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Abstract—We propose a trustless blockchain-based protocol for
secure and decentralized generation of secret random numbers.
In our protocol, which can be implemented as a smart contract,
a client CASSIE can ask for a secret random number r. The
protocol will then allow anyone on the blockchain network to
contribute to the process of generating », but crucially, only
CASSIE would be able to see the final result. Additionally, our
approach is auditable, i.e. if CASSIE later wishes to announce
her secret random number r, she can prove that the output of
the process was indeed the claimed value. Finally, we ensure no
one else is able to deduce r before CASSIE discloses it.

A primary use-case of this approach is to enable auditable
online gambling and casinos with verifiable and tamper-proof
randomness. If CASSIE is a casino, she can ask for a secret
random number r at the beginning of the day, and then use it as
a seed in a predefined pseudo-random number generator which
is in turn used as the source of randomness for all bets during
the day. At the end of the day, CASSIE can prove that the seed
was indeed generated by our decentralized protocol. Thus, she
can prove that the casino had no control over the outcomes of
the bets. Moreover, this is a cost- and time-efficient approach as
it does not require us to generate a new random number for
every bet.

Index Terms—Random Number Generation, Secret Random-
ness, Blockchain

I. INTRODUCTION

Random Number Generation (RNG). Generating tamper-
proof, unpredictable and verifiable random numbers is ar-
guably one of the most fundamental technical challenges not
only on the blockchain, but also in many other distributed
systems [1]-[3]. Ideally, the random number should be gen-
erated in an open process which is not dominated by any
particular node or group of nodes in the network. It should
also be tamper-proof since the output is meant to be used
in downstream applications which might incentivize dishonest
behavior for some of the participants who stand to gain if
certain values are chosen. Moreover, the entire process should
be transparent and auditable, i.e. anyone should be able to
verify that the protocol was executed correctly.

Motivation for RNG on Blockchain. In the context of
blockchain, there are three primary motivating factors for an
RNG process with the above security guarantees:

1) Leadership Election: A large number of vital protocols
depend on the randomized selection of a leader or a com-
mittee for each round of their execution. The quintessen-
tial examples are randomized DAOs [4], [5] and, more
importantly, proof of stake protocols which need to select
a miner/validator for each block and in which each party’s
chance of being selected is proportional to their stake
in the currency. Common proof of stake protocols, such

as Algorand [6] and Ouroboros [7], not only choose the
miner for the next block, but also one or more committees
which help verify the validity of new blocks.

2) Probabilistic Smart Contracts [3], [8], [9]: Since prob-
abilistic programs are much more expressive than their
deterministic counterparts, it is theoretically interesting to
enable built-in probabilistic behavior for smart contracts.

3) Gambling and Online Casinos [10]-[12]: Finally, an
online casino which provides betting and gambling on
the blockchain needs to prove to its customers and the
regulators that the results of the bets are indeed random
and not manipulated by the casino itself. The online
gambling industry is worth billions of dollars. However,
many blockchain-based solutions have failed due to their
inability to stop dishonest behavior. Moreover, they have
all remained illegal since they are unable to reach the
required regulatory bar and provide assurances that the
randomness is truly unpredictable and tamper-proof.

Our Setting. In this work, we mainly focus on the third moti-
vation above and provide a secure, trustless, decentralized and
tamper-proof protocol to generate secret random numbers on
the blockchain. The main distinguishing factor of our setting
is the secrecy, i.e. the output random number is only visible to
the initiator of the protocol. Moreover, we provide auditability,
meaning that the initiator can prove that a particular value
was generated by the protocol. Our protocol is also easy to
implement as a smart contract.

Motivation for QOur Setting. Suppose a blockchain-based
casino would like to prove to its customers and the regulators
that the bets are not manipulated. To do this, the casino can
generate a fresh random number for each bet using one of the
previous RNG approaches. See Section V for a summary of
these approaches. However, this would be both inefficient and
costly. For example, using the Ethereum-based implementa-
tions of these protocols, each bet would take several minutes of
time and would cost dozens of USD in gas. This is impractical
at the scale of a real-world casino which processes hundreds
of thousands of bets per day. It is also impractical for the
bettors, who are effectively barred from small bets.

