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Abstract

A high penetration of electric vehicles (EVs) will deeply impact the management of electric power

systems. The risk of not providing adapted EV pricing signals can lead to inefficient investments in grid

infrastructure. To avoid costly grid reinforcements and to ensure proper guidance for EV charging, a

solution allowing customers to access EV-only rates without installing a separate meter, which we refer to

as submetering, is an attractive option for EV owners and grid operators. We develop a game-theoretical

model expressed and treated as a mathematical program with equilibrium constraints (MPEC) to capture

the interaction between a national regulatory authority (NRA) designing these tariffs and heterogeneous

agents. This framework represents a stylized regulatory setup applicable to several European countries.

First, we analyse the conditions in which EV-only tariffs can be applied for domestic charging by comparing

different energy profiles. Second, we study the impact of EV charging on different tariff structures to identify

the most efficient way of recovering network costs. We found that the adoption of submetering under a pure

volumetric tariff can bring yearly gains varying from $64 to $125 to consumers with EV. Finally, we derive

policy implications from the results.

Highlights:

• We build a game-theoretical framework to assess the cost-efficiency of EV-only tariff adoption.

• Agents able to invest in distributed energy resources (DERs) with EVs have higher total savings with

classic time-of-use rates.

• Capacity charges may increase fairness issues among heterogeneous users.

• Consumers adopting EV-only rates with submetering perceive yearly gains varying from $64 and $125.

Keywords: Electric vehicle, stationary battery, Photovoltaic energy, Tariff design, Mathematical program

with equilibrium constraint
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Abbreviations

AMI : advanced metering infrastructure / BESS: battery energy storage system / DER: distributed

energy resources / EV: electric vehicle / EVSE: electric vehicles supply equipment / ICE: internal combus-

tion engine / MILP: mixed integer linear programming / MPEC: mathematical problems with equilibrium

constraints / NRA: national regulatory authority / PV: photovoltaics / SOC: state of charge / TOU: time-

of-use.

1. Introduction

The shift towards a low-carbon economy requires a great reduction in CO2 emissions coming from the

transport sector and which account for 24% of direct emissions (IEA, 2020). To reduce CO2, electric vehicles

(EVs) are required to substitute Internal Combustion Engine (ICE) vehicles to achieve the decarbonization

goals established during international environmental summits. Between 150 and 230 million vehicles are

expected to be on the world’s roads by 2030, potentially causing future issues for power systems. EV

charging should not drastically increase consumption in already existing peak periods neither create new

ones which may exceed grid maximum capacity. This study aims to consider those types of challenges that

grid management might face as a result of the high penetration of EVs (Salah et al., 2014). To avoid costly

grid reinforcements and the risk of load curtailment due to EV charging, indirect price control via adapted

economic signals is a solution adopted by many utilities (Knezović et al., 2017). These economic signals,

given to EV users via a network tariff and energy price profiles, can have different structures. According

to these structures, users who seek to minimise their electricity bills are led to a different final utilisation

pattern. Most household electricity meters do not separate the rates used for household electricity needs

and for charging privately owned EVs. This is known as the “wholehouse” rate. Today, users have the

option to access a domestic time-of-use (TOU) rate applied exclusively to EV charging. This tariff is called

the EV-only rate. Users of this measurement method can reduce charging costs and enhance the flexibility

offered by EVs via adapted price signals.

Several pilots have been conducted in the U.S. (California, Minnesota, Texas) to test the technical

feasibility and customer acceptance of these rates (Smart Electric Power Alliance, 2019). Californian electric

investor-owned utilities (IOUs) already offer these types of rates in their portfolio for dwellings. For instance,

Pacific Gas & Electricity (PG&E) and San Diego Gas & Electric (SD&E) allow residential customers to be

billed at a tiered rate for home appliances, while for EV charging, a specific time-of-use plan is adopted

(PGE, 2021, SDGE, 2021). However, as installing a second meter would be necessary for this billing method

to work, EV-only rates have not been widely adopted due to the high associated cost of extra equipment.

The need for separate wiring and metering renders such market segmentation expensive and cumbersome

(Borenstein et al., 2021). One alternative to avoid upfront second meter costs or fees for residential customers
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is submetering. Under this option, the metering infrastructure inside the electric vehicle supply equipment

(EVSE) can be used to measure the electricity coming from the grid specifically used for EV charging.

Technological progress in smart meters, communication networks and data management will allow the

submetering configuration to be adopted by many utilities for billing purposes. For example, in the US, an

official decision on submetering by the regulator in California was expected in 2021 after the conclusion of

submetering pilots (CPUC, 2021). However, the decision was not taken in 2021 and the subject remained

open until 2022. On August 2022, California Public Utility Commission (CPUC) approved a decision

regarding submetering protocol and EVSE communication protocols (CPUC, 2022). This pioneering decision

requires Californian utilities to implement the submetering protocol, enabling customers to benefit from

cheaper EV charging and to participate in demand response programs.

Advanced metering infrastructure (AMI) for electricity is being rolled out in different places in the E.U.

and U.S. For instance, as of July 2018, all but two member states in the E.U. had conducted at least one

cost-benefit analysis of a large-scale rollout of smart meters to at least 80% of final customers for electricity

by 2020. However, only a few of these member states reached the target, while the majority postponed the

achievement of this milestone to 2030 (European Commission, 2020). In the U.S., by the end of 2020, 75%

of U.S. households already had an AMI installation in their homes (Cooper et al., 2021). To the best of our

knowledge, no study has assessed the effects of adopting, simultaneously, two different rates (one for EV

and one for the remaining loads) in the same household on users and network tariff design. We investigate

this configuration supposing that the submetering scheme has a dedicated protocol allowing communication

between the owner’s EVSE and the utility for billing purposes.

When EV numbers reach a certain threshold in the future, the charging demand will surely have a sig-

nificant impact on grid’s load curve (Ma et al., 2022). The risk of not providing adapted EV pricing signals

can lead to inefficient investments in grid infrastructure. Submetering can play an important role as a polit-

ically viable and low transaction costs solution to ensure proper guidance for EV charging. Our integrated

approach considering diverse energy profiles and the impact on tariff design allows a fair investigation of

the cost-effectiveness of solutions. We find that a total gain between $64 and $125 per year is achievable

depending on the state of the grid and level of DER penetration. Users willing to adopt this solution, when

possible, can collect the spread between flat and time-of-use profiles, which is not offset by network tariff

increases in the case of volumetric tariffs.

The structure of the paper is as follows. First, an overview of the problem is given to explain the

motivation for the research. In Section 2, a literature review is conducted, and the research gaps are

identified. In Section 3, the model is presented. The data used are then presented in Section 4 along with

the setup proposed. In Section 5, the results are presented showing energy profile assessments and network

tariff impacts. In Section 6, we discuss the results and derive policy implications. The last section concludes.
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2. Literature Review

In this section, we analyse two main strands of literature. The first concerns the interaction between

EVs, DERs and tariff design, which has received much attention recently. This is mainly due to the great

penetration of distributed energy resources in the grid, which may change the way utilities charge their

customers. The second looks at EV demand-side flexibility assessments that analyse how smart charging

and Vehicle-to-Grid (V2G) can simultaneously bring remuneration via energy services and support the grid.

This work locates itself at the intersection between these two strands by tackling dedicated EV tariffs which

can defer network investment by adopting smart charging.

A vast body of literature investigates the impacts of different electricity rates, including energy prices and

network tariffs, on specific end-users possessing DERs. The impacts on their decisions are assessed either

with exogenously defined tariffs (Ansarin et al., 2020, Backe et al., 2020, Freitas Gomes et al., 2021) or using

equilibrium models in which grid tariffs are determined endogenously as a result of a bi-level modelling

approach (Hoarau and Perez., 2019, Schittekatte and Meeus, 2020, Askeland et al., 2021). In all these cases,

only one tariff structure is analysed at a time for users with only one metering scheme. Hoarau and Perez.

(2019) analyse the interaction between tariff design and DERs with EVs to measure the most cost-efficient

and fair configuration for heterogeneous agents. According to the findings of these authors, the more a tariff

structure gives incentives for DERs, the less beneficial it is for EVs. Using a similar framework, Askeland

et al. (2021) highlight that an EV agent can spread EV charging evenly throughout the day to minimise the

agents’ individual peak load regardless of the overall load situation. This can be problematic if prospective

costs drive grid costs since the coincident peak can go up and be followed by a tariff increase. These costs

depend mainly on the maximum cumulative coincident load of all customers and an incremental network

cost parameter. They serve as a proxy for the network costs yet to be made. If prospective costs are

recovered via cost-reflective tariffs, it can benefit both prosumers who can invest in DERs and consumers

who are not able to, according to Schittekatte and Meeus (2020).

A subset of this literature specifically investigates tariffs and best practices for EV charging (King and

Datta, 2018, Hildermeier et al., 2019, Kufeoglu et al., 2019). Hildermeier et al. (2019) argue that customer

education is key, in particular to attract new user groups who are not already convinced of the specific

advantages of managed EV charging. For EV-only tariffs, this effort would probably duplicate since more

information regarding bill savings optimisation and metering infrastructure would be needed. However, if

adequate information about tariffs and behaviour is provided, users usually choose more complex tariffs

(Mayol and Staropoli, 2021). Along the same line, Kufeoglu et al. (2019) support the idea that energy

utilities must offer consumers more options for time-of-use tariffs, not only to allow for greater demand-side

management but, also, to encourage uptake of V2H technology. Finally, King and Datta (2018) point out

that submetering is indeed a far less expensive option than installing a separate meter for the EV. Moreover,
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they explain that standards are already available to ensure appropriate billing using the submeter approach.

Its accuracy can be set at the same level as already existing standards for electricity meters.

The second strand of literature studying EV demand-side flexibility raises attention to the challenges

and opportunities expected during EV uptake. Knezović et al. (2017) provide a roadmap with key recom-

mendations for supporting active EV involvement in grids to provide flexibility services such as investment

deferral, load and voltage services. One barrier they highlight is a lack of standardised smart-meter func-

tionalities and interoperability among all participants. Along the same line, Salah et al. (2014) argue that

price incentives can help exploit available load flexibility embedded in EV charging, while if ill-designed,

they can lead to a significant increase in peak loads in times of low prices. In our framework, network

investment deferral supported by EV flexibility in a context of renewable energy as explored by Hemmati

and Mehrjerdi (2020) can contribute to an accessible cost-reflective tariff. This flexibility can be enhanced

if V2G is enabled. Thompson and Perez (2020) listed a large number of services that EVs are ready to pro-

vide if bidirectional chargers are available. For instance, V2G revenue streams can include usual renewable

energy support (Kempton and Tomić, 2005), reliable frequency regulation (Lauinger, 2022) and electricity

bill management (Dixon et al., 2022).

We contribute to the literature by analyzing the adoption of submetering in a DER uptake context. This

inclusion allows to address literature gaps in several strands of literature. First, while the literature studying

the impacts of electricity rates on EV charging and DERs investment consider the household under the same

rate, our study goes further. Two different rates, one for the house loads and another for EVs, are included

in the electricity bill optimization problem. This configuration unlocks new ways to optimize energy and

network costs. Then, we show that this type of adoption can be considered as a form of customer response

which is not addressed in the vast body of EV demand-side flexibility literature. The mixed adoption of

submetering and smart charging is evaluated as a unique flexible resource for EVs. Submetering for electric

vehicle charging has not been receiving much attention other than some EV pilot projects in the US and

the recent CPUC’s decision which allows submetering in California. The focus has been mostly to use

submetering measurements in demand-side response energy-saving problems for smart appliances such as

dishwashes, washing machines and hot water buffers (Vanthournout et al., 2015, Yin et al., 2016, Jae Yong

and Yim, 2021). We provide complementary information to the Californian pilot by also considering the

network tariff impact of a larger scale adoption using submetering solution. Finally, we contribute to the

V2G literature by including, for the first time, this technology in a context of submetering.

3. Method

In this section the game-theoretic model is presented to capture the interaction between a national

regulatory authority (NRA) and dwellings. First, we present the model overview. The model consists of two
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levels, the lower level represents the dwellings and the upper level stands for the regulatory authority, both

casted as an optimization problem and modelled as a mathematical program with equilibrium constraint.

Then, the equations of the optimisation problems for both levels are described in detail.

