
HAL Id: hal-04176159
https://hal.science/hal-04176159

Submitted on 10 Aug 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial - NoDerivatives 4.0
International License

Towards Formal Verification of a TPM Software Stack
Yani Ziani, Nikolai Kosmatov, Frédéric Loulergue, Daniel Gracia Pérez, Téo

Bernier

To cite this version:
Yani Ziani, Nikolai Kosmatov, Frédéric Loulergue, Daniel Gracia Pérez, Téo Bernier. Towards Formal
Verification of a TPM Software Stack. 18th International Conference on integrated Formal Methods
(iFM), Nov 2023, Leiden, Netherlands. �10.1007/978-3-031-47705-8_6�. �hal-04176159�

https://hal.science/hal-04176159
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://hal.archives-ouvertes.fr

Towards Formal Verification of
a TPM Software Stack

Yani Ziani1,2, Nikolai Kosmatov1, Frédéric Loulergue2,
Daniel Gracia Pérez1, and Téo Bernier1

1 Thales Research & Technology, Palaiseau, France
{yani.ziani,nikolai.kosmatov,daniel.gracia-perez,teo.bernier}@thalesgroup.com

2 Université d’Orléans, INSA Centre Val de Loire, LIFO EA 4022, France
frederic.loulergue@univ-orleans.fr

Abstract. The Trusted Platform Module (TPM) is a cryptoprocessor
designed to protect integrity and security of modern computers. Com-
munications with the TPM go through the TPM Software Stack (TSS),
a popular implementation of which is the open-source library tpm2-tss.
Vulnerabilities in its code could allow attackers to recover sensitive in-
formation and take control of the system. This paper describes a case
study on formal verification of tpm2-tss using the Frama-C verification
platform. Heavily based on linked lists and complex data structures,
the library code appears to be highly challenging for the verification
tool. We present several issues and limitations we faced, illustrate them
with examples and present solutions that allowed us to verify functional
properties and the absence of runtime errors for a representative subset of
functions. We describe verification results and desired tool improvements
necessary to achieve a full formal verification of the target code.

1 Introduction
The Trusted Platform Module (TPM) [15] has become a key security compo-
nent in modern computers. The TPM is a cryptoprocessor designed to protect
integrity of the architecture and ensure security of encryption keys stored in it.
The operating system and applications communicate with the TPM through a
set of APIs called TPM Software Stack (TSS). A popular implementation of the
TSS is the open-source library tpm2-tss. It is highly critical: vulnerabilities in
its code could allow attackers to recover sensitive information and take control
of the system. Hence, it is important to formally verify that the library respects
its specification and does not contain runtime errors, often leading to security
vulnerabilities. Formal verification of this library is the main motivation of this
work. This target is new and highly ambitious for deductive verification: the
library code is very complex, heavily based on complex data structures (with
multiple levels of imbricated structures and unions), low-level code, linked lists
and dynamic memory allocation.

In this paper we present a first case study on formal verification of tpm2-tss
using the Frama-C verification platform [10]. We focus on a subset of functions
related to storing an encryption key in the TPM, one of the most critical features

Frederic Loulergue
PREPRINT

of the TSS. The functions are annotated in the acsl specification language [2].
Their verification with Frama-C currently faces several limitations of the tool,
such as its capacity to reason about complex data structures, dynamic memory
allocation, linked lists and their separation from other data. We have managed
to overcome these limitations after minor simplifications and adaptations of the
code. In particular, we replace dynamic allocation with calloc by another al-
locator (attributing preallocated memory cells) that we implement, specify and
verify. We adapt a recent work on verification of linked lists [4] to our case
study, add new lemmas and prove them in the Coq proof assistant [14]. We
identify some deficiencies in the new Frama-C–Coq extraction for lists (mod-
ified since [4]), adapt it for the proof and suggest improvements. We illustrate
all issues and solutions on a simple illustrative example3, while the (slightly
adapted) real-life functions annotated in acsl and fully proved in Frama-C are
available online as a companion artifact4. Finally, we identify desired extensions
and improvements of the verification tool.

Contributions. The contributions of this paper include the following:

– specification and formal verification in Frama-C of a representative subset
of functions of the tpm2-tss library (slightly adapted for verification);

– presentation of main issues we faced during their verification with an illus-
trative example, and description of solutions and workarounds we found;

– proof in Coq of all necessary lemmas (including some new ones) related to
linked lists, realized for the new version of Frama-C–Coq extraction;

– a list of necessary enhancements of Frama-C to achieve a complete formal
verification of the tpm2-tss library.

Outline. The paper is organized as follows. Section 2 presents Frama-C. Sec-
tion 3 introduces the TPM, its software stack and the tpm2-tss library. Sections 4
and 5 present memory allocation and ((NK: memory management?)). Additional
lemmas are discussed in Sect. 6. Section 7 describes our verification results. Fi-
nally, Sect. 8 and 9 present related work and a conclusion with necessary tool
improvements.