Instead, we propose a different approach: the casino CASSIE
first requests a single random number 7 using an on-chain
decentralized RNG at the beginning of the day. She then
uses r as her seed for a predefined pseudo-random number
generator Rand. Each bettor BETTY provides a nonce nggrry
and then the casino computes Rand(r, nggrry) and uses it as
the source of randomness for that particular bet. Note that
this would work only if r is secret and exclusively known



to CASSIE. Otherwise, if r is known, then BETTY can cheat
and choose an nggrry that is guaranteed to win her the bet.
Unfortunately, previous blockchain-based RNG approaches
disclose the random number r publicly. Thus, we need a
protocol to generate secret random numbers. Finally, at the
end of the day, CASSIE should disclose  and be able to prove
to everyone that she did not tamper with it. This, together with
a record of all bets, is sufficient information to verify that the
casino has not cheated throughout the day'.

Contributions. Using a novel combination of homomorphic
encryption and secret sharing, we provide a trustless and
decentralized protocol that generates a secret random num-
ber. Moreover, we show that the generated number is both
auditable, i.e. the casino can prove it at the end of the day,
and tamper-proof. We also show that it possesses several other
desired security properties. To the best of our knowledge,
this is the first known blockchain-based RNG protocol with
secret outputs. As argued above, our approach enables an
efficient and cheap implementation of a blockchain-based
casino with provably tamper-proof randomness for the first
time. Additionally, we use very lightweight cryptographic
primitives and thus our approach’s gas usage is negligible.
We intentionally avoid using SNARKSs and other gas-heavy
building blocks. Note that minimizing gas usage is highly
important and bounding or reducing it is a well-established
research direction [13]-[18].

II. PRELIMINARIES

Our approach is a novel combination of homomorphic
encryption and secret sharing. We provide a high-level intro-
duction to these concepts here and refer to [19]-[21] for more
details.

Homomorphic Encryption [20]. An encryption scheme is
homomorphic if it allows computations to be performed on
the encrypted form, without a need to decrypt it first. While
homomorphic encryption is a deep subfield of cryptography
with many recent advances, our use-case can be handled by
the simplest type of partially homomorphic encryption, namely
the Goldwasser-Micali Cryptosystem. Specifically, we would
like to be able to encrypt a single bit b € {0,1}. Let Enc(b)
be the result of encrypting b. Note that this result is not unique
since our encryption process is not necessarily deterministic.
For any two bits b; and bo, we would like to have the following
homomorphic property:

Enc(by) - Enc(be) = Enc(by @ ba),

where @ is the exclusive or. In other words, given the
encrypted version of two bits by and by, we would like to be
able to compute an encryption of their xor, b; & by, without
having to decrypt first, so that we can keep the original bits
secret.

'During the day, when a bet takes place, CASSIE does not disclose 7
to BETTY, but only Rand(7, ngerry). If BETTY also has a signature from
CASSIE on (nggrry, Rand(r, nperry)), then any future wrongdoing by the
casino can be proven. More specifically, CASSIE discloses and proves r at
the end of the day. So, BETTY can check if Rand(r, nggrry) is tampered
with. If so, she can publish the casino’s signature and prove the tampering.
Of course, we would expect a downstream smart contract to penalize CASSIE
for such dishonest behavior, but this is an orthogonal issue and beyond the
scope of the current paper.

Goldwasser—-Micali Cryptosystem [27]. The Goldwasser-
Micali Cryptosystem (GMC) was one of the first provably-
secure asymmetric-key encryption schemes. Fortunately, it
also has the desired homomorphic property above. Suppose
ALICE intends to receive an encrypted message from BOB.
The three parts of GMC are as follows:

e Key Generation: ALICE picks two large prime numbers p
and ¢ and sets N = p-q. She then picks an integer x that
is not a quadratic residue modulo either p or ¢. In other
words, there is no y such that y> =z mod p or %> = x
mod ¢2. This also ensures that 2 is not a quadratic residue
modulo N. ALICE then publishes the public key (N, x)
and keeps the private key (p, ¢) to herself.

