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Abstract—Recent advances in the fingerprinting of deep neural
networks are able to detect specific instances of models, placed in
a black-box interaction scheme. Inputs used by the fingerprinting
protocols are specifically crafted for each precise model to be
checked for. While efficient in such a scenario, this nevertheless
results in a lack of guarantee after a mere modification of a
model (e.g. finetuning, quantization of the parameters).

This article generalizes fingerprinting to the notion of model
families and their variants and extends the task-encompassing
scenarios where one wants to fingerprint not only a precise model
(previously referred to as a detection task) but also to identify
which model or family is in the black-box (identification task).
The main contribution is the proposal of fingerprinting schemes
that are resilient to significant modifications of the models.

We achieve these goals by demonstrating that benign inputs,
that are unmodified images, are sufficient material for both tasks.
We leverage an information-theoretic scheme for the identifi-
cation task. We devise a greedy discrimination algorithm for
the detection task. Both approaches are experimentally validated
over an unprecedented set of more than 1,000 networks12.

Index Terms—Fingerprinting, Deep Neural Networks, Infor-
mation Theory

I. INTRODUCTION

Fingerprinting classifiers aims at deriving a signature
uniquely identifying a machine learning model, like the human
fingerprint’s minutiae in biometry. This is essentially a black-
box problem: the classifier to be identified is in a black-box
in the sense that one can just make some queries and observe
the resulting model outputs. For instance, this is the case when
the model is embedded in a chip, or accessible via an API.

The main application that related works [1], [2], [3], [4],
[5] target is the proof of ownership. An accurate deep neural
network is a valuable industrial asset due to the know-how for
training it, the difficulty of gathering a well-annotated training
dataset, and the required computational resources to learn its
parameters. In this context, the entity identifying a black-box
wants to detect whether it is not a stolen model of her.

Another at least as critical application is information gain.
For instance, an attacker willing to delude the classifier first
gains some knowledge about the remote model, or a company
wants to determine which model is in use in a competitor’s
production system. This application has been left aside as of
today, and we tackle it under the notion of the fingerprinting
identification task.

Thanks to ANR and AID french agencies for funding Chaire SAIDA.
1Our code is attached to this submission, and will be open-sourced should

the article be accepted.
2This paper has supplementary downloadable material available at http:

//ieeexplore.ieee.org., provided by the author. Contact thibault.maho@inria.fr
for further questions about this work.

For clarity, we name Alice the entity willing to identify the
model that Bob has embedded in the black-box.

A. Challenges

We hereafter name a model a reference architecture, together
with its set of hyperparameters tuned by its designers. When
any of these components are modified, we coin the resulting
model a variant. The biggest difficulty is that there exist plenty
of ways to modify a model while maintaining its intrinsic good
accuracy. These procedures simplify a network (quantization
of the weights and/or activations, pruning, see e.g. [6]), or
make it more robust (preprocessing of the input, adversarial
re-training [7]). These mechanisms were not a priori designed
to make fingerprinting harder but they leave room for Bob
to tamper with the fingerprint of a model. We assume that
Alice also knows some of these procedures. Yet, they are often
defined by many parameters and among them scalars so that
there is virtually an infinity of variants. Like in biometry, the
fingerprint should be discriminative enough to be unique per
model but also sufficiently robust to identify a variant.

The approaches in the literature have two common pillars.
They use the boundaries in the input space drawn by a
classifier as the fingerprint, i.e. the unique signature identifying
the model [2], [4], [5]. Two neural networks sharing the same
architecture, the same training set and procedure are different
because the training is stochastic (like the Stochastic Gradient
Descent). This causes their boundaries in the input space not
to overlap fully. Most of the papers in the literature are looking
for discriminative deviations of these boundaries. Second, the
key task is detection: Alice makes a guess about the model
in the black-box and then she sends specific queries to test
whether her hypothesis holds [2], [8], [4], [5].

B. Our Rationale and Contributions

Our work differs from related works on two key aspects:
i) we do not forge any specific input but use regular benign
inputs, and ii) we directly identify models using their intrinsic
classification behavior.

We thoroughly investigate the use of benign inputs for
fingerprinting models contrary to the previous works crafting
specific inputs. We thus do not need to probe the input space
to discover the decision boundaries. Benign inputs constitute
a certain advantage, as it removes the need of often complex
crafting procedures. It is less prone to defenses being imple-
mented on Bob’s side (e.g. rejection based on the distance to
the decision frontier [9]).

The second salient observation is the restriction of previous
works on the detection task. The more general possibility to
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Fig. 1: A t-SNE representation of the pairwise distances of 1081 different models: 10 types of variation applied on 35 off-the-
shelves vanilla models for ImageNet with different parameters (listed in App. X).

identify a model or a family of models inside the black-box
remains unstudied.

In a nutshell, when Bob has picked a model among a
set of networks known by Alice, then our solution is essen-
tially deterministic: Alice has to find a sequence of inputs
of minimum length to identify the black-box. We apply a
greedy algorithm that carefully selects the input to iteratively
narrow down the set of suspects, i.e. candidate models, until
it becomes a singleton. Approximation theory tells that this is
suboptimal but we report that in practice many networks are
indeed identified within less than three input queries.

When Bob has made a variant of a model, its output may
not match the output of any known model by Alice. We
then use C.E. Shannon’s information theory to measure the
statistical similarity between the outputs of two models. This
approach is common in the field of Information Forensics and
Security, especially in biometry [10], [11], PUF [12], content
identification [13], [14], or traitor tracing [15], [16].

As an appetizer, Figure 1 depicts the t-SNE representation
from the pairwise distances within a set of 35 vanilla models
and their variants. The model families are well clustered in the
sense that variants are closer to their original network than any
other model. Alice may not identify precisely the variant of
the model but at least she can accurately identify its family,
i.e. infer which was the original vanilla model and even which
kind of variation Bob applied.

Our contribution is fourfold.

1) We demonstrate that the mere use of benign images is
enough to accomplish high success rates for fingerprint-
ing modern classification models. This is to be opposed
to the computationally demanding task of crafting inputs
for that same goal.

2) The fingerprinting detection task, introduced by state-
of-the-art works, is complemented with the introduction
of the identification task. We frame the latter as an
information theoretical problem.

3) We present a distance based on the empirical Mutual

Information, gauging how close two models are. This
distance permits generalizing the notion of modifications
(also coined as attacks) on models through the concept
of model families and variants.

4) We perform extensive experimentation by considering
more than 1,000 classification models on ImageNet. A
head-to-head comparison with the two related works
reports significant improvements w.r.t. accuracy in the
detection task.

Section II is a threat analysis listing all the working as-
sumptions in our work. The next two sections deal both with
detection (Alice verifies her hypothesis about the black-box)
and identification (Alice discovers which model is in the black-
box) but under two scenarios: Section III builds on the fact
that Bob has picked a model among the set known by Alice,
whereas Section IV assumes that the black-box may be an
unknown model. Both sections contain experimental results.
Section VI is devoted to the related works and benchmarking
with state-of-the-art detection schemes. A summary of nota-
tions is provided in Table I.

II. THREAT MODEL

This section details the goals of Alice and Bob.

A. Bob: Keeping his Model Anonymous

1) Goals: Bob is playing first by secretly selecting a model
and putting it in the black-box under scrutiny. This model
can be a vanilla model or a variant of a known model. A
variant is created by applying on a given vanilla model m the
procedure V parametrized by θ ∈ Θ which describes the type
of modification and the associated parameters. This can be
thought of as an attack by Bob on the vanilla model to harden
identification. We denote such a variant by v = V(m, θ).