3.1. Model overview

This section describes the model used to pursue the main goals of this research. We develop a bi-level

game-theoretical optimisation model to capture the interaction between a national regulatory authority

(NRA) and dwellings. This jurisdiction framework is closer to the European system in which the regula-

tory authorities are national and responsible for negotiating network tariffs with grid operators. The upper

level represents the NRA responsible for setting network tariffs to maximise social welfare subject to grid

cost-recovery, total DER investment costs and the cost of final electricity use in dwellings 1. In the lower

level, dwellings seek to minimise their electricity costs according to the final tariff structure applied. Deci-

sions made by dwellings include ones on new investments in DER and optimal scheduling of electric vehicle

charging, which in turn depends on the tariff applied. While decisions made by the NRA involve setting the

proper tariff structure which depends on the actions of the dwellings. Therefore, there is a clear interdepen-

dence between lower-level charging, investment decisions and tariff design. This interdependence requires an

equilibrium solution to be found, which can only be properly captured with a bi-level optimisation approach

as previously described. At first, we only deal with the lower level to find the most suitable energy profile

for each agent owning an EV. In this case, the lower level is formulated as mixed integer linear programming

(MILP) taking network tariffs as exogenous variables. Then, to assess the impact on network tariffs, a

bi-level model is created and treated as a mathematical program with equilibrium constraints (MPEC) in

which the equilibrium game-theoretic solution for both the NRA and dwellings will be the one in which no

unilateral deviation in their decisions is profitable, defined as a Nash equilibrium. The complete solution

framework is summarised in Fig. 1. The full model formulation and the techniques used to transform and

solve the MPEC are detailed step by step in Appendix Appendix A.

3.2. Upper-level model formulation: the regulator

3.2.1. Regulator objective function

The main objective of the regulator is to decide on the network tariff to maximise social welfare while

ensuring cost-recovery considering individual optimisation problems of agents. In this context, social welfare

maximisation can be assumed to be equivalent to cost minimisation for all interacting agents since, in

addition to network costs, investment and energy costs for dwellings are also included in the regulator’s

1Each jurisdiction has its specific method to allocate network costs and guidelines principles. The tariff that maximizes
social welfare is good proxy for cost efficiency, but not necessarily fairness and stability. Moreover, the weight and existence of
the fixed, capacity, and volumetric terms may also diverge in some jurisdictions.
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Figure 1: Methodological framework.

minimisation problem. Consequently, Eq. (1), which represents the NRA cost function, accounts for the

sum of DER investments costs (CostDER), energy charges (CostP ) and network charges (CostN ) for agents:

minCostNRA = CostDER + CostP + CostN (1)

The first term in the regulator’s objective function is investment decisions by dwellings. It is represented

by Eq. (2), in which a customer c, from a set of customers C, seeks to optimally decide to install certain

solar PV (icPV
c ) and battery (icSc ) capacities if it is profitable to do so, with annualized investment costs

IPV and IS for solar PV and the battery, respectively. This is formulated as:

CostDER =
∑

c ∈ C

(
ISc ∗ icSc + IPV

c ∗ icPV
c

)
(2)

The total net energy costs to satisfy electricity demand for all agents is calculated in Eq. (3). We

assume one retailer supplying all the customers. However, more than one energy profile can be considered

according to the rate chosen. For instance, charging vehicles with an EV-only tariff will require a time-of-use

profile whereas for the house electricity consumption, a flat tariff profile can be considered. Energy charges

account for the total energy imports (impPc,h) minus total exports back to the grid (expPc,h) at a certain

price for buying (PBEP
c,h) and another for selling (PSEP

c,h) energy. If the buying and selling prices are the

same, the rate is said to be symmetric in terms of energy. Finally, the parameter W stands for the scaling

factor to provide costs on a temporal basis. To calculate the yearly operational costs, W is calculated as

Total number of hours per year
n = 182.5, in which n = 48 for the time horizon considered of the set H of 48 hours
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(H = {1, 2, 3, · · · , n}). The net energy costs are then described as:

CostP =
∑

c ∈ C

∑
h ∈ H

Wh ∗
(
impPc,h ∗ PBEP

c,h − expPc,h ∗ PSEP
c,h

)
(3)

The last term in the objective function accounts for the network costs, calculated according to Eq. (4).

The cost of operating and reinforcing the distribution grid is borne by the distribution system operator

(DSO), which is assumed to recover its costs via a regulated grid tariff. We assume two types of costs: (i)

sunk costs and (ii) prospective costs. The sunk costs are those incurred in the past to build and reinforce

the grid to meet future demand. Prospective costs are variable and depend on the maximum cumulative

load of all customers. The variable agc is the additional grid capacity needed to ensure proper functioning

with an annualised incremental cost IDSO. This can be formulated as in the following equation:

CostN = SunkCosts + IDSO ∗ agc (4)

3.2.2. Grid capacity constraints

The grid capacity needed to ensure power delivery to customers depends on their hourly imports and

exports. Because different customers can import and export energy at the same time, the aggregated net

electricity flow is the variable needed to decide the size of additional grid investments. This flow is calculated

as the absolute value of aggregate trading by all customers as shown in Eq. (5).

eGh =

∣∣∣∣∣ ∑
c ∈ C

(impPc,h − expPc,h)

∣∣∣∣∣ , ∀h ∈ H (5)

Then the total grid capacity, defined as the sum of the existing grid capacity (egc) and additional grid

capacity (agc), should always be greater than or equal to the net hourly exchange of all the customers’

demands, as formulated in Eq. (6)2:

egc+ agc ⩾ eGh , ∀h ∈ H (6)

3.2.3. DSO cost-recovery constraint

An important constraint on the upper level is the recovery of grid costs by the DSO via the network

tariff. In our framework, the regulator is fully in charge of setting the tariff and we assume that all costs can

be recovered via a three-part tariff formulation including volumetric (vnt), capacity (cnt), and fixed (fnt)

elements, as in Eq. (7). The three terms, respectively, depend on each agent’s net energy (€/kWh), each

2A robust operational margin to ensure grid adequacy and reliability is implicitly present in the existing grid infrastructure.
For the additional investments, all the advancement in smart-meters roll-out, demand response programs and DERs, the
network capacity can be optimized, by managing the existing margin, without any major risk of surpassing the maximum
capacity.
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consumer’s maximum peak over the 48 hours (€/kW) and the number of customers n (€/customer). Net-

metering options are also considered by parameter (NM), which can assume different values according to

the tariff structure. For example, a user can be charged for the net amount of energy consumed (NM = 1),

only for imports (NM = 0), or for both imports and exports back to the grid (NM = 1). This formulation

allows the regulator to adopt the tariff which results in the highest social welfare while considering customer

reactions. The full cost-recovery constraint is described as:

CostN =
∑

c ∈ C

∑
h ∈ H

W ∗
(
impPc,h −NM ∗ expPc,h

)
∗ vnt +

∑
c ∈ C

pc ∗ cnt + n ∗ fnt (7)

3.3. Lower-level problem formulation: the agents

3.3.1. Agents’ objective function

The objective function of the agents in the lower level is to minimise their total costs subject to the tariff

applied by the regulator. It is formulated in Eq. (8) as the sum of investment costs in DER (CostDER
c ),

energy charges (CostPc ) and network charges (CostNc ). The term CostDER
c is only present for prosumers, as

they can invest in solar-PV panels and batteries to reduce their peak demand and general energy consumption

from the grid.

Min Costc = CostDER
c + CostPc + CostNc (8)

The following Eqs. (9) to (11) detail each term in the lower-level objective function. First, DER

investment costs are the sum of annualised solar-PV and battery investments made by customers in the set

of customers that can invest in DER (CDER) as in Eq. (9). The energy charges for each customer are related

to the type of energy rate that they have adopted from among the retailer’s offer, as indicated in Eq. (10).

Then, the network charges calculated in Eq. (11) are the charges paid by each customer for grid utilisation.

A combination of individual tariff setups to be used: pure volumetric, non-coincidental peak pricing and

fixed charges3. If we consider a dedicated measurement of power and energy for EVs, it will create another

connection point which can be physical, using an extra meter, or virtual, via submetering. This is crucial

for network tariff design purposes since EVs can then be considered as additional agents separate from the

dwelling, even though the dwelling will still bear the costs of charging or collect the revenue from discharging

into the grid.

3Coincident peak pricing setup could also be assessed within this framework. The only change would be to replace pc which
is the non-coincident peak of an agent by pc,hCoin where hCoin is the coincident hour assumed.
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CostDER
c = ISc ∗ icSc + IPV

c ∗ icPV
c ,∀c ∈ CDER (9)

CostPc =
∑

h ∈ H

W ∗
(
impPc,h ∗ PBEP

c,h − expPc,h ∗ PSEP
c,h

)
,∀c ∈ C (10)

CostNc =
∑

h ∈ H

W ∗
(
impPc,h −NM ∗ expPc,h

)
∗ vnt + pc ∗ cnt + fnt,∀c ∈ C (11)

3.3.2. Agents’ peak power constraint

The amount of capacity charges paid by each user depends on their peak power consumption over a

period. As the installed grid capacity must ensure that both bidirectional power flows can be managed,

the peak power can occur while customers are importing or exporting energy, as is described in Eq. (12)

with the respective dual variable (µG
c,h). Since only one term on the left-hand side of the inequality can be

non-zero in each time step, we can measure their maximum imported or exported power to calculate the

amount of capacity-based charges that should be paid. This is described as:

impPc,h + expPc,h ⩽ pc ,∀c ∈ C, h ∈ H :
(
µG
c,h

)
(12)

The agents represented by the lower-level optimisation problem are subject to several constraints which

are described in Eqs. (13) to (30) and their respective dual variables. These equations describe the in-

vestment options available for DERs and their interaction with dwelling load and electric vehicles and are

detailed in the following section.

3.3.3. Electric vehicle capacity constraints

The main purpose of EVs is to satisfy the mobility needs of their owners. However, when idle they can be

considered as batteries able to inject energy back into the grid while maintaining a certain amount of energy

for driving. Eq. (13) describes how the state of charge (SOC) of the EV battery (sEV
c,h ) depends on its state

in the previous time step ( sEV
c,h−1), the charging decision (d∆EV+

c,h ), the discharging decision (d∆EV−
c,h ) and

consumption while driving (D∆EV−
c,h )4. Losses in the storage system are represented by the converter loss

parameter (LEV ) and the battery self-discharge parameter (Rc)
5. Initial conditions are needed to account

for overnight charging and the initial state of charge. In order to enable this, the last time step is linked

to the first one, as in Eq. (14), which assumes that the initial and final states of the battery should be

4This formulation can potentially lead to discharging and charging episodes happening in the same time step. The solutions
are verified ex-post to ensure that realistic behaviour happens for all agents over the entire time horizon.

5Assuming losses and self-discharge as linear functions are simplifications. An example of these functions is described in
detail by Kanstad et al. (2019) for converter losses and Redondo-Iglesias et al. (2018) for self-discharge. This simplification was
chosen to avoid complexifying the model since adding non-convexities and additional non-linearities would create significant
challenges for solving the equilibrium model and may, otherwise, limit the insights that can be gained from the ability to solve
the model even under these simplifications.
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equivalent. Finally, the initial state of charge is determined by parameter SOCEV
0 in Eq. (15) below:

sEV
c,h = SEV

c,h−1 ∗
(
1−REV

c

)
+ d∆EV+

c,h ∗
(
1− LEV

)
−d∆EV−

c,h ∗
(
1 + LEV

)
−D∆EV−

c,h ,∀c ∈ C, h ∈ H \{1} :
(
λEV 1
c,h

)
(13)

sEV
c,1 = SEV

c,H ∗
(
1−REV

c

)
+ d∆EV+

c,1 ∗
(
1− LEV

)
−d∆EV−

c,1 ∗
(
1 + LEV

)
−D∆EV−

c,1 ,∀c ∈ C :
(
λEV 1
c,1

)
(14)

sEV
c,H = SOCEV

0 , ∀c, h :
(
λEV 2
c

)
(15)

Eqs. (16) to (19) describe the operational limits of the EV battery. First, Eqs. (16) and (17) ensure

that the state of charge of the battery remains within a certain range to avoid extra battery degradation.