e Encryption: To send a single bit b in encrypted form to
ALICE, BOB first generates a uniform random integer y
such that ged(y, N) = 1. He then computes

e:=Enc(b) :=y*-2® mod N

and sends it to ALICE. Note that the encryption result
is not unique and depends on BOB’s choice of y. If the
message is more than one bit long, BOB encrypts each
bit separately, using different values of y, and sends the
results to ALICE.

e Decryption: The encrypted value e is a quadratic residue
modulo N if and only if b = 0, i.e. when x appears with
an even exponent in e. Since N = p - q, ALICE decrypts
e by simply checking whether e is a quadratic residue
modulo both p and ¢. Given a prime p, an integer e is a
quadratic residue modulo p if and only if e®~1/2 = 1
mod p. This is due to Fermat’s Little Theorem. Thus, we
have:

_Jo if e V/2= 1 A ela-D/2= 1
Dec(e) := {1 otherwise

ALICE can perform this check since she knows p and

q. Without this knowledge, checking whether e is a

quadratic residue modulo N is a notoriously hard un-

solved problem in computational number theory [28].
We remark that GMC has our desired homomorphic property.
Suppose BOB encrypts b; and be using arbitrarily chosen
integers y; and y2, we have:

Enc(by) - Enc(by) = y? - 2 - y2 - xb2

= (yl '242)2 Cpbrthe — EnC(b1 &) bz).

The next ingredient of our approach is secret sharing:

Shamir Secret Sharing [21]. Let n and ¢ be positive integers
and t < n. Suppose ALICE has a piece of secret information
s that she wishes to distribute to n parties. She would like to
send each party i € {1,2,...,n}, a “share” s;, such that any
subset of ¢ or more parties can come together and reconstruct
the original value s, but any subset of ¢ — 1 or fewer parties
can find no information about s. Shamir Secret Sharing (SSS)
achieves this using the following operations:

2Generating such numbers is easy. One can simply choose random values
of x and check if they satisfy the requirements. If p,g = 3 mod 4, then
z = N — 1 would always work.



e Share Creation: ALICE chooses a large prime number p.
She then generates a random polynomial g as follows:

-1

g(x):=s4+a-v+ay -2 +... +as_q -2t mod p

where s is the secret value and each a; is a random
integer. She then sends each party 4 the share s; := g(i).

o Secret Reconstruction: The secret is s = ¢(0). Note that
a polynomial of degree ¢ — 1 is uniquely determined
by t points that it passes through. Moreover, for any
t points with different x coordinates, there is exactly
one polynomial of degree ¢ — 1 that passes through all
of them. This is known as the Lagrange interpolation
theorem and is a variant of the fundamental theorem of
algebra. Thus, if ¢ parties i1,19,...,%; come together,
they have access to ¢ points of the polynomial g, namely
(i1,9(i1)), (42,9(i2)), - . ., (i, g(ir)). Therefore, they can
reconstruct g using Lagrange’s formula:

g(x) =] o) - £;(x)

j=1
where
I*il ‘I*i'_l $7Z.'+1 I*it
Ej(gg):"__ _J _J e
12} 11 2] i—1 1 1541 12} (2

The intuition here is that every /; is equal to 1 at ¢; and
0 at every i, with j' # j. Having g, they can simply
compute s = ¢g(0). However, any set of ¢t — 1 or fewer
parties can have no information about ¢(0) since any
value of ¢(0) is possible given the information they have.
Our approach will combine GMC and SSS on top of an
underlying blockchain to obtain the desired functionality. It
is remarkable that the two ingredients above were invented
in 1982 and 1979, respectively. Thus, in principle, we could
design our protocol in the 1980s if only a shared ledger, like
the one provided by the blockchain, existed back then.

III. OUR PROTOCOL

In this section, we first present the desired security proper-
ties of a secret RNG and then provide our main protocol.

Open Game and Xor-based Results. Many of the previous
protocols for random number generation on the blockchain,
such as [3], [29], share the same simple idea to ensure
decentralization: Anyone on the blockchain network can take
part in the protocol (becoming a “player”) and submit a
random number sampled from the uniform distribution. Let’s
say n players choose to take part and player ¢ submits b;. We
let the result of the RNG be

n
v @
=1

and output r as our random number. This ensures that even if
only one of the players was honest and chose their b; uniformly
at random, then the overall result » will also follow the uniform
distribution.