2 Frama-C Verification Platform

Frama-C [10] is an open-source verification platform for C code, which con-
tains various plugins built around a kernel providing basic services for source-
code analysis. It offers acsl (ANSI/ISO C Specification Language) [2], a formal
specification language for C, that allows users to specify functional properties of
programs in the form of annotations, such as assertions or function contracts.
A function contract basically consists of pre- and postconditions (stated, resp.,
by requires and ensures clauses) expressing properties that must hold, resp.,
before and after a call to the function. It also includes an assigns clause listing

3 For convenience of the reviewers, its full code is also given in Appendix.
4 Available (with the illustrative example, all necessary lemmas and their proof) in
https://nikolai-kosmatov.eu/iFM2023.zip.

2

(non-local) variables and memory locations that can be modified by the func-
tion. While useful built-in predicates and logic functions are provided to handle
properties such as pointer validity or memory separation for example, acsl also
supplies the user with different ways to define predicates and logic functions.

Frama-C offers Wp, a plugin for deductive verification. Given a C program
annotated in acsl, Wp generates the corresponding proof obligations that can
be sent to the Why3 platform [8] and discharged either by SMT solvers or an
interactive proof assistant like Coq [14].

3 The TPM Software Stack and the tpm2-tss Library

This section briefly presents the Trusted Platform Module (TPM), its software
stack and the implementation we chose to study: the tpm2-tss library. Readers
can refer to the TPM specification [15] and reference books as [1] for more detail.

TPM Software Stack. The TPM is a standard conceived by the Trusted Com-
puting Group (TCG)5 for a passive secure cryptoprocessor designed to protect
secure hardware from software-based threats. At its base, a TPM is implemented
as a discrete cryptoprocessor chip, attached to the main processor chip and de-
signed to perform cryptographic operations. However, it can also be implemented
as part of the firmware of a regular processor or a software component.

Nowadays, the TPM is well known for its usage in regular PCs to ensure
integrity and to provide a secure storage for the keys used to encrypt the disk
with Bitlocker and dm-crypt. However, it can be (and is actually) used to provide
other cryptographic services to the Operating System (OS) or applications. For
that purpose, the TCG defines the TPM Software Stack (TSS), a set of specifi-
cations to provide standard APIs to access the functionalities and commands of
the TPM, regardless of the hardware, OS, or environment used.

The TSS APIs provide different levels of complexity, from the Feature API
(FAPI) for simple and common cryptographic services to the System API (SAPI)
for a one-to-one mapping to the TPM services and commands providing greater
flexibility but complexifying its usage. In between lies the Enhanced System API
(ESAPI) providing SAPI-like functionalities but with slightly limited flexibility.
Other TSS APIs complete the previous ones for common operations like data
formatting and connection with the software or hardware TPM.

The TSS APIs, as any software component or the TPM themselves, can have
vulnerabilities6 that attackers can exploit to recover sensitive data communi-
cated with the TPM or take control of the system. We study the verification of
one of the implementations of the TSS, tpm2-tss, starting more precisely with
its implementation of the ESAPI.

ESAPI Layer of tpm2-tss. The ESAPI layer provides functions for decryption
and encryption, managing session data and policies, thus playing an essential
role in the TSS. It is mainly split into two parts: the API part containing

5 https://trustedcomputinggroup.org/
6 Like CVE-2023-22745 and CVE-2020-24455, documented on www.cve.org.

3

functions in a one-to-one correspondence with TPM commands (for instance,
the Esys_Create function of the TSS will correspond to — and call — the
TPM2_Create command of the TPM), and the back-end containing the core of
that layer’s functionalities. Each API function will call several functions of the
back-end to carry out various operations on command parameters, before invok-
ing the lower layers and finally the TPM.

((NK: mv this paragr later? to results or conclusion?))Each API function of
the ESAPI layer is similar in the type and order of function calls to internal
operations of the layer (with some variations depending on the command), so
knowing how to formally specify and verify one of them should allow us to apply
the same method to all API functions.

The ESAPI layer relies on a notion of context (ESYS_CONTEXT) containing all
data the layer needs to store between calls, so it does not need to maintain a
global state. Defined for external applications as an opaque structure, the context
includes, according to the documentation, data needed to communicate to the
TPM, metadata for each TPM resource, and state information. The specification,
however, does not impose any precise data structure: it is up to the developer
to provide a suitable definition. Our target implementation uses complex data
structures and linked lists.

4 Dynamic Memory Allocation
Example Overview. We illustrate our verification case study with a simplified
version of some library functions manipulating linked lists. The illustrative exam-
ple is split into Fig. 1–6 that will be explained below step-by-step. Its full code be-
ing available in the companion artifact, we omit in this paper some less significant
definitions and assertions which are not mandatory to understand the paper (but
we preserve line numbering of the full example for convenience of the reader).
This example is heavily simplified to fit the paper, yet it is representative for most
issues we faced (except the complexity of data structures). It contains a main list
manipulation function, getNode (esys_GetResourceObject in the real code),
used to search for a resource in the list of resources and return it if it is found, or
to create and add it using function createNode (esys_CreateResourceObject
in the real code) if not.