The goal of Bob is to offer an accurate black-box classifier
while maintaining the ‘anonymity’ of the model in use. The
first requirement is that a small loss in the model performance
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TABLE I: Notations

D The task of detection
I The task of identification
m A vanilla model as listed in Tab. X
V(m, θ) Variant obtained by applying procedure θ on m
Θ Set of all variation procedures and parameters
acc(m) Accuracy of model m
b The model in the black-box
z Top-k output of the black-box
C The set of classes labeled from 1 to C
Zk The set of top-k outcomes
(C)k Falling factorial (C)k := C(C − 1) . . . (C − k + 1)
B Set of models Bob can create as defined in (2)
A Set of models known by Alice
P Set of public vanilla models listed in Tab. X
F(m) Family spanned by vanilla model m (3)
F(m,Ψ) Family spanned by m and variation Ψ ⊂ Θ (4)
X A collection of benign inputs
N Cardinality of X
q1:` An ordered list of indices in JNK
JNK Integers from 1 to N
D(x) Set of outputs given by models in D for input x
M(x, y,D) Subset of models of D giving y for input x
(A\F)(`) Subset of candidate models at step ` (6)
s(`+1)(x) Score of input x at step `+ 1 when A = B
Lpos, Lneg Nb. of queries for a positive / negative detection
Sk Surjection from Zk to Sk := {0, 1, . . . , k}
z, y Top-k output of black-box b or of model m
Z, Y Random top-k output when the input is random
z̃, Z̃, ỹ, Ỹ Similar outputs after the sujection
Wθ (k + 1)× (k + 1) Transition matrix
Î(Z̃, Ỹ ) Empirical mutual information in bits
ĤZ̃(z̃) Empirical entropy in bits
DL(m1,m2) Distance between models with L queries
DL(b,F) Distance of the black-box from family F

is tolerated by Bob. If a variant does not comply with this crite-
rion then Bob cannot consider it as an option. In classification,
the performance of a model m is often gauged by the top-1
accuracy, denoted acc(m). We formalize this requirement as

acc(m)− acc(V(m, θ))

acc(m)
< η, (1)

where η > 0 is the tolerance (15% in our experimental work).
We also assume that the black-box performs the same

classification task. As far as we know, fingerprinting is not
possible between two networks performing different tasks if
only top-k output is available. Transfer learning is therefore
not considered as in previous works [3], [2], [17].

2) Resources: The second requirement is more subtle. We
first need to limit the power of Bob. If Bob creates an accurate
model ex nihilo, then Alice can pursue neither detection nor
identification. We assume that Bob cannot train such a model
from scratch because he lacks good training data, expertise in
machine learning, or computing resources. This also means
that Bob can retrain a model only up to a limited extent
(typically using a small amount of new data). In other words,
the complexity of the procedure creating v = V(m, θ) ought to
be much smaller than the effort spent at training the original
model m. Our experimental work considers two kinds of
procedures.

a) Modification of the Input: v(x) = m(T(x, θ)). Clas-
sifiers are robust to light input modifications. For images,
the transformation T can be JPEG compression, posterizing,

blurring, etc. In the same spirit, randomized smoothing [18]
consists in adding noise to the input and aggregating the
predicted classes into one single output.

b) Modification of the Model: v(x) = T(m, θ)(x). The
transform T slightly changes the model weights by for instance
quantization, pruning, adversarial retraining or finetuning.
Some of these procedures require small retraining with few
resources so as not to lose too much accuracy.

In the sequel, the model in the black-box is denoted by b
and B is the set of all possibilities, defined as:

B := {v = V(m, θ) : m ∈ P, θ ∈ Θ, acc(v) > (1− η)acc(m)} ,
(2)

where P is a set of vanilla models and Θ a set of transforma-
tions (encompassing the identity v = m).

B. Alice: Disclosing the Remote Model

1) Goals: The task of Alice is to disclose which model
is in the black-box. This has two flavours: detection or
identification.

Detection (denoted by D) means that Alice performs a
hypothesis test. She first makes a hypothesis about the black-
box, then makes some queries, and finally decides whether the
hypothesis holds based on the outputs of the black-box. The
outcome of the detection is thus binary: Alice’s hypothesis is
deemed correct or not. This is the nominal use case in the
related works [1], [2], [3], [4], [5].

Identification (denoted by I) means that Alice has no prior
about the model in the black-box. She makes queries and
processes the outputs to finally make a guess. The outcome
is either the name of a model she knows, or the absence of a
decision if she has not enough evidence.

2) Knowledge about the Black-Box: The second crucial
point is her knowledge about the black-box. Alice can only
detect or identify a relation to a model she knows: it means
she has an implementation of this model, which she can freely
test. We denote the set of models known by Alice by A.

As by the very definition of a variant, Alice may know some
of them but not all of them. For instance, some procedures
V admit a real number as a parameter. Therefore, there is
virtually an infinite number of variants. This leads to the
convenient notion of a model family, we now introduce under
three flavours:
• F(m): This family is the set of all variants made from

the original vanilla model m:

F(m) := {v = V(m, θ) : θ ∈ Θ} . (3)

• F(m,Ψ): This family is the set of all variants made from
the original vanilla model m by a specific procedure:

F(m,Ψ) := {v = V(m, θ) : θ ∈ Ψ ⊂ Θ} , (4)

where Ψ denotes the subset of parameters related to this
specific procedure.

• F(m, {θ}): This family is a singleton composed of a
particular variant:

F(m, {θ}) := {v = V(m, θ)} . (5)
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With these definitions in mind, detection is based on the
hypothesis that the black-box belongs to a given family, while
Identification looks for the family the black-box belongs to.

3) Resources: A third element is the resources of Alice.
We already mention the set A containing some vanilla models
and few variants of theirs. She also has a collection of typical
inputs, i.e. a testing dataset. We suppose that these inputs
are statistically independent and distributed as the data in the
training set of the models. In the sequel, the collection of
inputs is denoted X = {x1, . . . , xN}.

In the end, be it for detection or identification, Alice selects
some elements of X for querying the black-box. We denote
this by an ordered list of indices: q1:` = (q1, . . . , q`) ∈ JNK`,
where JNK := {1, . . . , N}. This means that Alice first queries
xq1 , and then xq2 and so forth. The outputs of the black-box
are denoted as z1:` = (zq1 , . . . , zq`), with zqi = b(xqi).

C. The Classifier in the Black-Box

The black-box works as any classifier. We denote the set
of possible classes C. The output z = b(x) for input x is
the first k classes ordered by their predicted probabilities
(i.e. the top-k). It means that z is an ordered list in Ck:
z = (c1, . . . , ck). The set Zk of possible outcomes has a size
as big as (C)k := C(C−1) . . . (C−k+1). The black-box only
discloses the top-k classes (i.e. this work does not build on the
associated predicted probabilities). In the experimental work,
the size of C is C = 1, 000 (ImageNet) and k ∈ {1, 3, 5} which
is usual in several image classification APIs. We assume that
the considered models and variants have an accuracy which is
not perfect; the typical accuracy of ImageNet classic models
ranges from 70% to 85%.

D. Summary

This paper considers scenarios which are labeled as
(Task,F ,A, k) where Task ∈ {D, I} (Detection or Identifi-
cation), F is the kind of family that will be inferred by Alice,
A is the set of models known by Alice, and k indicates that
the output of the black-box is the top-k classes. There is a
clear cut between the following two cases:
• Walled garden: A = B. We impose that the black-box is

one of the networks known by Alice.
• Open world: A ( B. The black-box may not be a model

known by Alice. This is the case when Bob uses an
unknown variant, for instance.

This distinction drives the structure of the next sections
because our solutions are of different nature.

III. WALLED GARDEN
THE BLACK-BOX IS A KNOWN MODEL

Under the assumption that A = B, Alice achieves her
goal when she correctly guesses which family the black-box
belongs to. The alternative is to fail to gather enough evidence
to make a decision. For the sake of clarity, we explain our
procedure for a given family F ⊂ A, which can be one of the
three types of families presented in Sect. II-B2.

Alice has a set of models composed of some vanilla models
P = {m1, . . . ,mM} and some variants of theirs. Alice also
has the collection of benign inputs X = (x1, . . . , xN ). Offline,
she creates a database of |A|N outputs (m(xj))m∈A,j∈JNK.

Let D be a subset of A. We define by D(x) := {m(x) :
m ∈ D} the set of labels predicted by the models in D for
input x. With abuse of notations, D(xq1:`) is the set of the
concatenation of labels predicted by the models in D for the
entries (xq1 , . . . , xq`). Conversely, M(x, y,D) := {m : m ∈
D,m(x) = y} lists the models in D predicting y for input x.

A. Detection (D,F ,A = B, k)

Alice first makes a hypothesis about a family F , and her
goal is to discover whether the outcome is positive (b ∈ F)
or negative (b ∈ A\F). We assume that Alice is convinced
about her hypothesis and that she hopes for a positive. Our
procedure thus focuses on reducing the number of models in
A\F likely to be the black-box.

Alice uses a greedy algorithm which leverages the informa-
tion about the black-box retrieved from the previous queries.
According to the outputs of the black-box, several models
can be discarded. At step `, (A\F)(`) (resp. F (`)) denote the
subset of models in A\F (resp. F (`)) which agree with the
previous outputs. These are candidates in the sense that they
could be the black-box model.