Challenges. In our setting, suppose a casino CASSIE has asked
for the generation of a random number. In addition to the stan-
dard requirements of decentralization and uniform distribution

of the output, there are several additional challenges we must
overcome. Formally, we have to ensure the following security
properties:

1) Secrecy. Only CASSIE should be able to see r when it
is generated. More specifically, even if all but one of the
players collude, they should not be able to obtain 7.

2) Tamper-resistance. No group of participants, including
or not including CASSIE, should be able to leave the
protocol prematurely or otherwise act dishonestly in a
manner that affects the result r or its distribution. In other
words, 7 should be tamper-proof.

3) Auditability. At a time of her choosing, CASSIE should
be able to publicize and prove the r value she received.

4) Accountability. If a player 4 leaks her number b; to anyone
else, this dishonest behavior should be detectable and
traced back to i. Moreover, no one other than player ¢
should be able to know b;. This includes CASSIE.

The reasons behind the accountability property are quite
subtle:

« First, we would like to disincentivize the players from
disclosing their numbers and thus avoid the catastrophic
scenario where every player ¢ is bribed by a bettor BETTY
to disclose their b; and then BETTY can compute 7 and
win all her bets against the casino CASSIE. In practice,
each player 7 would have to put down a deposit that
is paid to anyone else who can uncover their bits b;.
Thus, if 7 discloses b; to BETTY, then BETTY can cash
i’s deposit. So, even if only one other player is honest
and refuses to collude with BETTY, then BETTY cannot
find r, but can still obtain 7’s deposit — which she will
most surely do if she is rational and trying to maximize
her own payoff. In other words, a leaky player is taking
a stupendous risk, which would lose them their deposit
even if only one other player refuses to leak. Note that
CASSIE herself can also take part as a player, so it is
pretty likely that there would be at least one leak-tight
player since the casino would lose a huge amount of
money if 7 is leaked. This being said, our protocol simply
ensures accountability, and the detailed amount of the
penalty applied to a dishonest player is an orthogonal
issue up to the developers.

¢ Second, we would like to make sure that if r is leaked,
then only CASSIE should be blamed and if a b; is leaked
then only player ¢ is blamed. If CASSIE can see the
b;’s, she can perform the following attack: Suppose the
resulting random value r is not in CASSIE’s favor and
has caused her to lose many bets throughout the day. She
can intentionally leak all the b;’s, and thus r, and then
claim that the players had leaked them and demand the
generation of a new random number r and cancellation
of all the bets performed using the leaked random value.
Moreover, we would not be able to distinguish between
the case that CASSIE herself leaked and the case where
the players leaked.

30f course, if all players collude then it is trivial to compute 7 since it is
simply the xor of their bits b;. However, since the system is decentralized
and anyone can take part as a player, including CASSIE herself whose best
interest is to keep r secret, it is safe to assume that there is at least one player
who would not collude to leak 7.



To simplify the presentation, we assume in the rest of this
section that every submitted number is a single bit, but the
same ideas work for any number of bits, e.g. we can require
each person to submit 32 or 64 bits and all steps of the protocol
below remain intact, just applied to each bit separately.

Intuition. In our protocol, each player chooses a bit b; as is
standard in previous approaches and the random result is the
xor of all b;’s. However, to ensure secrecy, each b; has to be
encrypted using CASSIE’s GMC public key. In other words,
suppose that CASSIE does not receive by, ..., b,, but instead
Enc(b1),Enc(by),...,Enc(b,). She can then compute

HEnc(bi) = Enc <@ b,») = Enc(r),

and decrypt it to obtain r. Unfortunately, we cannot simply
write a smart contract in which every player ¢ announces
Enc(b;). While this ensures secrecy and auditability, it does
not achieve tamper-resistance. CASSIE herself might be con-
trolling one or more of the players. Thus, she can decrypt the
b; values as they arrive and then choose the bits under her own
control to tamper with the result and obtain a desired r. Thus,
we have to ensure that every player commits to their own
bit before seeing any of the other players’ bits and that they
cannot change their bit later. This property is obtained using
SSS. Additionally, to ensure accountability, CASSIE should not
obtain the Enc(b;)’s but only Enc(r).

Our Protocol. We are now ready to present our protocol, which
can easily be implemented as a smart contract. Our protocol
consists of the following six steps:

Step 1. Initialization. The contract starts with CASSIE calling
an initialization function. This is equivalent to her asking for
the generation of a random number.

e She should specify the amount of reward that she is
willing to pay to the players and deposit it with the
contract.

o To enable GMC, CASSIE generates two prime numbers
p and ¢ and lets NV = p - q. She also chooses a primitive
root v modulo N and an integer x* such that z := ~X
mod N has all the required properties as in Section II,
i.e. it is not a quadratic residue modulo either p or q. She
then publicly announces N, v, x and = by recording them
in the contract but keeps the private key (p, ¢) to herself.
Basically (V, x) is the GMC public key and x = log., =
mod N. The reason for using the logarithm has to do with
the combination of homomorphic encryption and secret
sharing and will become apparent in the next steps.

o CASSIE should also fix the parameter ¢ for SSS, as well
as a modulus p’. This modulus has to be a prime number
that is significantly larger than N.> More formally, since
CASSIE cannot foretell the number n of players, she
actually sets a value for n — t. In practice, we would
expect n — t to be a small number so that we can be
confident that no ¢ of the players would be colluding with

4x is chosen uniformly at random.

5To be more exact, a simple reverse-engineering of the next steps shows
that it is sufficient to have p’ > 3 - N - n in order to avoid any overflow in
our secret sharing and polynomial operations.

CASSIE. We will use this property later in our security
analysis.

« Finally, CASSIE also sets time limits, in terms of number
of blocks, for each of the following steps.

Step 2. Player Registration. In this step, anyone on the
blockchain network can register as a player. Each player has
to put down a deposit which will be confiscated if they act
dishonestly. When the protocol successfully ends, each player
will be paid a proportional share of the reward deposited
by CASSIE in the previous step. Their deposits will also
be reimbursed. As is standard in blockchain-based protocols,
we assume each player’s identity is their public key and is
recorded in the contract. We use n to denote the number of
players who sign up in this step.

Messaging. In the following steps, we assume that the players
can have secure and authenticated communication with each
other and that every message is delivered to its intended
recipient. Thus, when we say player ¢ sends a message m to
player j, we assume that m was encrypted and only j could
read it. We also assume that it was signed by %, so that j
could verify the source of the message and later prove its
existence if necessary. In theory, such communication can be
implemented in the smart contract, i.e. using the contract as
a message ledger and the players’ public keys for encryption.
However, this would be too costly as every message is added
on-chain and incurs gas costs. The standard solution is to have
an off-chain communication mechanism between the players
and use the blockchain only to enforce the delivery of the
messages. More specifically, if the protocol requires ¢ to send
a message to j and j does not receive the message in the
allocated time off-chain, then j can log an on-chain request
for the message with the smart contract and ¢ is obliged to send
the message on-chain before a specific deadline. If ¢ fails to
do so, they will be disqualified and removed from the set of
players and their deposit confiscated and burnt.

Step 3. Encryption and Secret Sharing. Each player ¢ samples
a random bit b; from the uniform distribution. They then
choose a uniform random integer v; and compute y; := v
mod N and encrypt b; using CASSIE’s GMC public key to
obtain:

e; := Enc(b;) =y? - 2% mod N.

CASSIE should not see e; as this would violate accountability.
Moreover, we would like player ¢ to commit to e;. Thus, we
will instead have them commit to A\; := log,y e; using SSS.
Specifically, player ¢ computes \; = 2 - v; + b; - x. Note that
Ai < 3 - N. Player ¢ then generates ¢ — 1 random numbers
@i1,Gi2,--.,a;t—1 and forms the following polynomial:

1

gi(x):=Ni+ai1-z+ai2-2°+.. . +ai1-r' modp

Basically, A; is the secret that is being shared. Player ¢ sends
each other player j # ¢ a share g;(j).

Step 4. Aggregation. In the previous step, every player has
already received a share from every other player. Moreover,



each player ¢ has a secret polynomial g;. Let us define a new
polynomial g which is the sum of all the secret polynomials®:

g(x) = Zgj(x) mod p’

In this step, every player i computes g(i) = >."_, g;(i)
mod p’. Note that she can do this since every g;(i) is given
to her as a share by player j. Player ¢ sends g(i) to CASSIE
by recording an encrypted version of ¢(7), i.e. Enc(g(4)), in
the smart contract. This particular encryption is done using
CASSIE’s public key, but it does not necessarily have to use
GMC and can be implemented using any other encryption
system, too.

Step 5. Obtaining r. CASSIE decrypts the messages received
in the previous step and obtains all g(i)’s. Based on these
g(1)’s, CASSIE can now compute the secret random number
r = @, b;. Note that the polynomial g goes through the
points (4, g(7)). Moreover, it is of degree ¢ — 1 since every g;
was of degree ¢ — 1. Thus, as long as CASSIE has received
the g(i)’s from at least ¢ players, she can reconstruct g using
Lagrange interpolation and then compute ¢(0).

Here comes the magic! At this point, everything just lands in
place and works beautifully together so that we have 79(0) =
Enc(r). This is because g = > ., g;. Thus, we have:

g(0) = Zgi(()) = Z)\i = Zlogv e; = log, <H ei> =
i=1 i=1 i=1 i=1

log,, <ﬁ Enc(bi)> = log, Enc <é§ bi> = log,, Enc(r).
i=1 i=1

All the equalities above are modulo N. The equalities in
the first line are by definition chasing, whereas the second
line uses the homomorphic property of GMC. Based on this
equation, CASSIE computes Enc(r) = 79 mod N and
then decrypts it using her GMC private key to obtain 7.

Step 6. Audit. When it comes time for the audit, e.g. after
the end of the working day of the casino, CASSIE publicly
announces 7 by recording it in the smart contract. To enable
anyone on the blockchain to verify that she did not fake the
value of r, she also discloses all the g¢(i)’s and her GMC
private key (p,q). Anyone with access to the blockchain can
now simulate CASSIE’s computation from the previous step
and verify that it leads to r. This concludes our protocol.

IV. ANALYSIS OF THE PROTOCOL

We now briefly argue why our approach has the desired
properties mentioned for a blockchain-based secret RNG.

Decentralization. Our protocol is open. Anyone on the
blockchain network can sign up as a player in Step 2 and their
contribution b; is used in the computation of the final random
value r = @?:1 b;. Thus, there is no central authority and
all nodes on the network have the same permissions in our
protocol.

SWe know that every )\; is at most 3 - N, thus their sum is no more than
3- N -n. Since p’ > 3- N - n, we are sure that g(0) < p’ and thus no
information about g(0) is lost in this sum.

Uniform Distribution. Since the random value is computed as
r= @?:1 bj, even if one player, e.g. player 4, is honest and
provides a b; that is truly sampled from the uniform distribu-
tion, the entire result r will also have the same distribution.
Thus, a bettor BETTY who suspects CASSIE might intend to
cheat can simply sign up as a player herself and play honestly
to ensure r is uniformly distributed.

Secrecy. Every player ¢ produces shares of A\; = log,, Enc(b;)
in Step 3. So, even if all the other players come together,
they can only compute Enc(b;). However, only CASSIE can
decrypt this and obtain b; itself. Thus, all the other players
together are unable to obtain b;, which proves they cannot
obtain 7 either.

Tamper-resistance. Each player ¢ is committing to their b,
in Step 3. Moreover, their communication with the protocol
ends at Step 4. At these points, it is impossible for player ¢ to
know the bit b; submitted by any other player j # ¢ who is
not colluding. This is true even if player i is CASSIE herself,
since obtaining b; requires a collusion of at least ¢ players plus
CASSIE to first get Enc(b;) from the SSS and then decrypt it
using GMC. Thus, as long as there is no collusion of ¢ players
plus CASSIE, we have tamper-resistance.

More specifically, player ¢ has no incentive to act dishon-
estly in Steps 3 and 4, since they have no information about r
at this point and acting dishonestly or prematurely leaving the
protocol will only cause them to lose their deposit. If a player
leaves prematurely in Step 3, we can safely ignore them in
the computation of the value since they did not contribute a b;
in the first place (without knowing anything about r). If they
leave prematurely in Step 4, it will not affect the computation
of r in Step 5 as long as there are at least ¢ players who
completed the protocol.

