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Abstract—This article proposes an approach that aims to
reduce the gap between control theory and its use in industrial
practice, in particular in electric motor drives. We explore means
to embed optimal control methods based on convex optimization
directly into microcontrollers, in order to be able to recompute
or update the control law regularly without the need of external
intervention of an expert. This has been made possible by running
a real-time scheduler on the microcontroller which can run two
tasks, a fast task consisting of the motor drive control law,
and a low-priority task containing the optimization solver. A
simple, targeted, Linear Matrix Inequality (LMI) solver has
been developed for this scope. The feasibility of this approach is
demonstrated through a set of experimental results.

Index Terms—Motor drive, embedded control, Linear Matrix
Inequalities (LMIs).

I. INTRODUCTION

Electromobility is a critical aspect of the automotive indus-
try, where robustness and performance are required. Permanent
Magnet Synchronous Motors (PMSMs) exhibit those qualities
due to high power density, ease to manufacture and compact
structure [1]. To enhance the efficiency of the energy con-
version system and to take advantage of the intrinsic charac-
teristics of the PMSM, researchers have extensively explored
various feedback controllers, such as cascaded Proportional-
Integral (PI) controllers [2], model predictive control [3],
linear-quadratic regulator [4], etc. Cascaded speed and current
PI controllers have been historically used since the discovery
of Park and Clarke’s transformations [5], and they are tuned
most of the time with pole placement methods (Ackerman’s
formula) [2]. Model predictive control and linear quadratic
regulators are optimization-based controllers that require user-
defined matrices in order to introduce a trade-off between

power consumption and performance in a system. In [4],
these matrices are used to compute offline the gain of a state
feedback controller.

In most of the aforementioned methods, controller gain
tuning is a non-trivial task, where the user is required to set
a specific value for the poles or the cost functions, rather
than an acceptable range of values. The robust pole placement
Linear Matrix Inequalities (LMIs) regions method presented
in [6] is very interesting in this perspective, as it allows one
to just set an acceptable desired region of the complex plane
for the closed loop poles; this relieves the user from the
burden of precise control tuning, still ensuring the stability
and performance of the controlled system. This method has
been applied offline, for example in [7], in order to control
an integrated Light-Emitting Diode (LED) driver. The same
approach is used in [8] to drive a magnetic levitation plant
and in [9] to drive a PMSM.

Focusing on PMSMs, they are nonlinear systems with
fast dynamics; this often discourages the use of convex
optimization-based controllers for embedded applications.
This paper’s contribution is to introduce an alternative ap-
proach featuring an onboard LMI feasibility problem solver
to synthesize controllers, based on a computationally effi-
cient implementation of an interior-point method algorithm.
This embedded optimization process is capable of finding a
controller that fulfills a given set of specification, namely it
imposes a minimum decay rate and a minimum acceptable
damping for the closed-loop poles. This onboard approach
has several advantages, such as the ability to reconfigure
the controller without requiring an expert operator and a
lightweight algorithm that is suitable for small, budget-friendly



microcontrollers. To the best of our knowledge, this is the first
time that this strategy has been proposed and experimentally
validated on an industrial microcontroller, specifically the
ATSAME54P20A. The results of the experiment are promising
for on-chip industrial applications.

This paper is organized as follows: Section II first presents
the PMSM model, the regional pole placement method and
the interior-point LMI solver that we employ. Subsequently,
Section III describes the embedded control scheme as well as
its implementation on an industrial microcontroller, providing
also some experimental results. Section IV concludes the
paper, with a summary of the contributions and outlines for
future research directions.

II. PRELIMINARIES

A. Notation

We denote by R the set of real numbers and by Rn×m the set
of real n×m matrices. A⊤ indicates the transpose of a matrix
A, I is the identity matrix. The notation A ≻ 0 (resp. A ≺ 0)
indicates that all the eigenvalues of the symmetric matrix A
are strictly positive (resp. negative). The imaginary part of a
complex number z is denoted ℑ(z) and the real part ℜ(z).
Last, the notation [v; w] indicates the column concatenation
of two column vectors or scalars.

B. Electric motor model

Using Clarke and Park’s transformations [10], the Surface-
Mounted Permanent Magnet Synchronous Motor (SPMSM)
mathematical model in the d-q frame is expressed as:

Ldid
dt = vd −Rid + pLωiq,

L
diq
dt = vq −Riq − pLωid − pϕfω,

J dω
dt = 3

2pϕf iq − fω − τl;

(1)

where the inputs of the system are vd, vq , the d-q phase
voltages and the measured states of the system are id, iq
and ω respectively the d-q phase currents and rotor angular
speed, R the phase resistance, L the phase inductance, ϕf the
peak magnetic flux of the permanent magnets seen by stator
windings, p the pole pairs number, J the inertia of the system,
f is the viscous frictional coefficient of the motor, τl the load
torque considered as an exogenous disturbance (not measured).
The system described in (1) is nonlinear due to the product
of two state variables, so a feedback linearization method is
applied to eliminate these nonlinear terms [11]. Choosing:{

vd = ud − pLωiq,

vq = uq + pLωid,
(2)

the system (1) can be then rewritten as:

L
did
dt

= ud −Rid;

L
diq
dt

= uq −Riq − pϕfω,

J
dω

dt
=

3

2
pϕf iq − fω − τl;

(3a)

(3b)

(3c)

One can split this system into two independent linear time-
invariant systems: a first-order system that characterizes id
dynamic, and a second-order system that describes iq and
ω dynamics. A controller is built for each subsystem and,
to ensure zero steady state error in the presence of constant
disturbances and parameter mismatch, the state space model
is augmented with an integral action. Using [12], the tracking
error can be defined as:

ėi =

[
−R

L 0
1 0

]
ei +

[
1
L
0

]
ud (4)

where ei =
[
id − i#d εi

]
and εi =

∫ t

0
(id− i#d )dt the integral

action over the output of the system εi. The tracking error
state space model of the iq and ω dynamic [12]:

ėω =

−R
L

pϕf

L 0
3pϕf

2J
−f
J 0

0 −1 0

 eω +

 1
L
0
0

uq (5)

where eω =
[
iq ω − ω# εω

]
and εω =

∫ t

0
(ω − ω#)dt the

integral action over the output of the system εω . Both models
(4) and (5) can be written in the classical state-space form:

ẋ(t) = Ax(t) +Bu(t) (6)

with x ∈ Rn, u ∈ Rm and with appropriate definitions of
n, m, x(t), u(t), A and B. The primary objective of a control
system is then to guarantee stability and performance when
subject to unknown disturbances and parametric variation.
Ultimately, this involves determining the state-feedback gain
K for the control law:

u(t) = Kx(t) (7)

in a way that, when such a control is applied, the closed-loop
system in the following form:

ẋ(t) = (A+BK)x(t) (8)

possesses the desired properties.

C. Regional pole placement

This subsection provides a synthesis of how a resilient pole
placement via LMIs [6] can be utilized to synthesize the full-
feedback gain matrix (7). The goals are the following:

(i) the closed-loop dynamics has to be asymptotically stable
(i.e., the error converges to zero),

(ii) the closed-loop poles should guarantee an exponential
decay rate α within a minimum αmin and maximum
αmax values,

(iii) the damping factor of the system z should be greater
than a minimum specified value z ⩾ 1√

1+β2
expressed

in terms of a positive tuning parameter β.
Figure 1 depicts the constraints αmin, αmax and β over the

real and imaginary parts of the eigenvalues of the closed-loop
system.



Fig. 1: Acceptable region for the eigenvalues of the closed-
loop system according to the constraints α and β.

Finding a controller gain matrix K that satisfies these
specifications boils down to the following LMI feasibility
problem:

find
x

L ∈ Rm×n, X = X⊤ ∈ Rn×n s.t.

