
HAL Id: hal-04176523
https://hal.science/hal-04176523v1

Submitted on 3 Aug 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

The Stable Signature: Rooting Watermarks in Latent
Diffusion Models

Pierre Fernandez, Guillaume Couairon, Hervé Jégou, Matthijs Douze, Teddy
Furon

To cite this version:
Pierre Fernandez, Guillaume Couairon, Hervé Jégou, Matthijs Douze, Teddy Furon. The Stable
Signature: Rooting Watermarks in Latent Diffusion Models. ICCV 2023 - International Conference
on Computer Vision, Oct 2023, Paris, France. �hal-04176523�

https://hal.science/hal-04176523v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

The Stable Signature: Rooting Watermarks in Latent Diffusion Models

Pierre Fernandez1,2 Guillaume Couairon1,3 Hervé Jégou1 Matthijs Douze1 Teddy Furon2 *

1Meta AI 2Centre Inria de l’Université de Rennes 3Sorbonne University

Abstract

Generative image modeling enables a wide range of ap-
plications but raises ethical concerns about responsible de-
ployment. We introduce an active content tracing method
combining image watermarking and Latent Diffusion Mod-
els. The goal is for all generated images to conceal an invis-
ible watermark allowing for future detection and/or identi-
fication. The method quickly fine-tunes the latent decoder
of the image generator, conditioned on a binary signature.
A pre-trained watermark extractor recovers the hidden sig-
nature from any generated image and a statistical test then
determines whether it comes from the generative model. We
evaluate the invisibility and robustness of the watermarks
on a variety of generation tasks, showing that the Stable
Signature is robust to image modifications. For instance, it
detects the origin of an image generated from a text prompt,
then cropped to keep 10% of the content, with 90+% accu-
racy at a false positive rate below 10−6.

1. Introduction

Recent progress in generative modeling and natural lan-
guage processing enable easy creation and manipulation of
photo-realistic images, such as with DALL·E 2 [64] or Sta-
ble Diffusion [68]. They have given birth to many image
edition tools like ControlNet [104], Instruct-Pix2Pix [7],
and others [13, 28, 71], that are becoming mainstream cre-
ative tools for artists, designers, and the general public.

While this is a great step forward for generative AI, it
also undermines confidence in the authenticity or verac-
ity of photo-realistic images. Indeed, methods for photo-
realistic image edition existed before, but generative AI sig-
nificantly lowers the barriers to convincing synthetic im-
age generation and edition (e.g. a generated picture recently
won an art competition [29]). This raises new risks like deep
fakes, impersonation or copyright usurpation [8, 17]. A tool
to determine that images are AI-generated would make it
easier to ensure their compliance with ethical standards and
to remove them from certain platforms.

*Work supported by ANR / AID under Chaire SAIDA ANR-20-CHIA-0011.
Correspondance to pfz@meta.com

Detection

Identification

: 011001

‘Tahiti mountains, in the style of Gauguin’

 Image generation (by Bob)

Model training (by Alice)

Fine-tuning

Statistical Test ..

: 011001 Watermark Extractor

Watermark analysis

z

Published
image

D

Decoder

Latent
Generative Model

‘AI generated?’
✔ / ✗

Latent
Generative Model

Figure 1. Overview. The latent decoder can be fine-tuned to pre-
emptively embed a signature into all generated images.

A baseline solution to identify generated images is foren-
sics, i.e. methods to detect generated/manipulated images
passively (the image is not modified for identification). An
active baseline is to apply existing watermarking methods
after the image generation. Watermarking invisibly embeds
a secret message into the image, which can then be extracted
and used to identify the image. This has several drawbacks.
If the model leaks or is open-sourced, the post-generation
watermarking can be removed trivially. The open source
Stable Diffusion [70] is a case in point, since removing the
watermark amounts to commenting out a single line in the
source code.

Our Stable Signature method merges watermarking into
the generation process itself, without any architectural
change. It adjusts the pre-trained generative model such that
all the images it produces conceal a given watermark. There
are several advantages to this approach [46, 99]. It does not
require additional processing of the generated image, which
makes the watermarking computationally lighter, straight-
forward, and secure. Model providers could deploy their
models to different user groups with a unique watermark,
and monitor that they are used in a responsible manner.

mailto:pfz@meta.com

They could give art platforms, news outlets and other shar-
ing platforms the ability to detect when an image has been
generated by their AI.

We focus on Latent Diffusion Models (LDM) [68] that
can perform a wide range of generative tasks. We show that
simply fine-tuning a small part of the generative model –
the decoder that generates images from the latent vectors
– is enough to natively embed a watermark into generated
images. Stable Signature does not require an architectural
change and does not modify the diffusion process. Hence it
is to our knowledge compatible with all LDM-based gener-
ative methods [7, 13, 62, 71, 104]. The fine-tuning stage is
performed by back-propagating a combination of a percep-
tual image loss and a message decoding loss from a water-
mark extractor back to the LDM decoder. We pre-train the
extractor with a simplified version of the deep watermark-
ing method HiDDeN [108].

We create an evaluation benchmark close to real world
situations where images may be edited. The tasks are: de-
tection of AI generated images, tracing models from their
generations. For instance, we detect 90% of images gen-
erated with the generative model, even if they are cropped
to 10% of their original size, while flagging only one false
positive every 106 images. To ensure that the model’s util-
ity is not weakened, we show that the FID [34] score of the
generation is not affected and that the generated images are
perceptually indistinguishable from the ones produced by
the original model. This is done over several tasks involv-
ing LDM (text-to-image, inpainting, edition, etc.).

As a summary, (1) we efficiently merge watermarking
into the generation process of LDMs, in a way that is com-
patible with most of the LDM-based generative methods;
(2) we demonstrate how it can be used to detect and trace
generated images, through a real-world evaluation bench-
mark; (3) we compare to post-hoc watermarking methods,
showing that it is competitive while being more secure and
efficient, and (4) evaluate robustness to intentional attacks.

2. Related Work
Image generation has long been dominated by GANs,
still state-of-the-art on many datasets [37, 38, 39, 76, 87].
Transformers have also been successfully used for modeling
image [66, 19] or video [79] distributions, providing higher
diversity at the expense of increased inference time. Images
are typically converted to token lists using vector-quantized
architectures [20, 67, 96], relying on an image decoder.

Diffusion models [18, 36, 58, 80] are a huge improve-
ment in text-conditional image generation, current mod-
els synthesize high-resolution photo-realistic images for a
wide variety of text prompts [3, 35, 65, 69, 74]. They can
also perform conditional image generation – like inpainting
or text-guided image editing – by fine-tuning the diffusion
model with additional conditioning, e.g. masked input im-

age, segmentation map, etc. [50, 73]. Because of their it-
erative denoising algorithm, diffusion models can also be
adapted for image editing in a zero-shot fashion by guiding
the generative process [13, 33, 40, 56, 85, 92]. All these
methods, when combined with Stable Diffusion, operate in
the latent rather than image space, requiring a latent decoder
to produce an RGB image.

Detection of AI-generated/manipulated images is no-
tably active in the context of deep-fake detection [32, 107].
Many works focus on the detection of GAN-generated im-
ages [10, 31, 89, 106]. One approach is to detect incon-
sistencies, via lights, perspective or physical objects [21,
22, 45, 52, 88]. These approaches are restricted to photo-
realistic images or faces, artworks not intended to be physi-
cally correct are not covered.

Other approaches track traces left by the generators in
the spatial [54, 97] or frequency [26, 106] domains. There
are extensions to diffusion models in recent works [12, 77]
that show encouraging results. However purely relying on
forensics and passive detection is limiting, e.g. the best per-
forming method to our knowledge [12] is able to detect 50%
of generated images for a false positive rate around 1/100: if
a user-generated content platform were to receive 1 billion
images every day, it would wrongly flag 10 million images
to detect only half of the generated images. Besides, pas-
sive techniques cannot trace images from different versions
of the same model, in contrast with watermarking.

Image watermarking has long been studied in the con-
text of tracing and intellectual property protection [14].
More recently, deep learning encoder/extractors like HiD-
DeN [2, 44, 51, 100, 108] or iterative methods by Vukotić et
al. [25, 42, 86] showed competitive results in terms of ro-
bustness to a wide range of transformations, namely geo-
metric ones.

In the specific case of generative models, some works
aim to watermark the training set on which the generative
model is learned [98]. It is highly inefficient since every
new message to embed requires a new training pipeline.
Merging the watermarking and the generative process is a
recent idea [23, 46, 59, 63, 93, 99, 102], that is closer to
the model watermarking literature [84]. They suffer from
two strong limitations. First, these methods only apply to
GANs, while LDM are progressively replacing them for
most applications. Second, watermarking is incorporated in
the training process of the GAN from the start. This strat-
egy is unsustainable because the generative model training
is more and more costly1. Our work shows that a quick fine-
tuning of the latent decoder part of the generative model is
enough to achieve a good watermarking performance, pro-
vided that the watermark extractor is well chosen.

1Stable Diffusion training costs ∼$600k of cloud compute (Wikipedia).

https://en.wikipedia.org/wiki/Stable_Diffusion

3. Problem Statement & Background

Figure 1 shows a model provider Alice who deploys a la-
tent diffusion model to users Bobs. Stable Signature embeds
a binary signature into the generated images. This section
derives how Alice can use this signature for two scenarios:

• Detection: “Is it generated by my model?”. Alice de-
tects if an image was generated by her model. Generated
images should be flagged as reliably as possible, while
controlling the probability of flagging a natural image.

• Identification: “Who generated this image?”. Alice mon-
itors who created each image, while avoiding to mistak-
enly identifying a Bob.

3.1. Image watermarking for detection

Alice embeds a k-bit binary signature into the generated
images. The watermark extractor then decodes messages
from the images it receives and detects when the message
is close to Alice’s signature. An example application is to
block AI-generated images on a content sharing platform.

Statistical test Let m ∈ {0, 1}k be Alice’s signature. We
extract the message m′ from an image x and compare it to
m. As done in previous works [46, 98], the detection test
relies on the number of matching bits M(m,m′): if

M (m,m′) ≥ τ where τ ∈ {0, . . . , k}, (1)
then the image is flagged. This provides a level of robust-
ness to imperfections of the watermarking.