(A\F)(`) :=
⋂̀
i=1

M(xqi , b(xqi),A\F). (6)

Initially, all the models are candidates: (A\F)(0) = A\F
and F (0) = F . At step ` + 1, the greedy algorithm sorts the
inputs that have not yet been queried according to a score.
This score s(`+1)(x) reflects how much the set of candidates
(A\F)(`) reduces if input x is submitted next. We propose
the expectation of the number of candidate models outside
the family after querying input x assuming that the black-box
is randomly picked in F (`). This average is weighted by the
number of models in F (`) predicting a particular label:

s(`+1)(x) =
∑

y∈F(`)(x)

∣∣∣M(x, y, (A\F)(`))
∣∣∣ |M(x, y,F (`))|

|F (`)|
(7)

Alice then submits one of the inputs with the lowest score:

q`+1 ∈ arg min
k
s(`+1)(xk). (8)

Our procedure stops after L iterations when meeting one of
the three stopping criteria:
• (A\F)(L) = ∅: The detection result is positive. No model

outside the family responds like the black-box. The black-
box is in the family since we assume it belongs to A.

• F (L) = ∅: The detection result is negative. The responses
of the black-box are different from the ones of the models
in the family F .

• mink s
(L+1)(xk) = |(A\F)(L)|: The detection failed. All

the remaining models in (A\F)(L) and in F (L) produce
the same prediction no matter which input is submitted.
It is therefore impossible to discern them.
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B. Identification (I,F ,A = B, k)

Identification means that Alice makes a partition of her set
of models in disjoint families: A = ∪nF

i=1Fi. Her goal is to
identify which family the black-box belongs to.

It is easy to base a verification procedure onto a detection
scheme assuming there is no failure. Alice arbitrarily orders
the families, and sequentially tests the hypotheses until she
finds a match. The expected number of queries is given by
(see the proof in App. C):

E(L) =
1

nF

nF∑
j=1

E
(
Lpos
j

)
+
nF − 1

2nF

nF∑
j=1

E
(
Lneg
j

)
(9)

where (E(Lpos
j ),E(Lneg

j )) are the expected number of queries
necessary for taking a positive or negative decision about the
detection of the hypothesis Fj .

We propose a better approach based on a greedy algorithm
similar to the detection one. Suppose that Alice has already
submitted ` queries to the black-box. By comparing the outputs
of the black-box and of the models she knows, she is able to
distinguish models which are not in the black-box from models
likely to be in the black-box. This list of remaining models
is denoted A(`). The goal of Alice is to reduce the set of
candidates to a single family Fi, not knowing in advance the
model Bob placed in the black-box:

∃i,Fi ⊂ A(`). (10)

In the beginning, all the models are possibly in the black-
box, i.e. A(0) = A. At step `+1, the greedy algorithm chooses
the best input to query next knowing A(`).

Alice may resort to the following heuristics. She supposes
that the black-box is randomly chosen uniformly in the set of
remaining models A(`). For any input x not queried yet, she
computes the expectation of the number of remaining families
if x were selected next, i.e. |{Fi : Fi ∩ A(`+1) 6= ∅}|. She
randomly chooses among the inputs minimizing this figure:

s(`+1)(x) =
∑

y∈A(`)(x)

(
nF∑
i=1

δ[M(x,y,F(`)
i ) 6=∅

]
)
|M(x, y,A(`))|
|A(`)|

,

where δ[E] is the indicator function of event E . The input to be
submitted is sampled among the ones with the lowest score:

q`+1 ∈ arg min
k
s(`+1)(xk). (11)

C. Experimental Work
1) Detection: A first experimental work measures the num-

ber of queries needed for detection with the three types of
family defined in Eq. (3), (4) and (5). It considers two cases:
Alice’s hypothesis is correct (positive case) or incorrect (neg-
ative case). The combinations are not analyzed exhaustively.
For example, in the negative case for a singleton family (i.e.
Alice is wrong to suspect that the black-box is F(m, {θ})),
there are |A|(|A|− 1) possible combinations, i.e. more than a
million. Instead, the experiment randomly picks 1,000 positive
and 1,000 negative among all these cases. Figure 2 shows
the results obtained. As a side-product, Table II gives the
percentage of inputs in X answering the detection problem
under the best case, i.e. when one unique query is sufficient.

a) Few Queries are Enough: When the detection suc-
ceeds (be it a positive or negative decision about the hypothe-
sis), at most three queries are needed, and in most cases, only
one is sufficient. This holds although the greedy algorithm is
known to be suboptimal. When the greedy algorithm needs
three inputs, another algorithm may only need two queries.
Yet, when the greedy algorithm needs two, no algorithm can do
better because the greedy would have found an unique input if
existing. Positive and negative conclusions are roughly drawn
within the same number of queries, although our algorithm is
designed to quickly prove positive detections.

b) Few Failures: The inability to detect the model in the
black-box as part of the family F happens when:

∃m ∈ F ,∃m′ ∈ A\F ,∀x ∈ X , m(x) = m′(x). (12)

The failures occur when the family corresponds to a set of
variations (4) or an exact model (5). It happens that the
algorithm cannot distinguish a few pairs of different variations
issued from the same vanilla model. This is the only possible
explanation: Otherwise, i.e. the indistinguishable models come
from two different vanilla networks, a failure would also occur
when detecting families spanned from a vanilla model (5), but
this is not reported in Fig. 2. In other words, Alice can always
guess that the black-box is a variation of a given vanilla model,
and rarely she cannot guess which variation it is exactly.

On the other hand, failures should also happen in the
negative case. None is reported in Fig. 2 because they are
statistically rare. For a given family F , suppose that the models
m and m′ in (12) are both unique. A failure happens in the
positive case if Bob puts model m in the black-box. This
happens with probability 1/|F|. A failure happens in the
negative case if Bob puts model m′ in the black-box. This
happens with probability 1/|A\F| < 1/|F|.

Experimentally, the number of queries to end up in a failure
is similar to the number of queries for getting a positive
outcome.

c) A Bigger Top-k is Better: When the output of the
black-box is rich, i.e. top-k classes with k > 1, one unique
input is sufficient. Moreover, Table II shows that there are
more of these unique inputs in X . In this case, Alice no longer
needs a large collection of benign inputs.

d) A Bigger Family is Harder to Detect: Families of
type (3) are bigger than families (4) which are bigger than the
singleton (5). Ignoring the failure case, Figure 2 and Table II
show that it is harder to detect a large family. It is more
frequent that some model members take different outputs in
large families. On the contrary, we observe that the variants
of the same model with the same variation but with different
parameters often share the same output.

2) Identification: The protocol is similar to the previous
one for detection. Figure 3 shows the results.

TABLE II: Percentage of inputs in X concluding detection
(D,F ,A = B, k) within a single query.

Family top-1 top-3 top-5
Vanilla F(m) (3) 0.28% 1.2% 12.5%

Variation F(m,Ψ) (4) 0.31% 4.8% 21.0%
Singleton F(m, {θ}) (5) 0.37% 8.3% 31.4%
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score (7) and when the black-box returns top-k classes with k = 1 (blue), k = 3 (red) or k = 5 (green). The dotted lines
represent the linear regressions (13). Family considered from left to right: F(m) (3), F(m,Ψ) (4), and F(m, {θ}) (5).

a) Identification vs. Detection: Comparing Fig. 2 and 3,
two times more queries are necessary for identifying a family
rather than detecting it. It is possible to identify a model
quickly with at most five benign queries which are a lot less
than the sequential procedure (9). Identification is a harder
task than detection to a small extent.

The biggest difference is under the top-1 scenario where
a unique query is rarely sufficient. The 35 vanilla models
considered here were trained on the same dataset. They have
good accuracy (> 70%). If many unique inputs to identify
existed, this would mean that for any of these inputs, the 35
models give 35 different top-1 predictions. Assuming that one
of these models makes a correct classification, the other 34
models are wrong. If a lot of these inputs existed, this would
imply models with low accuracy. In other words, these inputs
are necessarily rare, or even non-existing.

b) A Bigger Top-k is Better: In contrast to detection, the
gain of information provided by top-3 and top-5 is substantial.
When the top-5 is returned, 90% of the families are identified

within one query. The supervised training of the vanilla models
only focuses on the top-1 s.t. it agrees with the ground truth
class. For k > 1, the top-k is almost specific of the model.
This explains the big improvement from top-1 to top-k.

c) Number of Families: Figure 4 represents the evolution
of the average number of queries to identify one out of nF
families. The more families, the bigger the number of queries
on average. But this number also depends on the size of the
families and the top-k. We observe that the increase is roughly
linear (see dashed lines in Fig. 4). As a rule of thumb, we
observe that the expectation of the number of queries roughly
follows the empirical law:

E(L) ≈ 0.002× E(|F|)nF
k

+ β(k), (13)

where E(|F|) is the average number of elements in the
family. This is a major improvement w.r.t. (9). For instance,
for singleton family, E(|F|) = 1 and the rate equals 0.002
under top-1, whereas the rate in (9) cannot be lower than 0.5
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since we need at least one query to discard a hypothesis, i.e.
E(Lneg

j ) ≥ 1.

