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A high penetration of electric vehicles (EVs) will deeply impact the management of electric power systems. The risk of not providing adapted EV pricing signals can lead to inefficient investments in grid infrastructure. To avoid costly grid reinforcements and to ensure proper guidance for EV charging, a solution allowing customers to access EV-only rates without installing a separate meter, which we refer to as submetering, is an attractive option for EV owners and grid operators. We develop a game-theoretical model expressed and treated as a mathematical program with equilibrium constraints (MPEC) to capture the interaction between a national regulatory authority (NRA) designing these tariffs and heterogeneous agents. This framework represents a stylized regulatory setup applicable to several European countries.

First, we analyse the conditions in which EV-only tariffs can be applied for domestic charging by comparing different energy profiles. Second, we study the impact of EV charging on different tariff structures to identify the most efficient way of recovering network costs. We found that the adoption of submetering under a pure volumetric tariff can bring yearly gains varying from $64 to $125 to consumers with EV. Finally, we derive policy implications from the results.

Highlights:

• We build a game-theoretical framework to assess the cost-efficiency of EV-only tariff adoption.

• Agents able to invest in distributed energy resources (DERs) with EVs have higher total savings with classic time-of-use rates.

• Capacity charges may increase fairness issues among heterogeneous users.

• Consumers adopting EV-only rates with submetering perceive yearly gains varying from $64 and $125.

Introduction

The shift towards a low-carbon economy requires a great reduction in CO2 emissions coming from the transport sector and which account for 24% of direct emissions (IEA, 2020). To reduce CO2, electric vehicles (EVs) are required to substitute Internal Combustion Engine (ICE) vehicles to achieve the decarbonization goals established during international environmental summits. Between 150 and 230 million vehicles are expected to be on the world's roads by 2030, potentially causing future issues for power systems. EV charging should not drastically increase consumption in already existing peak periods neither create new ones which may exceed grid maximum capacity. This study aims to consider those types of challenges that grid management might face as a result of the high penetration of EVs [START_REF] Salah | Impact of electric vehicles on distribution substations: A Swiss case study[END_REF]. To avoid costly grid reinforcements and the risk of load curtailment due to EV charging, indirect price control via adapted economic signals is a solution adopted by many utilities [START_REF] Knezović | Supporting involvement of electric vehicles in distribution grids: Lowering the barriers for a proactive integration[END_REF]. These economic signals, given to EV users via a network tariff and energy price profiles, can have different structures. According to these structures, users who seek to minimise their electricity bills are led to a different final utilisation pattern. Most household electricity meters do not separate the rates used for household electricity needs and for charging privately owned EVs. This is known as the "wholehouse" rate. Today, users have the option to access a domestic time-of-use (TOU) rate applied exclusively to EV charging. This tariff is called the EV-only rate. Users of this measurement method can reduce charging costs and enhance the flexibility offered by EVs via adapted price signals.

Several pilots have been conducted in the U.S. (California, Minnesota, Texas) to test the technical feasibility and customer acceptance of these rates (Smart Electric Power Alliance, 2019). Californian electric investor-owned utilities (IOUs) already offer these types of rates in their portfolio for dwellings. For instance, Pacific Gas & Electricity (PG&E) and San Diego Gas & Electric (SD&E) allow residential customers to be billed at a tiered rate for home appliances, while for EV charging, a specific time-of-use plan is adopted (PGE, 2021, SDGE, 2021). However, as installing a second meter would be necessary for this billing method to work, EV-only rates have not been widely adopted due to the high associated cost of extra equipment.

The need for separate wiring and metering renders such market segmentation expensive and cumbersome [START_REF] Borenstein | Designing electricity rates for an equitable energy transition[END_REF]. One alternative to avoid upfront second meter costs or fees for residential customers is submetering. Under this option, the metering infrastructure inside the electric vehicle supply equipment (EVSE) can be used to measure the electricity coming from the grid specifically used for EV charging.

Technological progress in smart meters, communication networks and data management will allow the submetering configuration to be adopted by many utilities for billing purposes. For example, in the US, an official decision on submetering by the regulator in California was expected in 2021 after the conclusion of submetering pilots (CPUC, 2021). However, the decision was not taken in 2021 and the subject remained open until 2022. On August 2022, California Public Utility Commission (CPUC) approved a decision regarding submetering protocol and EVSE communication protocols (CPUC, 2022). This pioneering decision requires Californian utilities to implement the submetering protocol, enabling customers to benefit from cheaper EV charging and to participate in demand response programs.

Advanced metering infrastructure (AMI) for electricity is being rolled out in different places in the E.U. and U.S. For instance, as of July 2018, all but two member states in the E.U. had conducted at least one cost-benefit analysis of a large-scale rollout of smart meters to at least 80% of final customers for electricity by 2020. However, only a few of these member states reached the target, while the majority postponed the achievement of this milestone to 2030 (European Commission, 2020). In the U.S., by the end of 2020, 75% of U.S. households already had an AMI installation in their homes [START_REF] Cooper | Electric Company Smart Meter Deployments: Foundation for a Smart Grid (2021 Update)[END_REF]. To the best of our knowledge, no study has assessed the effects of adopting, simultaneously, two different rates (one for EV and one for the remaining loads) in the same household on users and network tariff design. We investigate this configuration supposing that the submetering scheme has a dedicated protocol allowing communication between the owner's EVSE and the utility for billing purposes.

When EV numbers reach a certain threshold in the future, the charging demand will surely have a significant impact on grid's load curve [START_REF] Ma | Research on the Valley-Filling Pricing for EV Charging Considering Renewable Power Generation[END_REF]. The risk of not providing adapted EV pricing signals can lead to inefficient investments in grid infrastructure. Submetering can play an important role as a politically viable and low transaction costs solution to ensure proper guidance for EV charging. Our integrated approach considering diverse energy profiles and the impact on tariff design allows a fair investigation of the cost-effectiveness of solutions. We find that a total gain between $64 and $125 per year is achievable depending on the state of the grid and level of DER penetration. Users willing to adopt this solution, when possible, can collect the spread between flat and time-of-use profiles, which is not offset by network tariff increases in the case of volumetric tariffs.

The structure of the paper is as follows. First, an overview of the problem is given to explain the motivation for the research. In Section 2, a literature review is conducted, and the research gaps are identified. In Section 3, the model is presented. The data used are then presented in Section 4 along with the setup proposed. In Section 5, the results are presented showing energy profile assessments and network tariff impacts. In Section 6, we discuss the results and derive policy implications. The last section concludes.

Literature Review

In this section, we analyse two main strands of literature. The first concerns the interaction between EVs, DERs and tariff design, which has received much attention recently. This is mainly due to the great penetration of distributed energy resources in the grid, which may change the way utilities charge their customers. The second looks at EV demand-side flexibility assessments that analyse how smart charging and Vehicle-to-Grid (V2G) can simultaneously bring remuneration via energy services and support the grid. This work locates itself at the intersection between these two strands by tackling dedicated EV tariffs which can defer network investment by adopting smart charging.

A vast body of literature investigates the impacts of different electricity rates, including energy prices and network tariffs, on specific end-users possessing DERs. The impacts on their decisions are assessed either with exogenously defined tariffs [START_REF] Ansarin | Cross-subsidies among residential electricity prosumers from tariff design and metering infrastructure[END_REF][START_REF] Backe | Comparing individual and coordinated demand response with dynamic and static power grid tariffs[END_REF][START_REF] Freitas Gomes | Rate Design with Distributed Energy Resources and Electric Vehicles: A Californian Case Study[END_REF] or using equilibrium models in which grid tariffs are determined endogenously as a result of a bi-level modelling approach [START_REF] Hoarau | Network tariff design with prosumers and electromobility: Who wins, who loses?[END_REF][START_REF] Schittekatte | Least-Cost Distribution Network Tariff Design in Theory and Practice[END_REF][START_REF] Askeland | Helping end-users help each other: Coordinating development and operation of distributed resources through local power markets and grid tariffs[END_REF]. In all these cases, only one tariff structure is analysed at a time for users with only one metering scheme. [START_REF] Hoarau | Network tariff design with prosumers and electromobility: Who wins, who loses?[END_REF] analyse the interaction between tariff design and DERs with EVs to measure the most cost-efficient and fair configuration for heterogeneous agents. According to the findings of these authors, the more a tariff structure gives incentives for DERs, the less beneficial it is for EVs. Using a similar framework, [START_REF] Askeland | Helping end-users help each other: Coordinating development and operation of distributed resources through local power markets and grid tariffs[END_REF] highlight that an EV agent can spread EV charging evenly throughout the day to minimise the agents' individual peak load regardless of the overall load situation. This can be problematic if prospective costs drive grid costs since the coincident peak can go up and be followed by a tariff increase. These costs depend mainly on the maximum cumulative coincident load of all customers and an incremental network cost parameter. They serve as a proxy for the network costs yet to be made. If prospective costs are recovered via cost-reflective tariffs, it can benefit both prosumers who can invest in DERs and consumers who are not able to, according to [START_REF] Schittekatte | Least-Cost Distribution Network Tariff Design in Theory and Practice[END_REF].

A subset of this literature specifically investigates tariffs and best practices for EV charging [START_REF] King | EV charging tariffs that work for EV owners, utilities and society[END_REF][START_REF] Hildermeier | Smart EV charging: A global review of promising practices[END_REF][START_REF] Kufeoglu | nderstanding tariff designs and consumer behaviour to employ electric vehicles for secondary purposes in the United Kingdom[END_REF]. [START_REF] Hildermeier | Smart EV charging: A global review of promising practices[END_REF] argue that customer education is key, in particular to attract new user groups who are not already convinced of the specific advantages of managed EV charging. For EV-only tariffs, this effort would probably duplicate since more information regarding bill savings optimisation and metering infrastructure would be needed. However, if adequate information about tariffs and behaviour is provided, users usually choose more complex tariffs [START_REF] Mayol | Giving consumers too many choices: a false good idea? A lab experiment on water and electricity tariffs[END_REF]. Along the same line, [START_REF] Kufeoglu | nderstanding tariff designs and consumer behaviour to employ electric vehicles for secondary purposes in the United Kingdom[END_REF] support the idea that energy utilities must offer consumers more options for time-of-use tariffs, not only to allow for greater demand-side management but, also, to encourage uptake of V2H technology. Finally, [START_REF] King | EV charging tariffs that work for EV owners, utilities and society[END_REF] point out that submetering is indeed a far less expensive option than installing a separate meter for the EV. Moreover, they explain that standards are already available to ensure appropriate billing using the submeter approach. Its accuracy can be set at the same level as already existing standards for electricity meters.

