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ABSTRACT

Vibration study, also called modal analysis, plays an important role in the structural health monitoring of
mechanical structures. During the last decade, video-based modal analysis methods have emerged to provide
dense vibration estimation using each pixel as a contactless sensor. Dense subpixel motion is estimated and
is then processed by a modal analysis algorithm to extract the modal basis composed of natural frequencies,
damping ratios, and mode shapes. This paper introduces a new single-subband phase-based method for subpixel
motion estimation. It is compared with state-of-the-art motion estimation method on synthetic and experimental
videos of a cantilever beam.

Keywords: Operational Modal Analysis, Vibration, Structural Health Monitoring, Subpixel motion estimation,
Phase-based motion estimation

1. INTRODUCTION

Monitoring mechanical properties of large mechanical structures such as bridges, building or wind turbines is
important to detect early stage failures. Operational modal analysis (OMA) estimates vibration properties, such
as resonance frequencies, from motion measurements. Change of resonance frequencies in time may be a good
indicator of failure.1 OMA generally analyzes signals provided by contact sensors, such as accelerometers or
laser vibrometers. However, those are expensive and may be hard to set up. Laser vibrometers enable remote
sensing, but only measure one-directional motion point by point. Because the force applied to the structure
may be different as each point motion is measured, another sensor is required to measure a reference fixed point
during the whole acquisition.

Taking advantage of fast video camera development and of works about subpixel motion estimation, several
video-based OMA methods have emerged in the last decade. These methods combine motion estimation methods
with traditional modal analysis algorithms to allow for a cheap remote sensing. Among classical methods that
estimate subpixel motion from videos, phase-based ones provide a dense motion estimation with no need of
speckle patterns or targets mounted on the structure.2 This strategy decomposes spatial frequencies within each
frame into complex subbands by applying Gabor filters with localized frequencies. Chen et al. analyze on vertical
and horizontal subbands to estimate 2D motion.3 They assume that motion can be captured using a single
arbitrarily chosen scale. However, spatial frequencies, and thus the optimal scale, may depend on the spatial
resolution. Yang et al. only focus on horizontal motion and apply a single-scale method to estimate the motion on
each horizontal subband.4 Wadhwa et al. propose a multi-subband approach thanks to a weighted least-square
estimator to compute 2D motion.5 However, weighted least-square estimation is time-consuming.

To reduce the processing time, we propose to select the relevant subband at each pixel in order to estimate
motion. In this paper, we detail this method, denoted as single-subband approach. We compare its performance
with that of the multi-subband method on both synthetic and experimental videos of a cantilever beam that
moves along horizontal and vertical directions.
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2. PHASE-BASED SUBPIXEL MOTION ESTIMATION

Let δ[p; t] = (δh[p; t], δv[p; t])⊺ ∈ R2 be the motion field, defined by its coordinates along horizontal and vertical
directions, at pixel p in frame t ∈ J0, Nt − 1K. Assuming illumination is spatially and spectrally constant over
time, the intensity I[p; t] at the pixel p associated to a given surface element can be considered as constant:

I[p; 0] = I[p+ δ[p; t]; t]. (1)

Furthermore, the intensity I[p; t] is assumed to be a combination of local cosine functions that depend on
local spatial frequencies. The spatial frequency domain may be divided into subbands, each being centered at
spatial frequency ωr,θ = (ωh

r,θ, ω
v
r,θ)

⊺ = (ωr cos(θ), ωr sin(θ))
⊺. These subbands correspond to different scales

r ∈ J1, NrK and orientations θ = 0, π/Nθ, . . . , (Nθ − 1)π/Nθ, where Nr and Nθ are the chosen numbers of scales
and orientations.