Failures. The only cases when the protocol can fail is if
fewer than ¢ players provide the required values in Step
4 or some players provide wrong values, leaving CASSIE
unable to apply Lagrange interpolation in Step 5. This will
not happen in practice as there is no benefit for the dishonest
non-cooperating players and they are penalized by losing their
deposits. In the implementation of the smart contract, we can
have a fail-safe mechanism where CASSIE reports her inability
to apply Lagrange interpolation. She will then unmask all
the ¢(4)’s and the players unmask their secret numbers, thus
identifying the dishonest parties. Their proof of dishonesty
is then provided to the contract which penalizes them. This
is similar to the accountability process below. We note again
that such dishonest behavior is necessarily taking place before
the dishonest parties have any information about 7. Thus, we
can simply penalize them and rerun the protocol anew.

Auditability. We have a built-in audit in Step 6. CASSIE
publishes her GMC private key and anyone can perform the
same computations she performed in Step 5 to obtain the same
7.

Accountability. Consider a player ¢ who has contributed an
input number b; consisting of k bits. In practice, k is at least
32. Our contract will have a leak report function in which
anyone can accuse ¢ of leaking, claim they know b; and provide
it. If such a report is received from ALICE, an accountability
procedure will kick in after the end of Step 6, i.e. after r has



already been published and is no longer a secret. The role of
this accountability procedure is to check if ALICE’s claimed
value indeed matches b; and, if so, penalize player %.

In this process, player ¢ has to provide all of
their secret numbers generated throughout the protocol,
ie. b, yi, Vi, a1, .., 01, as well as the shares g;(j) which
they have sent to all other players and the g(i) which was
sent to CASSIE. All these values will be recorded in the smart
contract. If player ¢ lies about any of these values sent to
another player or CASSIE, the recipient can prove the lie and
receive part of the reward. Otherwise, all messages issued by
player ¢ are recorded on the blockchain and now everyone,
including the smart contract itself, can simulate player ¢’s
part of the protocol and verify whether b; matches the value
provided by the accuser ALICE. If and only if it does match,
then player ¢ will be penalized and their deposit will be paid
to ALICE and any other recipient who helped uncover the
dishonest behavior. Finally, since this process is a bit gas-
consuming, an accuser ALICE has to also provide a deposit
at the time of accusation which will be confiscated if the
accusation were false and used to compensate player ¢ for
the gas they use to prove their innocence in the accountability
procedure.

Note that the entire accountability procedure above is built
upon the assumption that only player ¢ can know and leak b;
and so if b; was known to ALICE, player ¢ must be guilty. We
now prove this by considering every party involved. ALICE
cannot simply guess b; since it is supposed to be chosen
uniformly at random by player ¢ and a guess will only have
a tiny 27" chance of being correct. The other players cannot
obtain b; as argued in our proof of secrecy above. Finally,
CASSIE only receives shares of g, and not g;. Thus, she
cannot reconstruct b; unless she colludes with ¢ of the players
who received shares of g;, which we assumed is not possible
based on the choice of ¢. Recall that t is close to n, so this
kind of collusion requires CASSIE to control almost all of
the players, which is in direct contrast to the openness and
decentralization of the protocol which allows anyone on the
blockchain network to join as a player.

Communication Complexity. Finally, we note that our pro-
tocol has a communication complexity of O(n?) since every
player has to send shares to every other player. However, these
communications can be performed off-chain and we need only
O(n) on-chain messages. Thus, the protocol is cost-effective
in terms of gas usage. A total gas cost of £2(n) is unavoidable
since every player must at least sign up in the protocol.

V. RELATED WORKS

There is a wide variety of RNG solutions for blockchains
in the literature. In this section, we provide an overview of
some of these approaches. To the best of our knowledge,
none of the previous approaches consider the problem of
generating a secret random number and, in all cases below,
the generated number is publicly visible to everyone on
the blockchain network. While this helps with auditability,
it certainly excludes the possibility of secrecy guarantees.
We first consider approaches that can be implemented as a
smart contract and do not require a change in the underlying
blockchain protocol.