The second strand of literature studying EV demand-side flexibility raises attention to the challenges and opportunities expected during EV uptake. [START_REF] Knezović | Supporting involvement of electric vehicles in distribution grids: Lowering the barriers for a proactive integration[END_REF] provide a roadmap with key recommendations for supporting active EV involvement in grids to provide flexibility services such as investment deferral, load and voltage services. One barrier they highlight is a lack of standardised smart-meter functionalities and interoperability among all participants. Along the same line, [START_REF] Salah | Impact of electric vehicles on distribution substations: A Swiss case study[END_REF] argue that price incentives can help exploit available load flexibility embedded in EV charging, while if ill-designed, they can lead to a significant increase in peak loads in times of low prices. In our framework, network investment deferral supported by EV flexibility in a context of renewable energy as explored by [START_REF] Hemmati | Investment deferral by optimal utilizing vehicle to grid in solar powered active distribution networks[END_REF] can contribute to an accessible cost-reflective tariff. This flexibility can be enhanced if V2G is enabled. [START_REF] Thompson | Vehicle-to-Everything (V2X) Energy Services, Value Streams, and Regulatory Policy Implications[END_REF] listed a large number of services that EVs are ready to provide if bidirectional chargers are available. For instance, V2G revenue streams can include usual renewable energy support [START_REF] Kempton | Vehicle-to-Grid Power Implementation: From Stabilizing the Grid to Supporting Large-Scale Renewable Energy[END_REF], reliable frequency regulation [START_REF] Lauinger | Vehicle-to-Grid for Reliable Frequency Regulation[END_REF] and electricity bill management [START_REF] Dixon | Vehicle to Grid: Driver Plug-in Patterns, Their Impact on the Cost and Carbon of Charging, and Implications for System Flexibility[END_REF].

We contribute to the literature by analyzing the adoption of submetering in a DER uptake context. This inclusion allows to address literature gaps in several strands of literature. First, while the literature studying the impacts of electricity rates on EV charging and DERs investment consider the household under the same rate, our study goes further. Two different rates, one for the house loads and another for EVs, are included in the electricity bill optimization problem. This configuration unlocks new ways to optimize energy and network costs. Then, we show that this type of adoption can be considered as a form of customer response which is not addressed in the vast body of EV demand-side flexibility literature. The mixed adoption of submetering and smart charging is evaluated as a unique flexible resource for EVs. Submetering for electric vehicle charging has not been receiving much attention other than some EV pilot projects in the US and the recent CPUC's decision which allows submetering in California. The focus has been mostly to use submetering measurements in demand-side response energy-saving problems for smart appliances such as dishwashes, washing machines and hot water buffers [START_REF] Vanthournout | An Automated Residential Demand Response Pilot Experiment, Based on Day-Ahead Dynamic Pricing[END_REF][START_REF] Yin | Linking Measurements and Models in Commercial Buildings: A Case Study for Model Calibration and Demand Response Strategy Evaluation[END_REF][START_REF] Yong | Energy and Flow Demand Analysis of Domestic Hot Water in an Apartment Complex Using a Smart Meter[END_REF]. We provide complementary information to the Californian pilot by also considering the network tariff impact of a larger scale adoption using submetering solution. Finally, we contribute to the V2G literature by including, for the first time, this technology in a context of submetering.

Method

In this section the game-theoretic model is presented to capture the interaction between a national regulatory authority (NRA) and dwellings. First, we present the model overview. The model consists of two levels, the lower level represents the dwellings and the upper level stands for the regulatory authority, both casted as an optimization problem and modelled as a mathematical program with equilibrium constraint.

Then, the equations of the optimisation problems for both levels are described in detail.

Model overview

This section describes the model used to pursue the main goals of this research. We develop a bi-level game-theoretical optimisation model to capture the interaction between a national regulatory authority (NRA) and dwellings. This jurisdiction framework is closer to the European system in which the regulatory authorities are national and responsible for negotiating network tariffs with grid operators. The upper level represents the NRA responsible for setting network tariffs to maximise social welfare subject to grid cost-recovery, total DER investment costs and the cost of final electricity use in dwellings1 . In the lower level, dwellings seek to minimise their electricity costs according to the final tariff structure applied. Decisions made by dwellings include ones on new investments in DER and optimal scheduling of electric vehicle charging, which in turn depends on the tariff applied. While decisions made by the NRA involve setting the proper tariff structure which depends on the actions of the dwellings. Therefore, there is a clear interdependence between lower-level charging, investment decisions and tariff design. This interdependence requires an equilibrium solution to be found, which can only be properly captured with a bi-level optimisation approach as previously described. At first, we only deal with the lower level to find the most suitable energy profile for each agent owning an EV. In this case, the lower level is formulated as mixed integer linear programming (MILP) taking network tariffs as exogenous variables. Then, to assess the impact on network tariffs, a bi-level model is created and treated as a mathematical program with equilibrium constraints (MPEC) in which the equilibrium game-theoretic solution for both the NRA and dwellings will be the one in which no unilateral deviation in their decisions is profitable, defined as a Nash equilibrium. The complete solution framework is summarised in Fig. 1. The full model formulation and the techniques used to transform and solve the MPEC are detailed step by step in Appendix Appendix A.

Upper-level model formulation: the regulator

Regulator objective function

The main objective of the regulator is to decide on the network tariff to maximise social welfare while ensuring cost-recovery considering individual optimisation problems of agents. In this context, social welfare maximisation can be assumed to be equivalent to cost minimisation for all interacting agents since, in addition to network costs, investment and energy costs for dwellings are also included in the regulator's (1)

The first term in the regulator's objective function is investment decisions by dwellings. It is represented by Eq. ( 2), in which a customer c, from a set of customers C, seeks to optimally decide to install certain solar PV (ic P V c ) and battery (ic S c ) capacities if it is profitable to do so, with annualized investment costs I P V and I S for solar PV and the battery, respectively. This is formulated as:

Cost DER = c ∈ C I S c * ic S c + I P V c * ic P V c (2)
The total net energy costs to satisfy electricity demand for all agents is calculated in Eq. ( 3). We assume one retailer supplying all the customers. However, more than one energy profile can be considered according to the rate chosen. For instance, charging vehicles with an EV-only tariff will require a time-of-use profile whereas for the house electricity consumption, a flat tariff profile can be considered. Energy charges account for the total energy imports (imp P c,h ) minus total exports back to the grid (exp P c,h ) at a certain price for buying (P BE P c,h ) and another for selling (P SE P c,h ) energy. If the buying and selling prices are the same, the rate is said to be symmetric in terms of energy. Finally, the parameter W stands for the scaling factor to provide costs on a temporal basis. To calculate the yearly operational costs, W is calculated as Total number of hours per year n = 182.5, in which n = 48 for the time horizon considered of the set H of 48 hours

(H = {1, 2, 3, • • • , n}).
The net energy costs are then described as:

Cost P = c ∈ C h ∈ H W h * imp P c,h * P BE P c,h -exp P c,h * P SE P c,h (3) 
The last term in the objective function accounts for the network costs, calculated according to Eq. ( 4).

The cost of operating and reinforcing the distribution grid is borne by the distribution system operator (DSO), which is assumed to recover its costs via a regulated grid tariff. We assume two types of costs: (i) sunk costs and (ii) prospective costs. The sunk costs are those incurred in the past to build and reinforce the grid to meet future demand. Prospective costs are variable and depend on the maximum cumulative load of all customers. The variable agc is the additional grid capacity needed to ensure proper functioning with an annualised incremental cost I DSO . This can be formulated as in the following equation:

Cost N = SunkCosts + I DSO * agc (4)

Grid capacity constraints

The grid capacity needed to ensure power delivery to customers depends on their hourly imports and exports. Because different customers can import and export energy at the same time, the aggregated net electricity flow is the variable needed to decide the size of additional grid investments. This flow is calculated as the absolute value of aggregate trading by all customers as shown in Eq. ( 5).

e G h = c ∈ C (imp P c,h -exp P c,h ) , ∀h ∈ H (5)
Then the total grid capacity, defined as the sum of the existing grid capacity (egc) and additional grid capacity (agc), should always be greater than or equal to the net hourly exchange of all the customers' demands, as formulated in Eq. ( 6)2 :

egc + agc ⩾ e G h , ∀h ∈ H (6)

DSO cost-recovery constraint

An important constraint on the upper level is the recovery of grid costs by the DSO via the network tariff. In our framework, the regulator is fully in charge of setting the tariff and we assume that all costs can be recovered via a three-part tariff formulation including volumetric (vnt), capacity (cnt), and fixed (f nt) elements, as in Eq. ( 7). The three terms, respectively, depend on each agent's net energy (€/kWh), each consumer's maximum peak over the 48 hours (€/kW) and the number of customers n (€/customer). Netmetering options are also considered by parameter (N M ), which can assume different values according to the tariff structure. For example, a user can be charged for the net amount of energy consumed (N M = 1), only for imports (N M = 0), or for both imports and exports back to the grid (N M = 1). This formulation allows the regulator to adopt the tariff which results in the highest social welfare while considering customer reactions. The full cost-recovery constraint is described as: 

Cost N = c ∈ C h ∈ H W * imp P c,h -N M * exp P c,h * vnt + c ∈ C p c * cnt + n * f nt ( 
M in Cost c = Cost DER c + Cost P c + Cost N c (8) 
The following Eqs. ( 9) to (11) detail each term in the lower-level objective function. First, DER investment costs are the sum of annualised solar-PV and battery investments made by customers in the set of customers that can invest in DER (C DER ) as in Eq. ( 9). The energy charges for each customer are related to the type of energy rate that they have adopted from among the retailer's offer, as indicated in Eq. ( 10).

Then, the network charges calculated in Eq. ( 11) are the charges paid by each customer for grid utilisation.

A combination of individual tariff setups to be used: pure volumetric, non-coincidental peak pricing and fixed charges3 . If we consider a dedicated measurement of power and energy for EVs, it will create another connection point which can be physical, using an extra meter, or virtual, via submetering. This is crucial for network tariff design purposes since EVs can then be considered as additional agents separate from the dwelling, even though the dwelling will still bear the costs of charging or collect the revenue from discharging into the grid.

Cost DER c = I S c * ic S c + I P V c * ic P V c , ∀c ∈ C DER (9) Cost P c = h ∈ H W * imp P c,h * P BE P c,h -exp P c,h * P SE P c,h , ∀c ∈ C (10) Cost N c = h ∈ H W * imp P c,h -N M * exp P c,h * vnt + p c * cnt + f nt, ∀c ∈ C (11)

Agents' peak power constraint

The amount of capacity charges paid by each user depends on their peak power consumption over a period. As the installed grid capacity must ensure that both bidirectional power flows can be managed, the peak power can occur while customers are importing or exporting energy, as is described in Eq. ( 12)

with the respective dual variable (µ G c,h ). Since only one term on the left-hand side of the inequality can be non-zero in each time step, we can measure their maximum imported or exported power to calculate the amount of capacity-based charges that should be paid. This is described as:

imp P c,h + exp P c,h ⩽ p c , ∀c ∈ C, h ∈ H : µ G c,h (12) 
The agents represented by the lower-level optimisation problem are subject to several constraints which are described in Eqs. ( 13) to (30) and their respective dual variables. These equations describe the investment options available for DERs and their interaction with dwelling load and electric vehicles and are detailed in the following section.