By limiting the state of charge, we implicitly remove the need to include degradation costs directly in the

objective function. Regarding power levels, parameters (PEV ch
c,h ) in Eq. (18) for charging and (PEV dis

c,h )

in Eq. (19) for discharging are responsible for limiting power transfers, depending on the type of electric

vehicle charging equipment (EVSE) adopted6. These constraints are described as:

sEV
c,h ⩽ E

EV

c,h , ∀c ∈ C, h ∈ H :
(
µEV 2
c,h

)
(16)

sEV
c,h ⩾ EEV

c,h , ∀c ∈ C, h ∈ H :
(
µEV 3
c,h

)
(17)

d∆EV+
c,h ⩽ PEV ch

c,h , ∀c ∈ C, h ∈ H :
(
µEV 4
c,h

)
(18)

d∆EV−
c,h ⩽ PEV dis

c,h , ∀c ∈ C, h ∈ H :
(
µEV 5
c,h

)
(19)

3.3.4. Battery storage investment constraints

A stationary battery allows the user to temporarily shift load and store the surplus electricity generated

by solar PV. Analogous to the EV charging and discharging equations, Eq. (20) describes how the state

of charge of the battery (sc,h) depends on its state in the previous time step (sc,h1), the charging decision

(d∆+
c,h ) and the discharging decision (d∆−

c,h ). To ensure the coupling between the first and the last timestamp

of the state of charge, Eq. (21) is included. In this case, we let the optimisation define the initial state of

charge of the battery since it will depend on the total size of the battery installed, which is also a decision

variable.

6Battery chemistry and internal wiring could limit the power transfer from the EVSE to the battery itself in some cases.
However, for low amounts of kWs exchanged, the battery composition is not expected to be a constraint.
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sc,h = sc,h−1 ∗ (1−Rc) + d∆+
c,h ∗

(
1− LS

)
− d∆−

c,h ∗
(
1 + LS

)
, ∀c ∈ C, h ∈ H \ {1} :

(
λS1
c,h

)
(20)

sc,1 = sc,H ∗ (1−Rc) + d∆+
1 ∗

(
1− LS

)
− d∆−

1 ∗
(
1 + LS

)
, ∀c ∈ C :

(
λS1
c,1

)
(21)

The capacity installed is decided in the model, if it is profitable for each agent, by choosing variable

bounded by a maximum capacity limit (Us
c ), as in Eq. (22). For certain agents who do not have the

possibility of installing any battery capacity, the maximum value can be set at zero.

icsc ⩽ US
c ,∀c ∈ C :

(
µS1
c

)
(22)

As in the EV case, Eqs. (23) to (26) describe the operational limits for the stationary battery. The

parameters (S%max) and (S%min) are the percentages of maximum and minimum charge levels allowed

respectively. Regarding power levels, the charging factor (P ch
c ) in Eq. (25) and discharging factor (P dis

c )

in Eq. (26) represent the maximum limits of power transfer according to the storage system specifications,

described as follows:

sc,h ⩽ icsc ∗ S%max, ∀c ∈ C, h ∈ H :
(
µS2
c,h

)
(23)

sc,h ⩾ S%min ∗ icsc, ∀c ∈ C, h ∈ H :
(
µS3
c,h

)
(24)

d∆+
c,h ⩽ icsc ∗ P ch

c , ∀c ∈ C, h ∈ H :
(
µS4
c,h

)
(25)

d∆−
c,h ⩽ icsc ∗ P dis

c , ∀c ∈ C, h ∈ H :
(
µS5
c,h

)
(26)

3.3.5. Solar-PV investment constraints

The solar-PV capacity installed is also endogenously decided in the model. If it is profitable for an

agent to invest in a certain PV capacity, the variable icPV
c represent this value, which is bounded by a

maximum capacity limit (UPV
c ) as in Eq. (27). For certain agents incapable of installing any solar PV, the

maximum value can be set at zero. The amount of energy produced will depend on the solar availability

in kW/kWp (GPV
c,h ) and users do not have the option of curtailing, meaning that they have to export the

surplus electricity generated in any given time period.

icPV
c ⩽ UPV

c ∀c ∈ C :
(
µPV 1
c,h

)
(27)
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3.3.6. Energy balance equation

The energy balance equality couples all the investment and operational decisions with the load demand

profile of each customer (Dc,h), as in Eq. (28). The terms impLc,h and expLc,h allow the interaction between

an EV which is metered separately and the household load to be modelled. By treating the EV as a separate

agent, it can buy electricity at an EV-only rate and if needed transfer power to the house, which is subject

to a different rate. In this manner, Eq. (29) ensures the supply-demand balance: all the imports are equal

to the exports. Similarly, households that may invest in DERs will have their own interaction with their

electric vehicles. Now, dwellings can invest in DERs and arbitrage energy between the two different retail

tariffs, for example by charging the EV with a battery at a flat rate. It is also possible to charge the EV

using local solar energy instead of relying on buying electricity from the grid, significantly increasing the

complexity of the interactions. To restrain the relation between EVs and prosumer-type households, another

equilibrium equation (Eq. (30)) is added. The auxiliary parameter αc, in Eq. (28), limits non-submetered

agents from interacting with their dwellings at EV-only rates by setting it to zero. An analogy can be made

with local market modelling. In our case, an EV and a specific type of household form a local market in

which they can only interact with others via the main grid. These interactions are described in Eqs. (28)

to (30):

Dc,h + d∆EV+
c,h − d∆EV−

c,h + d∆+
c,h − d∆−

c,h − icPV
c ∗GPV

c,h = impPc,h − expPc,h+

αc ∗
(
impLc,h − expLc,h

)
, ∀c ∈ C, h ∈ H :

(
λEB
c,h

)
(28)

∑
c ∈ CEV

(
impLc,h − expLc,h

)
= 0 ,∀h ∈ H :

(
λLEV

h

)
(29)

∑
c ∈ CEV/DER

(
impLc,h − expLc,h

)
= 0 ,∀h ∈ H :

(
λ
LEV/DER

h

)
(30)

Additional constraints can be added to enforce the interaction between EVs and the houses to which

they are connected, as in Eqs. (31) and (32). These equations limit the amount of energy that a vehicle can

import from the house according to the existing energy resources (battery and PV). Reciprocally, the house

can only import energy from the vehicle if it is ready to discharge at any time. The model allows V2H to be

avoided by forcing the constraint of equation Eq. (32) to zero while allowing V2G via the energy balance

equation (28).

impLEV,h ⩽ d∆−
c,h + icPV

c ∗GPV
c,h , ∀c ∈ (CEV ∪ CEV/DER) , ∀h ∈ H :

(
µimpL
c,h

)
(31)
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impLc,h ⩽ d∆EV−
EV,h , ∀c ∈ CEV ,∀c ∈ (CEV ∪ CEV/DER) , ∀h ∈ H :

(
µimpL2
c,h

)
(32)

4. Case study: setup and input data

In this section, the setup and input data for a case study using the bi-level model are described. First,

the general setup of the numerical example will be explained as a starting point. Then, the data regarding

agents such as load profiles, solar insolation and energy tariff profiles are presented alongside the data on

EVs and DERs. Finally, a baseline electricity bill is described followed by the assumptions of grid cost

structure in our framework.

4.1. Setup

In the case study, two behaviours are considered regarding the options agents have to invest in DER like

solar PV and stationary batteries: prosumer and consumer behaviour. Moreover, when EVs are considered,

a combination resulting in four different types of agents is observed: prosumer with EV, consumer, prosumer

and consumer with EV7. Given that smart charging, V2G and submetering are considered, the number of

possible scenarios could rapidly increase. To limit the number of agents and scenarios, V2G is only adopted

by prosumers with EVs. To overlook the adoption of V2G for consumers with EVs is a simplification

since this technology only needs a vehicle, but not necessarily DERs to work. However, we assume that

submetering can be considered as a consumer response to optimize the electricity bill without any extra cost.

As this solution does not involves possible extra battery cycle degradation or an investment in a new EVSE,

the financial attractiveness could make consumers choose submetering adoption instead of V2G. Also, to the

best of our knowledge, no pilot studies analyzed included a V2G setup at the same time with submetering.

The participants of the Californian pilot project that were open to participate in grid services included only

demand response (Nexant, 2019). Moreover, literature has shown that there is a strong positive synergy

between electric vehicles with V2G and DERs (Eid et al., 2016, Karfopoulos and Hatziargyriou, 2016), which

may incentivize agents that can invest in DERs, to invest in bidirectional chargers.

Smart charging is essential to limit the risk of surpassing the maximum capacity of the grid during the

peak. Therefore, it is considered a common practice among all EV owners. The representation of the agents

depends on which type of EV rate they are charged at and if they are able to make DER investments. Fig.

(2) shows the target setup in line with the submetering adoption observed in the Californian pilot:

7In this configuration a 50% share of prosumers is analysed. Although this seems a high share at today’s global level, in
a mid-term perspective the number of prosumer agents is expected to increase. Increasing environmental awareness and DER
technology cost reductions contribute to boosting the number of consumers becoming prosumers.
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Figure 2: Topology configuration of all agents.

Submetering would be adopted for those who can obtain higher gains according to the first MILP model

results8. Nevertheless, the topology configuration of agents complexifies when moving towards prosumers

with submetered EVs9. In this case, one rate is specifically applied for EV charging using the existing EVSE

meter and another for the remaining loads, including DERs. It is possible, in theory, to arbitrage energy

within the same household, collecting the spread between the rates on condition that investments in DERs

or V2G are made. The assessment using the MILP model considers different energy profiles, topologies, and

DER costs, so EV owners could choose the options that reduce their total cost.

The first analysis will consider only different energy profiles (flat or time-of-use) while the network

charges are fixed according to the baseline electricity bill. This baseline scenario will be used as a reference

for all the other counterfactual scenarios with respect to energy and network cost variation. The grid costs

expected to be recovered via tariffs depend on the state of the grid. In other words, if all the investments

have already been made the costs are considered to be sunk, or if there are still investments to be made, they

are considered to be prospective. Once the model is calibrated with input data, the MPEC formulation will

allow evaluation of the variation in grid charges for agents according to how the regulator sets the tariffs.

4.2. Load and solar profiles

The 48-hour load profiles adopted correspond to the inelastic hourly demand by prosumers who have

the capacity and the means to invest in DERs and by consumers who are not able to. A total annual

electricity consumption of 10,000 kWh is adopted for prosumers and a value of 5,500 kWh is chosen for

8With reference to the share of EVs, 50% of agents are considered EV owners. This proportion is relative to the total vehicle
stock present if the remaining agents are considered to have ICE vehicles. The same factors influencing the shift to prosumer
behaviour will have an important impact on electric mobility uptake. Moreover, current policy support for zero-emission light-
duty vehicles and ICE car bans in more than 20 countries by 2030-2035 will also contribute to a high penetration of EVs in
the vehicle market (IEA, 2021).

9The main blocking point is to ascertain whether the energy consumption registered on the PEV submeter is sourced from
the solar PV, the battery storage or the distribution grid without extra meters.
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consumers10. These values are close to be representative of average European dwelling consumption, for

example in Sweden or in France (Odysséé Mure, 2019) 11. Peak demand values for a typical household tend

to occur in the early evening with a second smaller peak in the morning. Here, they differ for the two types

of agents, a peak of 4.8 kW for prosumers and 3.2 kW for consumers, which leads to a coincidental peak of

8 kW without any EV or DER investment 12.

Regarding the solar profile, a 48-hour profile with two different insolation peaks is used. The first

one with higher insolation represents a typical sunny day in which there is direct sunlight without any

external interference in all periods. The second represents a cloudy or rainy day when the solar irradiation

is deeply reduced, leading to less solar PV electricity production. A day with a smaller peak of insolation

is synchronised with the days presenting higher peaks of electricity consumption. Both the load and solar

profiles are illustrated in Fig. (3).

Figure 3: Load and solar profiles.

4.3. EV and DER data

Electric vehicle charging constitutes a large share of the residential electricity bill, especially for owners

with important mobility needs. According to a pilot conducted in the United Kingdom exploring user

behaviour related to home charging, 3,500 kWh corresponds to the average yearly consumption of vehicles

with batteries greater than 35 kWh (Western Power Distribution, 2019). This amount is equivalent to the

average electricity consumption of a dwelling in the U.K. An EVSE allowing a maximum input power of 7

10Assuming that household demands remain inflexible is a limitation of our study. Within our framework, submetering tariff
adoption are considered to be a proxy for assessing changes to demand as a response to higher prices in specific timeslots.

11According to Borenstein. (2017), in California, the adoption of solar PV is still dominated by the heaviest electricity-
consumption households, which explains prosumers having the higher share of consumption in our framework. There are, also,
evidence that this applies to other European countries such as Great Britain as discussed in Hledik and Greenstein. (2016).

12All values of peak demand are a consequence of the combination between the adopted shape of load profile and the total
energy consumption. The fine-tuning of these profiles to meet annual demand, allowed to calculate these values of peak rate
as the most suitable ones to maintain the desired “humped-camel shape” load profile shape.
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kW is adopted. Then the peak caused by EVs will depend on the type of rate applied since it is possible

to spread the charging over the day using smart charging. From the yearly EV energy consumption, it is

possible to derive daily energy needs for mobility purposes. First, based on an average energy consumption of

194 Wh/km (Electric Vehicle Database, 2021), a daily distance travelled of around 50 km/day is calculated

as calculated in Eq. (33).

Daily travel distance =
Y early average consumption

Efficiency ∗ Days in a year
=

3, 500 kWh

194 Wh
km ∗ 360 days

= 50.1
km

day
(33)

This distance is in line with that found for EVs in European countries like Italy, France and Germany

(Pasaoglu et al., 2014). Therefore, a daily energy need of 9.7 kWh is estimated for the case study based on

these data as show by Eq. (34):

Daily energy needs =
Y early average consumption

Days in a year
=

3, 500 kWh

360 days
= 9.7

kWh

day
(34)

To avoid extra battery degradation, it is advisable to keep the battery state of charge in a specific range

and to have a limited depth of discharge. It is assumed that the battery capacity of fully electric vehicles has

an average value of 60 kWh (Electric Vehicle Database, 2021b) and the SOC is allowed to vary between 6

and 54 kWh (10-90% respectively). Finally, an assumption regarding connection hours is defined as observed

in the British EV charging pilot. The majority of EVs disconnect from their homes at 7am and plug back

in at 5pm (see Appendix Appendix C for more details). Conversion losses from electronic power converters

in the EVSE of 5% and a negligible self-discharge rate complete the EV technical parameters.

The cost of technologies such as solar PV has a strong impact on the size of agents’ DER investments and

vary substantially across the utility, commercial, and residential sectors (NREL, 2020). The cost adopted

for installing solar PV is around 900 $/kWp, which can be considered low in the context of residential-scale

systems. However, we use this optimistic scenario to illustrate a situation where it is cost-optimal for agents

to invest in these systems. Direct subsidies can also support the argument for using this cost for end-users.

On the other hand, net metering will not be considered since it may over-incentivise solar PV investments

and cause strong fairness issues among agents. A discount factor of 5% and a lifetime of 20 years translates

into an annualised cost of 72 $/kWp 13.

Stationary batteries have been benefiting from the decrease in the cost of automotive batteries at the

pack level. The cost adopted for them is 150 $/kWh, which corresponds to the current weighted average cost

of a battery pack for electric vehicles (IEA, 2021). In addition, an annualised cost of 19.4 $/kWh is obtained

13Discount factors for PVs are far from being homogenous across regions. For instance, if estimated by measuring the
valuation of future benefits relative to the investment price, this factor can be much higher, reaching levels of up to 15% (De
Groote and Verboven., 2019).
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by using a similar discount factor of 5% and a lifetime of 10 years. Regarding the technical parameters, we

assume conversion losses of 5% and a self-discharge rate of 0.1% per hour 14. Finally, analogous to the EV

battery case, the SOC is allowed to vary between 10% and 90% of total battery capacity.

4.4. Baseline electricity bill

A reference scenario is needed to compare the outcome of the optimisation model for further analysis.

The baseline electricity bill is a counterfactual bill defining energy and network costs in dollars for each

agent. Furthermore, renewable energy support (RES) and taxes are also important components in the

majority of electricity offers for households. The weighted average breakdown of electricity offers in 2019

provided by the ACER market monitoring report (ACER, 2020) indicates a 45% share of energy costs and

33% of network charges if the amount of taxes and VAT are split equally between the other terms. RES will

account for the remaining 22% other costs. Electricity prices vary considerably across countries in different

regions. For instance, the average price in the European member states and Norway is 21.6 euro cents/kWh

and the median is 16.3 cents/kWh for all countries in European Union (ACER, 2020). The latter value is

used as the reference for the bill calculation coupled with the breakdown information. We adopt this value

to avoid potentially overestimating or underestimating the gains for submetering solution. Table (1) shows

the final bill for each agent in detail.

Table 1: Electricity bill components

Breakdown Cost in bill ($/kWh) Consumer ($) Consumer/EV ($) Prosumer ($) Prosumer/EV ($)

Energy 45% 0.073035 406 662 731 986
Network 33% 0.053559 298 485 536 723
Other charges 22% 0.035706 198 323 357 482
Total costs 100% 0.163 902 1470 1624 2192

So far, energy costs have been assumed to be invariant over time, meaning that a flat energy profile

is adopted. Nevertheless, this type of energy profile is not suitable to incentivise households to reduce

their consumption during certain periods of the day or to install DERs for peak-shaving and valley-filling

purposes. Time-of-use energy profiles can be the appropriate economic signal to meet these objectives.

Therefore, two extra TOU profiles are proposed for evaluation. The first, denominated TOU1, has the

highest value synchronised with the private peak of agents, incentivising them to offset coincidental demand

and reduce their own peaks. The second profile, TOU2, supports solar PV adoption since its relative value

around the period of solar production is the greatest among all profiles. In order to make them comparable,

both TOU profiles are calibrated so that the final consumer bill in the base case scenario is the same

14The presence of self-discharge only in stationary battery systems and not for EV batteries results from an assumption that
battery management systems (BMS) in EVs are more efficient. By not allowing the battery to function outside its operating
margins with respect to temperature, for example, self-discharge will be greatly reduced, therefore remaining negligible for
functioning purposes.
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regardless of the choice of energy profiles. The final average price of TOU rates is often lower than the

equivalent flat rate due to the high number of mid-peak and off-peak hours. However, the final electricity

bill is slightly higher. This shows how complex tuning energy profiles can be, depending mostly on what

kind of incentives the utility pursues. For instance, one strategy may be to increase on-peak charges to avoid

grid congestion or decrease the off-peak level to encourage users to shift their consumption. We note that

the rates selected are not symmetric, which means that the compensation for injecting electricity into the

grid is not at the same level as the cost of withdrawing electricity. Users are subject to 10% compensation

related to the energy price at the moment of injection according to the type of tariff 15. All the energy

profiles are illustrated in Fig. (4).

Figure 4: Energy profiles.

4.5. Grid cost structure

Assumptions regarding the final grid cost structure are complex to make, since several factors can affect it.

For instance, fixed operating costs, sunk capital costs, variable operating costs and network losses are all parts

of the cost needed to be recovered by network operators. Network costs are not straightforward to obtain,

15The future of policies regarding PV injection prices is quite uncertain. In California, one of the world-leaders in solar
PV adoption, due to high cost-shifting levels in some locations, indirect incentives to install PVs such as feed-in tariffs and
compensation for energy injection are thought to substantially decrease (IOUs, 2021). The 10% value is adopted to avoid
excess grid exports, enhance self-consumption and increase synergy between EV and DER without dramatically excluding all
compensations. However, please note that these feed-in tariffs, and solar PV support policies in general, may vary in different
contexts. For instance, during an energy crisis in which states would be willing to push renewable forward.
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since they are often private and difficult to connect directly to tariff prices (Ansarin et al., 2022). This low

availability of information in the literature leads many studies to make assumptions about the percentages

of grid cost components. According to Simshauer and Downer (2016), in an electricity distribution system

the fixed and sunk capital costs will typically comprise 70-80% of the total cost structure. This indicates

that traditional distribution grids are over-dimensioned for current demand, a practice which is described

as ‘fit-and-forget.’

Nevertheless, the penetration of new distributed energy resources (stationary batteries, solar PV and

heat pumps) and electric vehicles will substantially change this scenario. Grid reinforcements may be

necessary to cope with the peak load increase caused by these technologies if their use is not properly

coordinated. The economic feasibility of substituting grid capacity with local flexibility can be assessed by

using forward-looking grid costs. A reduction of network utilisation cannot reduce the costs of the current

network infrastructure, which are sunk, but only defer future network investments by reducing coincident

peak loads Govaerts et al. (2019). Therefore, this element, also named prospective costs, represents the

long-run costs of the network for agents.

4.6. Scenario definition

As in Schittekatte and Meeus (2020), we adopt three scenarios for the MPEC analysis: 100% sunk costs;

50% sunk and 50% prospective; and 100% prospective grid costs. For the first scenario, the SunkCosts

parameter in Eq. (4) is set at $2,040, which is the sum of all agents’ network charges in the baseline

electricity bill (see Table (1)). For the second scenario, half of these costs are employed as sunk costs and

the annualised incremental cost for grid capacity, IDSO, representing the prospective costs is 63.8 $/kW

according to Eq. 35:

IDSO (50% prospective) =
0.5 ∗ Average sunk costs

Average coincident peak
=

0.5 ∗ 510 $

4 kW
= 63.7

$

kW
(35)

Finally, in the full prospective scenario the prospective cost is set at the annualised incremental cost

for grid capacity of 127 $/kW while there are no sunk costs 16. Even though grid costs are lumpy and

vary depending on site-specific properties, these values allow us to have a fair representation of grid cost

structure. For each grid cost structure, it is possible to analyse different ways of cost recovery and EV

technologies. We adopt the following cases to be analysed within the MPEC framework according to Table

2:

In reality, the presented case study could represent agents in the same neighborhood geographic scope

due to two main reasons. First, incremental grid capacity investment to be made in the distribution grid

16We assume that EV charging done via smart charging will not deeply affect the coincidental peak demand. Therefore, the
average peak used to calculate prospective costs corresponds to the coincident peak without any EV or DER installed.
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Table 2: Scenarios description

Scenario name Energy profile Grid cost Grid cost EV Technologies
(according to the structure recovery
type of agent)

Sunk Flat or 100% sunk Volumetric or None or V2G
time-of-use three-part tariff and submetering

50/50 Flat or 50% sunk and Volumetric or None or V2G
time-of-use 50% prospective three-part tariff and submetering

Prospective Flat or 100% Volumetric or None or V2G
time-of-use prospective three-part tariff and submetering

is the same for all agents. This means that they are closer in terms of geographic region since these types

of investment can vary considerably within the same city. Second, the absolute numbers of electricity bill

components (Table 1) consider one agent per each category. If the case study was done in a city-level area,

those numbers would have to be adapted.

5. Results

In this section we present the results of the numerical model. We begin by analysing the impact of

different EV owner energy profiles on the final electricity bill with a fixed base case volumetric network

tariff. Then, once the energy profiles are set for the agents owning an EV, we assess the effects of different

network tariff designs on the final bill. We end with a discussion and by highlighting some policy implications.

5.1. Energy profile assessment

A retailer’s electricity offer usually has several types of rates given the difference in time granularity

for customers. Flat or time-varying rates are proposed for residential customers, so they are encouraged

to compare current energy costs to other tariff rate options and select the best rate plan (SCE, 2019).

The aim of this section is to retain the cost-efficient solution, i.e. one meter or submetering, by choosing

a combination of energy profiles, while grid charges are exogenously fixed beforehand to minimise energy

costs. The logic behind this choice is to anticipate EV owner actions regarding the choice of rate, assuming

that a single consumer decision does not have an impact on other consumers’ choices, and therefore has a

negligible impact on the network tariff design.

Agents possessing an EV are analysed individually using the MILP model described in Section (3.1) to

ascertain their total costs. All three energy profiles are adopted for agents using only one meter (flat, TOU1,

TOU2), while for the submetering configuration a combination of a flat rate for house loads and TOU1 or

TOU2 for EV charging are considered. According to our setup, only prosumers have the option of adopting

V2G technologies. We separate the analysis of consumers who are not able to invest in DER from that of
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prosumers who can. Table (3) and Fig. (5) show the variation in the total cost for consumers and prosumers

owning an EV under different energy profiles.

Table 3: Energy costs without DER investment.

Agent type Consumption (kWh) Energy costs according to
each tariff scheme ($)

Flat TOU1 Flat/TOU1

Passive 5,500 1175 1050 1039

Prosumers

(No V2G nor
10,000 1738 1631 1602

DER investment)

First, Fig. (3) shows the cost variation for two rate choices compared to the flat baseline rate for two

different load profiles. This clearly reveals the positive impact of submetering by applying EV-only tariffs

for agents who are not able to invest in DER compared to TOU1. For the prosumer load profile, the cost

reduction obtained by adopting an EV-only solution (flat rate for the house plus TOU1 for the EV) surpasses

the whole-house TOU1 tariff by around 2%, while half of this value is obtained for the consumer profile. In

conclusion, the greater the energy consumption of the household, the higher are the bill savings brought by

the submetering solution.

Figure 5: Energy costs with DER investment for prosumers according to tariffs applied.

Prosumers who are ready to invest in DER may have different choices regarding the type of solution to

adopt. Fig. (5) shows that whole-house TOU tariffs are preferred since they bring a greater energy cost
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reduction with or without V2G. This preference is due to the higher cost-effectiveness of arbitraging energy

from off-peak to peak hours using a stationary battery or V2G under the whole-house TOU1. On the other

hand, EV-only tariffs do not incentivise the adoption of DERs, especially batteries, considering that they

will be charged at a flat rate which is not financially attractive. A great share of spread is already obtained

by adopting the different tariffs for the submetering solution, which reduces the gains brought by DERs 17.