IV. OPEN WORLD:
THE BLACK-BOX IS AN UNKNOWN MODEL

This section assumes thatA ( B because B contains models
or variants of models unknown by Alice.

A. Modeling
1) Assumptions: Our working assumptions are the fol-

lowing: When queried by random inputs, a variant V(m, θ)
produces outputs statistically
• independent from the outputs of a different model m′.
• dependent from the outputs of the original model m.

We consider a particular procedure for generating a variant as
being like a transmission channel. The output Z of the variant
V(m, θ) is as if the output Y of the original model m were
transmitted to Alice through a noisy communication channel
parametrized by θ. Like in C.E. Shannon’s information theory
of communication, we model this channel by the conditioned
probabilities Wθ(z, y) = P(Z = z|Y = y),∀(z, y) ∈ Zk.

2) Surjection: One difficulty of this context is the big size
of the set Zk of outcomes under the top-k assumption: |Zk| =
(C)k. It is then difficult to establish reliable statistics about
the transition matrix Wθ which is as large as (C)k × (C)k.

When working with top-k outputs, Alice resorts to a sur-
jection Sk : Zk 7→ Sk with Sk := {0, 1, . . . , k}. This greatly
reduces the set of outcomes. We denote z̃ = Sk(z) and
ỹ = Sk(y). We choose a function Sk slightly more complex
than suggested by this simple notation. Indeed, for any input
x, we assume that Alice has a reference class c(x) ∈ C. It
is the ground truth class for annotated data. Otherwise, Alice
computes the top-1 output of all the models she knows, and
takes a majority vote to decide on c(x). For this piece of data,
a model gives m(x) = (c1, . . . , ck) and the surjection makes:

Sk(m(x)) =

{
j if ∃j : cj = c(x)

0 otherwise.
(14)

In words, Sk(m(x)) is the rank of the reference class in the
top-k output or 0 if the reference class is not returned. In
the end, Alice uses a transmission matrix (Wθ(z̃, ỹ)) which is
only (k + 1)× (k + 1).

B. Detection (D,F ,A ( B, k)

For the detection task, Alice first makes the following
hypothesis: The black-box is a variant of the vanilla model
m ∈ A. This variant may be the identity (b = m), or a variant
she knows, or a variant she does not know.

Contrary to the previous section, Alice randomly chooses
L inputs (X1, . . . , XL) ⊂ X to query the black-box and com-
pares the observations (Z̃1, . . . , Z̃L) to the outputs she knows
(Ỹ1, . . . , ỸL), with Z̃` := Sk(b(X`)), Ỹ` := Sk(m(X`)),∀` ∈
JLK. We use capital letters here to outline that these are random
variables since Alice randomly chooses the inputs.

There are two difficulties: i) to gauge the distance between
the outputs observed from the black-box and from model
m (see Sect. IV-B1) and ii) to randomly sample informative
inputs from the set X (see Sect. IV-B2).

1) Discriminative Distance: Alice tests two hypothesis:
• H1: The black-box is a variant of model m. There is a

dependence between Z̃ and Ỹ which is captured by the
statistical model of the variant:

P1(Z̃ = z̃, Ỹ = ỹ) := Wθ(z̃, ỹ)P(Ỹ = ỹ).

• H0: The black-box is not a variant of model m. There is
no statistical dependence and

P0(Z̃ = z̃, Ỹ = ỹ) := P(Z̃ = z̃)P(Ỹ = ỹ).

The well-celebrated Neyman-Pearson test is the optimal score
for deciding which hypothesis holds. For L independent ob-
servations, it writes as

s =

L∑
j=1

log
P1(Z̃ = z̃j , Ỹ = ỹj)

P0(Z̃ = z̃j , Ỹ = ỹj)
=

L∑
j=1

log
Wθ(z̃j , ỹj)

P(Z̃ = z̃j)
.

(15)
We introduce the empirical joint probability distribution de-
fined by

P̂Z̃,Ỹ (z̃, ỹ) := L−1|{j ∈ JLK : z̃j = z̃ and ỹj = ỹ}| (16)

in order to rewrite (15) as

s = L
∑

(z̃,ỹ)∈S2
k

P̂Z̃,Ỹ (z̃, ỹ) log
Wθ(z̃, ỹ)

P(Z̃ = z̃)
. (17)

This formalization is not tractable because Wθ is not known:
Alice does not know which variant θ is in the black-box,
and indeed it might be an unknown variant. Yet, (17) guides
us to a more practical score function, the empirical mutual
information:

Î(Z̃, Ỹ ) :=
∑

(z̃,ỹ)∈S2
k

P̂Z̃,Ỹ (z̃, ỹ) log
P̂Z̃,Ỹ (z̃, ỹ)

P̂Z̃(z̃)P̂Ỹ (ỹ)
, (18)

with the empirical marginal probabilities:

P̂Z̃(z̃) :=
∑
ỹ∈Sk

P̂Z̃,Ỹ (z̃, ỹ), P̂Ỹ (ỹ) :=
∑
z̃∈Sk

P̂Z̃,Ỹ (z̃, ỹ).

(19)
In words, the model of the distributions (P0,P1) is replaced
with empirical frequencies learned on the fly. Resorting to the
empirical mutual information to decode transmitted messages
in digital communication is known as Maximum Mutual
Information (MMI), recently proven universally optimal [19].

The empirical mutual information is a kind of similarity (the
bigger, the more Z̃ looks like Ỹ ). Its value lies in the interval
[0,min(Ĥ(Z̃), Ĥ(Ỹ ))] with the empirical entropy given by:

Ĥ(Z̃) := −
∑
z̃

PZ̃(z̃) logPZ̃(z̃). (20)

We prefer dealing with a normalized distance and we intro-
duce:

DL(b,m) := 1− Î(Z̃; Ỹ )

Ĥ(Ỹ , Z̃)
∈ [0, 1]. (21)

This defines the Rajski distance [20] between the models b
and m respectively producing Z̃ and Ỹ .

The distances between all the pairs of models is shown
in App. B in Fig. 9. The block diagonal shows that the
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distances between variants of the same vanilla models are
small. We clearly see the cluster of variants centered on each
vanilla model. Indeed, Figure 1 in the introduction is a t-SNE
representation extracted from such pairwise distances between
models in B.

For a given model m, let us consider two extreme scenarios:
• The model m is in the black-box so that z̃j = ỹj , ∀j ∈

JLK. Then PZ̃,Ỹ (z̃, ỹ) = 1 if z̃ = ỹ, and 0 otherwise,
producing DL(b,m) = 0.

• The black-box and model m yield independent outputs
so that PZ̃,Ỹ (z̃, ỹ) = PZ̃(z̃)PỸ (ỹ), then DL(b,m) = 1.

In the end, Alice deemed the hypothesis H1 as being true
when the distance is small enough: DL(b,m) < τ → H1 is
true. Alice makes two kinds of errors:
• False positive: DL(b,m) < τ whereas H1 is false.
• False negative: DL(b,m) ≥ τ whereas H1 is true.

Alice sets the threshold τ such that the probability of false
positive is lower than a required level α. The converse, i.e.
controlling the probability of false negative, is an illusion.
Appendix D shows for instance that there is no way to
theoretically upper bound the distance between a variant and
its original model, even if both of them share good accuracy.
Our working assumption is that this mutual information is
indeed large enough for a reliable hypothesis test and the
experimental work confirms this in Sect. IV-D.

2) Selection of Inputs: The empirical mutual information
is a consistent estimator of the mutual information which
depends on the channel transition matrix Wθ and the input
probability distribution PỸ . A result of the theory of communi-
cation is that for a given transmission channel, there is an input
probability which maximises the mutual information. This
is of utmost importance to design a communication system
achieving the channel capacity as defined by C.E. Shannon. In
our framework, this would make the distance between a model
and its variant closer to 0 likely avoiding a false negative.

However, this idea is not applicable to our scheme because
Alice may suspect a plurality of variants, each of them leading
to a different optimal input distribution. The black-box may
also contain an unknown variant excluding any optimization.

Yet, when Alice chooses random inputs, she has the feeling
that these inputs must not be too easy to be classified otherwise
any model outputs the same prediction. This is not discrimi-
native of a given model in the black-box and it may lead to
a false positive. On the other hand, these inputs must not be
too hard to be classified neither otherwise the prediction tends
to be random, destroying the correlation between a model and
its variant. This may lead to a false negative.

Our experimental work investigates several selection mech-
anisms of the inputs. All of them amount to randomly pick
inputs from a subset X ′ of X .
• All. There is indeed no selection and X ′ = X .
• 50/50. Alice’s hypothesis concerns a family of variants

derived from a vanilla model m. X ′ is composed of 50%
of inputs well classified by m (i.e. m(x) = c(x)), 50%
inputs for which m(x) 6= c(x).

• 30/70. The same definition but with 30% well classified
and 70% wrongly classified by m.

• Entropy. X ′ is composed of the inputs whose top-1
predictions are highly random. For a given input, Alice
computes the predictions from all the models in A and
measures the empirical entropy of these predicted labels.
She then sorts the inputs of X by their entropy, and X ′
contains the head of this ranking.

The second and third options are dedicated to the detection
task since they only need the vanilla model m at the root
of Alice’s hypothesis. The last selection mechanism demands
a long preprocessing step depending on how big the set of
models A is. It is dedicated to the identification task.

In the worst-case, a model consistently predicts the ground
truth at the same top-k position for all submitted images. This
situation results in PỸ (ỹ = k) = 1 leading to a null entropy
and an undefined distance DL. To mitigate this problem, Alice
adopts a strategy where she ensures that at least one correct
and one incorrect classification are selected for all models,
following the introduced selection process. It highlights the
limitation of our method for fingerprinting models achieving
perfect accuracy.

C. Identification (I,F ,A ( B, k)

The identification task is nothing more than an extension
of the detection. Instead of a binary hypothesis, Alice is now
facing a multiple hypotheses test with M + 1 choices:
• Hi: The black-box is a variant of vanilla model mi, with

1 ≤ i ≤M ,
• H0: The black-box is a variant of an unknown model.

The usual way is to compute distance DL(b,mi) per
vanilla model mi ∈ A, and to decide for model i? =
arg min1≤i≤M DL(b,mi), if DL(b,mi?) is lower than a
threshold, otherwise Alice chooses hypothesis H0. If a known
model is in the black-box, only three events may occur:
• Alice makes a correct identification,
• Alice can not make any decision. She deems H0 as true.
• Alice makes a wrong identification.

Again, by fine-tuning the threshold, Alice controls the proba-
bility of the last event. Note that the probability of success is
expected to be smaller than for the previous task. Identification
is more difficult since several hypotheses are competing.

1) Compound Model: Information theory helps Alice again
thanks to an analogy with the communication over a com-
pound channel. In this communication problem, a message mi

has been emitted and transmitted through a channel Wθ. The
receiver knows a compound channel, i.e. a set of channels
{θj}Vj=1 ⊂ Θ. It knows that the received signal has gone
through one of them, but it does not know which one. There
exists an optimal decoder for each channel in the set. The
receiver just does not know which one to use. A theoretically
grounded decoder is to decode the signal with each decoder
and to aggregate this decoding with a min operator [21].

The analogy is the following: the inputs go through all
the models {mi} known by Alice, and the outputs are like
messages. Bob has chosen one model, i.e. one of these
messages. Yet, Bob uses a variant which emits noisy outputs
observable to Alice. Now, suppose that Alice knows a set
of variants in a given family: {V(mi, θj)}j ⊂ F . She uses
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these variants for computing distances DL(b,V(mi, θj)) that
she aggregates into one distance w.r.t. the family:

DL(b,F) := min
j
DL(b,V(mi, θj)). (22)

Intuitively, the black-box might be a very degraded version of
a model which is indeed ‘closer’ to a milder variant than to
the original model mi.

D. Experimental Work

The previous experimental work in Sect. III-C considers
three kinds of family concerning the black-box as defined in
Sect. II-B2. When the family is a singleton, because F =
F(m, {θ}) or F = F(m,Ψ) and |Ψ| = 1, then the distance
between the black-box and this unique model is exactly zero.
This easy case is now excluded to focus on cases where Alice
does not know the variant in the black-box.

Contrary to Sect. III-C, Alice now resorts to statistical
tests. Any distance between models is a random value since
the queries are randomly selected. Our experimental protocol
makes 20 measurements of any considered distance thanks to
20 independent inputs samples.

1) Assumptions about the Statistical Model: Section IV-A1
makes two assumptions about the statistical dependence be-
tween the predictions of models in the same family F and
independence when coming from different families. Figure 5
experimentally verifies these working assumptions.

The distances between two models V(m, θ) and V(m′, θ′)
for two vanilla models m and m′ and any variants (θ, θ′) ∈
Θ×Θ are computed. This sums up to 583,740 combinations.
Figure 5 shows the histogram of these distance values over 20
bins in red. A high number L of queries makes the measured
distance more precise. The selection of the inputs has a major
impact. When sampled on X (first row), the distance rarely
values the maximum showing imperfect independance. This
phenomenon has been revealed in [22]. Yet, when sampled on
X ′ containing more inputs hardly correctly classified (second
row), the distances are closer to one. The models tend to be
independent when queried with a good selection of inputs.

Figure 5 also shows the histogram of distances between
models belonging to the same family spanned by a vanilla
model m, be it F(m,Ψ) (same type of variation) or F(m) (any
kind of variation). It is not possible to get a non-trivial upper
bound of the distance in this case (explained in App. D).We
empirically observe that two models from the same type of
variation are usually closer. It is therefore easier to detect or
identify families F(m,Ψ) than F(m).

2) Detection (D,F ,A ( B, k): The experiment considers
all combinations of hypothesis and model put in the black-box.
There are 35 vanilla models and 1046 variants. This makes

TABLE III: True Positive Rate for (D,F ,A ( B, 1) with L =
100 queries sampled in X ′ (See Sect. IV-B2). The delegate
model is the closest to m. False Positive Rate is set to 5%.

All 50/50 30/70 Entropy
F(m) 83.4± 1.4 92.6± 1.0 92.8± 0.8 94.7± 0.7

F(m,Ψ) 86.9± 0.9 95.3± 0.9 95.6± 0.8 97.2± 0.5

35 families of type F(m) with an average of 30 members
per family. This represents 1081 positive cases and 36,754
negative cases. There are 377 families of type F(m,Ψ) of
which 203 with a size bigger than 1. This makes 907 positive
cases and 218,536 negative cases. To assess the detection
performance, Alice leverages the negative cases to determine
the threshold τ as the empirical α-quantile of the False Positive
Rate (FPR) (see Sect. IV-B1).

a) Selection of Inputs: Table III shows the TPR obtained
when the black-box returns only top-1 decisions. As expected,
the performances for the families F(m,Ψ) are higher. The
selection Entropy is clearly the best option. Its drawback is
that it needs statistics about the predictions of many vanilla
models. As far as the detection task is concerned, the other
selections are to be preferred. They only require the predictions
of the suspected vanilla model. In the sequel, the selection
30/70 is used for further experiments on the detection task.

b) The Delegate Model: Alice measures a single distance
in between the black-box and a delegate model of the hy-
pothesis’ family F . Which member of the family is the best
delegate? Three choices are proposed based on the distance
to the vanilla model spanning the family: Close, Median, and
Far. For instance, the Close option means that the delegate is
the closest member in the family to the vanilla model:

md = arg min
m′∈F

DL(m,m′). (23)

In the case where F = F(m), the closest member is m. It is
not the case when F = F(m,Ψ), because the vanilla model
m is not in this family. Recall that the intersection between
two families has to be the empty set, otherwise Alice could
not distinguish them.

Table IV evaluates the three options. Only the 180 families
with more than 3 members are considered here. For smaller
families, the three options would give the same delegate.

The delegate greatly influences the results. The best choice
is to select the delegate as lying at the ‘center’ of the family. It
means the Close option for the family F(m), which is indeed
the vanilla model m, or the Median option for family F(m,Ψ).

c) Top-k Observations: The detection is evaluated for
top-k outputs in Fig. 6. The best results are surprisingly
obtained for k = 1 in Tab. V for a few queries. As the number
of queries increases, the performance of k = 3 surpasses it and
all top-k values converge to the same score after 500 queries.
Our explanation is the following. The bigger k the richer the
model. Yet, the empirical mutual information is calculated
from (k + 1)2 estimated probabilities. For a given number of
queries, the fewer estimations the more accurate they are. The
top-1 is faster to estimate and reach good results quickly. Once

TABLE IV: True Positive Rate for (D,F ,A ( B, k) and
different delegates with L = 100 queries in 30/70, FPR = 5%.

Delegate Close Median Far

F(m)
top-1 92.8± 0.8 91.3± 1.1 31.6± 2.8
top-3 94.2± 0.9 93.5± 0.2 36.8± 4.9
top-5 93.2± 0.7 92.9± 0.8 35.4± 3.5

F(m,Ψ)
top-1 95.6± 0.8 96.3± 0.7 82.2± 1.2
top-3 96.3± 0.6 97.7± 0.37 86.1± 1.3
top-5 96.0± 0.6 97.6± 0.4 85.7± 0.9
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Fig. 5: Histogram of the distance DL(m1,m2) when (m1,m2) ∈ F2(m) (orange), (m1,m2) ∈ F2(m,Ψ) (green), or m1 and
m2 are variants of different vanilla models (red). Inputs randomly sampled in X (top) or in X ′ -Entropy Sect. IV-B2- (bottom).
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Fig. 6: True Positive Rate for (D,F ,A ( B, k) function of
the number of queries randomly selected in 30/70, FPR = 5%,
best delegate options for F(m) (dash) and F(m,Ψ) (plain).

the number of queries is enough, the top-3 takes the lead. They
quickly get very good results close to 100%, simultaneously
as top-5.