Electric vehicle capacity constraints

The main purpose of EVs is to satisfy the mobility needs of their owners. However, when idle they can be considered as batteries able to inject energy back into the grid while maintaining a certain amount of energy for driving. Eq. ( 13) describes how the state of charge (SOC) of the EV battery (s EV c,h ) depends on its state in the previous time step ( s EV c,h-1 ), the charging decision (d ∆EV + c,h

), the discharging decision (d ∆EV - c,h

) and consumption while driving (D ∆EV - c,h

)4 . Losses in the storage system are represented by the converter loss parameter (L EV ) and the battery self-discharge parameter (R c )5 . Initial conditions are needed to account for overnight charging and the initial state of charge. In order to enable this, the last time step is linked to the first one, as in Eq. ( 14), which assumes that the initial and final states of the battery should be equivalent. Finally, the initial state of charge is determined by parameter SOC EV 0 in Eq. ( 15) below:

s EV c,h = S EV c,h-1 * 1 -R EV c + d ∆EV + c,h * 1 -L EV -d ∆EV - c,h * 1 + L EV -D ∆EV - c,h , ∀c ∈ C, h ∈ H \{1} : λ EV 1 c,h (13) 
s EV c,1 = S EV c,H * 1 -R EV c + d ∆EV + c,1 * 1 -L EV -d ∆EV - c,1 * 1 + L EV -D ∆EV - c,1 , ∀c ∈ C : λ EV 1 c,1 (14) 
s EV c,H = SOC EV 0 , ∀c, h : λ EV 2 c ( 15 
)
Eqs. ( 16) to ( 19) describe the operational limits of the EV battery. First, Eqs. ( 16) and ( 17) ensure that the state of charge of the battery remains within a certain range to avoid extra battery degradation.

By limiting the state of charge, we implicitly remove the need to include degradation costs directly in the objective function. Regarding power levels, parameters (P EV ch c,h

) in Eq. ( 18) for charging and (P EV dis c,h

) in Eq. ( 19) for discharging are responsible for limiting power transfers, depending on the type of electric vehicle charging equipment (EVSE) adopted6 . These constraints are described as:

s EV c,h ⩽ E EV c,h , ∀c ∈ C, h ∈ H : µ EV 2 c,h (16) 
s EV c,h ⩾ E EV c,h , ∀c ∈ C, h ∈ H : µ EV 3 c,h (17) 
d ∆EV + c,h ⩽ P EV ch c,h , ∀c ∈ C, h ∈ H : µ EV 4 c,h (18) 
d ∆EV - c,h ⩽ P EV dis c,h , ∀c ∈ C, h ∈ H : µ EV 5 c,h (19) 

Battery storage investment constraints

A stationary battery allows the user to temporarily shift load and store the surplus electricity generated by solar PV. Analogous to the EV charging and discharging equations, Eq. ( 20) describes how the state of charge of the battery (s c,h ) depends on its state in the previous time step (s c,h1 ), the charging decision

(d ∆+ c,h
) and the discharging decision (d ∆- c,h ). To ensure the coupling between the first and the last timestamp of the state of charge, Eq. ( 21) is included. In this case, we let the optimisation define the initial state of charge of the battery since it will depend on the total size of the battery installed, which is also a decision variable.

s c,h = s c,h-1 * (1 -R c ) + d ∆+ c,h * 1 -L S -d ∆- c,h * 1 + L S , ∀c ∈ C, h ∈ H \ {1} : λ S1 c,h (20) 
s c,1 = s c,H * (1 -R c ) + d ∆+ 1 * 1 -L S -d ∆- 1 * 1 + L S , ∀c ∈ C : λ S1 c,1 (21) 
The capacity installed is decided in the model, if it is profitable for each agent, by choosing variable bounded by a maximum capacity limit (U s c ), as in Eq. ( 22). For certain agents who do not have the possibility of installing any battery capacity, the maximum value can be set at zero.

ic s c ⩽ U S c , ∀c ∈ C : µ S1 c (22)
As in the EV case, Eqs. ( 23) to ( 26) describe the operational limits for the stationary battery. The parameters (S %max ) and (S %min ) are the percentages of maximum and minimum charge levels allowed respectively. Regarding power levels, the charging factor (P ch c ) in Eq. ( 25) and discharging factor (P dis c ) in Eq. ( 26) represent the maximum limits of power transfer according to the storage system specifications, described as follows:

s c,h ⩽ ic s c * S %max , ∀c ∈ C, h ∈ H : µ S2 c,h (23) 
s c,h ⩾ S %min * ic s c , ∀c ∈ C, h ∈ H : µ S3 c,h (24) 
d ∆+ c,h ⩽ ic s c * P ch c , ∀c ∈ C, h ∈ H : µ S4 c,h (25) 
d ∆- c,h ⩽ ic s c * P dis c , ∀c ∈ C, h ∈ H : µ S5 c,h (26) 

Solar-PV investment constraints

The solar-PV capacity installed is also endogenously decided in the model. If it is profitable for an agent to invest in a certain PV capacity, the variable ic P V c represent this value, which is bounded by a maximum capacity limit (U P V c

) as in Eq. ( 27). For certain agents incapable of installing any solar PV, the maximum value can be set at zero. The amount of energy produced will depend on the solar availability in kW/kWp (G P V c,h ) and users do not have the option of curtailing, meaning that they have to export the surplus electricity generated in any given time period.

ic P V c ⩽ U P V c ∀c ∈ C : µ P V 1 c,h (27) 

Energy balance equation

The energy balance equality couples all the investment and operational decisions with the load demand profile of each customer (D c,h ), as in Eq. ( 28). The terms imp L c,h and exp L c,h allow the interaction between an EV which is metered separately and the household load to be modelled. By treating the EV as a separate agent, it can buy electricity at an EV-only rate and if needed transfer power to the house, which is subject to a different rate. In this manner, Eq. ( 29) ensures the supply-demand balance: all the imports are equal to the exports. Similarly, households that may invest in DERs will have their own interaction with their electric vehicles. Now, dwellings can invest in DERs and arbitrage energy between the two different retail tariffs, for example by charging the EV with a battery at a flat rate. It is also possible to charge the EV using local solar energy instead of relying on buying electricity from the grid, significantly increasing the complexity of the interactions. To restrain the relation between EVs and prosumer-type households, another equilibrium equation (Eq. ( 30)) is added. The auxiliary parameter α c , in Eq. ( 28), limits non-submetered agents from interacting with their dwellings at EV-only rates by setting it to zero. An analogy can be made with local market modelling. In our case, an EV and a specific type of household form a local market in which they can only interact with others via the main grid. These interactions are described in Eqs. ( 28) to (30):

D c,h + d ∆EV + c,h -d ∆EV - c,h + d ∆+ c,h -d ∆- c,h -ic P V c * G P V c,h = imp P c,h -exp P c,h + α c * imp L c,h -exp L c,h , ∀c ∈ C, h ∈ H : λ EB c,h (28) 
c ∈ C EV imp L c,h -exp L c,h = 0 , ∀h ∈ H : λ L EV h (29) c ∈ C EV /DER imp L c,h -exp L c,h = 0 , ∀h ∈ H : λ L EV /DER h (30) 
Additional constraints can be added to enforce the interaction between EVs and the houses to which they are connected, as in Eqs. ( 31) and (32). These equations limit the amount of energy that a vehicle can import from the house according to the existing energy resources (battery and PV). Reciprocally, the house can only import energy from the vehicle if it is ready to discharge at any time. The model allows V2H to be avoided by forcing the constraint of equation Eq. ( 32) to zero while allowing V2G via the energy balance equation ( 28).

imp L EV,h ⩽ d ∆- c,h + ic P V c * G P V c,h , ∀c ∈ (C EV ∪ C EV /DER ) , ∀h ∈ H : µ impL c,h (31) imp L c,h ⩽ d ∆EV - EV,h , ∀c ∈ C EV , ∀c ∈ (C EV ∪ C EV /DER ) , ∀h ∈ H : µ impL2 c,h (32) 
4. Case study: setup and input data

In this section, the setup and input data for a case study using the bi-level model are described. First, the general setup of the numerical example will be explained as a starting point. Then, the data regarding agents such as load profiles, solar insolation and energy tariff profiles are presented alongside the data on EVs and DERs. Finally, a baseline electricity bill is described followed by the assumptions of grid cost structure in our framework.

Setup

In the case study, two behaviours are considered regarding the options agents have to invest in DER like solar PV and stationary batteries: prosumer and consumer behaviour. Moreover, when EVs are considered, a combination resulting in four different types of agents is observed: prosumer with EV, consumer, prosumer and consumer with EV7 . Given that smart charging, V2G and submetering are considered, the number of possible scenarios could rapidly increase. To limit the number of agents and scenarios, V2G is only adopted by prosumers with EVs. To overlook the adoption of V2G for consumers with EVs is a simplification since this technology only needs a vehicle, but not necessarily DERs to work. However, we assume that submetering can be considered as a consumer response to optimize the electricity bill without any extra cost.

As this solution does not involves possible extra battery cycle degradation or an investment in a new EVSE, the financial attractiveness could make consumers choose submetering adoption instead of V2G. Also, to the best of our knowledge, no pilot studies analyzed included a V2G setup at the same time with submetering.

The participants of the Californian pilot project that were open to participate in grid services included only demand response [START_REF] Nexant | California Statewide PEC Submetering Pilot -Phase 2 Report[END_REF]. Moreover, literature has shown that there is a strong positive synergy between electric vehicles with V2G and DERs (Eid et al., 2016, Karfopoulos and[START_REF] Karfopoulos | Distributed Coordination of Electric Vehicles Providing V2G Services[END_REF], which may incentivize agents that can invest in DERs, to invest in bidirectional chargers.

Smart charging is essential to limit the risk of surpassing the maximum capacity of the grid during the peak. Therefore, it is considered a common practice among all EV owners. The representation of the agents depends on which type of EV rate they are charged at and if they are able to make DER investments. Fig.

(2) shows the target setup in line with the submetering adoption observed in the Californian pilot: Submetering would be adopted for those who can obtain higher gains according to the first MILP model results8 . Nevertheless, the topology configuration of agents complexifies when moving towards prosumers with submetered EVs9 . In this case, one rate is specifically applied for EV charging using the existing EVSE meter and another for the remaining loads, including DERs. It is possible, in theory, to arbitrage energy within the same household, collecting the spread between the rates on condition that investments in DERs or V2G are made. The assessment using the MILP model considers different energy profiles, topologies, and DER costs, so EV owners could choose the options that reduce their total cost.

The first analysis will consider only different energy profiles (flat or time-of-use) while the network charges are fixed according to the baseline electricity bill. This baseline scenario will be used as a reference for all the other counterfactual scenarios with respect to energy and network cost variation. The grid costs expected to be recovered via tariffs depend on the state of the grid. In other words, if all the investments have already been made the costs are considered to be sunk, or if there are still investments to be made, they are considered to be prospective. Once the model is calibrated with input data, the MPEC formulation will allow evaluation of the variation in grid charges for agents according to how the regulator sets the tariffs.

