified based on surveys and discussions with industry experts. A questionnaire was 

prepared and distributed to the shop floor engineers and managers for feedback on factors 

influencing the shop's performance. Delphi technique (Dalkey and Helmer 1963) has been used to 

conduct the survey and identify factors affecting shop performance.  The criteria chosen in the 

present study are customer priority, demand, due date, setup time, number of operations, processing 

time, and slack time remaining per operation. From the scores obtained for each of the parameters 

using Delphi, ranks were assigned in descending order. The weights / relative importance of criteria 

is obtained using the FAHP process.  

The performance of the shop floor was evaluated by assigning different weights for criteria. Weights 

are chosen in such a way that their sum is equal to 1. Since many experiments are required to assess 

the shop floor's performance, experiments were carried out by varying the weight of one factor at a 

time, starting from 0.1 to 0.9 in steps of 0.1. The design table for conducting the experiments is given 

in Table 1A (Appendix 3). This procedure was carried out considering the MCDM-TOPSIS method 

for the case problem considered in this study. The results are presented in Figure 6.   

When the weights of process time increased, Makespan and mean Flow Time were reduced, whereas 

the Tardiness-based measures were increased. Contrarily, when the weights of due date were 

increased, Makespan and Mean Flow Time were increased while the Tardiness-based measures 

decreased. It is noticed that increasing the weights for Setup time, number of operations and 

customer priority does not influence the output performance measures. However, there were slight 

improvements in maximum Tardiness with increased weights of a number of operations and setup 

time. An increase in weights of demand improved the performance with respect to Makespan, Mean 

Flow time and Maximum Tardiness. There was a slight increase in mean Tardiness with the increase 

in the weight of demand. The present study's results match the trends available in the literature 

regarding the influence of weights over performance measures. (Holthaus and Rajendran,1997).
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Figure 6 Caption: Effects of criterion weights on performance measures a) process time, b) Due date, c) Setup time, d) Number of Operations, e) 

Customer Priority, f) Demand  

Figure 6 Alt Text: Graphs representing the variations in the measured performance indicators with respect to changes in the criterion weights
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6.4 Statistical Validation 

To compare the differences in performance of the CDRs and MCDM rules, two statistical tests, 

‘ANOVA’ and ‘t-test’, were performed. To carry out these tests, the CDRs were considered as a 

group, whereas each MCDM was considered as a separate entity. The ANOVA test (Table 9) 

reveals that CDRs and MCDMs are significantly different with respect to performance measures 

considered in this study. It is observed that for all performance measures, the p-value value 

computed is less than 0.05.  

Table 9: Result of one-way ANOVA Test 

Note: df – Degrees of freedom, F- Test Statistic, Sig.-P value 

 

The Mean values obtained for each performance measure through independent sample t-tests 

(Table 10) show that TOPSIS had the least mean score for Makespan and Mean Flow time while 

CP had the least mean scores for the tardiness-related measures. It is evident that the MCDMs 

have outperformed the CDRs for all the performance measures.  The p-values of TOPSIS, EDAS 

and PROMETHEE are less than 0.05, which shows a significant difference between the use of 

CDRs and other MCDMs with respect to each outcome measure. Whereas the p-value for Mean 

Flow Time corresponding to CP is 0.108, which is greater than 0.05, indicating that there is no 

significant difference between the performances of CDR and CP with respect to Mean Flow time 

(Table 11) 

 

 

 

    Sum of Squares df Mean Square F Sig. 

Makespan 

  

Between Groups 6793.986 4 1698.497 9.132 9.90E-06 

Within Groups 10229.827 55 185.997 
  

Total 17023.813 59 
   

Mean_ 

Flow_Time 

  

  

Between Groups 1700.185 4 425.046 11.550 7.08E-07 

Within Groups 2024.088 55 36.802 
  

Total 3724.272 59 
   

Mean_ 

Tardiness 

  

  

Between Groups 1060.718 4 265.180 20.930 1.57E-10 

Within Groups 696.832 55 12.670 
  

Total 1757.550 59 
   

Max_ 

Tardiness 

  

  

Between Groups 1838.233 4 459.558 11.753 5.73E-07 

Within Groups 2150.544 55 39.101 
 

  

Total 3988.777 59 
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Table 10: Mean Performance measures   

 