Formally, we test the statistical hypothesis H1: “x was
generated by Alice’s model” against the null hypothesis
H0: “x was not generated by Alice’s model”. Under H0

(i.e. for vanilla images), we assume that bits m′
1, . . . ,m

′
k

are (i.i.d.) Bernoulli random variables with parameter 0.5.
Then M(m,m′) follows a binomial distribution with pa-
rameters (k, 0.5). We verify this assumption experimentally
in App. B.5. The False Positive Rate (FPR) is the probabil-
ity that M(m,m′) takes a value bigger than the threshold
τ . It is obtained from the CDF of the binomial distribu-
tion, and a closed-form can be written with the regularized
incomplete beta function Ix(a; b):

FPR(τ) = P (M > τ |H0) = I1/2(τ + 1, k − τ). (2)

3.2. Image watermarking for identification

Alice now embeds a signature m(i) drawn randomly
from {0, 1}k into the model distributed to Bob(i) (for i =
1 · · ·N , with N the number of Bobs). Alice can trace any
misuse of her model: generated images violating her policy
(gore content, deepfakes) are linked back to the specific Bob
by comparing the extracted message to Bobs’ signatures.

Statistical test We compare the message m′ from the wa-
termark extractor to

(
m(1), . . . ,m(N)

)
. There are now N

detection hypotheses to test. If the N hypotheses are re-
jected, we conclude that the image was not generated by
any of the models. Otherwise, we attribute the image to
argmaxi=1..NM

(
m′,m(i)

)
. With regards to the detection

task, false positives are more likely since there are N tests.
The global FPR at a given threshold τ is:

FPR(τ,N) = 1− (1− FPR(τ))N ≈ N.FPR(τ). (3)
Equation (3) (resp. (2)), is used reversely: we find thresh-

old τ to achieve a required FPR for identification (resp. de-
tection). Note that these formulae hold only under the as-
sumption of i.i.d. Bernoulli bits extracted from vanilla im-
ages. This condition is enforced in the next section.

4. Method
Stable Signature modifies the generative network so that

the generated images have a given signature through a fixed
watermark extractor. It is trained in two phases. First, we
create the watermark extractor network W . Then, we fine-
tune the Latent Diffusion Model (LDM) decoder D, such
that all generated images yield a given signature through
W .

4.1. Pre-training the watermark extractor

We use HiDDeN [108], a classical method in the deep
watermarking literature. It jointly optimizes the parameters
of watermark encoder WE and extractor network W to em-
bed k-bit messages into images, robustly to transformations
that are applied during training. We discard WE after train-
ing, since only W serves our purpose.

Formally, WE takes as inputs a cover image xo ∈
RW×H×3 and a k-bit message m ∈ {0, 1}k. Similar to

Text - Super-resolution
Inpainting - Editing - …

(c) Generate

z
latent

W

Random m: 10101

WE

Decoded m’

(a) Pre-train watermark encoder/extractor

T

Fixed m: 00110

z

(b) Fine-tune LDM decoder

W
latent

Decoded m’

E Dm
Dm

Loss Loss

Figure 2. Steps of the method. (a) We pre-train a watermark encoder WE and extractor W , to extract binary messages. (b) We fine-tune
the decoder D of the LDM’s auto-encoder with a fixed signature m such that all the generated images (c) lead to m through W .

ReDMark [2], WE outputs a residual image δ of the same
size as xo, that is multiplied by a factor α to produce wa-
termarked image xw = xo + αδ. At each optimization
step an image transformation T is sampled from a set T
that includes common image processing operations such as
cropping and JPEG compression2. A “soft” message is ex-
tracted from the transformed image: m′ = W(T (xw)) (at
inference time, the decoded message is given by the signs
of the components of m′). The message loss is the Binary
Cross Entropy (BCE) between m and the sigmoid σ(m′):

Lm = −
k∑

i=1

mi · log σ(m′
i) + (1−mi) · log(1− σ(m′

i)).

The network architectures are kept simple to ease the
LDM fine-tuning in the second phase. They are the same
as HiDDeN [108] (see App. A.1) with two changes.

First, since WE is discarded, its perceptual quality is not
as important, so the perceptual loss or the adversarial net-
work are not needed. Instead, the distortion is constrained
by a tanh function on output of WE and by the scaling
factor α. This improves the bit accuracy of the recovered
message and makes it possible to increase its size k.

Second, we observed that W’s output bits for vanilla im-
ages are correlated and highly biased, which violates the
assumptions of Sec. 3.1. Therefore, to get closer to i.i.d.
dimensions we remove the bias and decorrelate the outputs
of W by applying a PCA whitening transformation (more
details in App. A.1).

4.2. Fine-tuning the generative model

In LDM, the diffusion happens in the latent space of an
auto-encoder. The latent vector z obtained at the end of
the diffusion is input to decoder D to produce an image.
Here we fine-tune D such that the image contains a given
message m that can be extracted by W . Stable Signature
is compatible with many generative tasks, since modifying
only D does not affect the diffusion process.

First, we fix the signature m = (m1, . . . ,mk) ∈ {0, 1}k.
The fine-tuning of D into Dm is inspired by the original
training of the auto-encoder in LDM [68].

Training image x ∈ RH×W×3 is fed to the LDM en-
coder E that outputs activation map z = E(x) ∈ Rh×w×c,
downsampled by a power-of-two factor f = H/h = W/w.
The decoder reconstructs an image x′ = Dm(z) and the ex-
tractor recovers m′ = W(x′). The message loss is the BCE
between m′ and the original m: Lm = BCE(σ (m′) ,m).

In addition, the original decoder D reconstructs the im-
age without watermark: x′

o = D(z). The image perceptual
loss Li between x′ and x′

o, controls the distortion. We use
the Watson-VGG perceptual loss introduced by Czolbe et

2The transformation needs to be differentiable in pixel space. This is
not the case for JPEG compression so we use the forward attack simulation
layer introduced by Zhang et al. [101].

al. [15], an improved version of LPIPS [105]. It is essential
that the decoder learns luminance and contrast masking to
add less visible watermarks. The weights of Dm are opti-
mized to minimize

L = Lm + λi Li. (4)
This is done over 100 iterations with the AdamW opti-
mizer [49] and batch of size 4, i.e. the fine-tuning sees fewer
than 500 images and takes one minute on a single GPU. The
learning rate follows a cosine annealing schedule with 20 it-
erations of linear warmup to 10−4 and decays to 10−6. The
factor λi in (4) is set to 2.0 by default.

5. Text-to-Image Watermarking Performance
This section discusses our method’s detection and iden-

tification capability for images generated by a Stable-
Diffusion-like model [68]3. We apply generative models
watermarked with 48-bit signatures on prompts of the MS-
COCO [47] validation set. We evaluate detection and iden-
tification on the outputs, as illustrated in Figure 1.

We evaluate their robustness to different transformations
applied to generated images: strong cropping (10% of the
image remaining), brightness shift (strength factor 2.0), as
well as a combination of crop 50%, brightness shift 1.5 and
JPEG 80. This covers typical geometric and photometric
edits (see Fig. 5 for visual examples).

The detection rates are partly obtained from experiments
and partly by extrapolating small-scale measurements.

5.1. Detection results

For detection, we fine-tune the decoder of the LDM with
a random key m, generate 1000 images and use the test of
Eq. (1). We report the tradeoff between True Positive Rate
(TPR), i.e. the probability of flagging a generated image and
the FPR, while varying τ ∈ {0, .., 48}. For instance, for
τ = 0, we flag all images so FPR = 1, and TPR = 1.
The TPR is measured directly, while the FPR is inferred
from Eq. (2), because it would otherwise be too small to be
measured on reasonably sized problems (this approximation
is validated experimentally in App. B.6). The experiment is
run on 10 random signatures and we report averaged results.

Figure 3 shows the tradeoff under image transforma-
tions. For example, when the generated images are not
modified, Stable Signature detects 99% of them, while
only 1 vanilla image out of 109 is flagged. At the same
FPR = 10−9, Stable Signature detects 84% of generated
images for a crop that keeps 10% of the image, and 65% for
a transformation that combines a crop, a color shift, and a
JPEG compression. For comparison, we report results of a
state-of-the-art passive method [12], applied on resized and

3We refrain from experimenting with pre-existing third-party genera-
tive models, such as Stable Diffusion or LDMs, and instead use a large
diffusion model (2.2B parameters) trained on an internal dataset of 330M
licensed image-text pairs.

compressed images. As expected, we observe that these
baseline results have orders of magnitudes larger FPR than
Stable Signature, which actively marks the content.

5.2. Identification results

Each Bob has its own copy of the generative model.
Given an image, the goal is to find if any of the N Bobs
created it (detection) and if so, which one (identification).
There are 3 types of error: false positive: flag a vanilla im-
age; false negative: miss a generated image; false accusa-
tion: flag a generated image but identify the wrong Bob.

For evaluation, we fine-tune N ′ = 1000 models with
random signatures. Each model generates 100 images. For
each of these 100k watermarked images, we extract the Sta-
ble Signature message, compute the matching score with
all N signatures and select the Bob with the highest score.
The image is predicted to be generated by that Bob if this
score is above threshold τ . We determined τ such that
FPR = 10−6, see Eq. (3). For example, for N = 1, τ = 41
and for N = 1000, τ = 44. Accuracy is extrapolated be-
yond the N ′ Bobs by adding additional signatures and hav-
ing N > N ′ (e.g. Bobs that have not generated any images).

Figure 4 reports the per-transformation identification ac-
curacy. For example, we identify a Bob among N=105 with
98% accuracy when the image is not modified. Note that
for the combined edit, this becomes 40%. This may still be
dissuasive: if a Bob generates 3 images, he will be iden-
tified 80% of the time. We observe that at this scale, the
false accusation rate is zero, i.e. we never identify the wrong
Bob. This is because τ is set high to avoid FPs, which also
makes false accusations unlikely. We observe that the iden-
tification accuracy decreases when N increases, because the
threshold τ required to avoid false positives is higher when
N increases, as pointed out by the approximation in (3). In
a nutshell, by distributing more models, Alice trades some
accuracy of detection against the ability to identify Bobs.

6. Experimental Results
The previous section showed how to leverage water-

marks for detection and identification of images generated
from text prompts. We now present more general results on
robustness and image quality for different generative tasks.
We also compare Stable Signature to post-generation water-
marking algorithms.

6.1. Tasks & evaluation metrics

Since our method only involves the LDM decoder, it is
compatible with many generative tasks. We evaluate text-
to-image generation and image edition on the validation set
of MS-COCO [47], super-resolution and inpainting on the
validation set of ImageNet [16] (all evaluation details are
available in App. A.3).