Load and solar profiles

The 48-hour load profiles adopted correspond to the inelastic hourly demand by prosumers who have the capacity and the means to invest in DERs and by consumers who are not able to. A total annual electricity consumption of 10,000 kWh is adopted for prosumers and a value of 5,500 kWh is chosen for 

EV and DER data

Electric vehicle charging constitutes a large share of the residential electricity bill, especially for owners with important mobility needs. According to a pilot conducted in the United Kingdom exploring user behaviour related to home charging, 3,500 kWh corresponds to the average yearly consumption of vehicles with batteries greater than 35 kWh (Western Power Distribution, 2019). This amount is equivalent to the average electricity consumption of a dwelling in the U.K. An EVSE allowing a maximum input power of 7 kW is adopted. Then the peak caused by EVs will depend on the type of rate applied since it is possible to spread the charging over the day using smart charging. From the yearly EV energy consumption, it is possible to derive daily energy needs for mobility purposes. First, based on an average energy consumption of 194 Wh/km (Electric Vehicle Database, 2021), a daily distance travelled of around 50 km/day is calculated as calculated in Eq. ( 33).

Daily To avoid extra battery degradation, it is advisable to keep the battery state of charge in a specific range and to have a limited depth of discharge. It is assumed that the battery capacity of fully electric vehicles has an average value of 60 kWh (Electric Vehicle Database, 2021b) and the SOC is allowed to vary between 6 and 54 kWh (10-90% respectively). Finally, an assumption regarding connection hours is defined as observed in the British EV charging pilot. The majority of EVs disconnect from their homes at 7am and plug back in at 5pm (see Appendix Appendix C for more details). Conversion losses from electronic power converters in the EVSE of 5% and a negligible self-discharge rate complete the EV technical parameters.

The cost of technologies such as solar PV has a strong impact on the size of agents' DER investments and vary substantially across the utility, commercial, and residential sectors (NREL, 2020). The cost adopted for installing solar PV is around 900 $/kWp, which can be considered low in the context of residential-scale systems. However, we use this optimistic scenario to illustrate a situation where it is cost-optimal for agents to invest in these systems. Direct subsidies can also support the argument for using this cost for end-users.

On the other hand, net metering will not be considered since it may over-incentivise solar PV investments and cause strong fairness issues among agents. A discount factor of 5% and a lifetime of 20 years translates into an annualised cost of 72 $/kWp13 .

Stationary batteries have been benefiting from the decrease in the cost of automotive batteries at the pack level. The cost adopted for them is 150 $/kWh, which corresponds to the current weighted average cost of a battery pack for electric vehicles (IEA, 2021). In addition, an annualised cost of 19.4 $/kWh is obtained by using a similar discount factor of 5% and a lifetime of 10 years. Regarding the technical parameters, we assume conversion losses of 5% and a self-discharge rate of 0.1% per hour14 . Finally, analogous to the EV battery case, the SOC is allowed to vary between 10% and 90% of total battery capacity.

Baseline electricity bill

A reference scenario is needed to compare the outcome of the optimisation model for further analysis.

The baseline electricity bill is a counterfactual bill defining energy and network costs in dollars for each agent. Furthermore, renewable energy support (RES) and taxes are also important components in the majority of electricity offers for households. So far, energy costs have been assumed to be invariant over time, meaning that a flat energy profile is adopted. Nevertheless, this type of energy profile is not suitable to incentivise households to reduce their consumption during certain periods of the day or to install DERs for peak-shaving and valley-filling purposes. Time-of-use energy profiles can be the appropriate economic signal to meet these objectives.

Therefore, two extra TOU profiles are proposed for evaluation. The first, denominated TOU1, has the highest value synchronised with the private peak of agents, incentivising them to offset coincidental demand and reduce their own peaks. The second profile, TOU2, supports solar PV adoption since its relative value around the period of solar production is the greatest among all profiles. In order to make them comparable, both TOU profiles are calibrated so that the final consumer bill in the base case scenario is the same regardless of the choice of energy profiles. The final average price of TOU rates is often lower than the equivalent flat rate due to the high number of mid-peak and off-peak hours. However, the final electricity bill is slightly higher. This shows how complex tuning energy profiles can be, depending mostly on what kind of incentives the utility pursues. For instance, one strategy may be to increase on-peak charges to avoid grid congestion or decrease the off-peak level to encourage users to shift their consumption. We note that the rates selected are not symmetric, which means that the compensation for injecting electricity into the grid is not at the same level as the cost of withdrawing electricity. Users are subject to 10% compensation related to the energy price at the moment of injection according to the type of tariff 

Grid cost structure

Assumptions regarding the final grid cost structure are complex to make, since several factors can affect it.

For instance, fixed operating costs, sunk capital costs, variable operating costs and network losses are all parts of the cost needed to be recovered by network operators. Network costs are not straightforward to obtain, since they are often private and difficult to connect directly to tariff prices [START_REF] Ansarin | A Review of Equity in Electricity Tariffs in the Renewable Energy Era[END_REF]. This low availability of information in the literature leads many studies to make assumptions about the percentages of grid cost components. According to Simshauer and Downer (2016), in an electricity distribution system the fixed and sunk capital costs will typically comprise 70-80% of the total cost structure. This indicates that traditional distribution grids are over-dimensioned for current demand, a practice which is described as 'fit-and-forget.'

Nevertheless, the penetration of new distributed energy resources (stationary batteries, solar PV and heat pumps) and electric vehicles will substantially change this scenario. Grid reinforcements may be necessary to cope with the peak load increase caused by these technologies if their use is not properly coordinated. The economic feasibility of substituting grid capacity with local flexibility can be assessed by using forward-looking grid costs. A reduction of network utilisation cannot reduce the costs of the current network infrastructure, which are sunk, but only defer future network investments by reducing coincident peak loads [START_REF] Govaerts | Spillover effects of distribution grid tariffs in the internal electricity market: An argument for harmonization?[END_REF]. Therefore, this element, also named prospective costs, represents the long-run costs of the network for agents.

Scenario definition

As in Schittekatte and Meeus (2020), we adopt three scenarios for the MPEC analysis: 100% sunk costs;

50% sunk and 50% prospective; and 100% prospective grid costs. For the first scenario, the SunkCosts parameter in Eq. ( 4) is set at $2,040, which is the sum of all agents' network charges in the baseline electricity bill (see Table (1)). For the second scenario, half of these costs are employed as sunk costs and the annualised incremental cost for grid capacity, I DSO , representing the prospective costs is 63.8 $/kW according to Eq. 35:

I DSO (50% prospective) = 0.5 * Average sunk costs Average coincident peak = 0.5 * 510 $ 4 kW = 63.7 $ kW (35) 
Finally, in the full prospective scenario the prospective cost is set at the annualised incremental cost for grid capacity of 127 $/kW while there are no sunk costs16 . Even though grid costs are lumpy and vary depending on site-specific properties, these values allow us to have a fair representation of grid cost structure. For each grid cost structure, it is possible to analyse different ways of cost recovery and EV technologies. We adopt the following cases to be analysed within the MPEC framework according to Table 2:

In reality, the presented case study could represent agents in the same neighborhood geographic scope due to two main reasons. First, incremental grid capacity investment to be made in the distribution grid is the same for all agents. This means that they are closer in terms of geographic region since these types of investment can vary considerably within the same city. Second, the absolute numbers of electricity bill components (Table 1) consider one agent per each category. If the case study was done in a city-level area, those numbers would have to be adapted.

Results

In this section we present the results of the numerical model. We begin by analysing the impact of different EV owner energy profiles on the final electricity bill with a fixed base case volumetric network tariff. Then, once the energy profiles are set for the agents owning an EV, we assess the effects of different network tariff designs on the final bill. We end with a discussion and by highlighting some policy implications.

Energy profile assessment

A retailer's electricity offer usually has several types of rates given the difference in time granularity for customers. Flat or time-varying rates are proposed for residential customers, so they are encouraged to compare current energy costs to other tariff rate options and select the best rate plan (SCE, 2019).

The aim of this section is to retain the cost-efficient solution, i.e. one meter or submetering, by choosing a combination of energy profiles, while grid charges are exogenously fixed beforehand to minimise energy costs. The logic behind this choice is to anticipate EV owner actions regarding the choice of rate, assuming that a single consumer decision does not have an impact on other consumers' choices, and therefore has a negligible impact on the network tariff design.

Agents possessing an EV are analysed individually using the MILP model described in Section (3.1) to ascertain their total costs. All three energy profiles are adopted for agents using only one meter (flat, TOU1, TOU2), while for the submetering configuration a combination of a flat rate for house loads and TOU1 or TOU2 for EV charging are considered. According to our setup, only prosumers have the option of adopting V2G technologies. We separate the analysis of consumers who are not able to invest in DER from that of reduction with or without V2G. This preference is due to the higher cost-effectiveness of arbitraging energy from off-peak to peak hours using a stationary battery or V2G under the whole-house TOU1. On the other hand, EV-only tariffs do not incentivise the adoption of DERs, especially batteries, considering that they will be charged at a flat rate which is not financially attractive. A great share of spread is already obtained by adopting the different tariffs for the submetering solution, which reduces the gains brought by DERs17 .

The detailed results for both solutions are shown in Table (D.5).

A sensitivity analysis of the impact of varying the battery capacity and charging speed parameters on the total cost for EV owners is conducted to test the robustness of the results. The first outcome is that the battery capacity itself does not influence the results. Simulations with 40, 60 and 80 kWh were conducted with no impact on the results. The underlying logic is that these capacities are more than enough for energy requirements of both active and passive load profiles without requiring extra energy. Even the lowest battery capacity simulated is not limiting the best outcome from energy arbitrage services via V2G nor interfering with driving needs. The battery SOC never goes below the minimum energy level required. If complementary services such as frequency regulation, spinning reserves or voltage control were included or alternative driving profiles with higher kilometer requirements are used, the battery capacity parameter could have an effect. Regarding the charging and discharging power for EVs, it is observed that under time of use tariffs, the more speed to charge (or discharge) is available, the more opportunity to benefit from off-peak hours in terms of charging. Specially in the case with V2G, the gains are continuously higher when more power is available to arbitrage energy in a short time frame. For the unidirectional smart charging, the maximum gains are obtained around 7 kW and keeps steady even if more power for charging is available.

These results can be seen in Table D.7.

Finally, based on these results we are able to choose the energy profiles and type of solution for each agent who owns an EV for further analysis. For prosumers with EVs and V2G, the whole-house TOU1

tariff is adopted as it results in the lowest costs among the options. For consumers who possess an EV, the submetering solution coupling a flat rate for house loads and TOU1 for EV charging is adopted for the same reason of cost-effectiveness. For the comparison scenario, all agents able to invest in DER (prosumers) adopt TOU1 and consumers select flat rates.

Network cost impact

With the energy profiles defined for all agents, it is possible to identify the impacts on network costs caused by EVs and submetering solutions. The MPEC model allows simulation of several tariff designs that can be used by the network operator to recover grid costs. We adopt two possible tariffs structures for this purpose: a pure volumetric tariff, which is the most common way of billing customers in the current residential sector and a three-part tariff including capacity and fixed charges. A technology scenario using V2G technology and submetering is also included. This represents a total of four scenarios which include the two different tariff structures and the possibility of adopting EV submetering coupled with V2G.

First, the changes in total network costs are presented for all three grid cost structure scenarios. Then, individual cost variations and their manner of allocation according to different tariff designs are explored.