Individual_MCDM CDRs TOPSIS EDAS CP PROMETHEE 

Makespan 199.4140 171.8860 181.1880 181.0480 175.3360 

Mean_Flow_Time 85.3110 70.2120 76.6540 80.2920 72.9420 

Mean_Tardiness 26.1455 20.1560 18.5720 14.4480 17.2360 

Max_Tardiness 53.3233 43.3880 42.2820 38.4280 43.2820 

 

Table11: Independent sample t-test 

 

t-test 

TOPSIS EDAS CP PROMETHEE 

Levene's Test 

for Equality 

of Variances 

t-test 

for 

Equality 

of 

Means 

Levene's Test 

for Equality 

of Variances 

t-test 

for 

Equality 

of 

Means 

Levene's Test 

for Equality 

of Variances 

t-test 

for 

Equality 

of 

Means 

Levene's Test 

for Equality 

of Variances 

t-test 

for 

Equality 

of 

Means 

F Sig. 

Sig. (2-

tailed) F Sig. 

Sig. (2-

tailed) F Sig. 

Sig. (2-

tailed) F Sig. 

Sig. (2-

tailed) 

Makespan Equal variances 

assumed 

2.340 0.133 0.000 1.421 0.240 0.013 2.630 0.112 0.011 2.363 0.132 0.001 

  Equal variances 

not assumed 

    0.000     0.014     0.003     0.001 

Mean_Flow_Time Equal variances 

assumed 

1.985 0.166 0.000 1.950 0.170 0.007 2.758 0.104 0.108 0.294 0.590 0.000 

  Equal variances 

not assumed 

    0.000     0.002     0.031     0.004 

Mean_Tardiness Equal variances 

assumed 

0.938 0.338 0.001 0.254 0.617 0.000 6.297 0.016 0.000 0.586 0.448 0.000 

  Equal variances 

not assumed 

    0.006     0.030     0.000     0.001 

Max_Tardiness Equal variances 

assumed 

0.551 0.462 0.002 0.189 0.666 0.001 1.475 0.231 0.000 0.183 0.671 0.002 

  Equal variances 

not assumed 

    0.007     0.044     0.000     0.005 

 

7 Conclusions 

DES and MCDM approaches have been integrated into this study to determine job priorities in 

large-scale PFJS problems involving multiple criteria. Benchmark instances of various sizes and 

a real-world PFJS with 114 job varieties and 28 machines were used to examine the performance 

of the proposed approach. This work aims to rank the jobs by considering real-world criteria such 

as slack time, processing time, number of operations, demand, customer priority, setup time, and 

due date. Criteria are identified using the Delphi method, and weights for the criteria are obtained 

using FAHP. MCDMs are used to rank the jobs whilst the DES model is used to evaluate the 

performance measures considering static and dynamic job arrival patterns. Makespan, Flow Time, 

Mean Tardiness, and Maximum Tardiness measures are used to assess the shop floor 
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performance. Proposed methods are compared with the best-performing CDRs available in the 

literature for Makespan, Flow time, and Tardiness measures. For benchmark problem instances, 

CDRs outperformed the MCDMs for smaller-size problems. For Makespan, MCDMs performed 

better than CDRs for 40% and 42.5% of problem instances for static and dynamic job arrival 

patterns, respectively. Similar results were observed for mean Flow Time, where MCDMs 

performed better for 40% and 45% of problem instances for static and dynamic job arrival 

patterns, respectively. Considering Mean Tardiness, CDRs and MCDMs produce the best results 

for half of the problem instances each for static arrival patterns. For the dynamic arrivals scenario, 

it is observed that MCDMs are performing well for 47.5% of problem instances. With respect to 

Maximum Tardiness, the MCDMs outmatched CDRs for 60% and 42.5% of problem instances 

with static and dynamic arrivals patterns, respectively. For real-world problem instances, 

MCDMs performed well compared to CDRs for static and dynamic arrival conditions. For static 

arrival, C9: TOPSIS and C11: Compromise Programming produced the best results for Flow Time 

and Tardiness measures. In the case of dynamic job arrival patterns, C9: TOPSIS and C12: 

PROMETHEE achieved the best results for Makespan and Flow time measures. C12: 

PROMETHEE produced better results for mean Tardiness, whereas C10: EDAS and C11: 

Compromise programming produced better results for both measures of Tardiness.  