H1 = X ≻ 0

−H2 = XA⊤ + L⊤B⊤ +AX +BL+ 2Xαmin ≺ 0

H3 = XA⊤ + L⊤B⊤ +AX +BL+ 2Xαmax ≻ 0

−H4 =[
β(XA⊤+L⊤B⊤+AX+BL) AX+BL−XA⊤−L⊤B⊤

XA⊤+L⊤B⊤−AX−BL β(XA⊤+L⊤B⊤+AX+BL)

]
≺ 0

(9a)

(9b)

(9c)

(9d)

(9e)

With an affine parameterization of X , L as X(ξ), L(ξ)
where ξ ∈ Rµ, is a vector of decision variables, with
µ = n(n+1)

2 +n×m. This problem can be solved with standard
semidefinite programming constrained optimization methods,
and the controller can then be retrieved with the transformation

K = LX−1.

Notice that the existence of a solution for the problem
above is a sufficient condition for the existence of a controller
that successfully places the poles in the desired area, but not
necessary. This is due to the conservatism involved in the
convexification of the problem, see again [6] for details.

D. Interior point solver

Feasibility problem (9a)-(9e) can be solved by means of
an interior point algorithm, whose working principle is based
on turning the constrained optimization into an unconstrained
one, on which Newton iterations can be applied [13]. This
conversion is obtained through the use of an augmented cost
function that includes a barrier function, i.e., a term going to
infinity when the edge of the constrained region is approached.

The equations of problem (9a)-(9e) can be put in a single
inequality as

F =


H1 0 0 0
0 H2 0 0
0 0 H3 0
0 0 0 H4

 ≻ 0 (10)

where F is a symmetric matrix affine in the unknowns ξ, i.e.:

F (ξ) = F0 +

µ∑
i=1

ξiFi (11)

where Fi are constant, symmetric matrices. Problem (9a)-(9e)
is then equivalent to finding a value ξ⋆ of ξ, for which

F (ξ⋆) ≻ 0, (12)

which is also equivalent to finding values ξ∗, λ∗ < 0 for which

F (ξ∗) + λ∗I ≻ 0. (13)

Notice that for the problem in this last formulation, it is always
possible to find a simple feasible starting point (a set of ξ, λ
for which the inequality is satisfied) by simply taking ξ = 0,
and λ > −λ(F0), with λ(F0) the minimum eigenvalue of F0.
The interior point algorithm that we use is summarized here.

Algorithm 1 Interior-point method
Initialization: set ξ = 0, λ > −λ(F0), l > λ, set a θ ∈ (0, 1),
set a small tolerance ε > 0; define ζ = [λ; ξ], F(ζ) = F (ξ)+
λI .
Execute:

1) Define ϕ(ζ) as ϕ(ζ) = − log det(F(ζ))− log(l − λ).
2) Find ζc = [λc; ξc] = argminϕ(ζ) using an uncon-

strained optimization solver (Newton’s method) and using
ζ as starting point.

3) If ||ζ − ζc|| < ε or λ < −ε
then ζ∗ = [λ∗; ξ∗]← ζc and terminate;
otherwise set l← θλ+ (1− θ)λc, ζ ← ζc, go to 1.

Outcome: if λ∗ ⩾ 0 the problem is infeasible, otherwise it
is feasible and the controller gain can be retrieved as K =
L(ξ∗)X(ξ∗)−1.

The barrier term in this algorithm is minus the logarithm
of the determinant of F , which goes to plus infinity if one of
the eigenvalues of F goes to zero, assuring that the algorithm
never exits the F(ζ) ≻ 0 zone as it is initialized inside it.

III. EMBEDDED MOTOR DRIVE

A. Design of the control structure

In this subsection, we detail the control law implemented
in the microcontroller. We utilize the embedded optimal pole
placement method presented in subsection II-C and II-D to
synthesize the state feedback gain Kq for (5), with x = eω =[
iq ω − ω# εω

]⊤
, u = uq . The focus of our discussion

is limited to the controller of model (5), however, the same
approach can be applied to synthesize a controller for (4).



Fig. 2: Control scheme, with K = [Kd : Kq].

Fig. 3: Speed and current controller.