We focus on the submetering solution including the variation that it may cause in network costs to verify its cost-effectiveness. The cumulative network costs for all scenarios based on three grid cost structures described in Section 4.6 are presented in Fig. 6. Our main observation is that the higher the share of prospective costs in the network cost structure, the lower the total grid costs. This is due to the implicit cooperative behaviour of all agents once variable costs are present and dependent on the coincident peak. In the case of 100% sunk costs, prosumers invest as much as possible in DERs to avoid grid charges and shift more of them to consumers. We focus on the scenarios with prospective costs, given the exhaustive sunk costs analysis in [START_REF] Schittekatte | Future-proof tariff design: Recovering sunk grid costs in a world where consumers are pushing back[END_REF] and [START_REF] Hoarau | Network tariff design with prosumers and electromobility: Who wins, who loses?[END_REF]. Nevertheless, in both cases with prospective charges prosumers invest in DERs to reduce their contribution to coincident peak increases, while EV owners also use smart charging to avoid constrained hours18 . As a consequence, the tariff will decrease for all agents since the coincident peak that drives network variable costs is greatly reduced.

We note a perceptible increase in the cumulative network charges for the scenarios with V2G and submetering containing variable charges (see Table D.8 for more numerical details). The underlying logic is that V2G greatly reduces the need for battery investments. Unlike stationary batteries, EVs are away from home during a great part of the day. Therefore, the required charging episodes for driving needs share the same peak period as those required for energy arbitrage. Consequently, an increase in the coincident peak occurring in off-peak periods increases the network tariff. A possible solution to alleviate a coincident peak increase during off-peak periods involves charging EV at work or using public charging infrastructure. If this type of charging is incentivised, users could spread EV charging over all the hours of the day, which would have a positive impact on the total grid costs to be recovered.

The shift from a volumetric to a three-part tariff does not significantly change the network costs, although it impacts users in its allocation. Prospective costs, if recovered via capacity charges, will benefit those who can reduce their private peak by investing in storage or adopting V2G technology. With a volumetric tariff storage will be mostly used to arbitrage energy from on-peak to off-peak periods and lower the coincident peak. This will optimise the energy usage of prosumers without deeply affecting the charges paid by consumers. There will then be fewer fairness issues concerning the volumetric tariff, for which consumers will be spared high cost-shifting levels. Refer to Table D.9 for more details of the network cost share between agents.

Comparing the volumetric tariff with a three-part tariff, consumers experience an additional 1.5% and 3.7% reduction in grid charges in the 50% sunk / 50% prospective and 100% prospective scenarios respectively. The same trend is observed for consumers with an EV, but in this case the magnitudes of the reductions are around 14% and 11% respectively. Clearly, a volumetric tariff favours agents possessing an EV (submetered or not) who cannot invest in DERs compared to the baseline. Nevertheless, it is essential to determine the total charges for these agents to evaluate the cost-efficiency of the submetering solution.

Gains obtained from energy savings could be outweighed by increases in network charges due to other agent's reactions to the type of tariff applied. Therefore, Fig. ?? shows the total costs for consumers with an EV with different tariffs and in different technological scenarios.

A dedicated tariff for EVs excluding house loads creates a positive spread of energy charges as was Following the same guideline as in the previous analysis of submetering, we assess the revenues by comparing the total costs before and after applying V2G plus submetering. For the sensitivity, under volumetric tariff, the gains of submetering are perceived with higher magnitude than the base-case scenario.

First, as there are less prosumers proportionally, in the 50/50 scenario there will be less cost-shifting of the sunk part caused by their investment in DERs. Moreover, the coincident peak increase caused by V2G will be less important overall. Consequently, the share of network costs, when analysing the submetering case will be even farther to outrun the reduction in energy cost, which increases the value of submetering. For the prospective scenario, the reduction of prosumer share minimizes the general cooperative behaviour to reduce maximum coincident peak, leading to higher network charges for consumers upfront. Concomitantly, the increase in the coincident peak caused by V2G won't be very expressive, allowing submetering revenue to be quasi-exclusively from reduction in the energy share.

The three-part tariff still gives an incentive for prosumers to reduce their private peak causing a transfer of network savings to consumers. Although there is a slight decrease of network cost caused by the reduction of annualized incremental cost for grid capacity I DSO(Sensitivity) , as calculated in the following Eq. 36, in both scenarios submetering is not profitable in the end.

I DSO (sensitivity) = Average sunk costs Average coincident peak = 0.125 * 3232 $ 3.87 kW = 106 $ kW (36) 
We observe the same trend in the sensitivity as in the base-case scenario when adopting submetering.

It is still not profitable if three-part tariff is applied. However, for early adopters under a volumetric tariff scheme, the gains would be higher compared to the scenario where the penetration of DER is already high.

These gains are situated between 11% and 13% of the total primary costs ($125 for 50/50 scenario and $114

for the prospective one, respectively) for consumers with EV as described in Fig. 8.

19 Also, it is important to note the increase in computational burden due to the increase of agents. The equilibrium model in scenario 2 has twice as many equations as scenario 1, making it even harder for the solver to find acceptable solutions 

Discussion and policy implications

The integrated assessment of submetering exploring the variations in energy and network charge has shown that this solution can bring significant added value to EV charging. Policymakers would not need to deplete their political capital to implement complex TOU pricing and capacity-based tariffs across jurisdictions. To help deal with problems coming from ill-designed tariffs in an emerging technology context, submetering can be a straightforward solution. It simplifies the indirect load control of EVs by using a specific economic signal for charging, while leaving other appliances charged at another rate. The adoption of an adequate smart meter placed upstream of the houseloads and charging station that can properly communicate with the EVSE meter is enough to turn EV submetering charging into reality. The transaction costs involved in adjusting and optimising the use of an EVSE meter would be counterbalanced in a short period, taking into consideration the variety of services potentially available. Also, these costs would be lower compared to the equivalent cost of political capital mobilization to justify the change of tariff applied to the whole household. This would create winners and losers as described in Faruqui ( 2010), but these negative impacts could be avoided to some extent by targeting EVs with submetering.

In addition, this configuration of meters also allows other EV energy services, such as frequency regulation, to be done using V2G without the need to buy or rent a dedicated meter. For instance, frequency regulation performed by an EV with similar technical parameters as the ones assumed in our study can obtain an additional $150 of profit per year [START_REF] Lauinger | Vehicle-to-Grid for Reliable Frequency Regulation[END_REF]. Stacked energy services potentially allow fairer revenues for EV owners, to whom the proposed submetering solution extends the service portfolio using smart meters.

Regarding rate plans offered by utilities, the gains obtained from submetering can be enhanced, for example, with high on-peak charges or the super off-peak periods proposed by some electricity providers.

In our study, we have tuned the counterfactual time-varying energy profiles for a flat energy tariff so that the energy costs in the end would be practically the same. Then, we have shown that the concept can bring fair yearly gains varying from $64 to $125 if well managed. These amounts include the total savings from the energy profile optimisation, which means that the retailer will bear some loss. Also, they consider some network costs increase which will be mostly passed to consumers. However, the exact benefit remains sensitive to the rate plans available from each utility. In real-life tariff books, the spread between a flat rate and the price levels of a domestic time-of-use proposed could be higher than that captured in our results. Regulators should incentivise utilities to propose more time-varying rate plans to boost demandside management for users, including those with EVs and DERs.

Pilots and demonstration projects are essential not only to prove the feasibility of the concept but also to establish future protocols and adjust the technology of the appliances involved. In the Californian pilot, after 12 months of submetering service, more than 90% of the participants stated to be extremely or somewhat satisfied. This data demonstrates the potential success for this solution at a large-scale [START_REF] Nexant | California Statewide PEC Submetering Pilot -Phase 2 Report[END_REF].

Furthermore, for a certain segment of customers, the benefit of moving to submetering was estimated to be $59 per year, which approaches the lower bound of our estimation. Another similar submetering pilot conducted by Xcel Energy Minnesota estimated annual savings of $117 (Smart Electric Power Alliance, 2019) which is close to the calculated upper bound of revenues in our study. The difference of revenues among pilots are explained by the heterogeneity of rates, especially TOU, offered by each utility or retailer. This reinforces the need for diversification of TOU rates to give agents more room for adapting their demand accordingly.

Specific contexts of energy crisis, in which high electricity prices are observed, would incentivize customers to analyse different rate plans of utilities. The impact of such scenarios on rate design could render the submetering solution more profitable. The logic is that as the spread between peak and off-peak periods in wholesale markets tend to be higher, this will be reflected on the rates and consequently the gains would increase subsequently. The adoption of submetering unlocks a combination of electricity rates that could further help end-users to reduce their electricity bill.

Finally, two different tariffs give users more flexibility to optimise the electricity bill for a particular load like electric vehicles. Moreover, 'type-of-use' tariffs can also be applied for other loads such as heat pumps.

In theory, three tariffs driving different appliances in the same household could bring higher electricity bill savings if well optimised. This framework would substantially complexify users' understanding of their bills, which could discourage them from adopting this solution. Another drawback is the risk of badly designing a rate plan that could over-incentivise a specific type of load usage and bring a deficit to the utility budget.

The concept of price discrimination applied in these tariffs should be carefully taken into account to avoid any subsequent fairness issues between customers.

Conclusion

Adopting an electricity rate designed specifically to charge EVs at home enables a reduction in charging costs for myriad dwellings. Assuming that household demand without flexible loads is quasi-inelastic, separating the billing for EV charging gives a fair incentive to adopt domestic EV-only rates. In this study, we develop a game-theoretical model expressed and treated as a mathematical program with equilibrium constraints (MPEC) to capture the interaction between a national regulatory authority (NRA) and dwellings.

This type of modelling is essential to determine the network tariff endogenously depending on the reactions of all agents. With the uptake of domestic EV-only tariffs, grid operators will have the necessary information about charging events and could better accommodate other EVs while avoiding costly grid reinforcements.

NRAs, on the other hand, can adopt a tariff structure that gives incentives for DER uptake and separate ones for EV adoption.

It should be noted that our study has certain limitations. First, the demand was considered inelastic, meaning that no cross-price elasticity of the demand was considered. The only consumer response adopted was submetering. Also, two daily load profiles were assessed in our results, which may not be enough to fairly evaluate the risks linked to the investment in DERs for some prosumers. We highlight that the numerical study is sensitive to the input data and main assumptions. Case studies with specific locational datasets may present different quantitative results, as the cited trials within the US. Furthermore, future research can support even more the viability of the solution in various regions.

A fair energy cost reduction is observed with an EV-only tariff for the adopter while keeping network charges fixed. However, by recovering grid costs via a three-part tariff that contains capacity charges, the increase in network costs offsets the gains brought by energy savings. With a pure volumetric tariff, fairness issues are nuanced, resulting in well-allocated network costs distribution in which consumers experience a higher decrease in their charges. In addition, we show that submetering can bring yearly gains varying from $64 to $125 with this type of tariff.

Our results could be used to support the creation of new local projects to demonstrate the cost-benefits of this solution applied to specific contexts. The majority of pilot projects, currently concentrated in the U.S., may be insufficient in representing the diversity of contexts in which EV-only tariffs could work properly .