We evaluate the image distortion with the Peak Signal-
to-Noise Ratio (PSNR), which is defined as PSNR(x, x′) =
−10 · log10(MSE(x, x′)), for x, x′ ∈ [0, 1]c×h×w, as well
as Structural Similarity score (SSIM) [90]. They compare
images generated with and without watermark. On the other
hand, we evaluate the diversity and quality of the generated
images with the Fréchet Inception Distance (FID) [34]. The
bit accuracy – the percentage of bits correctly decoded –
evaluates the watermarks’ robustness.

6.2. Image generation quality

Figure 6 shows qualitative examples of how the image
generation is altered by the latent decoder’s fine-tuning. The
difference is very hard to perceive even for a trained eye.
This is surprising for such a low PSNR, especially since the
watermark embedding is not constrained by any Human Vi-
sual System like in professional watermarking techniques.
Most interestingly, the LDM decoder has indeed learned to
add the watermark signal only over textured areas where
the human eyes are not sensitive, while the uniform back-
grounds are kept intact (see the pixel-wise difference).

10 12 10 8 10 4 100

False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

None
Crop 10%
Bright. 2.0
Combined
Forensics

Figure 3. Detection results. TPR/FPR curve
of the detection under different transforma-
tions. Forensics† indicates passive detection
(without watermark) [12].

101 103 105 107

Number of users

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

 o
f i

de
nt

ifi
ca

tio
n

None
Crop 10%
Brightness 2.0
Combined

Figure 4. Identification results. Propor-
tion of well-identified Bobs. Detection with
FPR=10−6 is run beforehand, and we con-
sider it an error if the image is not flagged.

None Brightness 2.0

Crop 10% Combined

Figure 5. Transformations evaluated
in Sec. 5 & 6. ‘Combined’ is made of
crop 50%, brightness adjustment 1.5
and JPEG 80 compression.

PSNR / SSIM ↑ FID ↓ Bit accuracy ↑ on:
None Crop Brigh. Comb.

Ta
sk

s

Text-to-Image LDM [68] 30.0 / 0.89 19.6 (−0.3) 0.99 0.95 0.97 0.92

Image Edition DiffEdit [13] 31.2 / 0.92 15.0 (−0.3) 0.99 0.95 0.98 0.94

Inpainting - Full Glide [57] 31.1 / 0.91 16.8 (+0.6) 0.99 0.97 0.98 0.93
Inpa - Mask only 37.8 / 0.98 9.0 (+0.1) 0.89 0.76 0.84 0.78

Super-Resolution LDM [68] 34.0 / 0.94 11.6 (+0.0) 0.98 0.93 0.96 0.92

W
M

M
et

ho
ds

Post generation
Dct-Dwt [14] 0.14 (s/img) 39.5 / 0.97 19.5 (−0.4) 0.86 0.52 0.51 0.51
SSL Watermark [25] 0.45 (s/img) 31.1 / 0.86 20.6 (+0.7) 1.00 0.73 0.93 0.66
FNNS [42] 0.28 (s/img) 32.1 / 0.90 19.0 (−0.9) 0.93 0.93 0.91 0.93
HiDDeN [108] 0.11 (s/img) 32.0 / 0.88 19.7 (−0.2) 0.99 0.97 0.99 0.98

Merged in generation
Stable Signature 0.00 (s/img) 30.0 / 0.89 19.6 (−0.3) 0.99 0.95 0.97 0.92

Table 1. Generation quality and com-
parison to post-hoc watermarking on
512×512 images and 48-bit signatures.
PSNR and SSIM are computed be-
tween generations of the original and
watermarked generators. For FID, we
show in (color) the difference with re-
gards to original. Post-hoc watermarking
is evaluated on text-generated images.
(App. B.2 gives results on more transfor-
mations, and App. A gives more details
on the evaluations.) Overall, Stable Sig-
nature has minimal impact on generation
quality. It has comparable robustness to
post-hoc methods while being rooted in
the generation itself.

Table 1 presents a quantitative evaluation of image gen-
eration on the different tasks. We report the FID, and the
average PSNR and SSIM that are computed between the im-
ages generated by the fine-tuned LDM and the original one.
The results show that no matter the task, the watermarking
has very small impact on the FID of the generation.

The average PSNR is around 30 dB and SSIM around
0.9 between images generated by the original and a water-
marked model. This is a bit low from a watermarking per-
spective, because we do not explicitly optimize for them.
However, in a real world scenario, one would only have the
watermarked version of the image. Therefore it is not as
important to be extremely close to the original image, we
just need to generate artifacts-free images. Without access
to the image generated by the original LDM, it is very hard
to tell whether a watermark is present or not.

Generated with original Generated with watermark Pixel-wise difference (×10)

Figure 6. Images generated with Stable Diffusion. The PSNR is
35.4 dB in the first row and 28.6 dB in the second. Images gener-
ated with Stable Signature look natural because modified areas are
located where the eye is not sensitive. More examples in App. C.

Table 2. Watermark robustness on image transformations applied
before decoding, details of which are available in App. A.3. We
report the bit accuracy, averaged over 10 × 1k images generated
from COCO prompts with 10 different keys.

Attack Bit acc. Comb. 0.92 Sharpness 2.0 0.99
None 0.99 Bright. 2.0 0.97 Med. Filter k=7 0.94
Crop 0.1 0.95 Cont. 2.0 0.98 Resize 0.7 0.91
JPEG 50 0.88 Sat. 2.0 0.99 Text overlay 0.99

6.3. Watermark robustness

We evaluate the robustness of the watermark to differ-
ent image transformations applied before extraction. For
each task, we generate 1k images with 10 models fine-tuned
for different messages, and report the average bit accuracy
in Table 1. Additionally, Table 2 reports results on more
image transformations for images generated from COCO
prompts. The main transformations are presented in Fig. 5
(more evaluation details are available in App. A.3).

We see that the watermark is indeed robust for several
tasks and across transformations. The bit accuracy is al-
ways above 0.9, except for inpainting, when replacing only
the masked region of the image (between 1 − 50% of the
image, with an average of 27% across masks). Besides, the
bit accuracy is not perfect even without edition, mainly be-
cause there are images that are hard to watermark (e.g. the
ones that are very uniform, like the background in Fig. 6)
and for which the accuracy is lower.

Note that the robustness comes even without any trans-
formation during the LDM fine-tuning phase: it is due to the
watermark extractor. If the watermark embedding pipeline
is learned to be robust against an augmentation, then the
LDM learns how to produce watermarks that are robust
against it during fine-tuning.

6.4. Comparison to post-hoc watermarking

An alternative way to watermark generated images is
to process them after the generation (post-hoc). This may

Table 3. Quality-robustness trade-off during fine-tuning.
λi for fine-tuning 0.8 0.4 0.2 0.1 0.05 0.025

PSNR ↑ 31.4 30.6 29.7 28.5 26.8 24.6

Bit acc. ↑ on ‘comb.’ 0.85 0.88 0.90 0.92 0.94 0.95

Table 4. Role of the attack simulation layer at pre-training.
Seen at

W training
Bit accuracy ↑ at test time:

Crop 0.1 Rot. 90 JPEG 50 Bright. 2.0 Res. 0.7

✗ 1.00 0.56 0.50 0.99 0.48
✔ 1.00 0.99 0.90 0.99 0.91

be simpler, but less secure and efficient than Stable Signa-
ture. We compare our method to a frequency based method,
DCT-DWT [14], iterative approaches (SSL Watermark [25]
and FNNS [42]), and an encoder/decoder one like HiD-
DeN [108]. We choose DCT-DWT since it is employed by
the original open source release of Stable Diffusion [70],
and the other methods because of their performance and
their ability to handle arbitrary image sizes and number of
bits. We use our implementations (see details in App. A.4).

Table 1 compares the generation quality and the robust-
ness over 5k generated images. Overall, Stable Signature
achieves comparable results in terms of robustness. HiD-
DeN’s performance is a bit higher but its output bits are
not i.i.d. meaning that it cannot be used with the same
guarantees as the other methods. We also observe that
post-hoc generation gives worse qualitative results, images
tend to present artifacts (see Fig. 13 in the supplement).
One explanation is that Stable Signature is merged into the
high-quality generation process with the LDM auto-encoder
model, which is able to modify images in a more subtle way.

6.5. Can we trade image quality for robustness?

We can choose to maximize the image quality or the ro-
bustness of the watermark thanks to the weight λi of the per-
ceptual loss in (4). We report the average PSNR of 1k gen-
erated images, as well as the bit accuracy obtained on the
extracted message for the ‘Combined’ editing applied be-
fore detection (qualitative results are in App. B.1). A higher
λi leads to an image closer to the original one, but to lower
bit accuracies on the extracted message, see Table 3.

6.6. Attack simulation layer

Watermark robustness against image transformations de-
pends solely on the watermark extractor. here, we pre-
train them with or without specific transformations in the
simulation layer, on a shorter schedule of 50 epochs, with
128 × 128 images and 16-bits messages. From there, we
plug them in the LDM fine-tuning stage and we generate 1k
images from text prompts. We report the bit accuracy of the
extracted watermarks in Table 4. The extractor is naturally
robust to some transformations, such as crops or brightness,
without being trained with them, while others, like rotations

or JPEG, require simulation during training for the water-
mark to be recovered at test time. Empirically we observed
that adding a transformation improves results for the latter,
but makes training more challenging.

7. Attacks on Stable Signature’s Watermarks

We examine the watermark’s resistance to intentional
tampering, as opposed to distortions that happen with-
out bad intentions like crops or compression (discussed in
Sec. 5). We consider two threat models: one is typical for
many image watermarking methods [14] and operates at the
image level, and another targets the generative model level.
For image-level attacks, we evaluate on 5k images gener-
ated from COCO prompts. Full details on the following
experiments can be found in Appendix A.5.