Frame spatial frequencies are decomposed into subbands using Gabor filters Gr,θ, whose band-pass filter around
central frequency ωr,θ is characterized by a standard deviation σr,θ. For each subband (r, θ), the complex filter
response Sr,θ[p; t] = Gr,θ[p] ∗ I[p; t] is expressed as:

Sr,θ[p; t] = ρr,θ[p; t] · exp (j · (ω̃r,θ[p]
⊺ · (p− δ[p; t]))) , (2)

where ω̃r,θ[p] is the local spatial frequency in the subband centered at ωr,θ such that |ω̃r,θ[p]− ωr,θ[p]| < σr,θ,
ρr,θ[p; t] = |Sr,θ[p; t]| is the filter response magnitude, and its phase is:

φr,θ[p; t] = arctan (Im(Sr,θ[p; t])/Re (Sr,θ[p; t])) = ω̃r,θ[p]
⊺ · (p− δ[p; t]) . (3)

Assuming there is no motion in the first frame (i.e., δ[p; 0] = 0 for all p), Eq. (3) yields the following for each
subband (r, θ), pixel p, and frame t:

φr,θ[p; 0]− φr,θ[p; t] = ω̃r,θ[p]
⊺ · δ[p; t]. (4)

This equation is important because it links the motion δ with the local spatial frequency ω̃r,θ and the phase
φr,θ. The phase is computed from the complex response Sr,θ at each pixel within each frame.

2.1 Multi-subband 2D motion estimation

Wadhwa et al. propose to take account of the phase and local frequency computed in every subband, and compute
a weighted least-square estimator of the 2D motion.5 Because the response phase φr,θ is only meaningful if the
associated amplitude is high, the authors use its square ρ2r,θ as weight. They also assume that motion is locally
smooth, and add a spatial consistency constraint via a Gaussian kernel G (with 3 px standard deviation and
19×19 px support W ). The local frequency ω̃r,θ at each pixel p is approximated by the Gabor central frequency
ωr,θ. Motion is then determined by a weighted least-square estimator as:

δ̂[p; t] = argmin
δ[p;t]

∑
r

∑
θ

∑
q∈W [p]

G[q] · ρ2r,θ[p+ q; t] ·
[
ω⊺

r,θ · δ[p; t]−
(
φr,θ[p+ q; 0]− φr,θ[p+ q; t]

)]2
. (5)

Before solving the weighted least-square problem, the phase φr,θ is temporally unwrapped. As this approach
attempts to minimize a square distance betweenNrNθ terms at each pixel within each frame, it is time-consuming.

2.2 Single-subband 2D motion estimation

To reduce the processing time, we propose to select the relevant subband at each pixel. For each pixel p, the
retained subband (rp, θp) is that with maximum amplitude within the first frame:

(rp, θp) = argmax
r,θ

ρr,θ[p, 0]. (6)
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Denoting ω̃rp,θp [p] =
∣∣ω̃rp,θp [p]

∣∣u, with u =
(
cos (∠ω̃rp,θp [p]), sin (∠ω̃rp,θp [p])

)⊺
, and assuming that motion

δ[p; t] is collinear with ω̃rp,θp [p], i.e., δ[p; t] = |δ[p; t]|u, Eq. (4) becomes:

φrp,θp [p; 0]− φrp,θp [p; t] = |ω̃rp,θp [p]| · |δ[p; t]|. (7)

Motion can thus be estimated using the selected subband (rp, θp) as:

δ̂[p; t] =
φrp,θp [p; 0]− φrp,θp [p; t]

|ω̃rp,θp [p]|
· u. (8)

At each pixel p, the local spatial frequency within the selected subband (rp, θp) must be determined in
order to estimate motion according to Eq. (8). For this purpose, we assume that motion and local frequency in
the selected subband are locally constant within the frame, i.e., |∇p δ[p; t]| = 0 and

∣∣∇p ω̃rp,θp [p]
∣∣ = 0, where

∇p is the spatial gradient computed at p. In the selected subband (rp, θp), the local spatial frequency is then
determined as ω̃rp,θp [p] = ∇pφrp,θp [p; 0] by deriving Eq. (3) with respect to p within the first frame. To compute
the phase gradient, we follow the approach of Fleet et al. 6 that avoids phase wrapping and discontinuity problems
encountered with Sobel derivation, which provides:

ω̃rp,θp [p] = ∇pφrp,θp [p; 0] =
Im

(
S∗
rp,θp

[p; 0] · ∇p Srp,θp [p; 0]
)

∣∣ρrp,θp [p; 0]∣∣2 . (9)

3. MODAL ANALYSIS

From the estimated dense motion, the goal of OMA is to estimate a modal basis {(fi, ζi, ϕi)}Nm
i=1 of Nm modes,

each of which with resonance frequency fi (Hz), damping ratio ζi, and mode shape ϕi. In this study, we use the
covariance-driven stochastic subspace identification (SSI) method,7 that provides a high parameter estimation
accuracy for a short computation time,8 as well as a stabilization diagram to discard spurious modes.