Extending the number of pilots to other countries is essential to identify all possible barriers. With respect to future work, an extension of the problem to regulators in neighbouring countries could frame the economic spill-over between them. Different EV penetration, DER levels and adoption rates of EV-only tariffs could provide a more reliable framework. Moreover, customer surveys including the option of EV-only tariffs to assess their acceptance are crucial to better design this type of tariffs. Upper-level objective function:

M in Cost N RA = Cost DER + Cost P + Cost N (A.1)
Where:

Cost DER = c ∈ C I S c * ic S c + I P V c * ic P V c (A.
2) 1. Coincidental peak : To maintain the linearity of the problem, Eq. 5 will calculate the hourly sum of net imports and net exports in Eq. A.5 and Eq. A.6 as just one term of those equation will be nonzero, then the sum of both A.7 will measure the aggregated hourly demand as stated below:

Cost P = c ∈ C h ∈ H W h * imp P c,
e GI h ⩾ c ∈ C imp P c,h -exp P c,h , ∀h ∈ H (A.5) e GE h ⩾ c ∈ C exp P c,h -imp P c,h , ∀h ∈ H (A.6) e G h = e GI h + e GE h , ∀h ∈ H (A.7) 2. Grid capacity egc + agc ⩾ e G h , ∀h ∈ H (A.8) 3. DSO cost recovery Cost N = c ∈ C h ∈ H W * imp P c,h -N M * exp P c,h * vnt + c ∈ C p c * cnt + n * f nt (A.9)
Lower-level objective function:

M in Cost = Cost DER c + Cost P c + Cost N c (A.10)
Where:

Cost DER c = I S * ic S c + I P V * ic P V c (A.11) Cost P c = h ∈ H W * imp P c,h * P BE P c,h -exp P c,h * P SE P c,h (A.12) Cost N c = h ∈ H W * imp P c,h -N M * exp P c,h * vnt + p c * cnt + f nt (A.13)
Subject to:

1. Energy balance

-D c,h -d ∆EV + c,h + d ∆EV - c,h -d ∆+ c,h + d ∆- c,h + ic P V c * G P V c,h + imp P c,h -exp P c,h + α c * (imp L c,h -exp L c,h ) = 0 ∀c ∈ C, h ∈ H : λ EB c,h (A.14) 2. Peak power measurement -p c + imp P c,h + exp P c,h ⩽ 0 ∀c ∈ C, h ∈ H : µ G c,h ; (A.15) 3. EV storage constraints s EV c,h -s EV c,h-1 * 1 -R EV -d ∆EV + c,h * 1 -L EV + d ∆EV - c,h * 1 + L EV + D ∆EV - c,h = 0, ∀c ∈ C, h ∈ H \ {1} : λ EV 1 c,h (A.16) s EV c,1 -SOC EV 0 -d ∆EV + c,1 * 1 -L EV + d ∆EV - c,1 * 1 + L EV + D ∆EV - c,1 = 0 ∀c ∈ C : λ EV 1 c,1 (A.17) s EV c,H -SOC EV 0 = 0, ∀c ∈ C, h ∈ H : λ EV 2 c (A.18) s EV c,h -E EV c,h ⩽ 0, ∀c ∈ C, h ∈ H : µ EV 2 c,h (A.19) E EV c,h -s EV c,h ⩽ 0, ∀c ∈ C, h ∈ H : µ EV 3 c,h (A.20) d ∆EV + c,h -P EV ch c,h ⩽ 0, ∀c ∈ C, h ∈ H : µ EV 4 c,h (A.21) d ∆EV - c,h -P EV dis c,h ⩽ 0, ∀c ∈ C, h ∈ H : µ EV 5 c,h (A.22) 4. Battery storage constraints s c,h -s c,h-1 * 1 -R S -d ∆+ c,h * 1 -L S + d ∆- c,h * 1 + L S = 0, ∀c ∈ C, h ∈ H \ {1} : λ S1 c,h (A.23) s c,1 -s c,H * 1 -R S -d ∆+ 1 * 1 -L S + d ∆- 1 * 1 + L S = 0, ∀c ∈ C : λ S1 c,1 (A.24) ic s c -U S c ⩽ 0, ∀c ∈ C : µ S1 c (A.25) s c,h -ic s c * S %max ⩽ 0 ∀c ∈ C, h ∈ H : µ S2 c,h (A.26) S %min * ic s c -s c,h ⩽ 0 ∀c ∈ C, h ∈ H : µ S3 c,h (A.27) d ∆+ c,h -ic s c * P ch c ⩽ 0 ∀c ∈ C, h ∈ H : µ S4 c,h (A.28) d ∆- c,h -ic s c * P dis c ⩽ 0 ∀c ∈ C, h ∈ H : µ S5 c,h (A.29) 5. Solar PV constraints ic P V c -U P V c ⩽ 0 ∀c ∈ C : µ P V 1 c (A.30) 6. Submetering constraints W * P BE P c,h + vnt + λ EB c,h + µ G c,h -µ imp c,h = 0 , ∀c ∈ C, h ∈ H (B.1) -W * P SE P c,h + N M * vnt -λ EB c,h + µ G c,h -µ exp c,h = 0 , ∀c ∈ C, h ∈ H (B.
2)

I P V + h ∈ H λ EB c,h * G P V c,h + µ P V 1 c -µ icpv c = 0 , ∀c ∈ C (B.3) -λ EB c,h -1 -L EV * λ EV 1 c,h + µ EV 4 c,h -µ dEV + c,h = 0 , ∀c ∈ C, h ∈ H (B.4) λ EB c,h + 1 + L EV * λ EV 1 c,h + µ EV 5 c,h -µ dEV - c,h = 0 , ∀c ∈ C, h ∈ H (B.5) λ EV 1 c,h -1 -R EV * λ EV 1 c,h+1 + µ EV 2 c,h -µ EV 3 c,h -µ sEV c,h = 0 , ∀c ∈ C, h ∈ H \ {48} (B.6) λ EV 1 c,H + λ EV 2 c + µ EV 2 c,H -µ EV 3 c,H -µ sEV c,H = 0 ∀c ∈ C, h = H (B.7) -λ EB c,h -1 -L S * λ S1 c,h + µ S4 c,h -µ d+ c,h = 0 , ∀c ∈ C, h ∈ H (B.8) λ EB c,h + 1 + L S * λ S1 c,h + µ S5 c,h -µ d- c,h = 0 , ∀c ∈ C, h ∈ H (B.9) λ S1 c,h -1 -R S * λ S1 c,h+1 + µ S2 c,h -µ S3 c,h -µ s c,h = 0 , ∀c ∈ C, h ∈ H \ {48} (B.10) λ S1 c,H -1 -R S * λ S1 c,1 + µ S2 c,H -µ S3 c,H -µ s c,H = 0 , ∀c ∈ C (B.11) cnt - h ∈H µ G c,h = 0 , ∀c ∈ C (B.12) λ EB c,h + λ L EV h -µ impL c,h = 0 , ∀c ∈ C, h ∈ H (B.13) -λ EB c,h -λ L EV h -µ expL c,h = 0 , ∀c ∈ C, h ∈ H (B.14) 0 ≤ imp P c,h ⊥ µ imp c,h ⩾ 0 , ∀c ∈ C, h ∈ H (B.15) 0 ≤ exp P c,h ⊥ µ exp c,h ⩾ 0 , ∀c ∈ C, h ∈ H (B.16) 0 ≤ ic P V c ⊥ µ icpv c,h ⩾ 0 , ∀c ∈ C (B.17) 0 ≤ U P V c -ic P V c ⊥ µ P V 1 c ⩾ 0 , ∀c ∈ C (B.18) 0 ≤ d ∆EV + c,h ⊥ µ dEV + c,h ⩾ 0 , ∀c ∈ C, h ∈ H (B.19) 0 ≤ d ∆EV - c,h ⊥ µ dEV - c,h ⩾ 0 , ∀c ∈ C, h ∈ H (B.20) 0 ≤ s EV c,h ⊥ µ sEV c,h ⩾ 0 , ∀c ∈ C, h ∈ H (B.21) 0 ≤ E EV c,h -s EV c,h ⊥ µ EV 2 c,h ⩾ 0 , ∀c ∈ C, h ∈ H (B.22) 0 ≤ s EV c,h -E EV c,h ⊥ µ EV 3 c,h ⩾ 0 , ∀c ∈ C, h ∈ H (B.23) 0 ≤ P EV ch c,h -d ∆EV + c,h ⊥ µ EV 4 c,h ⩾ 0 , ∀c ∈ C, h ∈ H (B.24) 0 ≤ P EV dis c,h -d ∆EV - c,h ⊥ µ EV 5 c,h ⩾ 0 , ∀c ∈ C, h ∈ H (B.25) 0 ≤ d ∆+ c,h ⊥ µ d+ c,h ⩾ 0 , ∀c ∈ C, h ∈ H (B.26) 0 ≤ d ∆- c,h ⊥ µ d- c,h ⩾ 0 , ∀c ∈ C, h ∈ H (B.27) 0 ≤ s c,h ⊥ µ s c,h ⩾ 0 , ∀c ∈ C, h ∈ H (B.28) 0 ≤ ic s c * S %max -s c,h ⊥ µ S2 c,h ⩾ 0 , ∀c ∈ C, h ∈ H (B.29) 0 ≤ s c,h -S %min * ic s c ⊥ µ S3 c,h ⩾ 0 , ∀c ∈ C, h ∈ H (B.30) 0 ≤ ic s c * P ch c -d ∆+ c,h ⊥ µ S4 c,h ⩾ 0 , ∀c ∈ C, h ∈ H (B.31) 0 ≤ ic s c * P dis c -d ∆- c,h ⊥ µ S5 c,h ⩾ 0 , ∀c ∈ C, h ∈ H (B.32) 0 ≤ p c -imp P c,h -exp P c,h ⊥ µ G c,h ⩾ 0 , ∀c ∈ C, h ∈ H (B.33) 0 ≤ imp L c,h ⊥ µ impL c,h ⩾ 0 , ∀c ∈ C, h ∈ H (B.34) 0 ≤ exp L c,h ⊥ µ expL c,h ⩾ 0 , ∀c ∈ C, h ∈ H (B.35) 0 ⩽ -imp L EV,h + d ∆EV - c,h + d ∆- c,h + ic P V c * G P V c,h ⊥ µ impL1 c,h ⩾ 0 ∀c ∈ (C EV ∪ C EV /DER ), ∀h ∈ H (B.36) 0 ⩽ -imp L c,h + d ∆EV - EV,h ⊥ µ impL2 c,h ⩾ 0 ∀c ∈ (C EV ∪ C EV /DER ), ∀h ∈ H (B.37) -D c,h -d ∆EV + c,h + d ∆EV - c,h -d ∆+ c,h + d ∆- c,h + ic P V c * G P V c,h imp P c,h -exp P c,h + α c * imp L c,h -exp L c,h = 0 : λ EB c,h , f ree , ∀c ∈ C, h ∈ H (B.38) s EV c,h -s EV c,h-1 * 1 -R EV -d ∆EV + c,h * 1 -L EV +d ∆EV - c,h * 1 + L EV +D ∆EV - c,h = 0 : λ EV 1 c,h , f ree , ∀c ∈ C, h ∈ H \ {1} (B.39) s EV c,1 -SOC EV 0 -d ∆EV + c,1 * 1 -L EV + d ∆EV - c,1 * 1 + L EV + D ∆EV - c,1 = 0 : λ EV 1 c,1 , f ree , ∀c ∈ C (B.40) s EV c,H -SOC EV 0 = 0 : λ EV 2 c , f ree , ∀c ∈ C (B.41) s c,h -s c,h-1 * 1 -R S -d ∆+ c,h * 1 -L S +d ∆- c,h * 1 + L S = 0 : λ S1 c,h , f ree , ∀c ∈ C, h ∈ H \{1} (B.42) s c,1 -s c,H * 1 -R S -d ∆+ c,1 * 1 -L S + d ∆- c,1 * 1 + L S = 0 : λ S1 c,1 , f ree , ∀c ∈ C (B.43) c ∈ C EV imp L c,h -exp L c,h = 0 : λ L EV h , f ree , ∀h ∈ H (B.44) c ∈ C EV /DER imp L c,h -exp L c,h = 0 : λ L EV /DER h , f ree , h ∈ H (B.45)
Before treating the non-linearities of the model, a adjustment regarding the cost recovery equality is needed to facilitate convergence. As in [START_REF] Schittekatte | Least-Cost Distribution Network Tariff Design in Theory and Practice[END_REF], the total network charges costs collected should be within a band (calibrated as δ = 0.1%):