7.1. Image-level attacks

Watermark removal. Bob alters the image to remove
the watermark with deep learning techniques, like methods
used for adversarial purification [78, 94] or neural auto-
encoders [1, 48]. Note that this kind of attacks has not
been explored in the image watermarking literature to our
knowledge. Figure 7 evaluates the robustness of the wa-
termark against neural auto-encoders [4, 11, 20, 68] at dif-
ferent compression rates. To reduce the bit accuracy closer
to random (50%), the image distortion needs to be strong
(PSNR<26). However, assuming the attack is informed on
the generative model, i.e. the auto-encoder is the same as
the one used to generate the images, the attack becomes
much more effective. It erases the watermark while achiev-
ing high quality (PSNR>29). This is because the image is
modified precisely in the bandwidth where the watermark

2224262830
PSNR(xo,xr)

0.5

0.6

0.7

0.8

0.9

Bi
t a

cc
ur

ac
y

Cheng2020
Bmshj2018
VQ-VAE
KL-VAE
KL-VAE used by LDM (f8)
Attack on WM extractor

Figure 7. Removal attacks. xo is the image produced by the orig-
inal generator, xr is the version produced by the watermarked
generator and then attacked. Bit accuracy is on the watermark
extracted from xr . Neural auto-encoders [4, 11, 20] follow the
same trend , except with the one used by LDM (‘KL-f8’ for our

LDM). When access to the watermark extractor is granted, adver-
sarial attacks also remove the watermark at lower PSNR budget.

is embedded. Note that this assumption is strong, because
Alice does not need to distribute the original generator.

Watermark removal & embedding (white-box). To go
further, we assume that the attack is informed on the water-
mark extractor – e.g. because it has leaked. Bob can use
an adversarial attack to remove the watermark by optimiz-
ing the image under a PSNR constraint. The objective is
to minimize the ℓ2 distance between a random binary mes-
sage sampled beforehand and the extractor’s output, effec-
tively replacing the original signature with a random one. It
makes it possible to erase the watermark with a lower dis-
tortion budget, as seen in Fig. 7.

Instead of removing the watermark, an attacker could
embed a signature into vanilla images (unauthorized em-
bedding [14]) to impersonate another Bob of whom they
have a generated image. It highlights the importance of
keeping the watermark extractor private.

7.2. Network-level attacks

Model purification. Bob gets Alice’s generative model
and uses a fine-tuning process akin to Sec. 4.2 to eliminate
the watermark embedding – that we coin model purification.
This involves removing the message loss Lm, and shifting
the focus to the perceptual loss Li between the original im-
age and the one reconstructed by the LDM auto-encoder.

Figure 8 shows the results of this attack for the MSE loss.
The PSNR between the watermarked and purified images
is plotted at various stages of fine-tuning. Empirically, it
is difficult to significantly reduce the bit accuracy without
compromising the image quality: artifacts start to appear
during the purification.

Model collusion. Users may collude by aggregating their
models. For instance, Bob(i) and Bob(j) can average the
weights of their models (like Model soups [91]) creating a
new model to deceive identification. We found that the bit
at position ℓ output by the extractor will be 0 (resp. 1) when
the ℓ-th bits of Bob(i) and Bob(j) are both 0 (resp. 1), and
that the extracted bit is random when their bits disagree. We

Figure 8. Robustness to model purification, i.e. fine-tuning the
model to remove watermarks. xw is the watermarked image, xr is
generated with the purified model at different steps of the process.

show the distributions of the soft bits (before thresholding)
output by the watermark extractor on images generated by
the average model. The ℓ-th output is labeled by bits of
Bob(i) and Bob(j) (00 means both have 0 at position ℓ):

1.0 0.5 0.0 0.5 1.0
Extractor's outputs

01
10

00
11

This so-called marking assumption plays a crucial role in
traitor tracing literature [27, 55, 83]. Surprisingly, it holds
even though our watermarking process is not explicitly de-
signed for it. The study has room for improvement, such
as creating user identifiers with more powerful traitor trac-
ing codes [83] and using more powerful traitor accusation
algorithms [27, 55]. Importantly, we found the precedent
remarks also hold if the colluders operate at the image level.

8. Conclusion & Discussion
By a quick fine-tuning of the decoder of Latent Diffusion

Models, we can embed watermarks in all the images they
generate. This does not alter the diffusion process, making
it compatible with most of LDM-based generative models.
These watermarks are robust, invisible to the human eye and
can be employed to detect generated images and identify the
user that generated it, with very high performance.

The public release of image generative models has an
important societal impact. With this work, we put to light
the usefulness of using watermarking instead of relying on
passive detection methods. We hope it will encourage re-
searchers and practitioners to employ similar approaches
before making their models publicly available.

Reproducibility Statement. Although the diffusion-
based generative model has been trained on an internal
dataset of licensed images, we use the KL auto-encoder
from LDM [68] with compression factor f = 8. This is
the one used by open-source alternatives. Code is available
at github.com/facebookresearch/stable signature.

Environmental Impact. We do not expect any environ-
mental impact specific from this work. The cost of the ex-
periments and the method is high, though order of magni-
tudes less than other computer vision fields. We roughly
estimated that the total GPU-days used for running all our
experiments to 2000, or ≈ 50000 GPU-hours. This amounts
to total emissions in the order of 10 tons of CO2eq. This is
excluding the training of the generative model itself, since
we did not perform that training. Estimations are conducted
using the Machine Learning Impact calculator presented by
Lacoste et al. [43]. We do not consider in this approxi-
mation: memory storage, CPU-hours, production cost of
GPUs/ CPUs, etc.

https://github.com/facebookresearch/stable_signature
https://mlco2.github.io/impact#compute

References
[1] Sahar Abdelnabi and Mario Fritz. Adversarial watermark-

ing transformer: Towards tracing text provenance with data
hiding. In 2021 IEEE Symposium on Security and Privacy
(SP), pages 121–140. IEEE, 2021. 7

[2] Mahdi Ahmadi, Alireza Norouzi, Nader Karimi, Shadrokh
Samavi, and Ali Emami. Redmark: Framework for residual
diffusion watermarking based on deep networks. Expert
Systems with Applications, 146:113157, 2020. 2, 4

[3] Yogesh Balaji, Seungjun Nah, Xun Huang, Arash Vahdat,
Jiaming Song, Karsten Kreis, Miika Aittala, Timo Aila,
Samuli Laine, Bryan Catanzaro, et al. ediffi: Text-to-
image diffusion models with an ensemble of expert denois-
ers. arXiv preprint arXiv:2211.01324, 2022. 2

[4] Johannes Ballé, David Minnen, Saurabh Singh, Sung Jin
Hwang, and Nick Johnston. Variational image compression
with a scale hyperprior. arXiv preprint arXiv:1802.01436,
2018. 7, 14

[5] Adrien Bardes, Jean Ponce, and Yann LeCun. Vi-
creg: Variance-invariance-covariance regularization for
self-supervised learning. In ICLR, 2022. 17

[6] Jean Bégaint, Fabien Racapé, Simon Feltman, and Akshay
Pushparaja. Compressai: a pytorch library and evalua-
tion platform for end-to-end compression research. arXiv
preprint arXiv:2011.03029, 2020. 14

[7] Tim Brooks, Aleksander Holynski, and Alexei A Efros.
Instructpix2pix: Learning to follow image editing instruc-
tions. arXiv preprint arXiv:2211.09800, 2022. 1, 2

[8] Miles Brundage, Shahar Avin, Jack Clark, Helen Toner, Pe-
ter Eckersley, Ben Garfinkel, Allan Dafoe, Paul Scharre,
Thomas Zeitzoff, Bobby Filar, et al. The malicious use of
artificial intelligence: Forecasting, prevention, and mitiga-
tion. arXiv preprint arXiv:1802.07228, 2018. 1

[9] Mathilde Caron, Hugo Touvron, Ishan Misra, Hervé Jégou,
Julien Mairal, Piotr Bojanowski, and Armand Joulin.
Emerging properties in self-supervised vision transformers.
In ICCV. IEEE, 2021. 14

[10] Lucy Chai, David Bau, Ser-Nam Lim, and Phillip Isola.
What makes fake images detectable? understanding prop-
erties that generalize. In European conference on computer
vision, pages 103–120. Springer, 2020. 2

[11] Zhengxue Cheng, Heming Sun, Masaru Takeuchi, and Jiro
Katto. Learned image compression with discretized gaus-
sian mixture likelihoods and attention modules. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 7939–7948, 2020. 7, 14

[12] Riccardo Corvi, Davide Cozzolino, Giada Zingarini, Gio-
vanni Poggi, Koki Nagano, and Luisa Verdoliva. On the
detection of synthetic images generated by diffusion mod-
els. arXiv preprint arXiv:2211.00680, 2022. 2, 4, 5

[13] Guillaume Couairon, Jakob Verbeek, Holger Schwenk,
and Matthieu Cord. Diffedit: Diffusion-based seman-
tic image editing with mask guidance. arXiv preprint
arXiv:2210.11427, 2022. 1, 2, 6, 13, 16

[14] Ingemar Cox, Matthew Miller, Jeffrey Bloom, Jessica
Fridrich, and Ton Kalker. Digital watermarking and
steganography. Morgan kaufmann, 2007. 2, 6, 7, 8

[15] Steffen Czolbe, Oswin Krause, Ingemar Cox, and Christian
Igel. A loss function for generative neural networks based
on watson’s perceptual model. Advances in Neural Infor-
mation Processing Systems, 33:2051–2061, 2020. 4, 15

[16] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,
and Li Fei-Fei. Imagenet: A large-scale hierarchical im-
age database. In 2009 IEEE conference on computer vision
and pattern recognition, pages 248–255. Ieee, 2009. 5, 14

[17] Emily Denton. Ethical considerations of generative ai. In
AI for Content Creation Workshop CVPR. IEEE, 2021. 1

[18] Prafulla Dhariwal and Alexander Nichol. Diffusion models
beat gans on image synthesis. Advances in Neural Informa-
tion Processing Systems, 34:8780–8794, 2021. 2

[19] Ming Ding, Zhuoyi Yang, Wenyi Hong, Wendi Zheng,
Chang Zhou, Da Yin, Junyang Lin, Xu Zou, Zhou Shao,
Hongxia Yang, et al. Cogview: Mastering text-to-image
generation via transformers. Advances in Neural Informa-
tion Processing Systems, 34:19822–19835, 2021. 2

[20] Patrick Esser, Robin Rombach, and Bjorn Ommer. Taming
transformers for high-resolution image synthesis. In Pro-
ceedings of the IEEE/CVF conference on computer vision
and pattern recognition, pages 12873–12883, 2021. 2, 7,
14

[21] Hany Farid. Lighting (in) consistency of paint by text. arXiv
preprint arXiv:2207.13744, 2022. 2

[22] Hany Farid. Perspective (in) consistency of paint by text.
arXiv preprint arXiv:2206.14617, 2022. 2