3.1 Covariance-driven stochastic subspace identification

The free motion equation for a system with N degrees of freedom is formulated as a discrete-time state space
model:

x[t+ 1] = Ax[t] +w[t]

y[t] = Cx[t] + v[t] , (10)

where x[t] ∈ R2N is the state vector, y[t] ∈ R2Np the observation vector for Np pixels of interest, A ∈ R2N×2N

the state-space matrix, C ∈ R2Np×2N the observation matrix, and w[t] ∈ R2N and v[t] ∈ R2Np the observation

and input noise vectors. The goal of SSI7 is to get estimates Â and Ĉ of these matrices only from observations
{y[t]}Nt−1

t=0 (here, δ̂[:, t]) to obtain the modes. A block Toeplitz matrix composed of observation covariance
matrices with different time shifts is constructed. The singular value decomposition of the Toeplitz matrix
provides Â and Ĉ. Then, from the eigenvalue decomposition Â = ΨSΨ−1 with S = diag(λi), i ∈ J1, 2NK, the
modal basis is computed for a given model order N as:

fN
i =

1

2π

∣∣∣∣ log λi

∆t

∣∣∣∣ , ζNi =
Re(λi)

|λi|
, and ΦN = ĈΨ, (11)

where ∆t is the time step between two successive frames. Mode shapes ϕN
i are the columns of ΦN . Note that

the 2N modes come as N complex conjugate pairs, hence N positive frequencies are kept.

3.2 Stabilization diagram

In practice, the number Nm of modes is unknown. Therefore, a stabilization diagram is used to plot the poles
obtained from a modal analysis method with different model orders.9 Irrelevant models produce spurious modes
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that can be discarded by a stability analysis. Indeed, physical poles tend to be stable whereas spurious ones
tend to be unstable (in frequency, damping, and/or mode shape).

Let pNi , i ∈ J1, NK, be a pole of order N with natural frequency fN
i , damping ratio ζNi , and mode shape ϕN

i .
We consider it as stable if the following predicate holds:

S
(
pNi

)
= ∃pN−1

j

[(
|fN

i − fN−1
j |

fN−1
j

< 0.01

)
∧

(
|ζNi − ζN−1

j |
ζN−1
j

< 0.05

)
∧
(
MAC(ϕN

i ,ϕN−1
j ) > 0.98

)]
, (12)

where MAC(ϕa,ϕb) =
(ϕ⊺

aϕb)
2

(ϕ⊺
aϕa)(ϕ

⊺
bϕb)

is the modal assurance criterion between any two mode shapes ϕa and

ϕb. The key idea is that spurious modes occur randomly and are not stable for two consecutive model orders.

However, when motion measurements are noisy, some spurious modes can be confused with stable ones on
the diagram. To discard them, the first complex mode indication function (CMIF), whose peaks indicate the
presence of a mode at the associated frequency, is also plotted on the diagram.10

4. EXPERIMENTS

To compare the methods presented in Sec. 2, we here analyze two videos of a cantilever beam: first, a synthetic
noise-free video generated using the Euler–Bernoulli beam model and, second, an experimental video recorded
in controlled conditions by a TIS DMK 33UX287 camera.

4.1 Synthetic video of two-directional motion

4.1.1 Setup

We generate a synthetic video of a cantilever beam using the Euler–Bernoulli model with the following physical
parameters: beam length L = 0.9 m, Young modulus E = 210 · 109 Pa, area moment of inertia J = 5.4 · 10−10

m4, and mass per unit length µ = 1.413 kg·m−1. The center line of the beam is defined in the scene coordinate
system by the point set {(g(z, t), z; t) ∈ R × [0, L] × [0, (Nt − 1)∆t]}, where g(z, t) =

∑Nm

m=1 ϕm(z) qm(t) is the
Euler–Bernoulli equation solution, in which a mode shape ϕm and modal coordinate qm respectively correspond
to space and time information.