Figure 1 provides the linked list structure as well as logic definitions used to
handle logic lists in specifications. Our custom allocator (used by createNode) is
defined in Fig. 2. Figure 3 defines a (simplified) context and additional logic def-
initions to handle pointer separation and memory freshness. The search function
is shown in Fig. 4 ((NK: mv Fig5 to appendix?))and 5. As it is often done, some
acsl notation (e.g. \forall, integer, ==>, <=, !=) is pretty-printed (resp., as
∀, Z, ⇒, ≤, ̸=). In this section, we detail Fig. 1–3.

Lists of Resources. Lines 11–15 of Fig. 1 show a simplified definition of the linked
list of resources used in the ESAPI layer of the library. Each node of the list
consists of a structure containing a handle used as a reference for this node, a
resource to be stored inside, and a pointer to the next element. In our example,
a resource structure (omitted in Fig. 1) is assumed to contain only a few fields

4

. . .
11 typedef struct NODE_T {
12 uint32_t handle; // the handle used as reference
13 RESOURCE rsrc; // the metadata for this rsrc
14 struct NODE_T * next; // next node in the list
15 } NODE_T; // linked list of resource

. . .
25 /*@
26 predicate ptr_sep_from_list{L}(NODE_T* e, \list<NODE_T*> ll) =
27 ∀ Z n; 0 ≤ n < \length(ll) ⇒ \separated(e, \nth(ll, n));
28 predicate dptr_sep_from_list{L}(NODE_T ** e, \list<NODE_T*> ll) =
29 ∀ Z n; 0 ≤ n < \length(ll) ⇒ \separated(e, \nth(ll, n));
30 predicate in_list{L}(NODE_T* e, \list<NODE_T*> ll) =
31 ∃ Z n; 0 ≤ n < \length(ll) ∧ \nth(ll , n) == e;
32 predicate in_list_handle{L}(uint32_t out_handle , \list<NODE_T*> ll) =
33 ∃ Z n; 0 ≤ n < \length(ll) ∧ \nth(ll , n)->handle == out_handle;
34 inductive linked_ll{L}(NODE_T *bl, NODE_T *el , \list<NODE_T*> ll) {
35 case linked_ll_nil{L}: ∀ NODE_T *el; linked_ll{L}(el , el , \Nil);
36 case linked_ll_cons{L}: ∀ NODE_T *bl, *el, \list<NODE_T*> tail;
37 (\separated(bl, el) ∧ \valid(bl) ∧ linked_ll{L}(bl ->next , el, tail) ∧
38 ptr_sep_from_list(bl, tail)) ⇒
39 linked_ll{L}(bl , el, \Cons(bl, tail));
40 }
41 predicate unchanged_ll{L1, L2}(\list<NODE_T*> ll) =
42 ∀ Z n; 0 ≤ n < \length(ll) ⇒
43 \valid{L1}(\nth(ll,n)) ∧ \valid{L2}(\nth(ll,n)) ∧
44 \at((\nth(ll,n))->next , L1) == \at((\nth(ll,n))->next , L2);

. . .
48 axiomatic Node_To_ll {
49 logic \list<NODE_T*> to_ll{L}(NODE_T* beg , NODE_T* end)
50 reads {node ->next | NODE_T* node; \valid(node) ∧
51 in_list(node , to_ll(beg , end))};
52 axiom to_ll_nil{L}: ∀ NODE_T *node; to_ll{L}(node , node) == \Nil;
53 axiom to_ll_cons{L}: ∀ NODE_T *beg , *end;
54 (\separated(beg , end) ∧ \valid{L}(beg) ∧
55 ptr_sep_from_list{L}(beg , to_ll{L}(beg ->next , end))) ⇒
56 to_ll{L}(beg , end) == \Cons(beg , to_ll{L}(beg ->next , end));
57 }
58 */
59

60 #include "lemmas_node_t.h"

Fig. 1. Linked list and logic definitions.

of relatively simple types. The real code uses a more extensive and complex
definition (with several levels of imbricated structures and unions), covering all
possible types of TPM resources. While it does add some complexity to prove
certain properties (as some of them may require to completely unfold all resource
substructures ((NK: maybe say this later, in results?))), it does not introduce
new pointers that may affect memory separation properties, so our example
remains representative of the real code regarding linked lists and separation
properties.