The detailed results for both solutions are shown in Table (D.5).

A sensitivity analysis of the impact of varying the battery capacity and charging speed parameters on

the total cost for EV owners is conducted to test the robustness of the results. The first outcome is that the

battery capacity itself does not influence the results. Simulations with 40, 60 and 80 kWh were conducted

with no impact on the results. The underlying logic is that these capacities are more than enough for

energy requirements of both active and passive load profiles without requiring extra energy. Even the lowest

battery capacity simulated is not limiting the best outcome from energy arbitrage services via V2G nor

interfering with driving needs. The battery SOC never goes below the minimum energy level required. If

complementary services such as frequency regulation, spinning reserves or voltage control were included or

alternative driving profiles with higher kilometer requirements are used, the battery capacity parameter

could have an effect. Regarding the charging and discharging power for EVs, it is observed that under time

of use tariffs, the more speed to charge (or discharge) is available, the more opportunity to benefit from

off-peak hours in terms of charging. Specially in the case with V2G, the gains are continuously higher when

more power is available to arbitrage energy in a short time frame. For the unidirectional smart charging, the

maximum gains are obtained around 7 kW and keeps steady even if more power for charging is available.

These results can be seen in Table D.7.

Finally, based on these results we are able to choose the energy profiles and type of solution for each

agent who owns an EV for further analysis. For prosumers with EVs and V2G, the whole-house TOU1

tariff is adopted as it results in the lowest costs among the options. For consumers who possess an EV,

the submetering solution coupling a flat rate for house loads and TOU1 for EV charging is adopted for the

same reason of cost-effectiveness. For the comparison scenario, all agents able to invest in DER (prosumers)

adopt TOU1 and consumers select flat rates.

5.2. Network cost impact

With the energy profiles defined for all agents, it is possible to identify the impacts on network costs

caused by EVs and submetering solutions. The MPEC model allows simulation of several tariff designs that

can be used by the network operator to recover grid costs. We adopt two possible tariffs structures for

17This scenario could differ according to price. For instance, simulations with a more conservative PV cost of 1,500 $/kWp
indicate that EV-only tariffs are more cost-effective than ToU, without a need for great investments in DER. The full data for
this scenario are presented in Table (D.6)
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this purpose: a pure volumetric tariff, which is the most common way of billing customers in the current

residential sector and a three-part tariff including capacity and fixed charges. A technology scenario using

V2G technology and submetering is also included. This represents a total of four scenarios which include

the two different tariff structures and the possibility of adopting EV submetering coupled with V2G.

First, the changes in total network costs are presented for all three grid cost structure scenarios. Then,

individual cost variations and their manner of allocation according to different tariff designs are explored.

We focus on the submetering solution including the variation that it may cause in network costs to verify

its cost-effectiveness. The cumulative network costs for all scenarios based on three grid cost structures

described in Section 4.6 are presented in Fig. 6.

(a) Volumetric tariff. (b) Volumetric tariff with V2G and EV submetering

(c) Three-part tariff. (d) Three-part tariff with V2G and EV submetering.

Figure 6: Total network costs.

Our main observation is that the higher the share of prospective costs in the network cost structure,

the lower the total grid costs. This is due to the implicit cooperative behaviour of all agents once variable

costs are present and dependent on the coincident peak. In the case of 100% sunk costs, prosumers invest

as much as possible in DERs to avoid grid charges and shift more of them to consumers. We focus on the

24



scenarios with prospective costs, given the exhaustive sunk costs analysis in Schittekatte et al. (2018) and

Hoarau and Perez. (2019). Nevertheless, in both cases with prospective charges prosumers invest in DERs

to reduce their contribution to coincident peak increases, while EV owners also use smart charging to avoid

constrained hours 18. As a consequence, the tariff will decrease for all agents since the coincident peak that

drives network variable costs is greatly reduced.

We note a perceptible increase in the cumulative network charges for the scenarios with V2G and sub-

metering containing variable charges (see Table D.8 for more numerical details). The underlying logic is

that V2G greatly reduces the need for battery investments. Unlike stationary batteries, EVs are away from

home during a great part of the day. Therefore, the required charging episodes for driving needs share the

same peak period as those required for energy arbitrage. Consequently, an increase in the coincident peak

occurring in off-peak periods increases the network tariff. A possible solution to alleviate a coincident peak

increase during off-peak periods involves charging EV at work or using public charging infrastructure. If

this type of charging is incentivised, users could spread EV charging over all the hours of the day, which

would have a positive impact on the total grid costs to be recovered.

The shift from a volumetric to a three-part tariff does not significantly change the network costs, although

it impacts users in its allocation. Prospective costs, if recovered via capacity charges, will benefit those who

can reduce their private peak by investing in storage or adopting V2G technology. With a volumetric tariff

storage will be mostly used to arbitrage energy from on-peak to off-peak periods and lower the coincident

peak. This will optimise the energy usage of prosumers without deeply affecting the charges paid by

consumers. There will then be fewer fairness issues concerning the volumetric tariff, for which consumers

will be spared high cost-shifting levels. Refer to Table D.9 for more details of the network cost share between

agents.

Comparing the volumetric tariff with a three-part tariff, consumers experience an additional 1.5% and

3.7% reduction in grid charges in the 50% sunk / 50% prospective and 100% prospective scenarios respec-

tively. The same trend is observed for consumers with an EV, but in this case the magnitudes of the

reductions are around 14% and 11% respectively. Clearly, a volumetric tariff favours agents possessing an

EV (submetered or not) who cannot invest in DERs compared to the baseline. Nevertheless, it is essential

to determine the total charges for these agents to evaluate the cost-efficiency of the submetering solution.

Gains obtained from energy savings could be outweighed by increases in network charges due to other agent’s

reactions to the type of tariff applied. Therefore, Fig. ?? shows the total costs for consumers with an EV

with different tariffs and in different technological scenarios.

A dedicated tariff for EVs excluding house loads creates a positive spread of energy charges as was

18Under prospective scenarios, self-interest prosumers install batteries (or uses V2G) to reduce their own peak, thus decreasing
private network costs. As all agents’ private peak arise at similar hours, there is a reduction of coincident peak, which in turn
diminishes total network costs for all. Although the absolute gains for prosumers is almost twice the value for consumers.
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(a) 50% Sunk and 50% Prospective (b) 100% Prospective

Figure 7: Total costs for consumer/EV agents in all four scenarios (50% of Prosumers).

previously described in Section 5.1. An extended analysis which includes the variation in network costs

caused by other agent responses in this context will shed light on the potential of this solution. With the

volumetric tariff, the rise in network costs driven by a slight increase in the coincident peak does not outrun

the reduction in energy costs. The final bill reductions observed are around 10.4% and 7.2% ($110 and $64)

for the 50% sunk/50% prospective and 100% prospective scenarios respectively. In the case of three-part

tariffs, the outcome is not so favourable. The capacity charges applied to agents transfer the network savings

by prosumers to consumers, including those with an EV with submetering. In this case, the rise in network

charges surpasses the energy savings by having two different tariffs. Therefore, final rises of 2.0% and 6.7%

are observed.

All the results until this section are based on the initial assumption of the four agents representing the

whole case study. This leads to a proportion of 50% of prosumers and 50% of EV owners. The assessment of

an extra sensitivity with a different proportion of prosumers and EV owners would bring new timing related

insights.

5.3. Sensitivity analysis

The new sensitivity scenario (Scenario 2) presents a different proportion of agents which lead to different

share of DER adoption and EV presence. In this extra scenario, the share of DER and EVs was reduced

by half. The idea is to have a proxy of a situation that will happen sooner in time than the first scenario.

Here, the number of consumers was increased to finetune the proportion between agents and the parameters

SunkCosts along with IDSO which were changed accordingly. Table 4 describes in detail the share of each
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agent by category 19:

Table 4: Agent numbers and proportion of EV/DER of each scenario

Number of Number of Number of Number of % of EV % of DER
consumer consumer prosumer prosumer

(#) with EV (#) (#) with EV (#)

Basecase 1 1 1 1 50 % 50%
scenario

Sensitivity 5 1 1 1 25% 25%
scenario

Following the same guideline as in the previous analysis of submetering, we assess the revenues by

comparing the total costs before and after applying V2G plus submetering. For the sensitivity, under

volumetric tariff, the gains of submetering are perceived with higher magnitude than the base-case scenario.

First, as there are less prosumers proportionally, in the 50/50 scenario there will be less cost-shifting of the

sunk part caused by their investment in DERs. Moreover, the coincident peak increase caused by V2G will

be less important overall. Consequently, the share of network costs, when analysing the submetering case

will be even farther to outrun the reduction in energy cost, which increases the value of submetering. For

the prospective scenario, the reduction of prosumer share minimizes the general cooperative behaviour to

reduce maximum coincident peak, leading to higher network charges for consumers upfront. Concomitantly,

the increase in the coincident peak caused by V2G won’t be very expressive, allowing submetering revenue

to be quasi-exclusively from reduction in the energy share.

The three-part tariff still gives an incentive for prosumers to reduce their private peak causing a transfer

of network savings to consumers. Although there is a slight decrease of network cost caused by the reduction

of annualized incremental cost for grid capacity IDSO(Sensitivity), as calculated in the following Eq. 36, in

both scenarios submetering is not profitable in the end.

IDSO (sensitivity) =
Average sunk costs

Average coincident peak
=

0.125 ∗ 3232 $

3.87 kW
= 106

$

kW
(36)

We observe the same trend in the sensitivity as in the base-case scenario when adopting submetering.

It is still not profitable if three-part tariff is applied. However, for early adopters under a volumetric tariff

scheme, the gains would be higher compared to the scenario where the penetration of DER is already high.

These gains are situated between 11% and 13% of the total primary costs ($125 for 50/50 scenario and $114

for the prospective one, respectively) for consumers with EV as described in Fig. 8.

19Also, it is important to note the increase in computational burden due to the increase of agents. The equilibrium model in
scenario 2 has twice as many equations as scenario 1, making it even harder for the solver to find acceptable solutions
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(a) 50% Sunk and 50% Prospective (b) 100% Prospective

Figure 8: Total costs for consumer/EV agents in all four scenarios (25% of Prosumers).

6. Discussion and policy implications

The integrated assessment of submetering exploring the variations in energy and network charge has

shown that this solution can bring significant added value to EV charging. Policymakers would not need

to deplete their political capital to implement complex TOU pricing and capacity-based tariffs across ju-

risdictions. To help deal with problems coming from ill-designed tariffs in an emerging technology context,

submetering can be a straightforward solution. It simplifies the indirect load control of EVs by using a

specific economic signal for charging, while leaving other appliances charged at another rate. The adoption

of an adequate smart meter placed upstream of the houseloads and charging station that can properly com-

municate with the EVSE meter is enough to turn EV submetering charging into reality. The transaction

costs involved in adjusting and optimising the use of an EVSE meter would be counterbalanced in a short

period, taking into consideration the variety of services potentially available. Also, these costs would be

lower compared to the equivalent cost of political capital mobilization to justify the change of tariff applied

to the whole household. This would create winners and losers as described in Faruqui (2010), but these

negative impacts could be avoided to some extent by targeting EVs with submetering.

In addition, this configuration of meters also allows other EV energy services, such as frequency regu-

lation, to be done using V2G without the need to buy or rent a dedicated meter. For instance, frequency

regulation performed by an EV with similar technical parameters as the ones assumed in our study can

obtain an additional $150 of profit per year (Lauinger, 2022). Stacked energy services potentially allow

fairer revenues for EV owners, to whom the proposed submetering solution extends the service portfolio

using smart meters.

Regarding rate plans offered by utilities, the gains obtained from submetering can be enhanced, for
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example, with high on-peak charges or the super off-peak periods proposed by some electricity providers.

In our study, we have tuned the counterfactual time-varying energy profiles for a flat energy tariff so that

the energy costs in the end would be practically the same. Then, we have shown that the concept can

bring fair yearly gains varying from $64 to $125 if well managed. These amounts include the total savings

from the energy profile optimisation, which means that the retailer will bear some loss. Also, they consider

some network costs increase which will be mostly passed to consumers. However, the exact benefit remains

sensitive to the rate plans available from each utility. In real-life tariff books, the spread between a flat

rate and the price levels of a domestic time-of-use proposed could be higher than that captured in our

results. Regulators should incentivise utilities to propose more time-varying rate plans to boost demand-

side management for users, including those with EVs and DERs.