An input force γ = 0.32N at t = 0 and z = L simulates a hammer impact at the free end of the beam in its
normal direction. Four modes are defined in the model (Nm = 4). Theoretical natural frequencies {fm}4m=1 are
computed from the Euler–Bernoulli equation, and damping ratios are set arbitrarily. Their values are listed in
Tab. 1.

Mode m 1 2 3 4
fm (Hz) 6.19 38.79 108.60 212.82
ζm (%) 0.11 1.13 0.29 0.13

Table 1. Beam theoretical natural frequencies and damping ratios.

Videos last 1 s at 436 fps (default frame rate of TIS DMK 33UX287 camera), with a frame size set to
1000×1000 px and pixel resolution of 1.289mm·px−1. Each pixel intensity depends on the area of the intersection
between this pixel in the image plane and the projected beam using a pinhole camera model without optical
distortion. Gray levels are then encoded on 8 bits. As the beam motion is mainly in its normal direction, each
frame is rotated by an angle of 87.75° to study two-directional subpixel motion. Motion is estimated at each
pixel, and Np pixels of interest are then extracted from a line between the beam root and free end to perform
modal analysis (see Fig. 1).
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Figure 1. Frame from synthetic video and pixels of interest (in red).
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Figure 2. Estimated and theoretical motion in the middle of the beam. RMSE is the root-mean-square error.

4.1.2 Results

For both methods, the numbers of scales and orientations are set to Nr = 5 and Nθ = 8. Theoretical and
estimated motions along horizontal and vertical directions are shown in Fig. 2. The multi-subband estimator
slightly underestimates motion while the single-subband method overestimates it, but both methods give satis-
fying subpixel motion estimation. The stabilization diagrams are constructed with model orders N ∈ J4, 30K and
are displayed in Fig. 3. We can see that the diagrams are very similar, and that multiple stable poles are present
at the theoretical natural frequencies. To get quantitative results (see Tab. 2), we select the stable poles close
(by 1%) to a theoretical frequency, then we compare their average damping ratio and mode shape (using the
MAC) to the theoretical ones. The number of stable poles and damping ratios are comparable for both methods.
The single-subband method is less effective than the multi-subband one in terms of mode shape error, but is
three times quicker to process (2214 s vs. 6575 s).

Criterion Number of stable poles Damping ratio absolute error Mode shape error (1-MAC)
Mode m 1 2 3 4 1 2 3 4 1 2 3 4

Multi-subband 17 26 21 6 0.202 0.013 0.002 0.046 0.000 0.009 0.077 0.371
Single-subband 15 26 24 10 0.173 0.012 0.008 0.056 0.001 0.012 0.086 0.449

Table 2. Comparison of OMA results of both motion estimation methods with theoretical ones on synthetic video.
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Figure 3. Stabilization diagrams obtained for multi-subband (left) and single-subband (right) methods from the analysis
of synthetic video. Stable poles are in green and unstable ones in red.

Figure 4. Experimental setup with camera in purple, beam in red, accelerometers in blue, and vibration shaker in green.

4.2 Experimental video

4.2.1 Setup

To compare the methods on experimental videos, we clamp a steel beam of 930 × 30 × 6mm3 in a vice. We
place eight single-axis accelerometers at evenly-spaced locations on the beam to get its ground truth in natural
frequencies and damping ratios. The beam is excited by a vibration shaker with a random white noise between
0 and 250Hz. The experimental setup is shown in Fig. 4. The modes listed in Tab. 3 are estimated using the
covariance-driven SSI algorithm. As the frequency range of accelerometers is above 10Hz, the first mode is
not retrieved in practice. Nevertheless, the marked peak at 5.31Hz on the acceleration power spectral densities
provides a coarse estimation of the first natural frequency.