Relying on Hashes or Timestamps. To enable random num-
bers in a smart contract, one can use a pseudo-random number
generator, then take one of the attributes of the block contain-
ing the transaction, such as block hash or timestamp, and use
it as a seed. The idea here is to ensure the seed is not under
the control of the function’s caller. However, this is a highly
vulnerable approach as it allows the miners to take control
of the seed. Moreover, it does not guarantee that the seed
is chosen from a uniform distribution. Despite many known
attacks and vulnerabilities, this approach remains popular in
real-world Ethereum smart contracts [30], [31].

Oracles [3], [32]. Another approach is to use oracles. Smart
contracts can only access information that is stored on the
blockchain. An oracle is simply a service that copies informa-
tion from elsewhere in the real-world back on the blockchain.
For example, one can use a service called Oraclize [32]
to access random numbers generated by random.org on the
blockchain. This approach is centralized and allows the devel-
oper/owner of the oracle to tamper with the output. Thus, it
does not satisfy our security requirements.

Commitment-based Schemes [3], [29], [33]. A separate family
of approaches, including RANDAO [29] which is currently
one of the most widely-used RNGs on Ethereum, rely on com-
mitment schemes and open participation to generate random
numbers. Basically, each of the n players first commit to their
random number b; by choosing a nonce z; and recording the
hash of the random number and the nonce, i.e. h(b;, z;), in
the smart contract. Thus, commitments are done without any
information about other players’ inputs. Then, every player
has to reveal their b; and z; and would be penalized for failing
to reveal values that lead to the promised hash. The random
number is simply the xor of everyone’s inputs. If applied
in our setting, aside from the output not being secret, these
approaches are also vulnerable to tampering by CASSIE. She
can wait for all other players to reveal their b;’s and then
choose not to reveal hers in case the output is not favorable.
This is effective tampering even if the protocol is restarted and
a new r is generated, since by not revealing her input, CASSIE
can still affect the distribution of 7.

Aside from the methods above, there are also many tech-
niques to generate random numbers at the level of the
blockchain protocol itself, e.g. so that it can be used in proof-
of-stake. Such approaches cannot be directly compared to ours,
but we nevertheless provide a summary of some of the most
prominent techniques in this direction.

Verifiable Delay Functions. To enable tamper-resistance,
many protocols employ a verifiable delay function [34]-
[36]. This is a function f whose computation requires a
large number of sequential steps and cannot be sped up by
parallelization. If such a function is given by, ..., b, as input,
it takes a long time to compute r := f(by,...,b,), which
ensures no party could predict r and thus choose their b;
strategically to tamper with its value.

Verifiable Random Functions (VRFs). Many proof-of-stake
protocols, such as Algorand [6] and Ouroboros [7], rely on
verifiable random functions [37]-[40]. In their setting, a party
can compute the result of the VRF locally. This result usually
decides whether the current party is allowed to mine the next



block or be a member of a committee. Moreover, the VRF also
provides a proof that can be checked by anyone to ensure its
value was computed correctly. This provides a certain level of
secrecy in the sense that a miner knows if they are allowed to
mine the next block, but their identity remains secret until they
provide the VRF output and proof. However, it cannot be used
in our setting in which the secret value should specifically be
in CASSIE’s possession, i.e. the user who has access to the
secret value is not chosen randomly.

Hydrand [2]. Hydrand is the closest previous work to our
approach and uses publicly-verifiable secret sharing to con-
tinuously generate tamper-proof random numbers. It provides
very similar guarantees to our approach and has the same
communication complexity. However, the main difference is
that Hydrand’s output is publicly visible and verifiable, which
makes it unsuitable for our secrecy requirements. In contrast,
we construct a novel combination of secret sharing, which was
already used in Hydrand, on the one hand and homomorphic
encryption on the other hand to provide secrecy guarantees.
To the best of our knowledge, our work is the first use-case
of homomorphic encryption in blockchain-based RNG.

Other Approaches. Finally, it is noteworthy that there are
many other approaches for the generation of publicly-verifiable
random numbers, such as [41]-[46]. We refer to [2, Table I]
for a detailed comparison of these works. Crucially, none of
these approaches output secret random numbers.
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