To summarize, the TPR reaches 95% for 150 queries under
top-1, 110 under top-3, and 140 for top-5.

3) Identification (I,F ,A ( B, k): All conclusions obtained
in the previous section are kept. Alice now has for delegate the
vanilla model m for F(m) and the Median model for F(m,Ψ).
Images are sampled with Entropy as defined in Sect. IV-B2.

TABLE V: True Positive Rate for (D,F ,A ( B, k) with
random queries selected with 30/70, FPR = 5%.

Number of queries L = 20 L = 50 L = 100 L = 500

F(m)
top-1 79.7 86.9 92.8 99.4
top-3 77.3 88.0 94.2 99.3
top-5 76.8 87.3 93.2 99.3

F(m,Ψ)
top-1 83.1 91.5 96.3 99.7
top-3 84.3 94.1 97.7 99.7
top-5 83.6 94.0 97.6 99.6

a) Experimental Protocol: We divide the identification
task into three steps, each of them being prone to errors.

In the first step, Alice decides whether to abstain or proceed
with identification. In the negative case where b ∈ F(m′) but
m′ /∈ A, the correct answer is to abstain and to consider the
null hypothesis H0. If b belongs to F(m) and m ∈ A, the
correct answer is to move to the next step of identification.
We set the probability of error in the negative cases to 5%
by controlling the threshold τ . Alice abstains if all distances
are above the threshold. For this purpose, A consists of 30
models, while the remaining 5 models are used to generate
the negative cases. Alice computes the distances between b
and the 30 vanilla models in A. This process is repeated 20
times, with a random selection of 5 excluded models from P .

Once Alice decides that the black box is identifiable, the
second step is to disclose the family F(mi). She decides for
the hypothesis Hi minimizing the distance. When multiple
models achieve this minimum distance, Alice is unable to
make a decision and chooses to abstain. This conservative
choice is more likely to occur when few images are submitted.

Finally, Alice identifies the variation, knowing she has made
a correct identification of the global family F(mi). In this case,
Alice has to identify the correct variation among 6 families
{F(m,Ψj)}j=1:6: randomized smoothing, pruning (filter, all,
last), JPEG, posterize (See App. A).Alice thus computes 6
distances based on their delegates and identifies the family
i? = arg minj DL(b,F(m,Ψj)). No thresholding is needed
here. For each family, 20 variants with random parameters
and complying with (1) are created. This leads to 700 new
models tested in the black-box, different from the 1,081
models considered so far.

b) Identifying F(m): Alice almost surely identifies the
family F(m) of the black-box as shown in Fig. 7 and Tab. VI.
She reaches her maximum success rate at around 300 queries.
After 200 queries, no incorrect identification is made but 10%
of abstention remains. This is due to the thresholding which
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Fig. 7: Probability distribution for (I,F(m),A ( B, 1) vs.
number L of queries. Threshold set to have a maximum 5%
errors in negative cases.
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Fig. 8: Correct Identification Rate for F(m,Ψ) as a function
of the number of queries. One (plain) or two (dashed) delegates
per family.

prevents Alice from misclassification in the negative case. If
no thresholding is done, the success rate reaches 94.7% within
100 queries and 99.1% at 500.

The number of queries is higher than for detection. For
equivalent performance, 4 times more queries are necessary for
identification than for detection. Nevertheless, identification
proceeded by sequential detection would take on average 3.000
queries (24 times more w.r.t. detection) as foreseen by (9).

c) Identifying F(m,Ψ): With a single delegate, Table VI
and Figure 8 show a rather difficult identification. Variants
far from the vanilla model are correctly identified. The main
difficulty comes from the variations that slightly modify the
model. These variants are close to m, which is the center of
the cluster F(m) (see Fig. 1), therefore it is hard to distinguish
them. The compound (22) with the median and the close
delegates yields a boost if L is large enough.

d) Top-k Observations: The best results are obtained for
k = 1 in Tab. VI on every task, like for detection. For the
family F(m), the information gained by top-k needs too many
queries to catch up with the top-1. For family F(m,Ψ), the
difference is smaller. Indeed, top-k with k ≤ 3 gives slightly
better results from ≈ 1, 000 queries and above.

V. STATE-OF-THE-ART BENCHMARK

A. Previous Works

Since the work of IP-Guard [2], all the fingerprinting
papers leverage adversarial examples. They start with a small
collection of benign inputs (except [23] starting from random
noise images) and apply a white-box attack like CW [24].
It forges adversarial examples that lie close to the decision
boundaries, which are the signatures of a model.

Two trends are connected to two applications. The first
one deals with the integrity of the model. In this scenario,
Alice makes sure that Bob placed her model in the black-box
without any alteration. The goal is to sense a fragile fingerprint
such that any modification of the vanilla model is detectable
because it changes the fingerprint. In that light, methods in [8],
[25] create sensitive examples which are triggered only by
modifications of the vanilla model.

The second application is robust fingerprint as considered
so far in this paper. The followers of IP-Guard [2] forge
adversarial examples which are more robust in the sense that
they remain adversarial for any variation of the model while
being more specific to the vanilla model. Paper [3] proposes to
use the universal adversarial perturbations of the vanilla model.
Paper [26] introduces the concept of conferrable examples, i.e.
adversarial examples which only transfer to the variations of
the targeted model. AFA [5] activates dropout as a cheap surro-
gate of variants when forging adversarial examples. TAFA [4]
extends this idea to other machine learning primitives.

Our take in this article is that using benign images is suffi-
cient, and we addressed the fingerprinting problem without the
need to rely on adversarial examples or any other technique to
alter images to get them nearby the boundaries. Indeed, craft-
ing adversarial examples is rather simple but forging them with
extra specificities (fragile or robust to variation) is complex. It
happens that all above-mentioned papers consider small input
dimensions like MNIST or CIFAR (32 × 32 pixel images);
none of them use ImageNet (224× 224) except IP-Guard [2].
Also, no paper considers that the inputs can be reformed by a
defense (in order to remove an adversarial perturbation before
being classified) or detected as adversarial [27].

B. Fragile Fingerprinting

The application considered in [8] imagines that Alice wants
to detect whether the black-box is exactly m and not a variant.
This corresponds to our scenario (D,F(m, {θ}),A = B, 1)
where θ is the identity variation, and A = F(m).

TABLE VI: Correct Identification Rate for (I,F ,A ( B, k)
with random queries selected with Entropy.

Number of queries L = 50 L = 100 L = 500

F(m)
delegate = {close}

top-1 67.1 80.0 98.6
top-3 49.1 57.8 85.3
top-5 48.4 55.7 80.4

F(m,Ψ)
delegate = {median}

top-1 65.8 68.3 74.1
top-3 58.2 64.5 71.4
top-5 52.7 57.2 69.2

F(m,Ψ)
delegate = {close, median}

top-1 73.1 77.2 83.6
top-3 61.8 70.0 80.2
top-5 60.4 66.3 78.5
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TABLE VII: False Positive Rate for the (D,F = {m},A = B, 1) task.

Fingerprinting scheme Finetuning Histogram Randomized Prune Posterize Half JPEG
All Last Smoothing All Last Filter Precision

Sensitive Ex. [8] L = 20
ε = 8/255 18.1 20.3 0 35.7 15.4 31.5 57.4 77.0 100 100
ε = 16/255 21.4 1.8 0 31.0 10.0 21.4 48.5 63.4 97.1 97.1

FBI with L = 2 0 0 0 0 0 16.9 0 0 0 0

TABLE VIII: True Positive Rate for (D,F(m),A ( B, 1),
FPR set to 5%.

Fingerprinting Parameter Number of queries
scheme L = 100 L = 200

IP-Guard [2] BP [28] & 50 iter. 66.9 72.7

FBI
Random 83.4 95.0

30/70 92.8 97.8
Entropy 94.7 98.0

We create L = 20 sensitive examples per model with 200
iterations and two distortion budgets (ε = 8/255 and 16/255)
using the code3 released by [8]. It happens that its performance
on ImageNet (reported in Tab. VII) is lower than the one
reported in [8] on small input size datasets (like CIFAR).
Especially, this scheme can not distinguish the vanilla model
and its variants ‘JPEG’ or ‘Half precision’ even with a number
of queries (L = 20) bigger than the one recommended (L = 8)
in [8]. Our scheme needs no more than two queries and
perfectly accurate, except when pruning the last layer for five
out of thirty-five models.