Pilots and demonstration projects are essential not only to prove the feasibility of the concept but also to

establish future protocols and adjust the technology of the appliances involved. In the Californian pilot, after

12 months of submetering service, more than 90% of the participants stated to be extremely or somewhat

satisfied. This data demonstrates the potential success for this solution at a large-scale (Nexant, 2019).

Furthermore, for a certain segment of customers, the benefit of moving to submetering was estimated to

be $59 per year, which approaches the lower bound of our estimation. Another similar submetering pilot

conducted by Xcel Energy Minnesota estimated annual savings of $117 (Smart Electric Power Alliance,

2019) which is close to the calculated upper bound of revenues in our study. The difference of revenues

among pilots are explained by the heterogeneity of rates, especially TOU, offered by each utility or retailer.

This reinforces the need for diversification of TOU rates to give agents more room for adapting their demand

accordingly.

Specific contexts of energy crisis, in which high electricity prices are observed, would incentivize customers

to analyse different rate plans of utilities. The impact of such scenarios on rate design could render the

submetering solution more profitable. The logic is that as the spread between peak and off-peak periods in

wholesale markets tend to be higher, this will be reflected on the rates and consequently the gains would

increase subsequently. The adoption of submetering unlocks a combination of electricity rates that could

further help end-users to reduce their electricity bill.

Finally, two different tariffs give users more flexibility to optimise the electricity bill for a particular load

like electric vehicles. Moreover, ‘type-of-use’ tariffs can also be applied for other loads such as heat pumps.

In theory, three tariffs driving different appliances in the same household could bring higher electricity bill

savings if well optimised. This framework would substantially complexify users’ understanding of their bills,

which could discourage them from adopting this solution. Another drawback is the risk of badly designing

a rate plan that could over-incentivise a specific type of load usage and bring a deficit to the utility budget.

The concept of price discrimination applied in these tariffs should be carefully taken into account to avoid

any subsequent fairness issues between customers.
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7. Conclusion

Adopting an electricity rate designed specifically to charge EVs at home enables a reduction in charging

costs for myriad dwellings. Assuming that household demand without flexible loads is quasi-inelastic, sepa-

rating the billing for EV charging gives a fair incentive to adopt domestic EV-only rates. In this study, we

develop a game-theoretical model expressed and treated as a mathematical program with equilibrium con-

straints (MPEC) to capture the interaction between a national regulatory authority (NRA) and dwellings.

This type of modelling is essential to determine the network tariff endogenously depending on the reactions

of all agents. With the uptake of domestic EV-only tariffs, grid operators will have the necessary information

about charging events and could better accommodate other EVs while avoiding costly grid reinforcements.

NRAs, on the other hand, can adopt a tariff structure that gives incentives for DER uptake and separate

ones for EV adoption.

It should be noted that our study has certain limitations. First, the demand was considered inelastic,

meaning that no cross-price elasticity of the demand was considered. The only consumer response adopted

was submetering. Also, two daily load profiles were assessed in our results, which may not be enough to fairly

evaluate the risks linked to the investment in DERs for some prosumers. We highlight that the numerical

study is sensitive to the input data and main assumptions. Case studies with specific locational datasets

may present different quantitative results, as the cited trials within the US. Furthermore, future research

can support even more the viability of the solution in various regions.

A fair energy cost reduction is observed with an EV-only tariff for the adopter while keeping network

charges fixed. However, by recovering grid costs via a three-part tariff that contains capacity charges, the

increase in network costs offsets the gains brought by energy savings. With a pure volumetric tariff, fairness

issues are nuanced, resulting in well-allocated network costs distribution in which consumers experience a

higher decrease in their charges. In addition, we show that submetering can bring yearly gains varying from

$64 to $125 with this type of tariff.

Our results could be used to support the creation of new local projects to demonstrate the cost-benefits of

this solution applied to specific contexts. The majority of pilot projects, currently concentrated in the U.S.,

may be insufficient in representing the diversity of contexts in which EV-only tariffs could work properly .

Extending the number of pilots to other countries is essential to identify all possible barriers. With respect

to future work, an extension of the problem to regulators in neighbouring countries could frame the economic

spill-over between them. Different EV penetration, DER levels and adoption rates of EV-only tariffs could

provide a more reliable framework. Moreover, customer surveys including the option of EV-only tariffs to

assess their acceptance are crucial to better design this type of tariffs.
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Appendix A. Detailed mathematical model

An overview of the bi-level model and associated sets, variables, and parameters will be described along-

side the framework to solve it.

Nomeclature

• Indices:

– c : Customers

– h : Time period (hours)

• Sets:

– C: Set of all customers

– CEV : Subset of customers set containing consumers with EV submetered (⊂ C)

– CEV/DER: Subset of customers set containing prosumers with EV submetered (⊂ C)

– H: Set of hours

• Upper level parameters:

– egc : Existing grid capacity [kW]

– IDSO : Annualized investment cost for grid capacity [e/kW/year]

– n : number of agents [-]

– NM : Net metering coeficient [-]

– PBEP
c,h: Price of buying energy for agent c at hour h [e/kWh]

– PSEP
c,h : Price of selling energy for agent c at hour h [e/kWh]

– SunkCosts : Sunk annualized grid costs, scaled per average consumer [e]

– W : Weigh of hour h [h/h]
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• Lower-level parameters

– D∆EV−
c,h : EV driving needs of agent c in hour h [kWh/h]

– Dc,h: Electricity demand of agent c in hour h [ kWh/h]

– E
EV

c,h : Maximum EV state of charge of agent c in hour h [kWh]

– EEV
c,h : Minimum EV state of charge of agent c in hour h [kWh]

– GPV
c,h : Solar ressouce availability [kW/kWp]

– IS , IPV : Annualized DER investment costs for agent c [$/kW/Year]

– LS , LEV : Battery and EV converter losses [%]

– PEV dis
c,h : EV discharging power of agent c in hour h [kW]

– PEV ch
c,h : EV charging power of agent c in hour h [kW]

– P ch
c :Power capacity ratio for battery charging for agent c [kW/kWh]

– P dis
c :Power capacity ratio for battery discharging for agent c [kW/kWh]

– R;REV : Battery and EV battery self-discharge [%]

– S%max, S%min : Maximum and minimum battery allowed state of charge level [%]

– US
c , U

PV
c : Ressource limits of storage and PV for agent c [kWh,kW]

• Upper-level variables

– agc : Additional grid capacity investment in interconnection [e/kWh]

– cnt : Capacity network charge [e/kW]

– eGE
h : EV fleet exports in hour h [ kWh/h]

– eGh : Total net load [ kWh/h]

– eGI
h : Total imports in hour h [kWh/h]

– fnt : Fixed network charge [e/customer]

– vnt : Volumetric network charge [e/kWh]

• Lower-level Variables

– d∆EV+
c,h , d∆EV−

c,h : EV battery charge/discharge in hour h [kWh/h]

– d∆+
c,h , d∆−

c,h : Stationary battery charge/discharge in hour h [kWh/h]

– expPc,h : Energy exported to grid by agent c in hour h [kWh/h]

– expLc,h :Energy exported to agent behind the meter [kWh/h]
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– gPV
c,h : Solar PV electricity generation by agent c in hour h [kWh/h]

– icPV
c :Solar PV installed capacity for agent c [kW]

– icSc :Battery storage capacity for agent c [kWh]

– icSc :Battery storage capacity for agent c [kWh]

– impPc,h : Energy imported from grid by agent c in hour h [kWh/h]

– impLc,h : Energy imported from agent behind the meter [kWh/h]

– pc : Measured peak power of agent c [kW]

– sEV
c,h : EV battery state of charge in hour h [kWh]

– sc,h: Stationary battery state of charge in hour h [kWh]

Upper-level objective function:

Min CostNRA = CostDER + CostP + CostN (A.1)

Where:

CostDER =
∑

c ∈ C

(
ISc ∗ icSc + IPV

c ∗ icPV
c

)
(A.2)

CostP =
∑

c ∈ C

∑
h ∈ H

Wh ∗
(
impPc,h ∗ PBEP

c,h − expPc,h ∗ PSEP
c,h

)
(A.3)

CostN = SunkCosts + IDSO ∗ agc (A.4)

Subject to:

1. Coincidental peak : To maintain the linearity of the problem, Eq. 5 will calculate the hourly sum

of net imports and net exports in Eq. A.5 and Eq. A.6 as just one term of those equation will be

nonzero, then the sum of both A.7 will measure the aggregated hourly demand as stated below:

eGI
h ⩾

∑
c ∈ C

(
impPc,h − expPc,h

)
, ∀h ∈ H (A.5)

eGE
h ⩾

∑
c ∈ C

(
expPc,h − impPc,h

)
,∀h ∈ H (A.6)

eGh = eGI
h + eGE

h , ∀h ∈ H (A.7)

2. Grid capacity

egc+ agc ⩾ eGh , ∀h ∈ H (A.8)
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3. DSO cost recovery

CostN =
∑

c ∈ C

∑
h ∈ H

W ∗
(
impPc,h −NM ∗ expPc,h

)
∗ vnt +

∑
c ∈ C

pc ∗ cnt + n ∗ fnt (A.9)

Lower-level objective function:

Min Cost = CostDER
c + CostPc + CostNc (A.10)

Where:

CostDER
c = IS ∗ icSc + IPV ∗ icPV

c (A.11)

CostPc =
∑

h ∈ H

W ∗
(
impPc,h ∗ PBEP

c,h − expPc,h ∗ PSEP
c,h

)
(A.12)

CostNc =
∑

h ∈ H

W ∗
(
impPc,h −NM ∗ expPc,h

)
∗ vnt + pc ∗ cnt + fnt (A.13)

Subject to:

1. Energy balance

−Dc,h − d∆EV+
c,h + d∆EV−

c,h − d∆+
c,h + d∆−

c,h + icPV
c ∗GPV

c,h

+ impPc,h − expPc,h + αc ∗ (impLc,h − expLc,h) = 0 ∀c ∈ C, h ∈ H :
(
λEB
c,h

)
(A.14)

2. Peak power measurement

−pc + impPc,h + expPc,h ⩽ 0 ∀c ∈ C, h ∈ H :
(
µG
c,h

)
; (A.15)

3. EV storage constraints

sEV
c,h − sEV

c,h−1 ∗
(
1−REV

)
− d∆EV+

c,h ∗
(
1− LEV

)
+ d∆EV−

c,h ∗
(
1 + LEV

)
+D∆EV−

c,h = 0,

∀c ∈ C, h ∈ H \ {1} :
(
λEV 1
c,h

)
(A.16)
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sEV
c,1 − SOCEV

0 − d∆EV+
c,1 ∗

(
1− LEV

)
+ d∆EV−

c,1 ∗
(
1 + LEV

)
+D∆EV−

c,1 = 0 ∀c ∈ C :
(
λEV 1
c,1

)
(A.17)

sEV
c,H − SOCEV

0 = 0, ∀c ∈ C, h ∈ H :
(
λEV 2
c

)
(A.18)

sEV
c,h − E

EV

c,h ⩽ 0, ∀c ∈ C, h ∈ H :
(
µEV 2
c,h

)
(A.19)

EEV
c,h − sEV

c,h ⩽ 0, ∀c ∈ C, h ∈ H :
(
µEV 3
c,h

)
(A.20)

d∆EV+
c,h − PEV ch

c,h ⩽ 0, ∀c ∈ C, h ∈ H :
(
µEV 4
c,h

)
(A.21)

d∆EV−
c,h − PEV dis

c,h ⩽ 0, ∀c ∈ C, h ∈ H :
(
µEV 5
c,h

)
(A.22)

4. Battery storage constraints

sc,h − sc,h−1 ∗
(
1−RS

)
− d∆+

c,h ∗
(
1− LS

)
+ d∆−

c,h ∗
(
1 + LS

)
= 0, ∀c ∈ C, h ∈ H \ {1} :

(
λS1
c,h

)
(A.23)

sc,1 − sc,H ∗
(
1−RS

)
− d∆+

1 ∗
(
1− LS

)
+ d∆−

1 ∗
(
1 + LS

)
= 0, ∀c ∈ C :

(
λS1
c,1

)
(A.24)

icsc − US
c ⩽ 0, ∀c ∈ C :

(
µS1
c

)
(A.25)

sc,h − icsc ∗ S%max ⩽ 0 ∀c ∈ C, h ∈ H :
(
µS2
c,h

)
(A.26)