Overall it is observed that, for a large-scale instance, the MCDM approach outperforms CDRs for 

the performance measures considered in this study. The better performance of MCDM methods 

can be attributed to the ranking of jobs based on demand rate, due date, customer priority, setup 

time, process time, and the number of operations that influence the scheduling in the real world. 

The DES model developed in this study dynamically updates the parameters and job ranking as 

the simulation progresses.  The methodology proposed in this study is modular and simple for 

implementation in an industrial scenario. The proposed model is adaptive to incorporate 

additional parameters such as the number of resources, job variants, static and dynamic job arrival 

patterns, and flexibility. The DES model provides information about the job priorities, 

performance measures, and utilization of resources based on the proposed MCDMs. This would 

help the industries and policymakers to identify a pattern in terms of the parameters that influence 

the scheduling effectiveness with respect to the problem instances studied, thereby helping them 

make decisions concerning the selection of suitable MCDM. The model proposed in this study is 

generic and can be used to analyze scenarios involving probabilistic activity times and demand 

patterns. The tailor-made MCDM rules that function effectively based on the competencies of the 

PDRs using which they have been built would be of more interest to the researchers and 

policymakers as they encompass the inclusion of all the criteria required to be considered for 
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scheduling. Further, developing a decision support system might have more practical significance 

for production managers to schedule jobs effectively in a more complex environment. 

Data availability statement 

 

The data that support the findings of this study are available from the corresponding author upon 

reasonable request. 
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Appendix 1 

A) Pseudocode to generate job ranking using TOPSIS method 

The pseudocode of the TOPSIS method used for prioritizing jobs is given in this section. 

Input: 

xij = value of criterion ‘j’ of job instance ‘i’// Job instances  

wj = weight of criterion ‘j’//Criterion's weight computed using FAHP  

Output:  

Ri // Ranks obtained for chosen job instances  

Makespan, Mean Flow Time, Mean Tardiness, and Max Tardiness // Performance Measures  

start 

while (xij ≠ NULL) do  

for i= 1 to n do //Create a Decision Matrix D   

for xij in D do rij = 
𝑥𝑖𝑗

√∑ 𝑋𝑖𝑗
2𝑚

𝑖=1

   // Compute normalized decision matrix  

end for  

𝑉𝑖𝑗 =  𝑤𝑗 . 𝑟𝑖𝑗 // Weighted Normalized decision matrix, wj is weights of each criterion 

calculated by FAHP 

if 𝑗𝜖𝐽 then 

𝑣𝑖
+ = {𝑚𝑎𝑥(𝑣𝑖𝑗) ⅈ𝑓 𝑗𝜖𝐽; 𝑚ⅈ𝑛(𝑣𝑖𝑗)   

else if 𝑗𝜖𝐽 then  

𝑣𝑖
− = {𝑚ⅈ𝑛(𝑣𝑖𝑗) ⅈ𝑓 𝑗𝜖𝐽; 𝑚𝑎𝑥(𝑣𝑖𝑗) 

end if 

for 𝐽𝜖 𝑗 𝜖 𝐶𝑗 do 

𝑆𝑖
+ = √[∑(𝑣𝑖

∗ − 𝑣𝑖𝑗)
2
] // Calculate the separation measure of PIS (𝑆𝑖

+) 

𝑆𝑖
− = √[∑(𝑣𝑖

− − 𝑣𝑖𝑗)2]// Calculate the separation measure of NIS (𝑆𝑖
−) 

end for  

for each 𝑥𝑖𝑗 in D do  

 𝑐𝑐𝑖 = 
𝑆𝑖

+

(𝑆𝑖
++𝑆𝑖

−)
 //Calculate the relative closeness coefficient 

end for  

Rank(n) based on cci // Rank the jobs based on closeness coefficient 

end for 

do 

Simulation 

Assigning ranks to jobs in the DES model  

Updating ranks of jobs  

end while  

Evaluation of the performance measures 

Generation of Gantt chart 

Stop 
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B) Pseudocode to generate job ranking using EDAS method 

The pseudocode of the EDAS method used for prioritizing jobs is given in this section. 