C. Robust Fingerprinting

This application is related to our scenario (D,F(m),A (
B, k). IP-Guard [2] is the only work showing to be tractable
and effective on large input size like in ImageNet. It leverages
several white-box attacks to create adversarial examples. The
best results demonstrated in the paper are with the attack
CW [24]. We instead use BP [28] because it exhibits similar
performances while being much faster (only 50 iterations). The
BP implementation is from GitHub4.

Table VIII compares the performances under 100 and 200
queries and top-1 observations. Any selection of the inputs
beats IP-Guard [2] . Detailed results are reported in Table IX.
Some variations are easier to detect (‘precison’, ‘pruning’)
and the two methods are on par. On the contrary, randomized
smoothing which is a popular variation yet never considered
in the literature, is more difficult. IP-Guard [2] is based on
crafting adversarial examples close to the decision boundaries
which are greatly crumpled by randomized smoothing. Not
relying on adversarial examples seems to be a clear advantage
in this case. Our method offers more stability in the results:
No variation pulls the TPR below 85%.

VI. RELATED WORK

Having reviewed the previous works dedicated to the fin-
gerprinting task in the section above, we here review another
closely related domain: the watermarking of models.

3Sensitive Examples’ GitHub: https://github.com/zechenghe/Sensitive
Sample Fingerprinting

4Boundary Projection’s GitHub: https://github.com/hanwei0912/
walking-on-the-edge-fast-low-distortion-adversarial-examples

Watermarking is the active counterpart of fingerprinting:
Instead of relying on specifics of a fixed model to devise its
unique fingerprint, watermarking modifies the model for which
ownership must be proven. While watermarking is a common
practice for decades in the field of image processing [30],
it has just recently been incepted into the machine learning
domain. Uchida et al. [31] first proposed to watermark a deep
neural network by embedding it into the weights and biases
of the model. Quickly after this initial proposal, works instead
focused on a black-box model, where the presence of a water-
mark can be assessed by Alice from remote interaction with
the suspected deep neural network, just like for fingerprinting.
In [32], authors insert information by altering the decision
boundaries through finetuning. In [33], authors also retrain the
model to obtain the wrong labels for a so-called trigger set of
inputs, that constitutes the watermark. Please refer to [34] for
a complete overview of the domain.

Some papers claim that robust fingerprinting could replace
watermarking with the clear advantage that no modification
of the model is needed [5]. We strongly disagree. No finger-
printing scheme, including ours, brings any formal guarantee
on what is in the black-box. It is indeed the primary goal of
watermarking to guarantee a certain level of trust.

VII. CONCLUSION

The problem of accurate and efficient fingerprinting of
valuable models is salient. This paper demonstrates that such
a demand can be fulfilled by solely using benign inputs, in
not only the classic detection task, but also in the novel
identification task we have introduced. This has the important
implication that we no longer need models in white-box access
to compute their fingerprints.

We provide the following takeaways.
i) In the walled garden setup of Sect. III, less than ten inputs
are needed but these are sequentially and carefully selected
among a large collection depending on the previous outputs
of the black-box. In other words, the key is the interaction
between the greedy algorithm and the black-box. Observing
top-1, top-3 or top-5 makes a difference. It is easier to spot
inputs that single out a model with richer outputs.

ii) In the open-world setup of Sect. IV, hundreds of inputs
are necessary but the scheme is not iterative and selection is
less crucial. Surprisingly, observing richer outputs does not
yield any gain in this setup.

iii) The identification task is merely more complex than
detection. Our identification schemes are much more efficient
than the naive sequential search.

iv) Bob’s best defenses in our experimental protocol are
randomized smoothing for robust fingerprinting and pruning
the last layer for fragile fingerprinting. It means that the former

https://github.com/zechenghe/Sensitive_Sample_Fingerprinting
https://github.com/zechenghe/Sensitive_Sample_Fingerprinting
https://github.com/hanwei0912/walking-on-the-edge-fast-low-distortion-adversarial-examples
https://github.com/hanwei0912/walking-on-the-edge-fast-low-distortion-adversarial-examples
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TABLE IX: True Positive Rate per variation under (D,F(m),A ( B, 1). False Positive Rate set to 5% and L = 100 queries.

Method Parameter Finetuning Half Histogram JPEG Posterize Prune Randomized
All Last Precision All Filter Last Smoothing

IP-Guard [2] BP [29] 0.5 92.3 100 27.3 100 9.2 72.7 89.2 100 26.150 iterations

FBI
Random 85.6 91.5 100 64.2 100 88.3 65.0 87.8 87.3 60.0

30/70 94.5 97.3 100 89.4 100 95.9 87.4 97.3 97.9 78.1
Entropy 94.5 97.3 100 92.0 100 98.5 91.9 99.5 98.9 85.5

reduces the statistical dependence of the outputs, while the
latter hardly perturbs the outputs given by the vanilla model.

One limitation of our work is that it cannot handle classifiers
whose accuracy is almost perfect. This would happen for too
easy classification setups where the value of models is lower,
and fingerprinting is less critical. We nevertheless expect future
models and applications to continue to be complex tasks,
where reaching high accuracy levels will remain a struggle
for both the academia and industry.
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APPENDIX A
DESCRIPTION OF THE SET OF MODELS

The core of the set A contains 35 ‘off-the-shelves’ vanilla
models which were trained with supervision for the task
ImageNet over one million annotated 224×224 pixel images.
These models come from the Timm [38] and Torchvision [39]
libraries. Among them, some are very close. For instance, there
are 6 versions of EfficientNet-b0. These models share the same
architecture but they result from different training session. Yet,
they are considered as different models and this proves the
efficiency of our method.

To forge a variant, we have selected 8 transformations.
These are simple procedures easily applicable by Bob. They
move the decision boundary of the model with a limited
drop in accuracy. As such, all of them have already proven
themselves as a defense against adversarial examples [36].
• Identity: The variant is an exact copy of the model.
• Model Precision: Deep neural networks usually encode

weights and biases on 32 bits floating point precision. The
Torch class attribute half is used to reduce the precision
to 16 bits.

• JPEG Compression: Before being classified, the input
image goes through a JPEG compression. This has been
proposed as a defense: JPEG coarsely quantizes the high
frequencies while adversarial perturbations are essentially
composed of high frequencies. JPEG compression and
decompression act as a reformer [35], [42], [41]. No
training is needed because models are robust to JPEG
compression. The quality factor ranges from 30 to 90 in
step of 10.

• Histogram Equalizer: This increases the contrast in
an image and it has been proposed as a defense
against adversarial perturbation in [36], [37]. We use
the function transforms.functional.equalize
from Torchvision.

• Color Depth Reduction: Another defense is to reduce
the depth of color channels to less than 8 bits [40], here
from 3 and 7 bits. The image is posterized with the func-
tion transforms.functional.posterize from
Torchvision.

• Randomized Smoothing: Randomized smoothing pro-
vides robustness guarantees [18], [44], [45] and is also
efficient against black-box attacks [43]. We take the
Github implementation5 of [18]. The number of samples
is set to 100 as recommended in the previous works. The
standard deviations σ selected are: 0.01, 0.02, 0.04, 0.06,
0.08, 0.1.

• Finetuning: Finetuning updates the weights of the model
during a new training. We consider finetuning all the
layers or only the last one. Finetuning runs over 50 epochs
with SGD optimizer.

• Pruning: Pruning compresses the model by removing the
less important weights. It is applied with the function
nn.utils.prune.l1_unstructured from Torch
package. It removes the weights with the lowest `1
norm. Pruning can be applied on all the layers or just

5Randomized Smoothing GitHub: https://github.com/locuslab/smoothing

Fig. 9: Distances between pairs of models.

some particular ones. Filter pruning [46] cuts the less
important output channels of the convolutional layers.
We consider three options with the following fraction of
weights removed:

– Pruning All layers: 1%, 2%, 3%, 4%
– Filter Pruning: 10%, 20%, 30%,
– Pruning the Last layer: 70%, 80%, 90%, 95%

This makes a total of 33 procedures, most of them being
easily and quickly applicable to any vanilla model. Few of
them imply a light retraining which is done with a subset
of 50,000 images of the ImageNet validation set. We end
up with 1189 variants. The accuracy of each of them is
measured on the remaining part of the ImageNet validation
set. If the drop of accuracy is bigger than 15% compared to
the original model, then the variant is discarded. Our final
collection contains 1081 models and variants.

Alice has a collection of 20.000 images randomly taken
from the ImageNet test set. These images are not annotated
with a ground truth. These were not used for training the
models or retraining the variants.