[23] Jianwei Fei, Zhihua Xia, Benedetta Tondi, and Mauro
Barni. Supervised gan watermarking for intellectual prop-
erty protection. In 2022 IEEE International Workshop
on Information Forensics and Security (WIFS), pages 1–6.
IEEE, 2022. 2

[24] Pierre Fernandez, Matthijs Douze, Hervé Jégou, and
Teddy Furon. Active image indexing. arXiv preprint
arXiv:2210.10620, 2022. 14

[25] Pierre Fernandez, Alexandre Sablayrolles, Teddy Furon,
Hervé Jégou, and Matthijs Douze. Watermarking images
in self-supervised latent spaces. In IEEE International
Conference on Acoustics, Speech and Signal Processing
(ICASSP). IEEE, 2022. 2, 6, 7, 14, 15

[26] Joel Frank, Thorsten Eisenhofer, Lea Schönherr, Asja Fis-
cher, Dorothea Kolossa, and Thorsten Holz. Leveraging
frequency analysis for deep fake image recognition. In In-
ternational conference on machine learning, pages 3247–
3258. PMLR, 2020. 2

[27] Teddy Furon, Arnaud Guyader, and Frédéric Cérou. Decod-
ing Fingerprinting Using the Markov Chain Monte Carlo
Method. In WIFS - IEEE Workshop on Information Foren-
sics and Security, Tenerife, Spain, Dec. 2012. IEEE. 8

[28] Rinon Gal, Yuval Alaluf, Yuval Atzmon, Or Patash-
nik, Amit H Bermano, Gal Chechik, and Daniel Cohen-
Or. An image is worth one word: Personalizing text-to-
image generation using textual inversion. arXiv preprint
arXiv:2208.01618, 2022. 1

[29] Matthew Gault. An ai-generated artwork won first place at a
state fair fine arts competition, and artists are pissed. Vice,

2022. https://www.vice.com/en/article/bvmvqm/an-ai-
generated-artwork-won-first-place-at-a-state-fair-fine-arts-
competition-and-artists-are-pissed (retrieved 2022-12-14).
1

[30] Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy.
Explaining and harnessing adversarial examples. ICLR,
2014. 14

[31] Diego Gragnaniello, Davide Cozzolino, Francesco Marra,
Giovanni Poggi, and Luisa Verdoliva. Are gan generated
images easy to detect? a critical analysis of the state-of-the-
art. In 2021 IEEE International Conference on Multimedia
and Expo (ICME), pages 1–6. IEEE, 2021. 2

[32] Luca Guarnera, Oliver Giudice, and Sebastiano Battiato.
Deepfake detection by analyzing convolutional traces. In
Proceedings of the IEEE/CVF conference on computer vi-
sion and pattern recognition workshops, pages 666–667,
2020. 2

[33] Amir Hertz, Ron Mokady, Jay Tenenbaum, Kfir Aberman,
Yael Pritch, and Daniel Cohen-Or. Prompt-to-prompt im-
age editing with cross attention control. arXiv preprint
arXiv:2208.01626, 2022. 2

[34] Martin Heusel, Hubert Ramsauer, Thomas Unterthiner,
Bernhard Nessler, and Sepp Hochreiter. Gans trained by a
two time-scale update rule converge to a local nash equilib-
rium. Advances in neural information processing systems,
30, 2017. 2, 5

[35] Jonathan Ho, William Chan, Chitwan Saharia, Jay Whang,
Ruiqi Gao, Alexey Gritsenko, Diederik P Kingma, Ben
Poole, Mohammad Norouzi, David J Fleet, et al. Ima-
gen video: High definition video generation with diffusion
models. arXiv preprint arXiv:2210.02303, 2022. 2

[36] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising dif-
fusion probabilistic models. Advances in Neural Informa-
tion Processing Systems, 33:6840–6851, 2020. 2

[37] Tero Karras, Miika Aittala, Janne Hellsten, Samuli Laine,
Jaakko Lehtinen, and Timo Aila. Training generative ad-
versarial networks with limited data. Advances in Neural
Information Processing Systems, 33:12104–12114, 2020. 2

[38] Tero Karras, Samuli Laine, and Timo Aila. A style-based
generator architecture for generative adversarial networks.
In Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pages 4401–4410, 2019. 2

[39] Tero Karras, Samuli Laine, Miika Aittala, Janne Hell-
sten, Jaakko Lehtinen, and Timo Aila. Analyzing and im-
proving the image quality of stylegan. In Proceedings of
the IEEE/CVF conference on computer vision and pattern
recognition, pages 8110–8119, 2020. 2

[40] Bahjat Kawar, Shiran Zada, Oran Lang, Omer Tov, Hui-
wen Chang, Tali Dekel, Inbar Mosseri, and Michal Irani.
Imagic: Text-based real image editing with diffusion mod-
els. arXiv preprint arXiv:2210.09276, 2022. 2

[41] Diederik P Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. In ICLR, 2015. 15

[42] Varsha Kishore, Xiangyu Chen, Yan Wang, Boyi Li, and
Kilian Q Weinberger. Fixed neural network steganography:
Train the images, not the network. In International Confer-
ence on Learning Representations, 2022. 2, 6, 7, 14

[43] Alexandre Lacoste, Alexandra Luccioni, Victor Schmidt,
and Thomas Dandres. Quantifying the carbon emissions of
machine learning. arXiv preprint arXiv:1910.09700, 2019.
8

[44] Jae-Eun Lee, Young-Ho Seo, and Dong-Wook Kim. Convo-
lutional neural network-based digital image watermarking
adaptive to the resolution of image and watermark. Applied
Sciences, 2020. 2

[45] Yuezun Li and Siwei Lyu. Exposing deepfake videos
by detecting face warping artifacts. arXiv preprint
arXiv:1811.00656, 2018. 2

[46] Dongdong Lin, Benedetta Tondi, Bin Li, and Mauro Barni.
Cycleganwm: A cyclegan watermarking method for owner-
ship verification. arXiv preprint arXiv:2211.13737, 2022.
1, 2, 3

[47] Tsung-Yi Lin, Michael Maire, Serge Belongie, James
Hays, Pietro Perona, Deva Ramanan, Piotr Dollár, and
C Lawrence Zitnick. Microsoft coco: Common objects in
context. In European conference on computer vision, pages
740–755. Springer, 2014. 4, 5, 13

[48] Wenqing Liu, Miaojing Shi, Teddy Furon, and Li Li. De-
fending adversarial examples via dnn bottleneck reinforce-
ment. In Proceedings of the 28th ACM International Con-
ference on Multimedia, pages 1930–1938, 2020. 7

[49] Ilya Loshchilov and Frank Hutter. Decoupled weight decay
regularization. In ICLR, 2018. 4

[50] Andreas Lugmayr, Martin Danelljan, Andres Romero,
Fisher Yu, Radu Timofte, and Luc Van Gool. Repaint: In-
painting using denoising diffusion probabilistic models. In
Proceedings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition, pages 11461–11471, 2022.
2

[51] Xiyang Luo, Ruohan Zhan, Huiwen Chang, Feng Yang, and
Peyman Milanfar. Distortion agnostic deep watermarking.
In CVPR. IEEE, 2020. 2

[52] Jingwei Ma, Lucy Chai, Minyoung Huh, Tongzhou Wang,
Ser-Nam Lim, Phillip Isola, and Antonio Torralba. Totems:
Physical objects for verifying visual integrity. In European
Conference on Computer Vision, pages 164–180. Springer,
2022. 2

[53] Sébastien Marcel and Yann Rodriguez. Torchvision the
machine-vision package of torch. In International Confer-
ence on Multimedia. ACM, 2010. 13

[54] Francesco Marra, Diego Gragnaniello, Luisa Verdoliva, and
Giovanni Poggi. Do gans leave artificial fingerprints? In
2019 IEEE conference on multimedia information process-
ing and retrieval (MIPR), pages 506–511. IEEE, 2019. 2

[55] Peter Meerwald and Teddy Furon. Towards practi-
cal joint decoding of binary Tardos fingerprinting codes.
IEEE Transactions on Information Forensics and Security,
7(4):1168–1180, Apr. 2012. 8

[56] Ron Mokady, Amir Hertz, Kfir Aberman, Yael Pritch,
and Daniel Cohen-Or. Null-text inversion for editing real
images using guided diffusion models. arXiv preprint
arXiv:2211.09794, 2022. 2

[57] Alex Nichol, Prafulla Dhariwal, Aditya Ramesh, Pranav
Shyam, Pamela Mishkin, Bob McGrew, Ilya Sutskever, and

https://www.vice.com/en/article/bvmvqm/an-ai-generated-artwork-won-first-place-at-a-state-fair-fine-arts-competition-and-artists-are-pissed
https://www.vice.com/en/article/bvmvqm/an-ai-generated-artwork-won-first-place-at-a-state-fair-fine-arts-competition-and-artists-are-pissed
https://www.vice.com/en/article/bvmvqm/an-ai-generated-artwork-won-first-place-at-a-state-fair-fine-arts-competition-and-artists-are-pissed

Mark Chen. Glide: Towards photorealistic image genera-
tion and editing with text-guided diffusion models. arXiv
preprint arXiv:2112.10741, 2021. 6, 13, 16

[58] Alexander Quinn Nichol and Prafulla Dhariwal. Im-
proved denoising diffusion probabilistic models. In Inter-
national Conference on Machine Learning, pages 8162–
8171. PMLR, 2021. 2

[59] Guangyu Nie, Changhoon Kim, Yezhou Yang, and Yi Ren.
Attributing image generative models using latent finger-
prints. arXiv preprint arXiv:2304.09752, 2023. 2

[60] Zoe Papakipos and Joanna Bitton. Augly: Data augmen-
tations for robustness. arXiv preprint arXiv:2201.06494,
2022. 13

[61] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer,
James Bradbury, Gregory Chanan, Trevor Killeen, Zeming
Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An
imperative style, high-performance deep learning library.
Advances in Neural Information Processing Systems 32,
2019. 16

[62] William Peebles and Saining Xie. Scalable diffusion mod-
els with transformers. arXiv preprint arXiv:2212.09748,
2022. 2

[63] Tong Qiao, Yuyan Ma, Ning Zheng, Hanzhou Wu, Yanli
Chen, Ming Xu, and Xiangyang Luo. A novel model wa-
termarking for protecting generative adversarial network.
Computers & Security, 127:103102, 2023. 2

[64] Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey
Chu, and Mark Chen. Hierarchical text-conditional
image generation with clip latents. arXiv preprint
arXiv:2204.06125, 2022. 1