Input: 

xij = value of criterion ‘j’ of job instance ‘i’// Job instances  

wj = weight of criterion ‘j’//Criterion's weight computed using FAHP  

Output:  

Ri // Ranks obtained for chosen job instances  

Makespan, Mean Flow Time, Mean Tardiness, and Max Tardiness // Performance Measures  

start 

while (xij ≠ NULL) do  

for i= 1 to n do //Create a Decision Matrix D   

for xij in AV do  𝐴𝑉𝐽 =  
∑ Xijn

i=1

n
  // Computing the Average Solution Matrix 

end for  

for xij in AV do  

  𝑃𝐷𝐴𝑖𝑗 =  
max(0,(𝑋𝑖𝑗−𝐴𝑉𝐽))

𝐴𝑉𝐽
,   𝑁𝐷𝐴𝑖𝑗 =  

𝑚𝑎𝑥(0,(𝐴𝑉𝐽−𝑋𝑖𝑗))

𝐴𝑉𝐽
 // Computing PDA and NDA  

end for  

for xij in PDA do 

               𝑆𝑃𝑖 =  ∑ wjPDAijm
j=1  // Computation of the weighted sum of positive (SPi) 

end for 

for xij in NDA do 

               𝑆𝑁𝑖 =  ∑ wjNDAijm
j=1  // Computation of the weighted sum of negative (SNi) 

end for 

for xij in NSP do 

 𝑁𝑆𝑃𝑖 =  
𝑆𝑃𝑖

𝑚𝑎𝑥(𝑆𝑃𝑖)
  // Normalizing the weighted sum of PDA 

end for 

for xij in NSN do 

                  𝑁𝑆𝑁𝑖 = 1 −  
𝑆𝑃𝑖

𝑚𝑎𝑥(𝑆𝑃𝑖)
  // Normalizing the weighted sum of NDA 

end for 

for xij in ASi do 
 

                𝐴𝑆𝑖 = (𝑁𝑆𝑃𝑖 − 𝑁𝑆𝑁𝑖) × 0.5  // Computing the Appraisal Score (AS) 

Rank(n) based on ASi // Rank the jobs based on AS  

end for 

end for  

do 

Simulation// DES model 

Assigning ranks to jobs in the DES model  

Updating ranks of jobs  

end while  

Evaluation of the performance measures 

Generation of Gantt chart 

stop 



40 

 

C) Pseudocode to generate job ranking using CP method 

The methodology used for developing job ranking using CP is given in this section. Job ranking 

is computed dynamically at the end of completion of every operation. The pseudocode for 

arriving the job ranking is given in the form of pseudocode in this section. 

Pseudocode: 

Input: 

xij = value of criterion ‘j’ of job instance ‘i’// Job instances  

wj = weight of criterion ‘j’//Criterion's weight computed using FAHP  

Output:  

Ri // Ranks obtained for chosen job instances  

Makespan, Mean Flow Time, Mean Tardiness, and Max Tardiness // Performance Measures  

start  

while (xij ≠ NULL) do  

for i= 1 to n do //Create a Decision Matrix D   

for all Ci (j= 1 to n) // Calculate the normalized weights 

        𝐿𝑃(𝑎) = ⌊∑ 𝑤𝑗
𝐽
𝑗=1 |

𝑓𝑗
∗−𝑓𝑗(𝑎)

𝑓𝑗
∗−𝑓𝑗

∗∗ |
𝑃

⌋

1

𝑃

 // Compute the ‘Lp’ Matrix 

      Rank(n) based on Lp // Rank the jobs based on the least metric value  

end for 

end for  

do 

Simulation// DES model 

Assigning ranks to jobs in the DES model  

Updating ranks of jobs   

end while  

Evaluation of the performance measures 

Generation of Gantt chart 

Stop 
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D)Pseudocode to generate job ranking using PROMETHEE method 

The Pseudocode of only the PROMETHEE method used for prioritizing jobs is given in this 

section. Other Pseudocode of TOPSI, EDAS and CP is given in the Appendix 1.  