In particular, we need to ensure that the resource list is well-formed — that
is, it is not circular, and contains no overlap between nodes — and stays that way
throughout the layer. To accomplish that, we use and adapt the logic definitions
from [4], given in lines 26–44, 48–57 of Fig. 1. To prove the code, we need
to manipulate linked lists and segments of linked lists. Lines 48–57 define the
translating function to_ll that translates a C list defined by a NODE_T pointer
into the corresponding acsl logic list of (pointers to) its nodes. By convention,
the last element end is not included into the resulting logic list. It can be either
NULL for a full linked list until the end, or a non-null pointer to a node for a linked

5

list segment which stops just before that node. Lines 34–40 show the linking
predicate linked_ll establishing the equivalence between a C linked list and an
acsl logic list. This inductive definition includes memory separation between
nodes, validity of access for each node, as well as the notion of reachability in
linked lists. In acsl, given two pointers p and q, \valid(p) states that *p can be
safely read and written, while \separated(p,q) states that the referred memory
locations *p and *q do not overlap (i.e. all their bytes are disjoint).

Lines 26–29 provide predicates to handle separation between a list pointer
(or double pointer) and a full list. \nth(l,n) and \length(l) denote, resp., the
n-th element of logic list l and the length of l. The predicate unchanged_ll in
lines 41–44 states that between two labels (i.e. program points) L1 and L2, all
list elements in a logic list refer to a valid memory location at both points, and
that their respective next fields retain the same value. It is used to maintain the
structure of the list throughout the code. Line 60 includes lemmas necessary to
conduct the proof, further discussed in Sec. 6.

Lack of Support for Dynamic Memory Allocation. As mentioned above, per
the TSS specifications, the ESAPI layer does not maintain a global state be-
tween calls to TPM commands. The library code uses contexts with linked lists
of TPM resources, so list nodes need to be dynamically allocated at runtime.
The acsl language provides clauses to handle memory allocations: in particu-
lar, \allocable{L}(p) states that a pointer p refers to the base address of an
unallocated memory block, and \fresh{L1,L2}(p, n) indicates that p refers
to the base address of an unallocated block at label L1, and to an allocated
memory block of size n at label L2. Unfortunately, while the Frama-C/Wp
memory model is able to handle dynamic allocation (used internally to manage
local variables), these clauses are not currently supported. Without allocability
and freshness, proving goals involving validity or separation between a newly
allocated node and any other pointer is impossible.

Static Memory Allocator. To circumvent that issue, we define in Fig. 2 a bank-
based static allocator calloc_NODE_T that replaces calls to calloc used in the
real-life code. It attributes preallocated cells, following some existing implemen-
tations (like the memb module of Contiki [12]). Line 63 defines a static array
of nodes of size _alloc_max. Line 64 introduces an allocation index we use to
track the next allocable node and to determine whether an allocation is possible.
Predicate valid_rsrc_mem_bank on line 66 states a validity condition for the
bank: _alloc_idx must always be between 0 and _alloc_max. It is equal to
the upper bound if all nodes have been allocated. Predicates lines 67–73 specify
separation between a logic list of nodes (resp., a pointer or a double pointer
to a node) and the allocable part of the heap, and is used later on to simulate
memory freshness.

Lines 76–99 show a part of the function contract for the allocator defined
on lines 100–111. The validity of the bank should be true before and after the
function execution (lines 77, 79). Line 78 specifies the variables the function is
allowed to modify. The contract contains several cases (behaviors) that cover all

6

62 #define _alloc_max 100
63 static NODE_T _rsrc_bank[_alloc_max]; // bank used by the static allocator
64 static int _alloc_idx = 0; // index of the next rsrc node to be allocated
65 /*@
66 predicate valid_rsrc_mem_bank{L} = 0 ≤ _alloc_idx ≤ _alloc_max;
67 predicate list_sep_from_allocables{L}(\list<NODE_T*> ll) =
68 ∀ int i; _alloc_idx ≤ i < _alloc_max ⇒
69 ptr_sep_from_list{L}(& _rsrc_bank[i], ll);
70 predicate ptr_sep_from_allocables{L}(NODE_T* node) =
71 ∀ int i; _alloc_idx ≤ i < _alloc_max ⇒ \separated(node , &_rsrc_bank[i]);
72 predicate dptr_sep_from_allocables{L}(NODE_T ** p_node) =
73 ∀ int i; _alloc_idx ≤ i < _alloc_max ⇒ \separated(p_node , &_rsrc_bank[i]);
74 */

. . .
76 /*@
77 requires valid_rsrc_mem_bank;
78 assigns _alloc_idx , _rsrc_bank[\old(_alloc_idx)];
79 ensures valid_rsrc_mem_bank;

. . .
89 behavior allocable:
90 assumes 0 ≤ _alloc_idx < _alloc_max;
91

92 ensures _alloc_idx == \old(_alloc_idx) + 1;
93 ensures \result == &(_rsrc_bank[_alloc_idx - 1]);
94 ensures \valid(\result);
95 ensures zero_rsrc_node_t(*(\result));
96 ensures ∀ int i; 0 ≤ i < _alloc_max ∧ i ̸= \old(_alloc_idx) ⇒
97 _rsrc_bank[i] == \old(_rsrc_bank[i]);
98 disjoint behaviors; complete behaviors;
99 */

100 NODE_T *calloc_NODE_T ()
101 {
102 static const RESOURCE empty_RESOURCE;
103 if(_alloc_idx < _alloc_max) {
104 _rsrc_bank[_alloc_idx]. handle = (uint32_t) 0;
105 _rsrc_bank[_alloc_idx].rsrc = empty_RESOURCE;
106 _rsrc_bank[_alloc_idx].next = NULL;
107 _alloc_idx += 1;
108 return &_rsrc_bank[_alloc_idx - 1];
109 }
110 return NULL;
111 }

Fig. 2. Allocation bank and static allocator.

situations and are disjoint (line 98). We show only one behavior (lines 89–97)
describing a successful allocation (when an allocable node exists, as stated on
line 90). Postconditions on lines 92–93 ensure the tracking index is incremented
by one, and that the returned pointer points to the first allocable block. While
this fact is sufficient to deduce the validity clause on line 94, we keep the latter
as well (and it is actually expected for any allocator). In the same way, lines
96–97 specify that the nodes of the bank other than the newly allocated block
have not been modified.

Currently, Frama-C/Wp does not offer a memory model able to handle
byte-level assignments in C objects. To represent as closely as possible the fact
that allocated memory is initialized to zero by a call to calloc in the real-life
code, we initialize each field of the allocated node to zero (see the C code on
lines 104–106 and the postcondition on line 95).

7

113 typedef struct CONTEXT {
114 int placeholder_int;
115 NODE_T *rsrc_list;
116 } CONTEXT;
117 /*@
118 predicate ctx_sep_from_list(CONTEXT *ctx , \list<NODE_T*> ll) =
119 ∀ Z i; 0 ≤ i < \length(ll) ⇒ \separated(\nth(ll, i), ctx);
120 predicate ctx_sep_from_allocables(CONTEXT *ctx) =
121 ∀ int i; _alloc_idx ≤ i < _alloc_max ⇒ \separated(ctx , &_rsrc_bank[i]);
122

123 predicate freshness(CONTEXT * ctx , NODE_T ** node) =
124 ctx_sep_from_allocables(ctx)
125 ∧ list_sep_from_allocables(to_ll(ctx ->rsrc_list , NULL))
126 ∧ ptr_sep_from_allocables(ctx ->rsrc_list)
127 ∧ ptr_sep_from_allocables (*node)
128 ∧ dptr_sep_from_allocables(node);
129

130 predicate sep_from_list{L}(CONTEXT * ctx , NODE_T ** node) =
131 ctx_sep_from_list(ctx , to_ll{L}(ctx ->rsrc_list , NULL))
132 ∧ dptr_sep_from_list(node , to_ll{L}(ctx ->rsrc_list , NULL));
133 */

Fig. 3. Context and predicates to handle separation from a list and memory freshness.

Contexts, Separation Predicates and Freshness. In the target library (and in
our illustrative example), pointers to nodes are not passed directly as function
arguments, but stored in a context variable, and a pointer to the context is
passed as a function argument. Lines 113–116 of Fig. 3 define a simplified context
structure, comprised of an int and a NODE_T pointer to the head of a linked list
of resources.

Additional predicates to handle memory separation and memory freshness
are defined on lines 118–132. In particular, the ctx_sep_from_list predicate
on lines 118–119 specifies memory separation between a CONTEXT pointer and a
logic list of nodes. Lines 120–121 define separation between such a pointer and
allocables nodes in the bank.

In C, a successful dynamic allocation of a memory block implies its freshness,
that is, the separation between the newly allocated block (typically located on
the heap) and all pre-existing memory locations (on the heap, stack or static
storages). As this notion of freshness is currently not supported by Frama-
C/Wp, we have to simulate it in another way. Our allocator returns a cell in a
static array, so other global variables — as well as local variables declared within
the scope of a function — will be separated from the node bank. To obtain a
complete freshness within the scope of a function, we need to maintain separation
between the allocable part of the bank and other memory locations accessible
through pointers. In our illustrative example, pointers come from arguments
including a pointer to a CONTEXT object (and pointers accessible from it) and a
double pointer to a NODE_T node. This allows us to define a predicate to handle
freshness in both function contracts.

The freshness predicate on lines 123–128 of Fig. 3 specifies memory separa-
tion between known pointers within the scope of our functions and the allocable
part of the bank, using separation predicates previously defined on lines 120–121,
and on lines 67–73 of Fig 2. This predicate will become unnecessary as soon as
dynamic allocation is fully supported by Frama-C/Wp.

8

In the meanwhile, a static allocator with an additional separation predicate
simulating freshness provides a reasonable solution to verify the target library.
Since no specific constraint is assumed in our contracts on the position of previ-
ously allocated list nodes already added to the list, the verification uses a specific
position in the bank only for the newly allocated node. The fact that the newly
allocated node does not become valid during the allocation (technically, being
part of the bank, it was valid in the sense of acsl already before) is compen-
sated in our contracts by the freshness predicate stating that the new node —
as one the allocable nodes — was not used in the list before the allocation (cf.
line 310 in Fig. 4). We expect that the migration from our specific allocator to a
real-life dynamic allocator — with a more general contract — will be very easy
to perform, as soon as necessary features are supported by Frama-C.