S%min ∗ icsc − sc,h ⩽ 0 ∀c ∈ C, h ∈ H :
(
µS3
c,h

)
(A.27)

d∆+
c,h − icsc ∗ P ch

c ⩽ 0 ∀c ∈ C, h ∈ H :
(
µS4
c,h

)
(A.28)

d∆−
c,h − icsc ∗ P dis

c ⩽ 0 ∀c ∈ C, h ∈ H :
(
µS5
c,h

)
(A.29)

5. Solar PV constraints

icPV
c − UPV

c ⩽ 0 ∀c ∈ C :
(
µPV 1
c

)
(A.30)

6. Submetering constraints
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∑
c ∈ CEV

(
impLc,h − expLc,h

)
= 0 ,∀h ∈ H :

(
λLEV

h

)
(A.31)

∑
c ∈ CEV/DER

(
impLc,h − expLc,h

)
= 0 ,∀h ∈ H :

(
λ
LEV/DER

h

)
(A.32)

impLEV,h − d∆−
c,h − icPV

c ∗GPV
c,h ⩽ 0 ∀c ∈ (CEV ∪ CEV/DER) , ∀h ∈ H :

(
µimpL
c,h

)
(A.33)

impLc,h − d∆EV−
EV,h ⩽ 0 ∀c ∈ CEV ,∀c ∈ (CEV ∪ CEV/DER) , ∀h ∈ H :

(
µimpL2
c,h

)
(A.34)

7. Non-negativity constraints

− impPc,h ⩽ 0 ∀c ∈ C, h ∈ H :
(
µimp
c,h

)
(A.35)

− expPc,h ⩽ 0 ∀c ∈ C, h ∈ H :
(
µexp
c,h

)
(A.36)

− d∆−
c,h ⩽ 0 ∀c ∈ C, h ∈ H :

(
µdminb
c,h

)
(A.37)

− d∆+
c,h ⩽ 0 ∀c ∈ C, h ∈ H :

(
µdplusb
c,h

)
(A.38)

− d∆EV+
c,h ⩽ 0 ∀c ∈ C, h ∈ H :

(
µdEV+
c,h

)
(A.39)

− d∆EV−
c,h ⩽ 0 ∀c ∈ C, h ∈ H :

(
µdEV−
c,h

)
(A.40)

− icPV
c ⩽ 0 ∀c ∈ C, h ∈ H :

(
µicpv
c

)
(A.41)

− icSc ⩽ 0 ∀c ∈ C, h ∈ H :
(
µics
c

)
(A.42)

− sEV
c,h ⩽ 0 ∀c ∈ C, h ∈ H :

(
µsEV
c,h

)
(A.43)

− sc,h ⩽ 0 ∀c ∈ C, h ∈ H :
(
µs
c,h

)
(A.44)

− impLc,h ⩽ 0 ∀c ∈ C, h ∈ H :
(
µLimp
c,h

)
(A.45)

− expLc,h ⩽ 0 ∀c ∈ C, h ∈ H :
(
µLexp
c,h

)
(A.46)

Appendix B. Transforming the Bi-level problem into a solvable MPEC

The lower level conditions are changed by their KKT optimality conditions. This step allows the trans-

formation of the bi-level problem into a MPEC which has now a single objective function. We derive the

KKT necessary optimality conditions from the primal feasibility restrictions of the lower problem:
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W ∗
(
PBEP

c,h + vnt
)

+ λEB
c,h + µG

c,h − µimp
c,h = 0 ,∀c ∈ C, h ∈ H (B.1)

−W ∗
(
PSEP

c,h +NM ∗ vnt
)

− λEB
c,h + µG

c,h − µexp
c,h = 0 ,∀c ∈ C, h ∈ H (B.2)

IPV +
∑

h ∈ H

λEB
c,h ∗GPV

c,h + µPV 1
c − µicpv

c = 0 ,∀c ∈ C (B.3)

−λEB
c,h −

(
1− LEV

)
∗ λEV 1

c,h + µEV 4
c,h − µdEV+

c,h = 0 ,∀c ∈ C, h ∈ H (B.4)

λEB
c,h +

(
1 + LEV

)
∗ λEV 1

c,h + µEV 5
c,h − µdEV−

c,h = 0 ,∀c ∈ C, h ∈ H (B.5)

λEV 1
c,h −

(
1−REV

)
∗ λEV 1

c,h+1 + µEV 2
c,h − µEV 3

c,h − µsEV
c,h = 0 ,∀c ∈ C, h ∈ H \ {48} (B.6)

λEV 1
c,H + λEV 2

c + µEV 2
c,H − µEV 3

c,H − µsEV
c,H = 0 ∀c ∈ C, h = H (B.7)

−λEB
c,h −

(
1− LS

)
∗ λS1

c,h + µS4
c,h − µd+

c,h = 0 ,∀c ∈ C, h ∈ H (B.8)

λEB
c,h +

(
1 + LS

)
∗ λS1

c,h + µS5
c,h − µd−

c,h = 0 ,∀c ∈ C, h ∈ H (B.9)

λS1
c,h −

(
1−RS

)
∗ λS1

c,h+1 + µS2
c,h − µS3

c,h − µs
c,h = 0 ,∀c ∈ C, h ∈ H \ {48} (B.10)

λS1
c,H −

(
1−RS

)
∗ λS1

c,1 + µS2
c,H − µS3

c,H − µs
c,H = 0 ,∀c ∈ C (B.11)

cnt−
∑
h ∈H

µG
c,h = 0 ,∀c ∈ C (B.12)

λEB
c,h + λLEV

h − µimpL
c,h = 0 ,∀c ∈ C, h ∈ H (B.13)

− λEB
c,h − λLEV

h − µexpL
c,h = 0 ,∀c ∈ C, h ∈ H (B.14)
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0 ≤ impPc,h ⊥ µimp
c,h ⩾ 0 ,∀c ∈ C, h ∈ H (B.15)

0 ≤ expPc,h ⊥ µexp
c,h ⩾ 0 ,∀c ∈ C, h ∈ H (B.16)

0 ≤ icPV
c ⊥ µicpv

c,h ⩾ 0 ,∀c ∈ C (B.17)

0 ≤ UPV
c − icPV

c ⊥ µPV 1
c ⩾ 0 ,∀c ∈ C (B.18)

0 ≤ d∆EV+
c,h ⊥ µdEV+

c,h ⩾ 0 ,∀c ∈ C, h ∈ H (B.19)

0 ≤ d∆EV−
c,h ⊥ µdEV−

c,h ⩾ 0 ,∀c ∈ C, h ∈ H (B.20)

0 ≤ sEV
c,h ⊥ µsEV

c,h ⩾ 0 ,∀c ∈ C, h ∈ H (B.21)

0 ≤ E
EV

c,h − sEV
c,h ⊥ µEV 2

c,h ⩾ 0 ,∀c ∈ C, h ∈ H (B.22)

0 ≤ sEV
c,h − EEV

c,h ⊥ µEV 3
c,h ⩾ 0 ,∀c ∈ C, h ∈ H (B.23)

0 ≤ PEV ch
c,h − d∆EV+

c,h ⊥ µEV 4
c,h ⩾ 0 ,∀c ∈ C, h ∈ H (B.24)

0 ≤ PEV dis
c,h − d∆EV−

c,h ⊥ µEV 5
c,h ⩾ 0 ,∀c ∈ C, h ∈ H (B.25)

0 ≤ d∆+
c,h ⊥ µd+

c,h ⩾ 0 ,∀c ∈ C, h ∈ H (B.26)

0 ≤ d∆−
c,h ⊥ µd−

c,h ⩾ 0 ,∀c ∈ C, h ∈ H (B.27)

0 ≤ sc,h ⊥ µs
c,h ⩾ 0 ,∀c ∈ C, h ∈ H (B.28)

0 ≤ icsc ∗ S%max − sc,h ⊥ µS2
c,h ⩾ 0 ,∀c ∈ C, h ∈ H (B.29)

0 ≤ sc,h − S%min ∗ icsc ⊥ µS3
c,h ⩾ 0 ,∀c ∈ C, h ∈ H (B.30)

0 ≤ icsc ∗ P ch
c − d∆+

c,h ⊥ µS4
c,h ⩾ 0 ,∀c ∈ C, h ∈ H (B.31)

0 ≤ icsc ∗ P dis
c − d∆−

c,h ⊥ µS5
c,h ⩾ 0 ,∀c ∈ C, h ∈ H (B.32)

0 ≤ pc − impPc,h − expPc,h ⊥ µG
c,h ⩾ 0 ,∀c ∈ C, h ∈ H (B.33)

0 ≤ impLc,h ⊥ µimpL
c,h ⩾ 0 ,∀c ∈ C, h ∈ H (B.34)

0 ≤ expLc,h ⊥ µexpL
c,h ⩾ 0 ,∀c ∈ C, h ∈ H (B.35)

0 ⩽ −impLEV,h + d∆EV−
c,h + d∆−

c,h + icPV
c ∗GPV

c,h ⊥ µimpL1
c,h ⩾ 0 ∀c ∈ (CEV ∪ CEV/DER),∀h ∈ H

(B.36)

0 ⩽ −impLc,h + d∆EV−
EV,h ⊥ µimpL2

c,h ⩾ 0 ∀c ∈ (CEV ∪ CEV/DER),∀h ∈ H (B.37)

−Dc,h − d∆EV+
c,h + d∆EV−

c,h − d∆+
c,h + d∆−

c,h + icPV
c ∗GPV

c,h

impPc,h − expPc,h + αc ∗
(
impLc,h − expLc,h

)
= 0 :

(
λEB
c,h , free

)
,∀c ∈ C, h ∈ H (B.38)
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sEV
c,h −sEV

c,h−1 ∗
(
1−REV

)
− d∆EV+

c,h ∗
(
1− LEV

)
+d∆EV−

c,h ∗
(
1 + LEV

)
+D∆EV−

c,h = 0 :
(
λEV 1
c,h , free

)
,

∀c ∈ C, h ∈ H \ {1} (B.39)

sEV
c,1 − SOCEV

0 − d∆EV+
c,1 ∗

(
1− LEV

)
+ d∆EV−

c,1 ∗
(
1 + LEV

)
+D∆EV−

c,1 = 0 :
(
λEV 1
c,1 , free

)
,∀c ∈ C

(B.40)

sEV
c,H − SOCEV

0 = 0 :
(
λEV 2
c , free

)
,∀c ∈ C (B.41)

sc,h −sc,h−1 ∗
(
1−RS

)
− d∆+

c,h ∗
(
1− LS

)
+d∆−

c,h ∗
(
1 + LS

)
= 0 :

(
λS1
c,h, free

)
,∀c ∈ C, h ∈ H \{1}

(B.42)

sc,1 − sc,H ∗
(
1−RS

)
− d∆+

c,1 ∗
(
1− LS

)
+ d∆−

c,1 ∗
(
1 + LS

)
= 0 :

(
λS1
c,1, free

)
,∀c ∈ C (B.43)

∑
c ∈ CEV

(
impLc,h − expLc,h

)
= 0 :

(
λLEV

h , free
)

,∀h ∈ H (B.44)

∑
c ∈ CEV/DER

(
impLc,h − expLc,h

)
= 0 :

(
λ
LEV/DER

h , free
)

, h ∈ H (B.45)

Before treating the non-linearities of the model, a adjustment regarding the cost recovery equality is

needed to facilitate convergence. As in Schittekatte and Meeus (2020), the total network charges costs

collected should be within a band (calibrated as δ = 0.1%):

(
CostN

)
∗ (1−δ) −

∑
c ∈ C

∑
h ∈ H

W ∗
(
impPc,h −NM ∗ expPc,h

)
∗ vnt +

∑
c ∈ C

pc∗ cnt + n∗fnt) ⩽ 0 (B.46)

−
(
CostN

)
∗ (1+δ) +

∑
c ∈ C

∑
h ∈ H

W ∗
(
impPc,h −NM ∗ expPc,h

)
∗ vnt +

∑
c ∈ C

pc∗ cnt + n∗fnt ⩽ 0 (B.47)
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To fully transform the MPEC into a MILP, two non-linearities must be taken into account: the bilinear

terms and the complementarity constraints in the KKT conditions. First, the bilinear products in the

equality constraint of the upper-level (impPc,h ∗ vnt, expPc,h ∗ vnt and pc ∗ cnt) are already taken into

account internally by the solver Gurobi 9.1 (Gurobi Optimization, 2021). Instead of discretizing the terms

by using binary expansion (as in Momber (2015), page 102) beforehand, the solver deals with this type of

non-convexity by applying cutting planes and special branching techniques. Finally, the complementarity

constraints are linearized using Fotuny-Amat method (Fortuny-Amat and McCarl (1981)) in which they

are reformulated using additional binary variables and large enough constants (Big-Ms). Another solution

to deal with the complementarity constraints in the MPEC framework could be the SOS1 variables as

proposed in Siddiqui and Gabriel (2013). At this point, the bi-level problem turned into a mixed-integer

linear program that can be solved using the prior Gurobi 9.1 solver:
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impPc,h ≤ M imp ∗
(
1− rac,h