Input: 

xij = value of criterion ‘j’ of job instance ‘i’// Job instances  

wj = weight of criterion ‘j’//Criterion's weight computed using FAHP  

 

Output:  

Ri // Ranks obtained for chosen job instances  

Makespan, Mean Flow Time, Mean Tardiness, and Max Tardiness// Performance Measures  

 

 

start 

while (Xij ≠ NULL) do  

for i= 1 to n do //Create a Decision Matrix D   

 𝑑𝑗(𝑎, 𝑏) = 𝑔𝑗  (𝑎) − 𝑔𝑗  (𝑏) // Determination of deviations based on pairwise 

comparisons 

for all j = 1 to n do 

𝑃𝑗(𝑎, 𝑏) = 𝐹𝑗 [𝑑𝑗(𝑎, 𝑏)] (𝑗 = 1, . . 𝑘) // Computing of the preference function 

 ∀ 𝑎, 𝑏 ∈ 𝐴,  𝜋(𝑎, 𝑏) = ∑ 𝑃𝑗(𝑎, 𝑏) 𝑤𝑗
𝑘
𝑗=1  // Calculation of global preference index 

end for 

for all 𝑥 ∈ 𝐴 do  

𝜑+(𝑎) = ∑ 𝜋 (𝑎, 𝑏)𝑥∈𝐴  and  𝜑−(𝑎) = ∑ 𝜋 (𝑏, 𝑎)𝑥∈𝐴  // Calculation of outranking 

flow/the PROMETHEE II partial ranking 

𝜑(𝑎) = 𝜑+(𝑎) −  𝜑−(𝑎)// Calculation of net outranking flow/ the 

PROMETHEE II complete ranking 

end for  

Rank(n) based on 𝜑(𝑎) // Rank the jobs based on the highest net value 

end for  

do 

Simulation// DES model 

Assigning ranks to jobs in the DES model  

Updating ranks of jobs  

end while 

Evaluation of the performance measures 

stop 
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    Appendix 2 

 Numerical illustration of PROMETHEE method 

The approach to calculating the net φ and ranking the alternatives is presented. Table 2A depicts the 

decision matrix for calculating the rank of each job using PROMETHEE 

Table 2A: Decision Matrix of PROMETHEE for MK1 instance 

Job/Criteria  
Process 

time 

Due 

Date 

Number of 

operations  

Setup 

time STROP 

1 27 50 6 1.4 3.8 

2 20 38 5 1.2 3.5 

3 27 48 5 1.6 4.2 

4 22 41 5 1.3 3.7 

5 34 60 6 1.7 4.3 

6 26 45 6 1.4 3.2 

7 17 33 5 1.0 3.2 

8 33 50 5 1.7 3.3 

9 24 45 6 1.2 3.5 

10 25 47 6 1.3 3.6 

Note: J1-J10- Job set of MK1 instances (Brandimarte, 1993), STROP- Slack Time Remaining Per 

Operation 

 Table 2B: Transformed payoff matrix of PROMETHEE 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Note: J1-J10- Job set of MK1 instances (Brandimarte, 1993), STROP- Slack Time Remaining Per 

Operation 

To allow the analysis of the problem from a maximization viewpoint, a negative sign is assigned 

to the minimization criteria as (-min) = max. The payoff matrix post-transformation of criteria to 

maximization type is presented in Table 2B.  

Step 1: Pairwise difference between values of alternatives for criteria 

Job/Criteria 

  

Process 

time 

Due 

Date 

Number of 

operations  

Setup 

time 

STROP 

J1 -27 -50 -6 -1.4 3.8 

J2 -20 -38 -5 -1.2 3.5 

J3 -27 -48 -5 -1.6 4.2 

J4 -22 -41 -5 -1.3 3.7 

J5 -34 -60 -6 -1.7 4.3 

J6 -26 -45 -6 -1.4 3.2 

J7 -17 -33 -5 -1.0 3.2 

J8 -33 -50 -5 -1.7 3.3 

J9 -24 -45 -6 -1.2 3.5 

J10 -25 -47 -6 -1.3 3.6 
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The foremost step in the computation of rank is a pairwise comparison of criteria. For instance, 

for criterion C1, the pairwise difference between alternative J1 and J2 are -27-(-20) = -7. Likewise, 

the pairwise difference between alternatives J2 and J1 for C1 is -20-(-27) =7. Also, the difference 

between J1 and J1 would be 0 as the comparison is made between the same criteria. Pairwise 

differences between the alternatives for criteria C1 to C5 are calculated. 