[65] Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey
Chu, and Mark Chen. Hierarchical text-conditional
image generation with clip latents. arXiv preprint
arXiv:2204.06125, 2022. 2, 13

[66] Aditya Ramesh, Mikhail Pavlov, Gabriel Goh, Scott
Gray, Chelsea Voss, Alec Radford, Mark Chen, and Ilya
Sutskever. Zero-shot text-to-image generation. In Interna-
tional Conference on Machine Learning, pages 8821–8831.
PMLR, 2021. 2, 13

[67] Ali Razavi, Aaron Van den Oord, and Oriol Vinyals. Gener-
ating diverse high-fidelity images with vq-vae-2. Advances
in neural information processing systems, 32, 2019. 2

[68] Robin Rombach, Andreas Blattmann, Dominik Lorenz,
Patrick Esser, and Björn Ommer. High-resolution image
synthesis with latent diffusion models. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 10684–10695, 2022. 1, 2, 4, 6, 7, 8, 14,
16

[69] Robin Rombach, Andreas Blattmann, Dominik Lorenz,
Patrick Esser, and Björn Ommer. High-resolution image
synthesis with latent diffusion models. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 10684–10695, 2022. 2, 13

[70] Robin Rombach, Andreas Blattmann, Dominik Lorenz,
Patrick Esser, and Björn Ommer. Stable diffusion. Ac-
cessed Nov. 30 2022, 2022. 1, 7

[71] Nataniel Ruiz, Yuanzhen Li, Varun Jampani, Yael Pritch,
Michael Rubinstein, and Kfir Aberman. Dreambooth: Fine

tuning text-to-image diffusion models for subject-driven
generation. arXiv preprint arXiv:2208.12242, 2022. 1, 2

[72] Alexandre Sablayrolles, Matthijs Douze, Cordelia Schmid,
and Hervé Jégou. Spreading vectors for similarity search.
ICML, 2019. 17

[73] Chitwan Saharia, William Chan, Huiwen Chang, Chris Lee,
Jonathan Ho, Tim Salimans, David Fleet, and Mohammad
Norouzi. Palette: Image-to-image diffusion models. In
ACM SIGGRAPH 2022 Conference Proceedings, pages 1–
10, 2022. 2

[74] Chitwan Saharia, William Chan, Saurabh Saxena, Lala
Li, Jay Whang, Emily Denton, Seyed Kamyar Seyed
Ghasemipour, Burcu Karagol Ayan, S Sara Mahdavi,
Rapha Gontijo Lopes, et al. Photorealistic text-to-image
diffusion models with deep language understanding. arXiv
preprint arXiv:2205.11487, 2022. 2, 13

[75] Chitwan Saharia, Jonathan Ho, William Chan, Tim Sal-
imans, David J Fleet, and Mohammad Norouzi. Image
super-resolution via iterative refinement. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence, 2022.
14

[76] Axel Sauer, Katja Schwarz, and Andreas Geiger. Stylegan-
xl: Scaling stylegan to large diverse datasets. In ACM SIG-
GRAPH 2022 Conference Proceedings, pages 1–10, 2022.
2

[77] Zeyang Sha, Zheng Li, Ning Yu, and Yang Zhang. De-
fake: Detection and attribution of fake images gener-
ated by text-to-image diffusion models. arXiv preprint
arXiv:2210.06998, 2022. 2

[78] Changhao Shi, Chester Holtz, and Gal Mishne. Online
adversarial purification based on self-supervision. arXiv
preprint arXiv:2101.09387, 2021. 7

[79] Uriel Singer, Adam Polyak, Thomas Hayes, Xi Yin, Jie An,
Songyang Zhang, Qiyuan Hu, Harry Yang, Oron Ashual,
Oran Gafni, et al. Make-a-video: Text-to-video generation
without text-video data. arXiv preprint arXiv:2209.14792,
2022. 2

[80] Jiaming Song, Chenlin Meng, and Stefano Ermon.
Denoising diffusion implicit models. arXiv preprint
arXiv:2010.02502, 2020. 2

[81] Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma,
Abhishek Kumar, Stefano Ermon, and Ben Poole. Score-
based generative modeling through stochastic differential
equations. ICLR, 2021. 13

[82] Roman Suvorov, Elizaveta Logacheva, Anton Mashikhin,
Anastasia Remizova, Arsenii Ashukha, Aleksei Silvestrov,
Naejin Kong, Harshith Goka, Kiwoong Park, and Victor
Lempitsky. Resolution-robust large mask inpainting with
fourier convolutions. In Proceedings of the IEEE/CVF Win-
ter Conference on Applications of Computer Vision, pages
2149–2159, 2022. 13, 20

[83] Gábor Tardos. Optimal probabilistic fingerprint codes.
Journal of the ACM (JACM), 55(2):1–24, 2008. 8

[84] Yusuke Uchida, Yuki Nagai, Shigeyuki Sakazawa, and
Shin’ichi Satoh. Embedding watermarks into deep neural
networks. In Proceedings of the 2017 ACM on international
conference on multimedia retrieval, pages 269–277, 2017.
2

[85] Dani Valevski, Matan Kalman, Yossi Matias, and Yaniv
Leviathan. Unitune: Text-driven image editing by fine tun-
ing an image generation model on a single image. arXiv
preprint arXiv:2210.09477, 2022. 2

[86] Vedran Vukotić, Vivien Chappelier, and Teddy Furon. Are
deep neural networks good for blind image watermarking?
In WIFS, 2018. 2

[87] Steven Walton, Ali Hassani, Xingqian Xu, Zhangyang
Wang, and Humphrey Shi. Stylenat: Giving each head a
new perspective. arXiv preprint arXiv:2211.05770, 2022.
2

[88] Sheng-Yu Wang, Oliver Wang, Andrew Owens, Richard
Zhang, and Alexei A Efros. Detecting photoshopped
faces by scripting photoshop. In Proceedings of the
IEEE/CVF International Conference on Computer Vision,
pages 10072–10081, 2019. 2

[89] Sheng-Yu Wang, Oliver Wang, Richard Zhang, Andrew
Owens, and Alexei A Efros. Cnn-generated images are
surprisingly easy to spot... for now. In Proceedings of
the IEEE/CVF conference on computer vision and pattern
recognition, pages 8695–8704, 2020. 2

[90] Zhou Wang, Alan C Bovik, Hamid R Sheikh, and Eero P
Simoncelli. Image quality assessment: from error visibility
to structural similarity. IEEE transactions on image pro-
cessing, 13(4):600–612, 2004. 5

[91] Mitchell Wortsman, Gabriel Ilharco, Samir Ya Gadre, Re-
becca Roelofs, Raphael Gontijo-Lopes, Ari S Morcos,
Hongseok Namkoong, Ali Farhadi, Yair Carmon, Simon
Kornblith, et al. Model soups: averaging weights of mul-
tiple fine-tuned models improves accuracy without increas-
ing inference time. In International Conference on Machine
Learning, pages 23965–23998. PMLR, 2022. 8

[92] Chen Henry Wu and Fernando De la Torre. Unifying dif-
fusion models’ latent space, with applications to cyclediffu-
sion and guidance. arXiv preprint arXiv:2210.05559, 2022.
2

[93] Hanzhou Wu, Gen Liu, Yuwei Yao, and Xinpeng Zhang.
Watermarking neural networks with watermarked images.
IEEE Transactions on Circuits and Systems for Video Tech-
nology, 31(7):2591–2601, 2020. 2

[94] Jongmin Yoon, Sung Ju Hwang, and Juho Lee. Adversarial
purification with score-based generative models. In Inter-
national Conference on Machine Learning, pages 12062–
12072. PMLR, 2021. 7

[95] Yang You, Jing Li, Sashank Reddi, Jonathan Hseu, Sanjiv
Kumar, Srinadh Bhojanapalli, Xiaodan Song, James Dem-
mel, Kurt Keutzer, and Cho-Jui Hsieh. Large batch opti-
mization for deep learning: Training bert in 76 minutes. In
ICLR, 2020. 13

[96] Jiahui Yu, Xin Li, Jing Yu Koh, Han Zhang, Ruoming Pang,
James Qin, Alexander Ku, Yuanzhong Xu, Jason Baldridge,
and Yonghui Wu. Vector-quantized image modeling with
improved vqgan. arXiv preprint arXiv:2110.04627, 2021.
2

[97] Ning Yu, Larry S Davis, and Mario Fritz. Attributing fake
images to gans: Learning and analyzing gan fingerprints. In
Proceedings of the IEEE/CVF international conference on
computer vision, pages 7556–7566, 2019. 2

[98] Ning Yu, Vladislav Skripniuk, Sahar Abdelnabi, and Mario
Fritz. Artificial fingerprinting for generative models: Root-
ing deepfake attribution in training data. In Proceedings of
the IEEE/CVF International Conference on Computer Vi-
sion, pages 14448–14457, 2021. 2, 3

[99] Ning Yu, Vladislav Skripniuk, Dingfan Chen, Larry Davis,
and Mario Fritz. Responsible disclosure of generative mod-
els using scalable fingerprinting. In International Confer-
ence on Learning Representations (ICLR), 2022. 1, 2

[100] Chaoning Zhang, Philipp Benz, Adil Karjauv, Geng Sun,
and In So Kweon. Udh: Universal deep hiding for
steganography, watermarking, and light field messaging.
NeurIPS, 2020. 2

[101] Chaoning Zhang, Adil Karjauv, Philipp Benz, and
In So Kweon. Towards robust deep hiding under non-
differentiable distortions for practical blind watermarking.
In Proceedings of the 29th ACM International Conference
on Multimedia, pages 5158–5166, 2021. 4, 13

[102] Jie Zhang, Dongdong Chen, Jing Liao, Han Fang, Weim-
ing Zhang, Wenbo Zhou, Hao Cui, and Nenghai Yu. Model
watermarking for image processing networks. In Proceed-
ings of the AAAI conference on artificial intelligence, vol-
ume 34, pages 12805–12812, 2020. 2

[103] Kevin Alex Zhang, Alfredo Cuesta-Infante, Lei Xu,
and Kalyan Veeramachaneni. Steganogan: High ca-
pacity image steganography with gans. arXiv preprint
arXiv:1901.03892, 2019. 14

[104] Lvmin Zhang and Maneesh Agrawala. Adding conditional
control to text-to-image diffusion models. arXiv preprint
arXiv:2302.05543, 2023. 1, 2