APPENDIX B
DISTANCE BETWEEN MODELS

The distances between all the pairs of models is shown in
Fig. 9. The block diagonal shows that the distances between
variants of the same vanilla models are small. This distance
matrix is the input of the t-SNE algorithm which creates the 2D
representation of Fig. 1. We clearly see the cluster of variants
centered on each vanilla model.

APPENDIX C
PROOF OF EQUATION (10)

Suppose that Bob selects b ∈ Fj . Alice makes a random
permutation σ of the nF families and sequentially tests them.
Then, she spends Lneg

i queries to discover that the black-box
does not belong to Fi, for any i s.t. σ(i) < σ(j) (i.e. the
families ranked by the permutation before Fj) and Lpos

j queries
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to discover that the black-box is a member of Fj . Over all the
random permutations, there is statistically one chance out of
two that Fi is ranked before Fj . On expectation, this makes
the following number of queries:
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. (24)

We now suppose that Bob select a family uniformly at
random, to obtain the following average:

E(L) =
1

nF

nF∑
j=1

E
(
Lpos
j

)
+
nF − 1

2nF

nF∑
j=1

E
(
Lneg
j

)
. (25)

APPENDIX D
LOWER BOUND OF THE DISTANCE DL

This section provides an example of the computation of the
distance between the outputs of model m and the black-box
b. It considers that these classifiers yield only top-1 outputs.
We assume that the surjection S1 is defined in (14) w.r.t. the
ground truth: z̃ = 1 when the black-box predict the ground
truth. The joint probability distribution is denoted by:

P(Z̃, Ỹ ) Ỹ = 0 Ỹ = 1

Z̃ = 0 a b

Z̃ = 1 c 1− a− b− c
We suppose that the accuracies of both models are known,

acc(m) = A and acc(b) = B, so that:

acc(m) = P(Ỹ = 1) = 1− a− c = A, (26)
acc(b) = P(Z̃ = 1) = 1− a− b = B. (27)

These equations are constraints reducing the problem with
three unknown parameters (a, b, c) to a single one: From a,
we can easily deduce (b, c) from the above equations. Since
these joint probabilities are between 0 and 1, this implies that

max(0, 1− (A+B)) ≤ a ≤ min(1−A, 1−B). (28)
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Fig. 11: Comparison of the theoretical lower bound and
the measured distance between models m1 and m2, when
A = acc(m1) = 0.45 and (m1,m2) ∈ F2(m) (orange),
(m1,m2) ∈ F2(m,Ψ) (green), or m1 and m2 are variants
of different vanilla models (red).

The mutual information between Z̃ and Ỹ is given by
I(Z̃; Ỹ ) = H(Z̃) + H(Ỹ ) − H(Z̃, Ỹ ), so that the distance
can be written as

DL(b,m) = 2− h(A) + h(B)

H(Z̃, Ỹ )
(29)

= 2− h(A) + h(B)∑
(z̃,ỹ)∈{0,1}2 f(P(Z̃ = z̃, Ỹ = ỹ)

(30)

where f(x) := −x log2 x and h(p) := f(x) + f(1 − x)
is the binary entropy in bits for p ∈ [0, 1]. Thanks to the
constraints (26) and (27), the distance is a function of a whose
derivative cancels at only one value giving DL(b,m) = 1
achieved when Z̃ and Ỹ are independent, i.e.

a = (1−A)(1−B), b = A(1−B), c = (1−A)B, d = AB.

This is thus a global maximum and the minimum of DL(b,m)
lies on the boundary of the range of a. Suppose that A ≥ B
and A+B > 1, then

H(Z̃; Ỹ ) ≥ f(1−A)

+ min (f(B) + f(A−B), f(1−B) + f(A+B − 1))
(31)

which is converted into a lower bound of the distance
DL(b,m)

2− h(A) + h(B)

f(1−A) + min(f(B) + f(A−B), f(1−B) + f(A+B − 1))
.

This function is illustrated in Fig. 11 where we see that
DL(b,m) may cancel only when A = B or A = 1 − B.
Figure 11 compares this lower bound with the actual measure-
ments for A = 0.45. It shows that most attacks considered are
far from being the worst case. We also plot the performance
of the following attack: Bob modifies the decision of model
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m with a probability ε ∈ [0, 1/2], which makes the following
distribution:

P(Z̃, Ỹ ) Ỹ = 0 Ỹ = 1

Z̃ = 0 (1−A)(1− ε) Aε

Z̃ = 1 (1−A)ε 1(1− ε)
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TABLE X: List of the 35 vanilla models and their variants. all means that all values listed in App. A comply with (1).

Nb of Finetuning Half Histogram JPEG Posterize Prune Randomized
variants All Last Precision All Filter Last Smoothing

CoaTLiteSmall 29 X X X X all all 0.01 all 0.7, 0.8, 0.9 all
ConV iTsmall 28 X X X all all 0.01 all 0.7, 0.8, 0.9 all
DLA102 30 X X X all 4, 5, 6, 7 all all all 0.01, 0.02, 0.04, 0.06, 0.08
DLA60 32 X X X all all all all all all
DLA68b 32 X X X X all all 0.01, 0.02, 0.03 all all all
DPN92 33 X X X X all all all all all all

(Torch) EfficientNetb0 28 X X X X all all 0.01, 0.02 0.1, 0.2 0.7, 0.8, 0.9 0.01, 0.02, 0.04, 0.06, 0.08
(TF) EfficientNetb0 25 X X X X all all 0.01 0.1, 0.2 0.7, 0.8 0.01, 0.02, 0.04

(TF) EfficientNetb0,AP 28 X X X X all all 0.01, 0.02 0.1, 0.2 0.7, 0.8 all
(TF) EfficientNetb0,NS 28 X X X X all all 0.01, 0.02 0.1, 0.2 0.7, 0.8, 0.9 0.01, 0.02, 0.04, 0.06, 0.08
(TF) EfficientNetV 2b0 30 X X X X all all 0.01, 0.02, 0.03 all 0.7, 0.8, 0.9 0.01, 0.02, 0.04, 0.06, 0.08

HRNetw30 31 X X X all all all all all 0.01, 0.02, 0.04, 0.06, 0.08
LeV iT128s 28 X X X all all 0.01 0.1, 0.2 all all
LeV iT256 30 X X X X all all 0.01, 0.02 all all all
LeV iT384 32 X X X X all all 0.01, 0.02, 0.03 all all all

(Torch) ResNet50 28 X X X all 4, 5, 6, 7 all all 0.7, 0.8, 0.9 0.01, 0.02, 0.04, 0.06
ResNet50madry 30 X X X all all all all 0.7, 0.8, 0.9 0.01, 0.02, 0.04, 0.06, 0.08

MixNetl 29 X X X X all 4, 5, 6, 7 0.01, 0.02, 0.03 all 0.7, 0.8, 0.9 0.01, 0.02, 0.04, 0.06, 0.08
MixNets 25 X X X all 4, 5, 6, 7 0.01, 0.02 0.1, 0.2 0.7, 0.8, 0.9 0.01, 0.02, 0.04, 0.06
MixNetxl 32 X X X X all all all all 0.7, 0.8, 0.9 all

MobileNetV 2120d 27 X X X X all all 0.01, 0.02, 0.03 0.1, 0.2 0.7, 0.8 0.01, 0.02, 0.04, 0.06
MobileNetV 2140 25 X X X X all all 0.01, 0.02 0.1 0.7, 0.8 0.01, 0.02, 0.04, 0.06
MobileNetV 3rw 25 X X X all 4, 5, 6, 7 0.01, 0.02, 0.03 0.1, 0.2 0.7, 0.8 0.01, 0.02, 0.04, 0.06
PiTs,distilled 33 X X X X all all all all all all
RegNetX32 31 X X X all all all all 0.7, 0.8, 0.9 all
ResNet50 32 X X X X all all 0.01, 0.02, 0.03 all all all
BiTR50×1 32 X X X X all all 0.01, 0.02, 0.03 all all all
ReXNet130 30 X X X X all all 0.01, 0.02, 0.03 0.1, 0.2 0.7, 0.8, 0.9 all
ReXNet150 31 X X X X all all 0.01, 0.02, 0.03 0.1, 0.2 all all
ReXNet200 31 X X X X all all 0.01, 0.02, 0.03 0.1, 0.2 all all
SwinT 28 X X X X all all all 0.7, 0.8, 0.9 all

ResNeXt101,32x4d 33 X X X X all all all all all all
ResNeXt50,32x4d 33 X X X X all all all all all all

Twins− PCPV Tbase 28 X X X X all all all 0.7, 0.8, 0.9 all
V iTbase,patch=16 29 X X X X all all 0.01, 0.02 all 0.7, 0.8 all
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