Cost N * (1-δ) - c ∈ C h ∈ H W * imp P c,h -N M * exp P c,h * vnt + c ∈ C p c * cnt + n * f nt) ⩽ 0 (B.46) -Cost N * (1+δ) + c ∈ C h ∈ H W * imp P c,h -N M * exp P c,h * vnt + c ∈ C p c * cnt + n * f nt ⩽ 0 (B.47)
terms and the complementarity constraints in the KKT conditions. First, the bilinear products in the equality constraint of the upper-level (imp P c,h * vnt, exp P c,h * vnt and p c * cnt) are already taken into account internally by the solver Gurobi 9.1 (Gurobi Optimization, 2021). Instead of discretizing the terms by using binary expansion (as in [START_REF] Momber | Benefits of Coordinating Plug-In Electric Vehicles in Electric Power Systems[END_REF], page 102) beforehand, the solver deals with this type of non-convexity by applying cutting planes and special branching techniques. Finally, the complementarity constraints are linearized using Fotuny-Amat method [START_REF] Fortuny-Amat | A Representation and Economic Interpretation of a Two-Level Programming Problem[END_REF]) in which they are reformulated using additional binary variables and large enough constants (Big-Ms). Another solution to deal with the complementarity constraints in the MPEC framework could be the SOS1 variables as proposed in [START_REF] Siddiqui | An SOS1-Based Approach for Solving MPECs with a Natural Gas Market Application[END_REF]. At this point, the bi-level problem turned into a mixed-integer linear program that can be solved using the prior Gurobi 9.1 solver: 

I P V + h ∈ H λ EB c,h * G P V c,h + µ P V 1 c ≤ M icpv * r c c ∀c ∈ C (B.53) U P V c -ic P V c ≤ M P V 1 * 1 -r d c
, ∀c ∈ C (B.54) From the final database containing more than 157,520 rows of charging episodes and various columns with detailed parameters such as start and stop charging times, kWh consumed, the power level of the EVSE, battery capacity etc., we derive some important parameters to use in our study case, as for example the connection hours. We calculate the disconnection hour based on two observations: the hour in which the amount of energy needed before leaving home is the highest and the greatest difference of available power between two consecutive hours. We calculate the average daily profile of energy consumption per hour before disconnection and the average available power of the fleet.

µ P V 1 c ≤ M P V 1 * r d c ,
First, it is observed that the EVs need more energy before leaving at 7am, as is shown in Fig. C.9. Then, the greatest steepness of the curve is between 7am and 8am, meaning that most vehicles left their homes at the former hour. The same analysis is done regarding the reconnection hour, in which the highest power difference between two consecutive hours is from 5pm to 6pm. As a result, the second hour is defined as 5pm. 
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 1 Figure 1: Methodological framework.

Figure 2 :

 2 Figure 2: Topology configuration of all agents.

  consumers10 . These values are close to be representative of average European dwelling consumption, for example in Sweden or in France (Odysséé Mure, 2019) 11 . Peak demand values for a typical household tend to occur in the early evening with a second smaller peak in the morning. Here, they differ for the two types of agents, a peak of 4.8 kW for prosumers and 3.2 kW for consumers, which leads to a coincidental peak of 8 kW without any EV or DER investment 12 .Regarding the solar profile, a 48-hour profile with two different insolation peaks is used. The first one with higher insolation represents a typical sunny day in which there is direct sunlight without any external interference in all periods. The second represents a cloudy or rainy day when the solar irradiation is deeply reduced, leading to less solar PV electricity production. A day with a smaller peak of insolation is synchronised with the days presenting higher peaks of electricity consumption. Both the load and solar profiles are illustrated in Fig.(3).
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 3 Figure 3: Load and solar profiles.

  15 . All the energy profiles are illustrated in Fig. (4).

Figure 4 :

 4 Figure 4: Energy profiles.

  Volumetric tariff with V2G and EV submetering (c) Three-part tariff. (d) Three-part tariff with V2G and EV submetering.

Figure 6 :

 6 Figure 6: Total network costs.

  Figure 8: Total costs for consumer/EV agents in all four scenarios (25% of Prosumers).

•::

  Lower-level parameters -D ∆EV - c,h : EV driving needs of agent c in hour h [kWh/h] -D c,h : Electricity demand of agent c in hour h [ kWh/h] -E EV c,h : Maximum EV state of charge of agent c in hour h [kWh] -E EV c,h : Minimum EV state of charge of agent c in hour h [kWh] -G P V c,h : Solar ressouce availability [kW/kWp] -I S , I P V : Annualized DER investment costs for agent c [$/kW/Year] -L S , L EV : Battery and EV converter losses [%] -P EV dis c,h : EV discharging power of agent c in hour h [kW] -P EV ch c,h : EV charging power of agent c in hour h [kW] -P ch c :Power capacity ratio for battery charging for agent c [kW/kWh] -P dis c Power capacity ratio for battery discharging for agent c [kW/kWh] -R; R EV : Battery and EV battery self-discharge [%] -S %max , S %min : Maximum and minimum battery allowed state of charge level [%] Ressource limits of storage and PV for agent c [kWh,kW]

  h * P BE P c,h -exp P c,h * P SE P c,h (A.3) Cost N = SunkCosts + I DSO * agc (A.4) Subject to:

  imp P c,h ≤ M imp * 1 -r a c,h , ∀c ∈ C, h ∈ H (B.48) W * P BE P c,h + vnt + λ EB c,h + µ G c,h ≤ M imp * r a c,h ∀c ∈ C, h ∈ H (B.49) exp P c,h ≤ M exp * 1 -r b c,h , ∀c ∈ C, h ∈ H (B.50) -W * P SE P c,h + N M * vnt -λ EB c,h + µ G c,h ≤ M exp * r b c,h , ∀c ∈ C, h ∈ H (B.51) ic P V c ≤ M icpv * (1 -r c c ) , ∀c ∈ C (B.52)

≤≤≤≤≤≤

  M dEV + * 1 -r e c,h , ∀c ∈ C, h ∈ H (B.56) -λ EB c,h -1 -L EV * λ EV 1 c,h + µ EV 4 c,h ≤ M dEV + * r e c,h , ∀c ∈ C, h ∈ H (B.57) M dEV - * r f c,h , ∀c ∈ C, h ∈ H (B.59) s EV c,h ≤ M sEV * 1 -M uEV 2 * r h c,h , ∀c ∈ C, h ∈ H (B.63) s EV c,h -E EV c,h ≤ M uEV 3 * 1 -r i c,h , ∀c ∈ C, h ∈ H (B.64) µ EV 3 c,h ≤ M uEV 3 * r i c,h , ∀c ∈ C, h ∈ H (B.65) M uEV 4 * r j c,h , ∀c ∈ C, h ∈ H (B.67) M uEV 5 * r k c,h , ∀c ∈ C, h ∈ H (B.69) d ∆+ c,h ≤ M d+ * 1 -r l c,h , ∀c ∈ C, h ∈ H (B.70) -λ EB c,h -1 -L S * λ S1 c,h + µ S4 c,h ≤ M d+ * r l c,h , ∀c ∈ C, h ∈ H (B.71) d ∆- c,h ≤ M d- * 1 -r m c,h , ∀c ∈ C, h ∈ H (B.72) λ EB c,h + 1 + L S * λ S1 c,h + µ S5 c,h ≤ M d- * r m c,h , ∀c ∈ C, h ∈ H (B.73) s c,h ≤ M s * 1 -r n c,h , ∀c ∈ C, h ∈ H (B.74) µ s c,h ≤ M s * r n c,h , ∀c ∈ C, h ∈ H (B.75) ic s c * S %max -s c,h ≤ M uS2 * 1 -r o c,h , ∀c ∈ C, h ∈ H (B.76) µ S2 c,h ≤ M uS2 * r o c,h , ∀c ∈ C, h ∈ H (B.77) s c,h -S %min * ic s c ≤ M uS3 * 1 -r p c,h ∀c ∈ C, h ∈ H (B.78) µ S3 c,h ≤ M uS3 * r p c,h , ∀c ∈ C, h ∈ H (B.79) ≤ M uS4 * r q c,h , ∀c ∈ C, h ∈ H (B.81) ic s c * P dis c -d ∆- c,h ≤ M uS5 * 1 -r r c,h , ∀c ∈ C, h ∈ H (B.82) µ S5 c,h ≤ M uS5 * r r c,h , ∀c ∈ C, h ∈ H (B.83) µ G c,h ≤ M P * r t c,h , ∀c ∈ C (B.84) p c -imp P c,h -exp P c,h ≤ M P * 1 -+ λ L EV h ≤ M impL * r u c,h , ∀c ∈ C, h ∈ H (B.87) exp L c,h ≤ M expL * 1 -r v c,h , ∀c ∈ C, h ∈ H (B.88) -λ EB c,h -λ L EV h ≤ M expL * r v c,h , ∀c ∈ C, h ∈ H (M mpL2 * r x c,h ∀c ∈ (C EV ∪ C EV /DER ), ∀h ∈ H (B.92) -imp L c,h + d ∆EV - EV,h ≤ M impL2 * 1 -r x c,h ∀c ∈ (C EV ∪ C EV /DER ), ∀h ∈ H (B.93)was to better understand the impact of charging at home on electricity distribution networks. The trials happened between January 2017 and 2018 with a total of 673 smart chargers installed in the participants' homes.