Step 2: The values of the preference function for C1 to C5 were based on the quasi-criterion 

function. An illustration based on J1 and J2 is discussed. Pairwise differences between alternatives 

J1 and J2 for criterion C1 are – 27 – (-20) = -7. For quasi criterion function with a threshold value 

of 0, preference function value PF1(J1, J2) =0 (as -7 <20). Similarly difference for alternatives J2 

and J1 are -20- (-27) = 7 and corresponding preference function value PF1(J2, J1) =1 (as 7 <0). 

Step 3: Computation of multi-criterion preference index  

Multi-criterion preference index (Table 2C), π (J1, J2) for pairwise alternative (J1, J2) is calculated 

as follows.  

Preference function values for J1 and J2 for criteria C1 to C5 are 0,0,1.0,0.5 and 0, respectively. 

The corresponding weights of the criteria are 0.1, 0.26, 0.15, 0.04 and 0.45 

 

𝜋(𝐽1,𝐽2)
(7𝑋0𝑋0.1) + (5𝑋0.5𝑋0.26) + (0𝑋0𝑋0.15) + (0.35𝑋0.5𝑋0.04) + (0.5𝑋0.5𝑋0.45)

0.1 + 0.26 + 0.15 + 0.04 + 0.45
= 1.83 

Similarly,  

𝜋(𝐽2,𝐽1)
(−7𝑋0.5𝑋0.1) + (2𝑋0.5𝑋0.26) + (1𝑋1𝑋0.15) + (0.15𝑋0.5𝑋0.04) + (0.3𝑋0.5𝑋0.45)

0.1 + 0.26 + 0.15 + 0.04 + 0.45
= 2.13 

 

Table 2C: Multi-criterion Preference Index values 

 J1 J2 J3 J4 J5 J6 J7 J8 J9 J10 

J1 0.00 1.83 0.10 0.00 1.24 0.00 0.00 0.31 0.00 0.00 

J2 2.13 0.00 1.88 0.54 0.00 1.43 1.22 2.22 1.33 1.59 

J3 0.35 2.08 0.00 0.00 0.78 0.15 0.00 0.50 0.15 0.15 

J4 1.59 3.43 1.34 0.00 0.00 0.94 1.43 1.73 0.84 1.08 

J5 0.00 3.87 0.45 0.00 1.24 0.00 0.00 0.00 0.00 0.00 

J6 0.77 2.60 0.67 0.11 0.07 0.00 0.54 0.96 0.07 0.29 

J7 2.94 4.77 2.69 1.34 0.81 2.17 0.00 2.98 2.13 2.40 

J8 0.26 1.79 0.20 0.09 0.05 0.15 0.62 0.00 0.20 0.22 

J9 0.81 2.64 0.71 0.05 0.00 0.10 0.00 1.04 0.00 0.27 

J10 0.54 2.37 0.44 0.02 0.00 0.05 0.00 0.80 0.00 0.00 

Note: J1-J10- Job set of MK1 instances (Brandimarte, 1993) 
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Table 2D: Job Priority Ranking of the PROMETHEE method 

S.No. Φ+ (a,b) Φ- (a,b) Net(Φ) Rank 

1 2.24 9.38 -7.14 8 

2 15.08 0.92 14.16 2 

3 3.38 8.02 -4.65 7 

4 10.94 2.15 8.79 3 

5 0.00 25.49 -25.49 10 

6 5.54 4.99 0.56 5 

7 22.22 0.00 22.22 1 

8 3.02 10.54 -7.52 9 

9 6.42 4.70 1.72 4 

10 4.27 5.99 -1.73 6 

 

 Note:  Φ+ (a,b) – Positive outranking flow, Φ- (a,b)- Negative outranking flow, Net(Φ)-Net outranking 

 

Step 4 Computation of φ+ (as per equation)  

φ+(J1) = 0 + 1.83 + 0.1 + 0 + 0 + 0.31 + 0 +0= 2.24 

Step 5 Computation of φ+ (as per equation)  

φ_(J1) = 0 + 2.13 + 0.35 + 1.59 + 0.77 + 0 + 2.94 + 0.26 + 0.81 + 0.54 = 9.38 

Step 6: Computation of net φ (as per equation) 

Netφ (J1) = φ+(J1) - φ
_(J1) = 2.24- 9.38 = -7.14 

Similarly, other net φ values were calculated and ranked the jobs. From Table 2D, it is evident 

that J7 is considered as rank 1 as with the highest net value of 22.22 is considered as the best.  The 

procedure illustrated in the numerical example has been implemented to determine job priorities 

of all benchmark problem instances considering static and dynamic job arrival patterns. DES 

models are used to determine the performance measures considered in this study to evaluate the 

proposed priority rule. 
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Appendix 3 

Table1A: Design of Experiments  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Note: PT-Processing Time, DD- Due Date; ST-Setup Time; NOP-NO of Operations; CP-Customer priority; D-Demand 

Scenarios PT DD ST NOP CP  D  Scenarios PT DD ST NOP CP  D 

1 0.10 0.18 0.18 0.18 0.18 0.18 1 0.18 0.10 0.18 0.18 0.18 0.18 

2 0.20 0.16 0.16 0.16 0.16 0.16 2 0.16 0.20 0.16 0.16 0.16 0.16 

3 0.30 0.14 0.14 0.14 0.14 0.14 3 0.14 0.30 0.14 0.14 0.14 0.14 

4 0.40 0.12 0.12 0.12 0.12 0.12 4 0.12 0.40 0.12 0.12 0.12 0.12 

5 0.50 0.10 0.10 0.10 0.10 0.10 5 0.10 0.50 0.10 0.10 0.10 0.10 

6 0.60 0.08 0.08 0.08 0.08 0.08 6 0.08 0.60 0.08 0.08 0.08 0.08 

7 0.70 0.06 0.06 0.06 0.06 0.06 7 0.06 0.70 0.06 0.06 0.06 0.06 

8 0.80 0.04 0.04 0.04 0.04 0.04 8 0.04 0.80 0.04 0.04 0.04 0.04 

9 0.90 0.02 0.02 0.02 0.02 0.02 9 0.02 0.90 0.02 0.02 0.02 0.02 

 Scenarios PT DD S.T NOP CP  D  Scenarios P.T DD ST NOP CP  D 

1 0.18 0.18 0.10 0.18 0.18 0.18 1 0.18 0.18 0.18 0.10 0.18 0.18 

2 0.16 0.16 0.20 0.16 0.16 0.16 2 0.16 0.16 0.16 0.20 0.16 0.16 

3 0.14 0.14 0.30 0.14 0.14 0.14 3 0.14 0.14 0.14 0.30 0.14 0.14 

4 0.12 0.12 0.40 0.12 0.12 0.12 4 0.12 0.12 0.12 0.40 0.12 0.12 

5 0.10 0.10 0.50 0.10 0.10 0.10 5 0.10 0.10 0.10 0.50 0.10 0.10 

6 0.08 0.08 0.60 0.08 0.08 0.08 6 0.08 0.08 0.08 0.60 0.08 0.08 

7 0.06 0.06 0.70 0.06 0.06 0.06 7 0.06 0.06 0.06 0.70 0.06 0.06 

8 0.04 0.04 0.80 0.04 0.04 0.04 8 0.04 0.04 0.04 0.80 0.04 0.04 

9 0.02 0.02 0.90 0.02 0.02 0.02 9 0.02 0.02 0.02 0.90 0.02 0.02 

 Scenarios PT DD ST NOP CP  D  Scenarios PT DD ST NOP CP  D 

1 0.18 0.18 0.18 0.18 0.10 0.18 1 0.18 0.18 0.18 0.18 0.18 0.10 

2 0.16 0.16 0.16 0.16 0.20 0.16 2 0.16 0.16 0.16 0.16 0.16 0.20 

3 0.14 0.14 0.14 0.14 0.30 0.14 3 0.14 0.14 0.14 0.14 0.14 0.30 

4 0.12 0.12 0.12 0.12 0.40 0.12 4 0.12 0.12 0.12 0.12 0.12 0.40 

5 0.10 0.10 0.10 0.10 0.50 0.10 5 0.10 0.10 0.10 0.10 0.10 0.50 

6 0.08 0.08 0.08 0.08 0.60 0.08 6 0.08 0.08 0.08 0.08 0.08 0.60 

7 0.06 0.06 0.06 0.06 0.70 0.06 7 0.06 0.06 0.06 0.06 0.06 0.70 

8 0.04 0.04 0.04 0.04 0.80 0.04 8 0.04 0.04 0.04 0.04 0.04 0.80 

9 0.02 0.02 0.02 0.02 0.90 0.02 9 0.02 0.02 0.02 0.02 0.02 0.90 