Mode m 1 2 3 4
fm (Hz) 5.31 30.69 96.49 186.72
ζm (%) not estimated 1.16 1.30 0.25

Table 3. Beam natural frequencies and damping ratios estimated by accelerometers.

The TIS DMK 33UX287 camera with a 8mm focal length lens is installed in front of the beam and tilted by
an angle of 9° in order to be close to the synthetic video case. The frame rate is set to 500 fps, the acquisition
time to 8 s, and a ROI of size of 720 × 140 px is used. The motion estimation parameters are the same as for
synthetic video (Nr = 5, Nθ = 8). A frame with the pixels of interest is shown in Fig. 5.
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Figure 5. Frame from experimental video and pixels of interest (in red).

A stabilization diagram is built, then damping ratios and mode shapes of stable poles (close to natural frequencies
estimated with accelerometers) are compared to ground truth damping ratios and theoretical mode shapes.

4.2.2 Results

The stabilization diagrams obtained for both methods are displayed in Fig. 6 and the quantitative results are
gathered in Tab. 4. The four modes are identifiable on both stabilization diagrams. However, a spurious mode
close to 200Hz, possibly caused by video noise that corrupts motion estimation, is also present on both diagrams.
The single-subband method gives competitive results compared to the multi-subband one, for a reduced motion
estimation time (2834 s vs. 6387 s).
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Figure 6. Stabilization diagram for multi-subband (left) and single-subband (right) methods on experimental video.

Criterion Number of stable poles Damping ratio absolute error Mode shape error (1-MAC)
Mode m 1 2 3 4 1 2 3 4 1 2 3 4

Multi-subband 5 10 19 22 – 1.288 0.142 0.333 0.005 0.288 0.037 0.115
Single-subband 11 7 12 21 – 1.545 0.068 0.296 0.007 0.097 0.034 0.078

Table 4. Comparison of OMA results of both motion estimation methods with accelerometer ones on experimental video.

5. CONCLUSION

In this paper, we introduce a new single-subband phase-based method to estimate the 2D motion of a cantilever
beam from subpixel video analysis. Spatial frequencies of each frame are decomposed into subbands with complex
Gabor filters. The proposed method uses the phase of the complex subband with the highest amplitude at each
pixel. We also consider a multi-subband method based on a least square estimator merging all subband phases.

The two methods are compared on synthetic and experimental videos of a cantilever beam. The synthetic
video is generated using the Euler–Bernoulli equation of the beam excited by a hammer impact. The experimental
video is acquired in controlled lighting conditions and the beam is excited by a vibration shaker with white noise.
Motion is estimated in every frame and is then extracted on a line of beam pixels. The modal basis, composed of
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natural frequency, damping ratio, and mode shape, is then computed from motion estimations. The results on
synthetic and experimental videos are respectively compared to the theoretical modal basis of an Euler–Bernoulli
cantilever beam model and to the modal basis estimated from accelerometer measurements. Both methods
provide good motion estimations on synthetic video, with an RMSE to theoretical motion below 3 · 10−3 px. For
both videos, the single-subband method gives comparable modal basis estimates w.r.t. to the multi-subband
method. Furthermore, the single-subband method reduces the computation time by a factor between 2 and 3.

Further tests on more complex structures should be performed to confirm the results on experimental videos.
Moreover, experiments on videos acquired in outdoor should be performed to generalize this work to uncontrolled
video acquisition conditions.

REFERENCES

[1] Salawu, O., “Detection of structural damage through changes in frequency: a review,” Engineering Struc-
tures 19, 718–723 (Sept. 1997).

[2] Chou, J.-Y. and Chang, C.-M., “Image motion extraction of structures using computer vision techniques:
A comparative study,” Sensors 21 (Sept. 2021). paper 6248.

[3] Chen, J. G., Wadhwa, N., Cha, Y.-J., Durand, F., Freeman, W. T., and Buyukozturk, O., “Modal iden-
tification of simple structures with high-speed video using motion magnification,” Journal of Sound and
Vibration 345, 58–71 (June 2015).

[4] Yang, Y., Dorn, C., Mancini, T., Talken, Z., Kenyon, G., Farrar, C., and Mascareñas, D., “Blind identifica-
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