[105] Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shecht-
man, and Oliver Wang. The unreasonable effectiveness of
deep features as a perceptual metric. In CVPR. IEEE, 2018.
4, 15

[106] Xu Zhang, Svebor Karaman, and Shih-Fu Chang. Detect-
ing and simulating artifacts in gan fake images. In 2019
IEEE international workshop on information forensics and
security (WIFS), pages 1–6. IEEE, 2019. 2

[107] Hanqing Zhao, Wenbo Zhou, Dongdong Chen, Tianyi Wei,
Weiming Zhang, and Nenghai Yu. Multi-attentional deep-
fake detection. In Proceedings of the IEEE/CVF conference
on computer vision and pattern recognition, pages 2185–
2194, 2021. 2

[108] Jiren Zhu, Russell Kaplan, Justin Johnson, and Li Fei-Fei.
Hidden: Hiding data with deep networks. In ECCV, 2018.
2, 3, 4, 6, 7, 13

Supplementary Material
The Stable Signature: Rooting Watermarks in Latent Diffusion Models

A. Implementation Details & Parameters

A.1. Details on the watermark encoder/extractor

Architectures of the watermark encoder/extractor. We
keep the same architecture as in HiDDeN [108], which is
a simple convolutional encoder and extractor. The encoder
consist of 4 Conv-BN-ReLU blocks, with 64 output filters,
3 × 3 kernels, stride 1 and padding 1. The extractor has 7
blocks, followed by a block with k output filters (k being
the number of bits to hide), an average pooling layer, and a
k × k linear layer. For more details, we refer the reader to
the original paper [108].

Optimization. We train on the MS-COCO dataset [47],
with 256× 256 images. The number of bits is k = 48, and
the scaling factor is α = 0.3. The optimization is carried out
for 300 epochs on 8 GPUs, with the Lamb optimizer [95]
(it takes around a day). The learning rate follows a cosine
annealing schedule with 5 epochs of linear warmup to 10−2,
and decays to 10−6. The batch size per GPU is 64.

Attack simulation layer. The attack layer produces
edited versions of the watermarked image to improve ro-
bustness to image processing. It takes as input the image
output by the watermark encoder xw = WE(xo) and out-
puts a new image x′ that is fed to the decoder W . This layer
is made of cropping, resizing, or identity chosen at random
in our experiments, unless otherwise stated. The param-
eter for the crop or resize is set to 0.3 or 0.7 with equal
probability. This is followed by a JPEG compression with
probability 0.5. The parameter for the compression is set to
50 or 80 with equal probability. This last layer is not dif-
ferentiable, therefore we back-propagate only through the
difference between the uncompressed and compressed im-
ages: x′ = xaug + nograd(xaug,JPEG − xaug) [101].

Whitening. At the end of the training, we whiten the out-
put of the watermark extractor to make the hard thresholded
bits independently and identically Bernoulli distributed on
vanilla images (so that the assumption of 3.1 holds better,
see App. B.5). We perform the PCA of the output of the wa-
termark extractor on a set of 10k vanilla images, and get the
mean µ and eigendecomposition of the covariance matrix
Σ = UΛUT . The whitening is applied with a linear layer
with bias −Λ−1/2UTµ and weight Λ−1/2UT , appended to
the extractor.

A.2. Image transformations

We evaluate the robustness of the watermark to a set of
transformations in sections 5, 6 and B.2. They simulate im-
age processing steps that are commonly used in image edit-
ing software. We illustrate them in Figure 9. For crop and
resize, the parameter is the ratio of the new area to the origi-
nal area. For rotation, the parameter is the angle in degrees.
For JPEG compression, the parameter is the quality factor
(in general 90% or higher is considered high quality, 80%-
90% is medium, and 70%-80% is low). For brightness, con-
trast, saturation, and sharpness, the parameter is the default
factor used in the PIL and Torchvision [53] libraries. The
text overlay is made through the AugLy library [60], and
adds a text at a random position in the image. The combined
transformation is a combination of a crop 0.5, a brightness
change 1.5, and a JPEG 80 compression.

A.3. Generative tasks

Text-to-image. In text-to-image generation, the diffusion
process is guided by a text prompt. We follow the stan-
dard protocol in the literature [65, 66, 69, 74] and evaluate
the generation on prompts from the validation set of MS-
COCO [47]. To do so, we first retrieve all the captions from
the validation set, keep only the first one for each image,
and select the first 1000 or 5000 captions depending on the
evaluation protocol. We use guidance scale 3.0 and 50 dif-
fusion steps. If not specified, the generation is done for
5000 images. The FID is computed over the validation set
of MS-COCO, resized to 512× 512.

Image edition. DiffEdit [13] takes as input an image, a
text describing the image and a novel description that the
edited image should match. First, a mask is computed to
identify which regions of the image should be edited. Then,
mask-based generation is performed in the latent space, be-
fore converting the output back to RGB space with the im-
age decoder. We use the default parameters used in the orig-
inal paper, with an encoding ratio of 90%, and compute a
set of 5000 images from the COCO dataset, edited with the
same prompts as the paper [13]. The FID is computed over
the validation set of MS-COCO, resized to 512× 512.

Inpainting. We follow the protocol of LaMa [82], and
generate 5000 masks with the “thick” setting, at resolution
512×512, each mask covering 1−50% of the initial image
(with an average of 27%). For the diffusion-based inpaint-
ing, we use the inference-time algorithm presented in [81],
also used in Glide [57], which corrects intermediate esti-

Crop 0.1 JPEG 50 Resize 0.7 Brightness 2.0 Contrast 2.0

Saturation 2.0 Sharpness 2.0 Rotation 90 Text overlay Combined

Figure 9. Illustration of all transformations evaluated in sections 5 and 6.

mations of the final generated image with the ground truth
pixel values outside the inpainting mask. For latent diffu-
sion models, the same algorithm can be applied in latent
space, by encoding the image to be inpainted and down-
sampling the inpainting mask. In this case, we consider 2
different variations: (1) inpainting is performed in the la-
tent space and the final image is obtained by simply decod-
ing the latent image; and (2) the same procedure is applied,
but after decoding, ground truth pixel values from outside
the inpainting mask are copy-pasted from the original im-
age. The latter allows to keep the rest of the image perfectly
identical to the original one, at the cost of introducing copy-
paste artifacts, visible in the borders. Image quality is mea-
sured with an FID score, computed over the validation set
of ImageNet [16], resized to 512× 512.

Super-resolution. We follow the protocol suggested by
Saharia et al. [75]. We first resize 5000 random images from
the validation set of ImageNet to 128 × 128 using bicubic
interpolation, and upscale them to 512 × 512. The FID is
computed over the validation set of ImageNet, cropped and
resized to 512× 512.

A.4. Watermarking methods

For Dct-Dwt, we use the implementation of
https://github.com/ShieldMnt/invisible-watermark (the
one used in Stable Diffusion). For SSL Watermark [25] and
FNNS [42] the watermark is embedded by optimizing the
image, such that the output of a pre-trained model is close
to the given key (like in adversarial examples [30]). The
difference between the two is that in SSL Watermark we
use a model pre-trained with DINO [9], while FNNS uses
a watermark or stenography model. For SSL Watermark
we use the default pre-trained model of the original paper.
For FNNS we use the HiDDeN extractor used in all our
experiments, and not SteganoGan [103] as in the original
paper, because we want to extract watermarks from images

of different sizes. We use the image optimization scheme
of Active Indexing [24], i.e. we optimize the distortion
image for 10 iterations, and modulate it with a perceptual
just noticeable difference (JND) mask. This avoids visible
artifacts and gives a PSNR comparable with our method
(≈ 30dB). For HiDDeN, we use the watermark encoder
and extractor from our pre-training phase, but the extractor
is not whitened and we modulate the encoder output with
the same JND mask. Note that in all cases we watermark
images one by one for simplicity. In practice the water-
marking could be done by batch, which would be more
efficient.

A.5. Attacks

Watermark removal. The perceptual auto-encoders aim
to create compressed latent representations of images. We
select 2 state-of-the-art auto-encoders from the Compres-
sAI library zoo [6]: the factorized prior model [4] and
the anchor model variant [11]. We also select the auto-
encoders from Esser et al. [20] and Rombach et al. [68].
For all models, we use different compression factors to
observe the trade-off between quality degradation and re-
moval robustness. For bmshj2018: 1, 4 and 8, for
cheng2020: 1, 3 and 6, for esser2021: VQ-4, 8 and
16, for rombach2022 KL-4, 8, 16 and 32 (KL-8 being
the one used by SD v1.4). We generate 1k images from text
prompts with our LDM watermarked with a 48-bits key. We
then try to remove the watermark using the auto-encoders,
and compute the bit accuracy on the extracted watermark.
The PSNR is computed between the original image and the
reconstructed one, which explains why the PSNR does not
exceed 30dB (since the watermarked image already has a
PNSR of 30dB). If we compared between the watermarked
image and the image reconstructed by the auto-encoder in-
stead, the curves would show the same trend but the PSNR
would be 2-3 points higher.

https://github.com/ShieldMnt/invisible-watermark

Watermark removal (white-box). In the white-box case,
we assume have access to the extractor model. The adver-
sarial attack is performed by optimizing the image in the
same manner as [25]. The objective is a MSE loss between
the output of the extractor and a random binary message
fixed beforehand. The attack is performed for 10 iterations
with the Adam optimizer [41] with learning rate 0.1.

Watermark removal (network-level). We use the same
fine-tuning procedure as in Sec. 4.2. This is done for differ-
ent numbers of steps, namely 100, 200, and every multiple
of 200 up to 1600. The bit accuracy and the reported PSNR
are computed on 1k images of the validation set of COCO,
for the auto-encoding task.

Model collusion. The goal is to observe the decoded wa-
termarks on the generation when 2 models are averaged to-
gether. We fine-tune the LDM decoder for 10 different 48-
bits keys (representing 10 Bobs). We then randomly sample
a pair of Bobs and average the 2 models, with which we
generate 100 images. We then extract the watermark from
the generated images and compare them to the 2 original
keys. We repeat this experiment 10 times, meaning that we
observe 10× 100× 48 = 48000 decoded bits.