Similarly, the sep_from_list predicate on lines 130–132 specifies separation
between the context’s linked list and known pointers, using predicates on lines
118–119, and on lines 28–29 of Fig 1.

5 Memory Management
This section presents how we use the definitions introduced in Sec. 4 to prove
selected ESAPI functions involving linked lists. We also identify separation is-
sues related to limitations of the Typed memory model of Wp, as well as a way
to manage memory to overcome such issues.

The search function. Figure 4 provides the search operation getNode with a
partial contract illustrating functional and memory safety properties we aim to
verify and judge necessary for the proof at a larger scale. Some proof-guiding an-
notations (assertions, loop contracts) have been skipped for readability, but the
code is preserved (mostly with the same line numbers). The arguments include
a context, a handle to search and a double pointer for the returned node.

Lines 380–416 perform the search of a node by its handle: variable temp_node
iterates over the nodes of the resource list, and the node is returned if its handle
is equal to the searched one (in which case, the function returns 616 for success).

Lines 420–430 convert the resource handle to a TPM one, call the creation
function to allocate a new node and add it to the list as its new head with the
given handle if the allocation was successful (and return 833 if not). The new
node is returned by createNode in temp_node_2 (again via a double pointer).

Lines 435–462 perform some modifications on the content of the newly allo-
cated node, without affecting the structure of the list. An error code is returned
in case of a failure, and 1611 (with the allocated node in *node) otherwise.

Lines 450–461 provide some assertions to propagate information to the last
return clause of the function, attained in case of the successful addition of the
new element to the list.

In particular, anonymous blocks designated by the curly brackets lines 380,
416, 422 and 452, as well as the multiple declarations of NODE_T objects, are part
of minor rewrites we will explain later with Fig. 5.

Lines 309–375 provide a partial non exhaustive function contract, covering
the two main behaviors of getNode: if the element was found by its handle in

9

309 /*@
310 requires valid_rsrc_mem_bank{Pre} ∧ freshness(ctx , node);
313 requires linked_ll(ctx ->rsrc_list , NULL , to_ll(ctx ->rsrc_list , NULL));
317 requires sep_from_list(ctx , node) ∧ \separated(node , ctx);

. . .
321 ensures valid_rsrc_mem_bank ∧ freshness(ctx , node);

. . .
325 behavior handle_in_list:
326 assumes in_list_handle(rsrc_handle , to_ll(ctx ->rsrc_list , NULL));

. . .
332 ensures unchanged_ll{Pre , Post}(to_ll(ctx ->rsrc_list , NULL));
333 ensures \result == 616;

. . .
355 behavior handle_not_in_list_and_node_allocated:
356 assumes !(in_list_handle(rsrc_handle , to_ll(ctx ->rsrc_list , NULL)));
357 assumes rsrc_handle ≤ 31U ∨ (rsrc_handle \in {0x10AU , 0x10BU })
358 ∨ (0x120U ≤ rsrc_handle ≤ 0x12FU);
359 assumes 0 ≤ _alloc_idx < _alloc_max;

. . .
369 ensures \old(ctx ->rsrc_list) ̸= NULL ⇒
370 \nth(to_ll(ctx ->rsrc_list , NULL), 1) == \old(ctx ->rsrc_list);
371 ensures linked_ll(ctx ->rsrc_list , NULL , to_ll(ctx ->rsrc_list , NULL));
372 ensures sep_from_list(ctx , node);
373 ensures \result == 1611;
374 disjoint behaviors; complete behaviors;
375 */
376 int getNode(PSEUDO_CONTEXT *ctx , uint32_t rsrc_handle , NODE_T ** node) {
377 /*@ assert linked_ll(ctx ->rsrc_list , NULL , to_ll(ctx ->rsrc_list , NULL));*/
378 int r;
379 uint32_t tpm_handle;
380 {
381 NODE_T *tmp_node;
401 for (tmp_node = ctx ->rsrc_list; tmp_node ̸= NULL;
402 tmp_node = tmp_node ->next) {
405 if (tmp_node ->handle == rsrc_handle){* node = tmp_node; return 616;}
415 }
416 }
420 r = iesys_handle_to_tpm_handle(rsrc_handle , &tpm_handle);
422 {/** Anonymous used to circumvent issues with the WP memory model*/
423 NODE_T *tmp_node_2 = NULL;
428 r = createNode(ctx , rsrc_handle , &tmp_node_2);
429 /*@ assert sep_from_list(ctx , node);*/
430 if (r == 833) {return r;};
435 tmp_node_2 ->rsrc.handle = tpm_handle;
436 tmp_node_2 ->rsrc.rsrcType = 0;
437 size_t offset = 0;
440 r = uint32_Marshal(tpm_handle , &tmp_node_2 ->rsrc.name.name[0],
441 sizeof(tmp_node_2 ->rsrc.name.name),&offset);
443 if (r ̸=0) {return r;};
444 tmp_node_2 ->rsrc.name.size = offset;
449 *node = tmp_node_2;
450 /*@ assert unchanged_ll{Pre , Here}(
451 to_ll{Pre}(\at(ctx ->rsrc_list , Pre), NULL));*/
452 }
453 /*@ assert unchanged_ll{Pre , Here}(
454 to_ll{Pre}(\at(ctx ->rsrc_list , Pre), NULL));*/
461 /*@ assert sep_from_list(ctx , node);*/
462 return 1611;
463 }