)
,∀c ∈ C, h ∈ H (B.48)

W ∗
(
PBEP

c,h + vnt
)

+ λEB
c,h + µG

c,h ≤ M imp ∗ rac,h ∀c ∈ C, h ∈ H (B.49)

expPc,h ≤ Mexp ∗
(
1− rbc,h

)
,∀c ∈ C, h ∈ H (B.50)

−W ∗
(
PSEP

c,h +NM ∗ vnt
)

− λEB
c,h + µG

c,h ≤ Mexp ∗ rbc,h ,∀c ∈ C, h ∈ H (B.51)

icPV
c ≤ M icpv ∗ (1− rcc) ,∀c ∈ C (B.52)

IPV +
∑

h ∈ H

λEB
c,h ∗GPV

c,h + µPV 1
c ≤ M icpv ∗ rcc ∀c ∈ C (B.53)

UPV
c − icPV

c ≤ MPV 1 ∗
(
1− rdc

)
,∀c ∈ C (B.54)

µPV 1
c ≤ MPV 1 ∗ rdc ,∀c ∈ C (B.55)

d∆EV+
c,h ≤ MdEV+ ∗

(
1− rec,h

)
,∀c ∈ C, h ∈ H (B.56)

−λEB
c,h −

(
1− LEV

)
∗ λEV 1

c,h + µEV 4
c,h ≤ MdEV+ ∗ rec,h ,∀c ∈ C, h ∈ H (B.57)

d∆EV−
c,h ≤ MdEV− ∗

(
1− rfc,h

)
,∀c ∈ C, h ∈ H (B.58)

λEB
c,h +

(
1 + LEV

)
∗ λEV 1

c,h + µEV 5
c,h ≤ MdEV− ∗ rfc,h ,∀c ∈ C, h ∈ H (B.59)

sEV
c,h ≤ MsEV ∗

(
1− rgc,h

)
,∀c ∈ C, h ∈ H (B.60)

µsEV
c,h ≤ MsEV ∗ rgc,h ,∀c ∈ C, h ∈ H (B.61)

E
EV

c,h − sEV
c,h ≤ MuEV 2 ∗

(
1− rhc,h

)
,∀c ∈ C, h ∈ H (B.62)

µEV 2
c,h ≤ MuEV 2 ∗ rhc,h ,∀c ∈ C, h ∈ H (B.63)

sEV
c,h − EEV

c,h ≤ MuEV 3 ∗
(
1− ric,h

)
,∀c ∈ C, h ∈ H (B.64)

µEV 3
c,h ≤ MuEV 3 ∗ ric,h ,∀c ∈ C, h ∈ H (B.65)

PEV ch
c,h − d∆EV+

c,h ≤ MuEV 4 ∗
(
1− rjc,h

)
,∀c ∈ C, h ∈ H (B.66)

µEV 4
c,h ≤ MuEV 4 ∗ rjc,h ,∀c ∈ C, h ∈ H (B.67)

PEV dis
c,h − d∆EV−

c,h ≤ MuEV 5 ∗
(
1− rkc,h

)
,∀c ∈ C, h ∈ H (B.68)

µEV 5
c,h ≤ MuEV 5 ∗ rkc,h ,∀c ∈ C, h ∈ H (B.69)
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d∆+
c,h ≤ Md+ ∗

(
1− rlc,h

)
,∀c ∈ C, h ∈ H (B.70)

−λEB
c,h −

(
1− LS

)
∗ λS1

c,h + µS4
c,h ≤ Md+ ∗ rlc,h ,∀c ∈ C, h ∈ H (B.71)

d∆−
c,h ≤ Md− ∗

(
1− rmc,h

)
,∀c ∈ C, h ∈ H (B.72)

λEB
c,h +

(
1 + LS

)
∗ λS1

c,h + µS5
c,h ≤ Md− ∗ rmc,h ,∀c ∈ C, h ∈ H (B.73)

sc,h ≤ Ms ∗
(
1− rnc,h

)
,∀c ∈ C, h ∈ H (B.74)

µs
c,h ≤ Ms ∗ rnc,h ,∀c ∈ C, h ∈ H (B.75)

icsc ∗ S%max − sc,h ≤ MuS2 ∗
(
1− roc,h

)
,∀c ∈ C, h ∈ H (B.76)

µS2
c,h ≤ MuS2 ∗ roc,h ,∀c ∈ C, h ∈ H (B.77)

sc,h − S%min ∗ icsc ≤ MuS3 ∗
(
1− rpc,h

)
∀c ∈ C, h ∈ H (B.78)

µS3
c,h ≤ MuS3 ∗ rpc,h ,∀c ∈ C, h ∈ H (B.79)

icsc ∗ P ch
c − d∆+

c,h ≤ MuS4 ∗
(
1− rqc,h

)
,∀c ∈ C, h ∈ H (B.80)

µS4
c,h ≤ MuS4 ∗ rqc,h ,∀c ∈ C, h ∈ H (B.81)

icsc ∗ P dis
c − d∆−

c,h ≤ MuS5 ∗
(
1− rrc,h

)
,∀c ∈ C, h ∈ H (B.82)

µS5
c,h ≤ MuS5 ∗ rrc,h ,∀c ∈ C, h ∈ H (B.83)

µG
c,h ≤ MP ∗ rtc,h ,∀c ∈ C (B.84)

pc − impPc,h − expPc,h ≤ MP ∗
(
1− rtc,h

)
,∀c ∈ C (B.85)

impLc,h ≤ M impL ∗
(
1− ruc,h

)
,∀c ∈ C, h ∈ H (B.86)

λEB
c,h + λLEV

h ≤ M impL ∗ ruc,h ,∀c ∈ C, h ∈ H (B.87)

expLc,h ≤ MexpL ∗
(
1− rvc,h

)
,∀c ∈ C, h ∈ H (B.88)

− λEB
c,h − λLEV

h ≤ MexpL ∗ rvc,h ,∀c ∈ C, h ∈ H (B.89)

µimpL1
c,h ≤ M impL1 ∗ rwc,h ,∀c ∈ C, h ∈ H (B.90)

−impLEV,h + d∆EV−
c,h + d∆−

c,h + icPV
c ∗GPV

c,h ≤ M impL1 ∗
(
1− rwc,h

)
,∀c ∈ C, h ∈ H (B.91)

µimpL2
c,h ≤ MmpL2 ∗ rxc,h ∀c ∈ (CEV ∪ CEV/DER),∀h ∈ H (B.92)

−impLc,h + d∆EV−
EV,h ≤ M impL2 ∗

(
1− rxc,h

)
∀c ∈ (CEV ∪ CEV/DER),∀h ∈ H (B.93)

Appendix C. Electric Nation Customer Trial: Insights from the pilot

The Electric Nation pilot was conducted in the U.K. by the electricity distribution network operator for

the Midlands, South Wales and the South West called Western Power Distribution. The aim of the project
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was to better understand the impact of charging at home on electricity distribution networks. The trials

happened between January 2017 and 2018 with a total of 673 smart chargers installed in the participants’

homes.

From the final database containing more than 157,520 rows of charging episodes and various columns

with detailed parameters such as start and stop charging times, kWh consumed, the power level of the

EVSE, battery capacity etc., we derive some important parameters to use in our study case, as for example

the connection hours. We calculate the disconnection hour based on two observations: the hour in which

the amount of energy needed before leaving home is the highest and the greatest difference of available

power between two consecutive hours. We calculate the average daily profile of energy consumption per

hour before disconnection and the average available power of the fleet.

First, it is observed that the EVs need more energy before leaving at 7am, as is shown in Fig. C.9. Then,

the greatest steepness of the curve is between 7am and 8am, meaning that most vehicles left their homes

at the former hour. The same analysis is done regarding the reconnection hour, in which the highest power

difference between two consecutive hours is from 5pm to 6pm. As a result, the second hour is defined as

5pm.

Figure C.9: Electric Nation Trial data.

Appendix D. Complementary Tables
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Table D.5: Total cost and DER for different energy profiles (MILP analysis)

Passive consumers with EV (No V2G)

One Meter Submetering

Flat TOU1 TOU2 Flat/TOU1 Flat/TOU2

Total costs ($) 1175 1050 1090 1039 1079
Coincident peak (kW) 8.4 3.2 3.2 3.2 3,2

Active consumers with EV (V2G allowed)

One Meter Submetering

Flat TOU1 TOU2 Flat/TOU1 Flat/TOU2

Total costs ($) 1704 1323 1506 1425 1533
Coincident peak (kW) 4.8 0 0 0 0
PV investments (kW) 0.77 0.44 1.04 0.63 0.77
Battery investments (kWh) 0 0 3.51 1.37 0

Active consumers with EV (No V2G)

One Meter Submetering

Flat TOU1 TOU2 Flat/TOU1 Flat/TOU2

Total costs ($) 1704 1476 1583 1568 1608
Coincident peak (kW) 3.1 0 0 3.1 3.1
PV investments (kW) 0.77 2.96 2.96 0.77 0.77
Battery investments (kWh) 0 13.6 13.6 0 0

Table D.6: Total cost and DER for different energy profiles (PV cost = 1,500$/kWp)

Passive consumers with EV (No V2G)

One Meter Submetering

Flat TOU1 TOU2 Flat/TOU1 Flat/TOU2

Total costs ($) 1175 1050 1090 1039 1079
Coincident peak (kW) 8.4 3.2 3.2 3.2 3.2

Active consumers with EV (V2G allowed)

One Meter Submetering

Flat TOU1 TOU2 Flat/TOU1 Flat/TOU2

Total costs ($) 1722 1340 1529 1442 1551
Coincident peak (kW) 9.5 0 2.5 0 4.5
PV investments (kW) 0.45 0.36 0.45 0.38 0.45
Battery investments (kWh) 0 0 0 0 0

Active consumers with EV (No V2G)

One Meter Submetering

Flat TOU1 TOU2 Flat/TOU1 Flat/TOU2

Total costs ($) 1722 1598 1648 1586 1627
Coincident peak (kW) 4.7 4.3 4.7 4.7 4.7
PV investments (kW) 0.45 2.5 0.77 0.45 0.45
Battery investments (kWh) 0 11 0 0 0
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Table D.7: Charging power sensitivity cost results.

Total cost for passive consumers with a 60kWh EV - No V2G ($)
One Meter Submetering

Charging power Flat TOU1 TOU2 Flat/TOU1 Flat/TOU2
3 kW 1175 1054 1098 1043 1087
7 kW 1175 1050 1090 1039 1079
11 kW 1175 1050 1090 1039 1079
Total cost for active consumers with a 60kWh EV - V2G allowed ($)

One Meter Submetering
Charging power Flat TOU1 TOU2 Flat/TOU1 Flat/TOU2
3 kW 1723 1495 1596 1516 1595
7 kW 1723 1344 1535 1447 1555
11 kW 1723 1317 1491 1400 1520

Total cost for active consumers with a 60 kWh EV - No V2G ($)
One Meter Submetering

Charging power Flat TOU1 TOU2 Flat/TOU1 Flat/TOU2
3 kW 1723 1599 1650 1591 1635
7 kW 1723 1598 1648 1587 1628
11 kW 1723 1598 1648 1587 1628

Table D.8: Total network costs for all scenarios according to grid cost structure

Sunk ($) 50/50 ($) Prospective ($)

Volumetric 2040 1538 817
Three-part tariff 2020 1533 848
Volumetric (V2G and Submetering) 2039 1618 1103
Three-part tariff (V2G and Submetering) 2035 1639 1041

Table D.9: Total network costs for all scenarios per agent (50/50 scenario)

Prosumer/EV Consumer Prosumer Consumer/EV
($) ($) ($) ($)

Volumetric 537 224 403 374
Three-part tariff 508 274 377 373
Volumetric (V2G 588 239 390 400
and Submetering)
Three-part tariff (V2G 591 244 334 469
and Submetering)

Table D.10: Total network costs for all scenarios per agent (100% prospective scenario)

Prosumer/EV Consumer Prosumer Consumer/EV
($) ($) ($) ($)

Volumetric 294 118 207 198
Three-part tariff 272 155 238 183
Volumetric (V2G 404 162 267 270
and Submetering)
Three-part tariff (V2G 270 173 324 325
and Submetering)
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