In the inline figure, the rightmost skewed normal is fitted
with the Scipy library and the corresponding parameters are
a : 6.96, e : 0.06, w : 0.38. This done over all bits where
Bobs both have a 1. The same observation holds when there
is no collusion, with approximately the same parameters.
When the bit is not the same between Bobs, we denote by

m
(i)
1 the random variable representing the output of the ex-

tractor in the case where the generative model only comes
from Bob(i), and by m2 the random variable representing
the output of the extractor in the case where the generative
model comes from the average of the two Bobs. Then in our
model m2 = 0.5 · (m(i)

1 +m
(j)
1), and the pdf of m2 is the

convolution of the pdf of m(i)
1 and the pdf of m(j)

1 , rescaled
in the x axis because of the factor 0.5.

B. Additional Experiments

B.1. Perceptual loss

The perceptual loss of (4) affects the image quality. Fig-
ure 10 shows how the parameter λi affects the image qual-
ity. For high values, the image quality is very good. For
low values, artifacts mainly appear in textured area of the
image. It is interesting to note that this begins to be prob-
lematic only for low PSNR values (around 25 dB).

Figure 10 shows an example of a watermarked image
for different perceptual losses: Watson-VGG [15], Watson-
DFT [15], LPIPS [105], MSE, and LPIPS+MSE. We set the
weight λi of the perceptual loss so that the watermark per-
formance is approximately the same for all types of loss,
and such that the degradation of the image quality is strong
enough to be seen. Overall, we observe that the Watson-
VGG loss gave the most eye-pleasing results, closely fol-
lowed by the LPIPS. When using the MSE, images are
blurry and artifacts appear more easily, even though the
PSNR is higher.

λi = 0.025 λi = 0.05 λi = 0.1

Original Watson-VGG Watson-DFT LPIPS MSE LPIPS + 0.1·MSE

Figure 10. Qualitative influence of the perceptual loss during LDM fine-tuning. (Top): we show images generated with the LDM auto-
encoder fine-tuned with different λi, and the pixel-wise difference (×10) with regards to the image obtained with the original model. PSNR
are 24dB, 26dB, 28dB from left to right. (Bottom): we change the perceptual loss and fix λi to have approximately the same bit accuracy
of 0.95 on the “combined” augmentation.

Table 5. Watermark robustness on different tasks and image transformations applied before decoding. We report the bit accuracy,
averaged over 10× 1k images generated with 10 different keys. The combined transformation is a combination Crop 50%, Brightness 1.5
and JPEG 80. More detail on the evaluation is available in the supplement A.3.

Task Image transformation

None Crop 0.1 JPEG 50 Resi. 0.7 Bright. 2.0 Cont. 2.0 Sat. 2.0 Sharp. 2.0 Text over. Comb.

Text-to-Image LDM [68] 0.99 0.95 0.88 0.91 0.97 0.98 0.99 0.99 0.99 0.92

Image Edition DiffEdit [13] 0.99 0.95 0.90 0.91 0.98 0.98 0.99 0.99 0.99 0.94

Inpainting - Full Glide [57] 0.99 0.97 0.88 0.90 0.98 0.99 0.99 1.00 0.99 0.93
Inpa - Mask only 0.89 0.76 0.73 0.77 0.84 0.86 0.89 0.91 0.89 0.78

Super-Resolution LDM [68] 0.98 0.93 0.86 0.85 0.96 0.96 0.97 0.98 0.98 0.92

B.2. Additional results on watermarks robustness

In Table 5, we report the same table as in Table 1 that
evaluates the watermark robustness in bit accuracy on dif-
ferent tasks, with additional image transformations. They
are detailed and illustrated in App. A.3. As a reminder, the
watermark is a 48-bit binary key. It is robust to a wide range
transformations, and most often yields above 0.9 bit accu-
racy. The resize and JPEG 50 transformations seems to be
the most challenging ones, and sometimes get bellow 0.9.
Note that the crop location is not important but the visual
content of the crop is, e.g. there is no way to decode the
watermark on crops of blue sky (this is the reason we only
show center crop).

B.3. Additional network level attacks

Tab. 6 reports robustness of the watermarks to differ-
ent quantization and pruning levels for the LDM decoder.
Quantization is performed naively, by rounding the weights
to the closest quantized value in the min-max range of every
weight matrix. Pruning is done using PyTorch [61] pruning
API, with the L1 norm as criterion. We observe that the net-
work generation quality degrades faster than WM robust-
ness. To reduce bit accuracy lower than 98%, quantization
degrades the PSNR <25dB, and pruning <20dB.

Table 6. Bit accuracy after network attacks, observed over 10×1k
images generated from text prompts.

Quantization (8-bits) 0.99 Pruning L1 (30%) 0.99
Quantization (4-bits) 0.99 Pruning L1 (60%) 0.95

B.4. Scaling factor at pre-training.

The watermark encoder does not need to be perceptu-
ally good and it is beneficial to degrade image quality dur-
ing pre-training. In the following, ablations are conducted
on a shorter schedule of 50 epochs, on 128 × 128 im-
ages and 16-bits messages. In Table 7, we train water-
mark encoders/extractors for different scaling factor α (see
Sec. 4.1), and observe that α strongly affects the bit accu-
racy of the method. When it is too high, the LDM needs to
generate low quality images for the same performance be-
cause the distortions seen at pre-training by the extractor are
too strong. When it is too low, they are not strong enough
for the watermarks to be robust: the LDM will learn how
to generate watermarked images, but the extractor won’t be
able to extract them on edited images.

B.5. Are the decoded bits i.i.d. Bernoulli random
variables?

The FPR and the p-value (2) are computed with the as-
sumption that, for vanilla images (not watermarked), the
bits output by the watermark decoder W are independent

Before whitening: After whitening: Bernoulli simulation:

0 10 20 30 40

0

10

20

30

40

0.05

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0 10 20 30 40

0

10

20

30

40

0.05

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0 10 20 30 40

0

10

20

30

40

0.05

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Figure 11. Covariance matrices of the bits output by the watermark decoder W before and
after whitening.

25 30 35 40
Threshold (in bits)

10 9

10 7

10 5

10 3

10 1

Fa
lse

 P
os

iti
ve

 R
at

e
(R

ec
al

l)

Empirical
Theoretical

Figure 12. FPR Empirical check.

Table 7. Influence of the (discarded) watermark encoder percep-
tual quality. P1,2 stands for Phase 1 or 2.

Scaling factor α 0.8 0.4 0.2 0.1 0.05

(P1) - PSNR ↑ 16.1 21.8 27.2 33.5 39.3
(P2) - PSNR ↑ 27.9 30.5 30.8 28.8 27.8

(P1) - Bit acc. ↑ on ‘none’ 1.00 1.00 0.86 0.72 0.62
(P2) - Bit acc. ↑ on ‘none’ 0.98 0.98 0.91 0.90 0.96
(P2) - Bit acc. ↑ on ‘comb.’ 0.86 0.73 0.82 0.81 0.69

and identically distributed (i.i.d.) Bernoulli random vari-
ables with parameter 0.5. This assumption is not true in
practice, even when we tried using regularizing losses in
the training at phase one [5, 72]. This is why we whiten the
output at the end of the pre-training.

Figure 11 shows the covariance matrix of the hard bits
output by W before and after whitening. They are com-
puted over 5k vanilla images, generated with our LDM at
resolution 512 × 512 (as a reminder the whitening is per-
formed on 1k vanilla images from COCO at 256 × 256).
We compare them to the covariance matrix of a Bernoulli
simulation, where we simulate 5k random messages of 48
Bernoulli variables. We observe the strong influence of the
whitening on the covariance matrix, although it still differs
a little from the Bernoulli simulation. We also compute the
bit-wise mean and observe that for un-whitened output bits,
some bits are very biased. For instance, before whitening,
one bit had an average value of 0.95 (meaning that it almost
always outputs 1). After whitening, the maximum average
value of a bit is 0.68. For the sake of comparison, the maxi-
mum average value of a bit in the Bernoulli simulation was
0.52. It seems to indicate that the distribution of the gen-
erated images are different than the one of vanilla images,
and that it impacts the output bits. Therefore, the bits are
not perfectly i.i.d. Bernoulli random variables. We however
found they are close enough for the theoretical FPR compu-
tation to match the empirical one (see next section) – which
was what we wanted to achieve.

B.6. Empirical check of the FPR

In Figure 3, we plotted the TPR against a theoretical
value for the FPR, with the i.i.d. Bernoulli assumption. The
FPR was computed theoretically with (2). Here, we em-
pirically check on smaller values of the FPR (up to 10−7)
that the empirical FPR matches the theoretical one (higher
values would be too computationally costly). To do so, we
use the 1.4 million vanilla images from the training set of
ImageNet resized and cropped to 512 × 512, and perform
the watermark extraction with W . We then fix 10 random
48-bits key m(1), · · · ,m(10), and, for each image, we com-
pute the number of matching bits d(m′,m(i)) between the
extracted message m′ and the key m(i), and flag the image
if d(m′,m(i)) ≥ τ .

Figure 12 plots the FPR averaged over the 10 keys, as a
function of the threshold τ . We compare it to the theoretical
one obtained with (2). As it can be seen, they match almost
perfectly for high FPR values. For lower ones (< 10−6),
the theoretical FPR is slightly higher than the empirical one.
This is a good thing since it means that if we fixed the FPR
at a certain value, we would observe a lower one in practice.

C. Additional Qualitative Results

Original Stable Signature Dct-Dwt SSL Watermark FNNS HiDDeN

Figure 13. Qualitative results for different watermarking methods on generated images at resolution 512.

Original Watermarked Difference Original Watermarked Difference

Figure 14. Qualitative results on prompts of the validation set of MS-COCO, at resolution 512 and for a 48-bits signature. Images are
generated from the same latents, with original or watermarked generative models.

Image to inpaint Mask Original Watermarked Difference Original Watermarked Difference

Figure 15. Qualitative results for inpainting on ImageNet, with masks created from LaMa protocol [82], with original or watermarked
generative models. We consider 2 scenarios: (middle) the full image is modified to fill the masked area, (rigtht) only the masked area is
filled. Since our model is not fine-tuned for inpainting, the last scenario introduces copy-paste artifacts. From a watermarking point of
view, it is also the more interesting, since the watermark signal is only present in the masked area (and erased wherever the image to inpaint
is copied). Even in this case, the watermark extractor achieves bit accuracy significantly higher than random.

Low resolution Original Watermarked Difference Low resolution Original Watermarked Difference

Figure 16. Qualitative results for super-resolution on ImageNet, with original and watermarked generative models. Low resolution images
are 128× 128, and upscaled to 512× 512 with an upscaling factor f = 4.