Fig. 4. The (slightly rewritten) search function, where some annotations are removed.

the list, corresponding to the handle_in_list behavior in the acsl contracts,
and if the element was not found at first, but then successfully allocated and
added, corresponding to handle_not_in_list_and_node_allocated.

As preconditions, we notably require with line 313 for the list to be well-
formed (through the use of the linking predicate), and with line 310 the validity of

10

our bank and freshness relative to function arguments and global variables. Line
317 establishes memory separation of known pointers from the list of resources
using the sep_from_list predicate, and separation among known pointers using
the \separated clause.

As global postcondition, we require with line 321 that our bank stays valid,
and that freshness relative to function arguments and global variables is main-
tained. However, properties regarding the list itself – such as the preservation of
the list when it is not modified, or ensuring it remains well-formed after being
modified – have to be issued to acsl behaviors to be proved, due to an issue
with how local variables are handled in the memory model of WP.

Let us take the assertion line 377 of Fig. 4 as an example. For such an assertion
(and in general for any property to be proved), WP generates a proof obligation,
to be proved by either WP itself or external provers via the Why3 platform.
Such an obligation includes a representation of the state of the memory of the
program, at the program point where the assertion is located. In particular, for
the assertion line 376, pointers such as our list pointer ctx->rsrc_list (and
by extension, any reachable node of the list) will be considered part of the heap.

To handle the existence of a variable in memory – be it the heap, the stack
or the static segments – WP uses an allocation table to express when memory
blocks are used or freed, which is where our issue lies. For instance, in line 428 of
Fig. 4, the temp_node_2 pointer has its address taken, and is considered as used
locally due to \requires involving it in our function contract for createNode. It
is consequently transferred to the memory model, where it has to be allocated.

Currently, the memory model of WP does not provide separated allocation
tables for the heap, stack and static segments. Using temp_node_2 the way it
is used in line 428 changes the status of the allocation table as a whole. This
affects the status of other ”allocated” (relatively to the memory model) variables
as well, including but not limited to, any reachable node of the list.

Originally, the call to createNode line 428 of Fig. 4 would use the address of
temp_node, declared line 381, as a return pointer instead. This was sufficient to
affect the status of the resource list on the scale of the entire function. As such,
properties such as the assertion line 377 could not be proven, despite it being
the same property as the one expressed in our requires clause line 312, and
being positioned before any C instruction.

As a workaround, we use additional blocks and variable declarations to these
side-effects in memory representation. Figure 5 provides an illustrative example
for those minor rewrites. The left side of the figure shows a code snippet illus-
trating the structure of the original C code, where the temp_node pointer having
its address taken and used in the createNode call line 10 is the same as the one
used to iterate on the list. On the right, we define with line 8–13 an anonymous
block, as well as a new temp_node_2 list pointer, initialized to NULL to match
the previous iteration over the list. The block defines a new scope, outside of
which the pointer used by createNode will not exist and side-effect allocations

11

1 int getNode (..., NODE_T ** node){
2 // linking assertion unprovable
3 // properties on lists unprovable
4 NODE_T *tmp_node;
5 int r;
6 // iterate over the list
7

8

9 r = createNode (... , &tmp_node);
10 ...
11 *node = tmp_node;
12

13 return 1610;
14 }

1 int getNode (..., NODE_T ** node){
2 // linking assertion proved
3 // properties on lists provable
4 NODE_T *tmp_node;
5 int r;
6 // iterate over the list
7 {
8 NODE_T *tmp_node_2 = NULL;
9 r = createNode (... , &tmp_node_2);

10 ...
11 *node = tmp_node_2;
12 }
13 return 1610;
14 }

Fig. 5. A code snippet of getNode with a local pointer (on the left) and its rewrite
with an anonymous block (on the right) for proving list properties.

will not happen. The block used here is equivalent to the one defined in lines
422–452 in Fig. 4.

To maintain as much as possible the behavior of the original code, we en-
capsulate the first part of the function in a block as well, in lines 380–416, so
that there is never more than one additional NODE_T pointer defined and used
in memory. We use assertions like those of lines 450–451 and 453–454 to propa-
gate information over the structure of the C list (by its logic list representation)
outside of each blocks, and from there to post-conditions.