Figure C. 9 :

 9 Figure C.9: Electric Nation Trial data.

  

  This distance is in line with that found for EVs in European countries like Italy, France and Germany[START_REF] Pasaoglu | Travel patterns and the potential use of electric cars -Results from a direct survey in six European countries[END_REF]. Therefore, a daily energy need of 9.7 kWh is estimated for the case study based on these data as show by Eq. (34):

	travel distance =	Y early average consumption Ef f iciency * Days in a year	=	3, 500 kW h 194 W h km * 360 days	= 50.1	km day	(33)
	Daily energy needs =	Y early average consumption Days in a year	=	3, 500 kW h 360 days	= 9.7	kW h day	(34)

  The weighted average breakdown of electricity offers in 2019 provided by the ACER market monitoring report (ACER, 2020) indicates a 45% share of energy costs and 33% of network charges if the amount of taxes and VAT are split equally between the other terms. RES will account for the remaining 22% other costs. Electricity prices vary considerably across countries in different regions. For instance, the average price in the European member states and Norway is 21.6 euro cents/kWh and the median is 16.3 cents/kWh for all countries in European Union (ACER, 2020). The latter value is used as the reference for the bill calculation coupled with the breakdown information. We adopt this value to avoid potentially overestimating or underestimating the gains for submetering solution. Table (1) shows the final bill for each agent in detail.

			Table 1: Electricity bill components		
		Breakdown Cost in bill ($/kWh) Consumer ($) Consumer/EV ($) Prosumer ($) Prosumer/EV ($)
	Energy	45%	0.073035	406	662	731	986
	Network	33%	0.053559	298	485	536	723
	Other charges	22%	0.035706	198	323	357	482
	Total costs	100%	0.163	902	1470	1624	2192

Table 2 :

 2 Scenarios description

	Scenario name	Energy profile	Grid cost	Grid cost	EV Technologies
		(according to the	structure	recovery	
		type of agent)			
	Sunk	Flat or	100% sunk	Volumetric or	None or V2G
		time-of-use		three-part tariff	and submetering
	50/50	Flat or	50% sunk and	Volumetric or	None or V2G
		time-of-use	50% prospective three-part tariff	and submetering
	Prospective	Flat or	100%	Volumetric or	None or V2G
		time-of-use	prospective	three-part tariff	and submetering

Table 4 :

 4 Agent numbers and proportion of EV/DER of each scenario

		Number of	Number of	Number of	Number of	% of EV % of DER
		consumer	consumer	prosumer	prosumer		
		(#)	with EV (#)	(#)	with EV (#)		
	Basecase	1	1	1	1	50 %	50%
	scenario						
	Sensitivity	5	1	1	1	25%	25%
	scenario						

  Table D.5: Total cost and DER for different energy profiles (MILP analysis) Table D.6: Total cost and DER for different energy profiles (PV cost = 1,500$/kWp)

	Passive consumers with EV (No V2G)	
			One Meter		Submetering
		Flat	TOU1	TOU2	Flat/TOU1	Flat/TOU2
	Total costs ($)	1175	1050	1090	1039	1079
	Coincident peak (kW)	8.4	3.2	3.2	3.2	3,2
	Active consumers with EV (V2G allowed)	
			One Meter		Submetering
		Flat	TOU1	TOU2	Flat/TOU1	Flat/TOU2
	Total costs ($)	1704	1323	1506	1425	1533
	Coincident peak (kW)	4.8	0	0	0	0
	PV investments (kW)	0.77	0.44	1.04	0.63	0.77
	Battery investments (kWh)	0	0	3.51	1.37	0
	Active consumers with EV (No V2G)	
			One Meter		Submetering
		Flat	TOU1	TOU2	Flat/TOU1	Flat/TOU2
	Total costs ($)	1704	1476	1583	1568	1608
	Coincident peak (kW)	3.1	0	0	3.1	3.1
	PV investments (kW)	0.77	2.96	2.96	0.77	0.77
	Battery investments (kWh)	0	13.6	13.6	0	0
	Passive consumers with EV (No V2G)	
			One Meter		Submetering
		Flat	TOU1	TOU2	Flat/TOU1	Flat/TOU2
	Total costs ($)	1175	1050	1090	1039	1079
	Coincident peak (kW)	8.4	3.2	3.2	3.2	3.2
	Active consumers with EV (V2G allowed)	
			One Meter		Submetering
		Flat	TOU1	TOU2	Flat/TOU1	Flat/TOU2
	Total costs ($)	1722	1340	1529	1442	1551
	Coincident peak (kW)	9.5	0	2.5	0	4.5
	PV investments (kW)	0.45	0.36	0.45	0.38	0.45
	Battery investments (kWh)	0	0	0	0	0
	Active consumers with EV (No V2G)	
			One Meter		Submetering
		Flat	TOU1	TOU2	Flat/TOU1	Flat/TOU2
	Total costs ($)	1722	1598	1648	1586	1627
	Coincident peak (kW)	4.7	4.3	4.7	4.7	4.7
	PV investments (kW)	0.45	2.5	0.77	0.45	0.45
	Battery investments (kWh)	0	11	0	0	0

Each jurisdiction has its specific method to allocate network costs and guidelines principles. The tariff that maximizes social welfare is good proxy for cost efficiency, but not necessarily fairness and stability. Moreover, the weight and existence of the fixed, capacity, and volumetric terms may also diverge in some jurisdictions.

A robust operational margin to ensure grid adequacy and reliability is implicitly present in the existing grid infrastructure. For the additional investments, all the advancement in smart-meters roll-out, demand response programs and DERs, the network capacity can be optimized, by managing the existing margin, without any major risk of surpassing the maximum capacity.

Coincident peak pricing setup could also be assessed within this framework. The only change would be to replace pc which is the non-coincident peak of an agent by p c,hCoin where hCoin is the coincident hour assumed.

This formulation can potentially lead to discharging and charging episodes happening in the same time step. The solutions are verified ex-post to ensure that realistic behaviour happens for all agents over the entire time horizon.

Assuming losses and self-discharge as linear functions are simplifications. An example of these functions is described in detail by[START_REF] Kanstad | Highly Efficient EV Battery Charger Using Fractional Charging Concept with SiC Devices[END_REF] for converter losses and Redondo-Iglesias et al. (2018) for self-discharge. This simplification was chosen to avoid complexifying the model since adding non-convexities and additional non-linearities would create significant challenges for solving the equilibrium model and may, otherwise, limit the insights that can be gained from the ability to solve the model even under these simplifications.

Battery chemistry and internal wiring could limit the power transfer from the EVSE to the battery itself in some cases. However, for low amounts of kWs exchanged, the battery composition is not expected to be a constraint.

In this configuration a 50% share of prosumers is analysed. Although this seems a high share at today's global level, in a mid-term perspective the number of prosumer agents is expected to increase. Increasing environmental awareness and DER technology cost reductions contribute to boosting the number of consumers becoming prosumers.

With reference to the share of EVs, 50% of agents are considered EV owners. This proportion is relative to the total vehicle stock present if the remaining agents are considered to have ICE vehicles. The same factors influencing the shift to prosumer behaviour will have an important impact on electric mobility uptake. Moreover, current policy support for zero-emission lightduty vehicles and ICE car bans in more than 20 countries by 2030-2035 will also contribute to a high penetration of EVs in the vehicle market(IEA, 2021).

 9 The main blocking point is to ascertain whether the energy consumption registered on the PEV submeter is sourced from the solar PV, the battery storage or the distribution grid without extra meters.

Assuming that household demands remain inflexible is a limitation of our study. Within our framework, submetering tariff adoption are considered to be a proxy for assessing changes to demand as a response to higher prices in specific timeslots.

According to Borenstein. (2017), in California, the adoption of solar PV is still dominated by the heaviest electricityconsumption households, which explains prosumers having the higher share of consumption in our framework. There are, also, evidence that this applies to other European countries such as Great Britain as discussed in[START_REF] Hledik | The distributional impacts of residential demand charges[END_REF].

 12 All values of peak demand are a consequence of the combination between the adopted shape of load profile and the total energy consumption. The fine-tuning of these profiles to meet annual demand, allowed to calculate these values of peak rate as the most suitable ones to maintain the desired "humped-camel shape" load profile shape.

Discount factors for PVs are far from being homogenous across regions. For instance, if estimated by measuring the valuation of future benefits relative to the investment price, this factor can be much higher, reaching levels of up to 15% (De Groote and Verboven., 2019).

The presence of self-discharge only in stationary battery systems and not for EV batteries results from an assumption that battery management systems (BMS) in EVs are more efficient. By not allowing the battery to function outside its operating margins with respect to temperature, for example, self-discharge will be greatly reduced, therefore remaining negligible for functioning purposes.

The future of policies regarding PV injection prices is quite uncertain. In California, one of the world-leaders in solar PV adoption, due to high cost-shifting levels in some locations, indirect incentives to install PVs such as feed-in tariffs and compensation for energy injection are thought to substantially decrease(IOUs, 2021). The 10% value is adopted to avoid excess grid exports, enhance self-consumption and increase synergy between EV and DER without dramatically excluding all compensations. However, please note that these feed-in tariffs, and solar PV support policies in general, may vary in different contexts. For instance, during an energy crisis in which states would be willing to push renewable forward.

We assume that EV charging done via smart charging will not deeply affect the coincidental peak demand. Therefore, the average peak used to calculate prospective costs corresponds to the coincident peak without any EV or DER installed.

This scenario could differ according to price. For instance, simulations with a more conservative PV cost of 1,500 $/kWp indicate that EV-only tariffs are more cost-effective than ToU, without a need for great investments in DER. The full data for this scenario are presented in Table(D.6) 

Under prospective scenarios, self-interest prosumers install batteries (or uses V2G) to reduce their own peak, thus decreasing private network costs. As all agents' private peak arise at similar hours, there is a reduction of coincident peak, which in turn diminishes total network costs for all. Although the absolute gains for prosumers is almost twice the value for consumers.
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vehicle / EVSE: electric vehicles supply equipment / ICE: internal combustion engine / MILP: mixed integer linear programming / MPEC: mathematical authority / PV: photovoltaics / SOC: state of charge / TOU: timeof-use.

distributed energy resources / EV: electric

owning an EV under different energy profiles. for the 50% sunk/50% prospective and 100% prospective scenarios respectively. In the case of three-part tariffs, the outcome is not so favourable. The capacity charges applied to agents transfer the network savings by prosumers to consumers, including those with an EV with submetering. In this case, the rise in network charges surpasses the energy savings by having two different tariffs. Therefore, final rises of 2.0% and 6.7% are observed.

All the results until this section are based on the initial assumption of the four agents representing the whole case study. This leads to a proportion of 50% of prosumers and 50% of EV owners. The assessment of an extra sensitivity with a different proportion of prosumers and EV owners would bring new timing related insights.

Sensitivity analysis

The new sensitivity scenario (Scenario 2) presents a different proportion of agents which lead to different share of DER adoption and EV presence. In this extra scenario, the share of DER and EVs was reduced by half. The idea is to have a proxy of a situation that will happen sooner in time than the first scenario.

Here, the number of consumers was increased to finetune the proportion between agents and the parameters SunkCosts along with I DSO which were changed accordingly. Table 4 describes in detail the share of each

Appendix A. Detailed mathematical model

An overview of the bi-level model and associated sets, variables, and parameters will be described alongside the framework to solve it.

Nomeclature

• Indices:

c : Customers h : Time period (hours)

• Sets:

- A.34) 7. Non-negativity constraints

(A.40)

Transforming the Bi-level problem into a solvable MPEC

The lower level conditions are changed by their KKT optimality conditions. This step allows the transformation of the bi-level problem into a MPEC which has now a single objective function. We derive the KKT necessary optimality conditions from the primal feasibility restrictions of the lower problem: