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Deriving Explanations for Decision Trees: The Impact of Domain Theories

We are interested in identifying the complexity of computing explanations of various types for a decision tree, when the Boolean conditions used in the tree are not independent. When a domain theory indicating how the Boolean conditions occurring in the tree are logically connected is available, taking advantage of it is important to derive provably correct explanations. In this paper, we show that leveraging such a domain theory may have a strong impact on the complexity of generating explanations. While computing a subset-minimal abductive explanation (or a subset-minimal contrastive explanation) for an instance becomes NP-hard in presence of a domain theory, tractable restrictions exist. Especially, domain theories expressing the encoding of numerical attributes into Boolean conditions lead to tractable explanation problems for contrastive explanations.

Introduction

Motivations Several types of explanations can be defined when dealing with AI systems that implement classifiers f , i.e., mappings from a set X of instances to a set L of classes. On the one hand, abductive explanations (see e.g., [START_REF] Ignatiev | [END_REF]) aim to explain the classification of an instance x ∈ X as achieved by f . On the other hand, contrastive explanations (see e.g., [Miller, 2019]) aim to explain why an input instance x has not been classified by f as expected by the explainee. In both cases, explanations can be represented as subsets of the characteristics (i.e., the pairs attribute-value) of x: in the case of abductive explanations, the subset of characteristics that is derived must be sufficient to justify the classification f (x) that is made, in the sense that any instance sharing this subset of characteristics must be classified by f in the same way as x; in the case of contrastive explanations, one is interested in pointing out a subset of characteristics of x that must be modified to get an instance x satisfying f (x ) = f (x).

In this paper, the problem of deriving abductive / contrastive explanations suited to classifiers f (i.e., L = {0, 1}) represented by decision trees is considered. We focus on the decision tree model because it is considered as one of the leading forms of interpretable models, so that more opaque models can be distilled into decision trees to benefit from their improved interpretability [Ras et al., 2022]. Indeed, a number of explanation and verification queries for decision trees can be answered using polynomial-time algorithms, while the same queries are intractable for many other ML models [Audemard et al., 2021a].

When f is a decision tree [START_REF] Breiman | [END_REF]Quinlan, 1986], decision nodes over attributes A i from A are used in the representation of f . Whenever A i is numerical, the Boolean conditions labelling the nodes over A i used in f take the form (A i ≥ v i j ). Whenever A i is categorical and it has been one-hot encoded, the Boolean conditions labelling the nodes over A i used in f take the form (A i = v i j ). A key observation is that two spaces of characteristics can be used to describe the instances and their explanations when f is a decision tree (and more generally, when f is a treebased classifier, e.g., a random forest [Breiman, 2001], or a boosted tree [Freund and Schapire, 1997;Schapire and Freund, 2014;Friedman, 2001]). Indeed, instances and explanations can be represented as sets of characteristics based on the initial set of attributes, but also as sets of characteristics based on the Boolean conditions used in f . It turns out that considering the latter space of characteristics is preferable from an XAI perspective since it leads to explanations (abductive or contrastive) that are more general than those defined when the set of characteristics based on the initial set of attributes is considered (they cover more instances).

Let us illustrate it on a very simple loan granting scenario. Suppose that the decision tree classifier f , depicted on Figure 1, is used to determine whether the loan must be granted or not.

Alice wants to get a loan. Two attributes are used primarily to describe instances: A 1 (numerical) gives the annual incomes of the applicant, and A 2 (Boolean) indicates whether the applicant has reimbursed a previous loan. Alice's annual incomes are equal to $45 k and she has reimbursed a previous loan. Thus, Alice corresponds to the instance x = (45, 1). Since f (x) = 1, Alice will get the loan. The unique subsetminimal abductive explanation for x given f in the space of characteristics considered at start is {(A 1 = 45)}. Using words, the abductive explanation provided to Alice is "you got the loan since your annual incomes are equal to $45 k". In the space of characteristics of the predictor, two subset- minimal abductive explanations for x given f can be derived, namely {(A 1 ≥ 40)} and {(A 1 ≥ 30), (A 2 = 1)}. Those explanations are better than the previous one {(A 1 = 45)} since they correspond to more general classification rules and they reflect in a much more accurate way the behaviour of the predictor. Using words, "you got the loan since your annual incomes are greater than or equal to $40 k, but also because your annual incomes are greater than or equal to $30 k and you have reimbursed a previous loan". Consider now Bob, who also wants to get a loan. Bob has reimbursed a previous loan, but his annual incomes are equal to $20 k, only. Bob corresponds to the instance x = (20, 1). Since f (x ) = 0, Bob will not get the loan. Using the definition provided in [START_REF] Ignatiev | [END_REF], the unique subsetminimal contrastive explanation for x given f is {A 1 }. Using words, "in order to get the loan, you have to change your annual incomes". This is correct, but clearly insufficient since Bob surely expects to know to which extent his annual incomes must be updated in order to get the loan. The contrastive explanation {(A ≥ 30)}, represented in the space of characteristics of the predictor, is a far better explanation. Indeed, it indicates that "in order to get the loan, you have to make your annual incomes at least equal to $30 k". For more details on contrastive explanations for tree-based classifiers, see [START_REF] Audemard | On contrastive explanations for tree-based classifiers[END_REF].

Contributions

In the following, we look for explanations represented in the space of characteristics of the decision tree f to take advantage of their generality. Accordingly, f is now considered as a Boolean function based on the Boolean conditions labelling its decision nodes. However, f may be based on Boolean conditions that are not logically independent, especially when they come from the same (non-Boolean) attribute A i used to describe instances at start. This is the case in the above example, where the Boolean conditions (A 1 ≥ 30) and (A 1 ≥ 40) are not independent, since no instance may satisfy (A 1 ≥ 40) while not satisfying (A 1 ≥ 30). Thus, some propositional constraints Σ forming a domain theory indicating how the Boolean conditions used in f are logically connected must be taken into account when computing explanations. Pairs (f, Σ) are referred to as constrained decision-functions in [START_REF] Gorji | Sufficient reasons for classifier decisions in the presence of domain constraints[END_REF].

Because the feasible instances reduce to those satisfying Σ, leveraging Σ is mandatory to avoid the derivation of abductive explanations that are unnecessarily specific [START_REF] Gorji | Sufficient reasons for classifier decisions in the presence of domain constraints[END_REF] or that could be simplified (for in-stance, the abductive explanation for x (associated with Alice) given by {(A 1 ≥ 40), (A 1 ≥ 30)} can be simplified into {(A 1 ≥ 40)}). It is also necessary to prevent from generating contrastive explanations that would correspond to instances that are impossible [START_REF] Yu | [END_REF], for example, the contrastive explanation for x (associated with Bob) given by {(A 1 ≥ 40)} that would correspond to the (impossible) contrastive instance given by {(A 1 ≥ 40), (A 2 = 1), (A 1 ≥ 30)}.

In the following, our goal is to determine the computational impact of handling a domain theory Σ in the task of generating abductive explanations and contrastive explanations for instances given (f, Σ) when f is a decision tree. We consider the case when Σ is any theory, and also the more specific case when Σ is tractable. What we mean here by "tractable theory" Σ is the possibility of a polynomial-time clausal entailment tests: we suppose that a polynomial-time algorithm exists, that takes as input Σ and any clause δ, and returns true if and only if Σ |= δ holds.

Interestingly, knowledge compilation techniques can be exploited to "render tractable" propositional formulae Σ that are not tractable [START_REF] Darwiche | [END_REF]. Especially, there exist compilation algorithms associating with any CNF formula Σ an equivalent tractable theory (in the worst case, however, the resulting tractable theory is of size exponential in the size of Σ, so that no computational benefits can be guaranteed in every situation when knowledge compilation techniques are leveraged).

Among the tractable theories, we focus on two specific families, the Krom one (i.e., CNF formulae consisting of binary clauses) and the Horn one (i.e., CNF formulae where each clause contains at most one positive literal). It turns out that domain theories encoding numerical attributes or ordinal attributes are Krom theories. This is also the case of theories encoding categorical attributes (alias nominal attributes) under some open world assumption. Horn theories are also interesting because they can be used for encoding hierarchical features.

Our results are synthesized in Table 1. Each line of this table corresponds to a computation problem, that consists in deriving one (or all) explanations of a specific type for an input instance x given a constrained decision-function (f, Σ) where f is a decision tree. Each column corresponds to an assumption about the underlying theory Σ that is made. Each cell contains one of the following symbols: ×, +, or √

. × means that the computation problem given by the line and the column is provably intractable, i.e., there is no polynomial-time algorithm to solve it. + means that the computation problem given by the line and the column is probably intractable, i.e., there is no polynomial-time algorithm to solve the problem unless P = NP. Finally, √ indicates that the computation problem given by the line and the column is tractable, i.e., there exists a polynomial-time algorithm to solve the problem. 

Preliminaries

Classification Let A = {A 1 , . . . , A n } be a finite set of attributes, where each attribute is Boolean, categorical (aka nominal), or numerical. The domain

D i of A i (i ∈ [n]) is {0, 1} when A i is Boolean, a finite set of values that are not ordered when A i is categorical (for instance D i = {blue, white, red }), and (typically) D i = N or R when A i is numerical.
Note that the type of an attribute A i is a semantical information that must be part of its description. Especially, it cannot be inferred from the values in the corresponding domain D i (numbers can be used to denote values, like 0 for blue, 1 for white, and 2 for red , but it does not necessarily make sense in this case to consider that 0 < 1 < 2). We note A boo (resp. A num , A cat ) the subset of A consisting of Boolean (resp. numerical, categorical) attributes. An instance x over A is a vector from

D 1 × . . . × D n . Every x = (v 1 , . . . , v n ) is also viewed logically as the conjunctively-interpreted set t x of Boolean conditions (alias characteristics) {(A i = v i ) : i ∈ [n]}. X is the set of all in- stances. A binary classifier f over A is a mapping from X to L = {0, 1}. An instance x ∈ X is positive when f (x) = 1 and it is negative when f (x) = 0.
A decision tree over A is a binary tree T , each of whose internal nodes is labeled with a Boolean condition on A i ∈ A, and each leaf is labeled by an element of L. Without loss of generality, every variable is supposed to occur at most once on any root-to-leaf path. The value T (x) of T on an input instance x is given by the label of the leaf reached from the root as follows: at each node go to the left (resp. right) child if the Boolean condition labelling the node is evaluated to 0 (resp. 1) for x. The size of a decision tree is the number of nodes in it. Boolean functions By F n we denote the class of all Boolean functions from {0, 1} n to {0, 1}, and we use

X n = {x 1 , • • • , x n } to denote the set of input Boolean variables. A Boolean vector x ∈ {0, 1} n is a model of f if f (x) = 1. Otherwise, x is a counter-model of f . [f ] denotes the set of all models of f .
We refer to f as a propositional formula when it is described using the Boolean connectives ∧ (conjunction), ∨ (disjunction) and ¬ (negation), together with the constants 1 (true) and 0 (false). f is satisfiable if it has a positive instance, and it is unsatisfiable otherwise. f is valid when it has no negative instance. If f and g are two propositional formulae over X n , f entails g, noted f |= g, if and only if [f ] ⊆ [g] holds and f and g are equivalent, noted f ≡ g, if and only if

[f ] = [g]. A literal l i is a variable x i ∈ X n (a positive literal)
or its negation ¬x i (a negative literal), also denoted x i . The complementary literal ∼ l i of literal l i is x i if l i = x i is a positive literal, and x i if l i = x i is a negative literal. L Xn is the set of all literals over X n . A term t is a conjunction of literals, and a clause c is a disjunction of literals. In the following, we shall often treat instances as terms, and terms as sets of literals. A term t is an implicant of f if and only if t |= f holds and t is a prime implicant of f if and only if t is an implicant of f and no proper subset of t is an implicant of f . A clause c is an implicate of f if and only if f |= c holds, and c is a prime implicate of f if and only if c is an implicate of f and no proper subset of c is an implicate of f . A DNF formula is a disjunction of terms and a CNF formula is a conjunction of clauses. The set of variables occurring in a formula f is denoted Var (f ).

For an assignment z ∈ {0, 1} n , the corresponding canonical term is

t z = n i=1
x zi i where x 0 i = x i and

x 1 i = x i A term t covers an assignment x if t ⊆ t x .
When every Boolean condition occurring in a decision tree T over a set A of attributes is viewed as a Boolean variable, T can be viewed as a Boolean function over X n . The class of decision trees over X n is denoted DT n .

Finally, a constrained decision-function over a set of Boolean variables can be defined as follows [START_REF] Gorji | Sufficient reasons for classifier decisions in the presence of domain constraints[END_REF]]: Definition 1. Let X n = {x 1 , . . . , x n } be a set of Boolean variables. A constrained decision-function over X n is a pair (f, Σ) where f ∈ F n and Σ is a propositional formula over X n . Σ indicates how the Boolean variables from X n are logically connected.

Explanations

Let us now define in formal terms the two types of explanations we are interested in: abductive explanations and contrastive explanations. Definition 2. Let (f, Σ) be a constrained decision-function and x ∈ [Σ] be an instance s.t. f (x) = 1 (resp. f (x) = 0).

• An abductive explanation for

x given (f, Σ) is a set t ⊆ t x such that t ∧ Σ |= f (resp. t ∧ Σ |= f ).
• A subset-minimal abductive explanation for x given (f, Σ) is an abductive explanation t for x given (f, Σ) such that no proper subset of t is an abductive explanation for x given (f, Σ). • A minimum-size abductive explanation for x given (f, Σ) is an abductive explanation t for x given (f, Σ) such that no abductive explanation t for x given (f, Σ) such that |t | < |t| exists. Subset-minimal abductive explanations are also referred to as PI-explanations [START_REF] Shih | [END_REF], sufficient reasons [Darwiche and Hirth, 2020], or abductive explanations [START_REF] Ignatiev | [END_REF]. Definition 3. Let (f, Σ) be a constrained decision-function and x ∈ [Σ] be an instance.

• A contrastive explanation for x given (f, Σ) is a set c ⊆ t x such that the vector x c ∈ {0, 1} n that coincides with x except on the characteristics of c (a socalled contrastive instance) is such that x c ∈ [Σ] and f (x c ) = f (x). • A subset-minimal contrastive explanation for x given (f, Σ) is a contrastive explanation c for x given (f, Σ) such that no proper subset of c is a contrastive explanation for x given (f, Σ). • A minimum-size contrastive explanation for x given (f, Σ) is a contrastive explanation c for x given (f, Σ) such that no contrastive explanation c for x given (f, Σ) such that |c | < |c| exists. Subset-minimal contrastive explanations are also referred to as necessary reasons [START_REF] Darwiche | On the computation of necessary and sufficient explanations[END_REF] or contrastive explanations [START_REF] Ignatiev | [END_REF].

Clearly enough, every instance x has an abductive explanation given (f, Σ) that can be obtained without any computational effort, since t x is such an explanation. Furthermore, provided that x is known, every contrastive explanation c for x given (f, Σ) entirely defines a corresponding contrastive instance x c , and vice-versa, an instance x c ∈ [Σ] such that f (x c ) = f (x) entirely defines a contrastive explanation c for x given (f, Σ). Finally, it is obvious that minimum-size abductive (resp. contrastive) explanations form a subset (in general, a proper subset) of the set of subset-minimal abductive (resp. contrastive) explanations.

In the following, we focus on the issue of deriving such explanations when f is a decision tree. We first recall known results for the case when no domain theory connecting the Boolean conditions that occur in f is available (or, equivalently, Σ is a valid formula). In such a case, it has been shown that:

• As to abductive explanations:

-An instance x over X n may have exponentially many abductive explanations given f , and even exponentially many subset-minimal abductive explanations, and exponentially many minimum-size abductive explanations in the number n of Boolean features [Audemard et al., 2022b;2022a]. -Computing a subset-minimal abductive explanation for x given f can be done in time polynomial in the size of f and n [Izza et al., 2020], but it is unlikely that we can enumerate subset-minimal abductive explanations for x given f in output polynomial time [START_REF] De | Alexis de Colnet and Pierre Marquis. On the complexity of enumerating prime implicants from decision-dnnf circuits[END_REF]]. -Computing a minimum-size abductive explanation for x given f is NP-hard [START_REF] Barceló | [END_REF]. • As to contrastive explanations:

-An instance x over X n may have exponentially many contrastive explanations,1 but only polynomially-many subset-minimal contrastive explanations in the number n of Boolean features [Audemard et al., 2021b;[START_REF] Huang | [END_REF]. -Computing all the subset-minimal contrastive explanations for x given f can be done in time polynomial in the size of f and n [Audemard et al., 2021b;[START_REF] Huang | [END_REF]. -As a direct consequence, computing all the minimum-size contrastive explanations for x given f can be done in time polynomial in the size of f and n.

The Impact of Domain Theories

Σ is any theory We first consider the case when Σ is any propositional formula. In such a case, the presence of Σ can make the derivation of some explanations computationally harder. Obviously, the case when no domain theory is available (i.e., Σ is valid) is a specific case of the general case (when Σ is unconstrained). As a consequence, all hardness results obtained for the case when no domain theory is available still hold in the general case:

• As to abductive explanations:

-An instance x over X n may have exponentially many abductive explanations given f and Σ, and even exponentially many minimum-size abductive explanations in the number n of Boolean features. -Computing a minimum-size abductive explanation for x given f and Σ is NP-hard. • As to contrastive explanations:

-An instance x over X n may have exponentially many contrastive explanations.

Let us now look at the remaining issues. Proposition 1. Let (f, Σ) be a constrained decision-function, where f is a decision tree, Σ is a CNF formula, and let x ∈ [Σ] be an instance. Computing a subset-minimal abductive explanation for x given (f, Σ) is NP-hard, even if f reduces to a stump.

Proof. Suppose that f (x) = 1. By construction, the empty term is the unique subset-minimal abductive explanation for x given (f, Σ) if and only if Σ |= f holds. Similarly, if f (x) = 0, then is the unique subset-minimal abductive explanation for x given (f, Σ) if and only if Σ |= f holds. Thus, computing in (deterministic) polynomial time a subsetminimal abductive explanation for x when x is a positive instance is sufficient to decide in (deterministic) polynomial time whether Σ |= f . We show that this decision problem is coNP-hard, by reduction from CNF-UNSAT. Let α = m i=1 δ i be a CNF formula over {x 1 , . . . , x n }. We associate with α in polynomial time the CNF formula Σ = m i=1 (δ i ∨ x n+1 ) where x n+1 is a fresh variable, f is a decision tree equivalent to x n+1 (it is a stump: f has a single internal node labelled by x n+1 , its left child is a 0-leaf and its right child is a 1-leaf), and x is the instance over {x 1 , . . . , x n , x n+1 } where every variable x i (i ∈ [n + 1]) is set to 1. We can easily check that x is a model of Σ ∧ f . Now, Σ |= f holds if and only if α ∨ x n+1 is valid if and only if α is unsatisfiable.

As a consequence, subset-minimal abductive explanations cannot be enumerated in output polynomial time unless P = NP.

Similarly, for subset-minimal contrastive explanations, we have that: Proposition 2. Let (f, Σ) be a constrained decision-function, where f is a decision tree, Σ is a CNF formula, and let x ∈ [Σ] be an instance. Computing a subset-minimal contrastive explanation for x given (f, Σ) (or just a contrastive explanation for x given (f, Σ)) is NP-hard, and this holds even if f reduces to a stump.

Proof. Towards a contradiction, suppose that computing a subset-minimal or even a contrastive explanation for x given (f, Σ) is feasible in (deterministic) polynomial time. Then one would be able to decide in (deterministic) polynomial time whether a contrastive explanation for x given (f, Σ) exists. However, this problem is NP-hard, as shown by the following reduction from CNF-SAT. Let α = m i=1 δ i be a CNF formula over {x 1 , . . . , x n }. We associate with α in polynomial time the CNF formula Σ = m i=1 (δ i ∨x n+1 ) where x n+1 is a fresh variable, f is a decision tree equivalent to x n+1 (it is a stump: f has a single internal node labelled by x n+1 , its left child is a 0-leaf and its right child is a 1-leaf), and

x is the instance over {x 1 , . . . , x n , x n+1 } where every variable x i (i ∈ [n + 1]) is set to 1. We can easily check that x is a model of Σ ∧ f . So x has a contrastive explanation given (f, Σ) if and only if Σ ∧ f is satisfiable. But Σ ∧ f is equivalent to α ∧ x n+1 , which is satisfiable if and only if α is satisfiable.

Unless P = NP, the previous result prevents from the polynomial-time generation of all subset-minimal contrastive explanations for x given (f, Σ), which is feasible when Σ is valid. Actually, the result can be proved unconditionally due to the number of subset-minimal contrastive explanations for x given (f, Σ). Indeed, it can be the case that the minimumsize contrastive explanations for x given (f, Σ) are exponentially numerous in the number of features used, and this holds not only in the general case when Σ is any theory, but also in the specific case when Σ is a tractable theory. Indeed: Proposition 3. Let (f, Σ) be a constrained decision-function, where f is a decision tree, Σ is a CNF formula, and let x ∈ [Σ] be an instance. The number of minimum-size contrastive explanations for x given (f, Σ) can be exponential in the number of Boolean variables used in (f, Σ), and this is the case even when Σ is a Horn CNF formula or a CNF formula representing a set of domain constraints for categorical attributes where each domain contains at least 3 elements.

Proof. Let us start with the case when Σ is a Horn CNF formula. Let us take Σ = n i=1 (x i ∨y i ∨z i ). Let f be a decision tree equivalent to the clause n i=1 z i (such a decision tree can be generated in time linear in n), and let x be the assignment over {x i , y i , z i : i ∈ [n]} where every variable is set to 1. The instance x is a model of Σ ∧ f . In order to get a contrastive instance x satisfying Σ ∧ f , the truth value of every variable z i (i ∈ [n]) must be set to 0 since f ≡ n i=1 z i . But the assignment that coincides with x except on the variables z i (i ∈ [n]) is not a model of Σ: it violates every clause in it.

In order to make it a model of clause x i ∨ y i ∨ z i (i ∈ [n]) while keeping z i set to 0, at least one of x i or y i must be set to 1. Thus there are 2 n to minimally change x to get a model x of Σ ∧ f : every set containing all the variables z i (i ∈ [n]) and for each i ∈ [n], precisely one of x i or y i is a minimumsize contrastive explanation for x given (f, Σ). The number of such sets is equal to 2 n , thus exponential in the number 3n of Boolean variables used in (f, Σ).

Let us now turn to the case when Σ is a CNF formula representing a set of domain constraints for categorical attributes where each domain contains at least 3 elements. Let us take

Σ = n i=1 (x i ∨ y i ∨ z i ) ∧ (x i ∨ y i ) ∧ (x i ∨ z i ) ∧ (y i ∨ z i ).
Σ is a propositional encoding of domain constraints for n categorical attributes, where each domain contains 3 elements. Such a Σ is tractable since it is equivalent to the conjunction of its prime implicates. Let f be a decision tree equivalent to the clause n i=1 z i (such a decision tree can be generated in time linear in n), and let x be the assignment over {x i , y i , z i : i ∈ [n]} where every variable z i (i ∈ [n]) is set to 1 and every variable x i , y i (i ∈ [n]) is set to 0 . Then the rest of the proof is similar to the Horn case above. The instance x is a model of Σ ∧ f . In order to get a contrastive instance x satisfying Σ ∧ f , the truth value of every variable z i (i ∈ [n]) must be set to 0 since f ≡ n i=1 z i . But the assignment that coincides with x except on the variables z

i (i ∈ [n]) is not a model of Σ: it violates every clause x i ∨ y i ∨ z i (i ∈ [n]) in it.
In order to make it a model of Σ while keeping z i set to 0, precisely one of x i or y i must be set to 1. Thus there are 2 n ways to minimally change x to get a model x of Σ ∧ f : every set containing all the variables z i (i ∈ [n]) and for each i ∈ [n], precisely one of x i or y i is a minimum-size contrastive explanation for x given (f, Σ). The number of such sets is equal to 2 n , thus exponential in the number 3n of Boolean variables used in (f, Σ).

Σ is a tractable theory Let us now consider the case when Σ is a tractable theory. It turns out that supposing that Σ is tractable (implicitly, for the clausal entailment task) changes the picture when it comes to derive a subset-minimal abductive explanation: Proposition 4. Let (f, Σ) be a constrained decision-function, where f is a decision tree, Σ is a tractable theory, and let x ∈ [Σ] be an instance. Computing a subset-minimal abductive explanation for x given (f, Σ) can be done in time polynomial in the size of the input.

Proof. In order to generate efficiently a subset-minimal abductive explanation t for x given (f, Σ), one takes advantage of a greedy algorithm. If f (x) = 1 (resp. f (x) = 0), then we turn f (resp. f ) into an equivalent CNF formula m i=1 δ i (it is well-known that this can be achieved in time linear in the size of f ). Then we initialize t to t x , and consider every literal of t in sequence (the order chosen does not matter to prove the result). At each step, an implicant test is performed: one tests whether (t \ { }) ∧ Σ |= m i=1 δ i . If the test succeeds, then is removed from t, else it is kept, and the algorithm resumes considering the next literal of t in the sequence. When every literal has been considered, the resulting term t is by construction a subset-minimal abductive t for x given (f, Σ). Each test (t\{ })∧Σ |= m i=1 δ i can be done in polynomial time. Indeed, the condition holds precisely when for every clause δ

i (i ∈ [m]), Σ |= ¬(t \ { }) ∨ δ i . Since ¬(t \ { }) ∨ δ i is a clause
and Σ is a tractable theory, the condition can be evaluated in polynomial time. Since the number of implicant tests to be achieved is equal to the number of features, the greedy algorithm runs in time polynomial in the size of the input.

Focusing now on the generation of subset-minimal contrastive explanations, it is valuable to consider a further restriction on the tractable theory at hand, namely that Σ is a Krom CNF formula (i.e., Σ is given as a conjunction of binary clauses). Such theories are known as tractable for a while [START_REF] Even | [END_REF]Aspvall et al., 1979]. Indeed, when Σ is a Krom CNF formula, the computation of all the subsetminimal contrastive explanations for x given (f, Σ) can be done in time polynomial in the size of the input. As a direct consequence, the computation of all the minimum-size contrastive explanations for x given (f, Σ) can also be achieved in time polynomial in the size of the input. So in the case when Σ is a Krom CNF formula, the results obtained for the case when Σ is valid still hold.

Proposition 5. Let (f, Σ) be a constrained decision-function, where f is a decision tree, Σ is a Krom CNF formula, and let x ∈ [Σ] be an instance. Computing all the subset-minimal contrastive explanations for x given (f, Σ) can be done in time polynomial in the size of the input.

Proof. First of all, if f (x) = 1 (resp. f (x) = 0), then we turn f (resp. f ) into an equivalent DNF formula m i=1 γ i (it is well-known that this can be achieved in time linear in the size of f ). Then the goal is to determine models x c of Σ ∧ m i=1 γ i (i.e., contrastive instances) such that the set-theoretic difference of t x minus t xc is minimal w.r.t. set-inclusion. Now, Σ ∧ m i=1 γ i is equivalent to m i=1 (Σ ∧ γ i ). This shows that to get the models x c we look for, we can look at the models of each Σ ∧ γ i (i ∈ [m]). Every γ i such that Σ ∧ γ i is unsatisfiable can be detected in polynomial time since Σ is tractable and Σ ∧ γ i is unsatisfiable if and only if Σ |= ¬γ i where ¬γ i is a clause. When Σ ∧ γ i is unsatisfiable, γ i can be set aside since no model x c among the ones we look for can be a model of Σ ∧ γ i because Σ ∧ γ i has no model. If this happens for every i ∈ [m], then Σ ∧ m i=1 γ i has no model, so that no contrastive explanation exists.

The next step is to prove that for every γ i that is remaining, there exists a unique model x ci of Σ ∧ γ i such that t x minus t xc i is minimal w.r.t. set-inclusion. Clearly enough, every candidate x ci must satisfy γ i so the truth value of every literal of t x such that ∈ γ i must be switched in x ci , while the truth value of every literal of t x such that ∈ γ i is kept in x ci as it is in t x . More generally, every literal such that Σ ∧ γ i |= must be satisfied by x ci since x ci must be a model of Σ ∧ γ i . The set L i of literals entailed by Σ ∧ γ i can be computed in polynomial time because Σ is tractable (Σ∧γ i |= holds if and only if the clause ¬γ i ∨ is entailed by Σ). So let x ci be defined as the assignment that satisfies every literal from L i and that coincides with x on every variable x so that neither x nor x belongs to L i . By construction, all the models of Σ ∧ γ i give the same truth values to the literals in L i . Hence t x minus t xc i is minimal w.r.t. setinclusion. Therefore, it remains to show that x ci is a model of Σ ∧ γ i . Since it is a model of γ i , one just has to show that x ci is a model of Σ. Consider any clause δ of Σ. There are two cases. (1) If δ contains at least one literal ∈ L i , then δ is satisfied by x ci since x ci sets to true. (2) Else, no literal of δ = 1 ∨ 2 belongs to L i . In this case, neither 1 nor 2 belongs to L i as well, otherwise by unit propagation we would have been in case (1) or Σ ∧ γ i would have been unsatisfiable. So the variables of 1 and 2 are set in x ci to the same truth values as the ones they have in x. But since x satisfies Σ, x satisfies δ, hence x ci satisfies δ as well.

Notably, the theories Σ obtained by encoding numerical and/or ordinal attributes are Krom CNF formulae. This is also the case of theories encoding categorical attributes, provided that an open world assumption is made. What we mean here is that if V = {v 1 , . . . , v p } is the set of values of a categorical attribute A such that nodes of the type

(A = v i ) (i ∈ [p]) are encountered in the decision tree f , then Σ is equivalent to the Krom CNF formula vj ,v k ∈V |vi =v k ((A = v j )∨(A = v k ),
i.e., the values in V are mutually exclusive. Thus, the constraint vj ∈V v j is not implied by Σ: other values than those listed in V are considered as possible for attribute A. So when considering decision trees f based on numerical and/or ordinal features and/or categorical features under an open world assumption, the generation of all the subset-minimal contrastive explanations for an instance x given (f, Σ) can be achieved in polynomial time. And, as a consequence, the generation of all the minimum-size contrastive explanations for an instance x given (f, Σ) can be achieved in polynomial time as well.

We now focus on domain theories Σ that are tractable but do not reduce to Krom CNF formulae. Among them are (for instance) Horn CNF formulae. Such Horn theories are tractable and they are interesting because they can be used for encoding hierarchical features, for instance the fact that every plane geometry object that satisfies the property "rectangle" and the property "diamond" must have the property "square" as well. Because of Proposition 3, we already know that the generation of all subset-minimal contrastive explanations for an instance x given (f, Σ) cannot be achieved in polynomial time when Σ is a Horn CNF formula (so the result extends to tractable theories in the general case). Thus, we need to focus on computationally easier problems, namely the generation of one subset-minimal contrastive explanation and the generation of one minimum-size contrastive explanation.

We have obtained the following results: Proposition 6. Let (f, Σ) be a constrained decision-function, where f is a decision tree, Σ is a tractable theory, and let x ∈ [Σ] be an instance. Computing one subset-minimal contrastive explanation for x given (f, Σ) can be done in time polynomial in the size of the input.

Proof. The proof goes through a number of intermediate results.

The first step of the proof is similar to the first step in the proof of Proposition 5. If f (x) = 1 (resp. f (x) = 0), then we turn f (resp. f ) in linear time into an equivalent DNF formula m i=1 γ i . Then one looks for a model

x c of Σ ∧ m i=1 γ i such that the t x minus t xc is minimal w.r.t. set-inclusion. Since Σ ∧ m i=1 γ i is equivalent to m i=1 (Σ ∧ γ i ), for each i ∈ [m], we look first to a model x i c of Σ ∧ γ i such that t x minus t x i c is minimal w.r.t. set-inclusion (among the models of Σ ∧ γ i ).
Given two instances x, x ∈ {0, 1} n , we define x ⊕ x as the element of {0, 1} n such that for each j ∈

[n], (x⊕x ) j = 1 if x i = x i and (x ⊕ x ) j = 0 if x i = x i . Observe that x ⊕
x is totally defined from x and x , and that conversely, x is totally defined from x and x ⊕ x (we have x = x ⊕ (x ⊕ x )). Stated otherwise, given x, x and x ⊕ x are in one-to-one correspondance.

We consider two orderings over {0, 1} n : the product ordering ≤ prod induced by 0 < 1 (it is a partial ordering) and the lexicographic ordering ≤ lex over {0, 1} n induced by 0 < 1 (it is a total ordering). It is well-known that ≤ lex is a linear extension of ≤ prod , meaning that for any x , x ∈ {0, 1} n , if x ≤ prod x holds, then x ≤ lex x holds.

For any x, x , x ∈ {0, 1} n we note x x x precisely when x ⊕ x ≤ prod x ⊕ x , and x x x precisely when x ⊕ x ≤ lex x ⊕ x . By construction, we have x x x holds if and only t x \ t x ⊆ t x \ t x holds. Now, since ≤ lex is a total ordering, for each

i ∈ [m], the set {x ⊕ x : x ∈ [Σ ∧ γ i ]} has a least element w.r.t. ≤ lex . Let x ⊕ x i c denote this element. By construction, x i c is the least element of [Σ ∧ γ i ] w.r.t. x .
In order to compute x i c we can take advantage of the following algorithm:

Algorithm 1 Computing x i c Require: a tractable theory Σ, a term γ i such that Σ |= ¬γ i , and an instance

x = ( 1 , . . . , n ) ∈ [Σ ∧ ¬γ i ] Ensure: t x i c , where x i c is the least element of [Σ ∧ γ i ] w.r.t. x t ← γ i for i = 1 to n do if Σ |= ¬t ∨ ¬ i then t ← t ∧ i else t ← t ∧ ∼ i end if end for return (t)
This algorithm runs in polynomial time whenever Σ is tractable for clausal entailment. Basically, the term t that is computed by this algorithm implies γ i and every literal of t x is conjoined with t in sequence, provided that it does not conflict with Σ once augmented by the literals of t x that have been previously conjoined (note that we could simplify the loop and avoid testing whether Σ |= ¬t ∨ ¬ i whenever i ∈ γ i , but we keep the pseudo-code as it is for the sake of readability).

It turns out that the contrastive explanation c for x given (γ i , Σ) associated with x i c and given by c = t x \t x i c is subsetminimal. Indeed, if it was not the case, there would exist a subset-minimal contrastive explanation c for x given (γ i , Σ) such that c ⊂ c. Let x i c be the corresponding contrastive instance. We would have x i c x x i c and as a consequence (since x extends x ), we would also have x i c ≺ x x i c , contradicting the fact that x i c is the least element of [Σ ∧ γ i ] w.r.t. x . Finally, we compute in polynomial time the least element noted

x c of {x i c : i ∈ [m]} w.r.t. x . This element is the least element of [Σ ∧ m i=1 γ i ] w.r.t.
x . Consequently, the corresponding c = t x \ t xc is a subset-minimal contrastive explanation for x given (f, Σ).

Proposition 7. Let (f, Σ) be a constrained decision-function, where f is a decision tree, Σ is a tractable theory, and let x ∈ [Σ] be an instance. Computing one minimum-size contrastive explanation for x given (f, Σ) is NP-hard and this holds even if Σ is a pure Horn CNF formula and f is a stump.

Proof. Suppose that a (deterministic) polynomial-time algorithm for computing one minimum-size contrastive explanation c for x given (f, Σ) exists. If f (x) = 1 (resp. f (x) = 0), then |c| is the (minimal) Hamming distance between x and [Σ ∧ f ] (resp. [Σ ∧ f ]). Accordingly, if such an algorithm existed, one would be able to decide in (deterministic) polynomial-time whether the Hamming distance between a model x of Σ ∧ f and [Σ ∧ f ] is lower than or equal to any given non-negative integer, say d .

We now show that the latter problem is NP-hard by reducing the well-known minimal hitting set problem (MHS) to it. An instance of MHS is given by a pair (C, d) where C is a finite set of subsets of a finite set S = {x 1 , . . . , x n } and d is a non-negative integer; the instance is positive if and only if there exists a subset H of S s.t. |H| ≤ d and H is a hitting set of C, i.e., for every c ∈ C, H ∩ c = ∅. It is known that MHS is NP-complete even if the case when each c ∈ C contains at most two elements [Karp, 1972] (which is an assumption we make here). With such an instance (C, d), we associate in polynomial time the pure Horn formula Σ = c∈C ( xi∈c x i ) ∨ x 0 over {x 0 , x 1 , . . . , x n }, the stump f equivalent to x 0 , the instance x such that ∀j ∈ {0, . . . , n}, x j = 1, and d = d + 1. We can easily check that x is a model of Σ ∧ f . Furthermore, Σ ∧ f is equivalent to c∈C ( xi∈c x i ) ∧ x 0 . Since x 0 is set to 1 in x and x 0 does not occur in S, the Hamming distance between x and Σ ∧ f is equal to 1 plus the Hamming distance between x and c∈C ( xi∈c x i ). Since every variable is set to 1 in x, updating x so as to satisfy a clause xi∈c x i where c ∈ C requires to set to 0 in x at least one of the (at most two) variables x i . Since c∈C ( xi∈c x i ) must be satisfied, a minimal change in terms of the number of variables to be flipped in x to get a model of c∈C ( xi∈c x i ) (i.e., the Hamming distance between x and c∈C ( xi∈c x i )) is given by the size of a minimal hitting set of C. Thus, C has a hitting set of size ≤ d if and only if a contrastive explanation c for x given (f, Σ) of size ≤ d + 1 exists. This concludes the proof.

Conclusion

In this paper, we have shown that leveraging a domain theory indicating how the Boolean conditions occurring in a decision tree are logically connected may have a strong impact on the complexity of generating provably correct explanations. None of the explanation problems that are tractable when the Boolean conditions used in the tree are independent (i.e., Σ is valid) remain tractable when no assumptions are made on the domain theory. Ensuring that Σ is tractable is enough to preserve the results about the computation of abductive explanations that hold when Σ is valid, but in general, it changes significantly the picture concerning the computation of contrastive explanations (the sole contrastive explanation problem that is tractable when Σ is valid and that remains tractable when Σ is a tractable domain theory is the computation of one subset-minimal contrastive explanation). Contrastingly, when Σ is a Krom CNF formula, all the explanation problems that are tractable when Σ is valid remain tractable. The practical significance of this result comes notably from the fact that the domain theories Σ obtained by encoding numerical and/or ordinal attributes are Krom CNF formulae.
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	clearly shows that taking advantage of Σ has a sig-
	nificant computational cost in the general case (just compare
	the two columns "Σ valid" and "any Σ").

Table 1 :

 1 The complexity of deriving explanations given a constrained decision-function (f, Σ) when f is a decision tree. × means that the problem is provably intractable, + means that the problem is intractable unless P = NP, and √ means that the problem is tractable.

Just because f may have exponentially many models and exponentially many counter-models.
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