Figure 2 depicts the embedded control scheme as an input-
output diagram. Using the desired values of αmin, αmax,
and β as input parameters, the interior-point solver block
runs Algorithm 1 to solve the LMI feasibility problem. Thus,
finding a state feedback matrix Kq that satisfies the three
goals detailed in II-C. On the other hand, Fig. 3 describes the
speed and current control block. This block takes the measured
states, references, and Kq as inputs, and computes the udq

voltages. To obtain the d-q voltages vdq applied to the SPMSM
from udq , feedback linearization (2) is used. The d-q frame is
then transformed into the (a, b, c) frame using the Park and
Clarke transformations [10]. Finally, Pulse-Width Modulation
(PWM) is then used to drive the inverter. The interior-point
solver (pink) and control task (blue), in Fig. 2, are executed
respectively every Tsolver = 3 [s] and Tctrl = 0.1 [ms].

B. Experimental results

To verify the practical applicability of the proposed ap-
proach in an industrial setting, we carried out experimental
tests on a 3-phase SPMSM. The identified parameters of the
SPMSM are listed in Tab. I, which were obtained using [14].
To perform the experiments, an embedded inverter demo-
board from Microchip (MCLV-2) and an ATSAME54P20A
32-bit microcontroller were used (Tab. II provides further
details). The real-time software was developed using a high-
level rapid control prototyping solution, specifically, Mat-
lab/Simulink [15]. Figure 4 shows the experimental setup.

Fig. 4: PMSM and microcontroller-based electronics.

TABLE I: PMSM parameters.

PMSM Parameters Values Units

R 0.656 Ω
L 0.35 mH
ϕf 6.6 mWb
p 4 -
f 10−5 kg m2

J 10−5 N m s rad−1

Vdc 24 V

TABLE II: Some features of the ATSAME54P20A.

Characteristic Value

Architecture 32-bit ARM Cortex-M4
CPU speed (MIPS) 120

Size of programmable memory 1024
ADC 12 bits

Floating point unit yes
Unit price 7.39 e

We conducted experiments to test the control using a speed
step from 100 rad/s to 200 rad/s with varying constraints αmin,
αmax, and β. To simplify the analysis, we assume that αmin

is equal to α, and αmax is equal to 3α. For different values of
(α, β), Fig. 5, displays the eigenvalues obtained by solving the
LMI feasibility problem using algorithm 1. The speed response
for each set of constraints, (α, β), is presented in Fig. 6. The
figure highlights that increasing the value of α leads to more
negative eigenvalues and faster speed response. Additionally,
by allowing more oscillations through an increase in β, the
speed response becomes faster, although it may exceed the
reference during the transient. The actuator effort, is depicted
in Fig. 7 to insure the system is not saturated. Choosing αmax

is important to avoid very fast eigenvalues and prevent the
system from exceeding certain physical or operational limits.

In this experiment, the microcontroller performs all the
computations, and requires 2.344 seconds to solve the low
priority LMI feasibility problem. During these 2.344 seconds,
the processor is pre-empted every Tctrl to perform the high
priority motor control task before going back to the low prior-
ity task. This interruption is done following a rate-monotonic
scheduling policy, which ensures that the high priority task is



always executed, regardless of the microcontroller’s workload.
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Fig. 5: Poles of the closed loop system.

0 0.01 0.02 0.03 0.04 0.05

100

120

140

160

180

200

Fig. 6: Speed response for different values of (α, β).
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Fig. 7: Voltage transient for different values of (α, β).

IV. CONCLUSIONS

This paper presents a practical approach to directly embed-
ding advanced control methods, based on convex optimization,
using microcontrollers. This enables advanced control laws
to be regularly updated or recomputed without the need for
external intervention. The practicality of this method has been
shown in experimental tests. The method proposed in this pa-
per is based on the regional pole placement, but this is only an
example of what is possible, once the practice of embedding a
simple, efficient solver is established. As further developments,
we foresee the implementation of other advanced methods, like
constrained H2 or H∞ [16], or guaranteed cost control [17].
All of this should contribute to the effort of finding the best
energy efficient controllers for tomorrow’s electrical mobility.
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