We use assertions such as the ones lines 429 and 461 to help propagate
separations from the list through the function and its anonymous blocks, and
lines 450–451 and 453–454 to preserve structural integrity of the list. Some more
intermediary assertions are also needed to prove the unchanged nature of the
list. This is not something we could have done directly in post-conditions in the
function contract, as it is currently not possible to prove post-conditions using
other post-conditions, and their proof relies solely on what is known inside the
scope of the function.

Incidentally, properties that rely on the structure and content of the list will
often need to be proved as post-conditions in behaviors, rather than in global
post-conditions. In the latter, the logic list representation of our resource list is
much more difficult for WP and solvers to evaluate. Such local post-conditions
include the ensures clause line 332, ensuring the list should stay unchanged if
the handle sought was found while iterating over the list. Lines 369–370 ensure
that if a new node was successfully allocated and added to the list, the old head
becomes the second element of the list. Line 371 establishes the link between the
C list after modifications, and its logic representation evaluated after the last
return clause line 462. Line 372 ensures the separation of known pointers from
the new list.

Another memory manipulation issue we have encountered during our verifi-
cation work comes from the function call line 440 in getNode: after having been
added to the resource list, the newly allocated node must have its name (or more
accurately, the name of its resource) set from its TPM handle tpm_handle (de-
rived from the handle of the node by the function call in line 420). This is done

12

271 /*@
272 requires \valid(src) ∧ \valid(dest + (0 .. sizeof (*src)-1));

. . .
279 */
280 void memcpy_custom(uint8_t *dest , uint32_t * src , size_t n) {
281 dest [3] = (uint8_t)(*src & 0xFF);
282 dest [2] = (uint8_t)((* src >> 8) & 0xFF);
283 dest [1] = (uint8_t)((* src >> 16) & 0xFF);
284 dest [0] = (uint8_t)((* src >> 24) & 0xFF);
285 }

. . .
298 int uint32_Marshal(uint32_t in , uint8_t buff[], size_t buff_size , size_t *offset) {
299 size_t local_offset = 0;

. . .
302 // memcpy (& buff[local_offset], &in , sizeof (in));
303 memcpy_custom (&buff[local_offset], &in, sizeof(in));

. . .
306 }

Fig. 6. Definition for memcpy replacement in marshal.

through marshaling using the uint32_Marshal, partially defined in lines 298–
307 of Fig. 6, whose role is to store a 4-byte unsigned int (in this case, our TPM
handle) in a flexible array of 1-byte unsigned int (the name of the resource).
Modulo endianness, the function relies on a call to memcpy commented line 303,
which is the source of our issue.

For most functions of the standard libraries, Frama-C provides basic acsl
contracts to handle their use. However, for memory manipulation functions like
memcpy, such contracts rely on pointer casting — whose support is limited — in
order to reason at byte level — which the current memory model is unable to
handle — over read and written objects. To circumvent both issues, we define
our own memory copy function in lines 280–285: instead of directly copying the
4-byte unsigned int pointed by src byte per byte, we extract chunks of 1 byte
(that is to say, the block size for the destination array pointed by dest) from
it with mask 0xFF, shifting it from 1 byte three times to cover it entirely. As a
consequence, we require with line 272 that both our pointers are valid, and that
memory accesses in the written part of the array are valid.

6 Lemmas
In some situations where SMT solvers can become inefficient — for example on
properties, axioms or functions defined recursively — it can be necessary to state
lemmas to conduct proofs. These lemmas can then be directly instantiated and
easily used by solvers to verify specifications, but proving them usually requires
to reason by induction, and thus to prove them interactively. As such, mixing
automatic and interactive approaches offers a good trade-off for a complete proof.

The previous work using logic lists [4] that we adapted to fit our use case
defined and proved lemmas. Twelve of these lemmas were necessary for the
proof of both our illustrative example of real-life functions and these functions
themselves, and we added two new lemmas (defined in Fig. 7). These lemmas
were previously proved using the Coq proof assistant. However, because the
formalization of the memory models and various aspects of acsl offered by
Frama-C changed between the version which the previous work relied on and
the one we used, we could not reuse the proofs of these lemmas. While older

13

lemma in_next_not_bound_in{L}: ∀ NODE_T *bl , *el, *item , \list<NODE_T*> ll;
linked_ll(bl, el, ll) ⇒ in_list(item , ll) ⇒ item ->next ̸= el ⇒

in_list(item ->next , ll);
lemma linked_ll_split_variant{L}: ∀ NODE_T *bl , *bound , *el,

\list<NODE_T*> l1, l2;
linked_ll(bl, el, l1 ^ l2) ⇒ l2 ̸= \Nil ⇒
bound == \nth(l1 ^ l2, \length(l1 ^ l2) - \length(l2)) ⇒

linked_ll(bl, bound , l1) ∧ linked_ll(bound , el, l2);

Fig. 7. Addtionnal lemmas used in our verification work

Frama-C versions directly generated Coq specifications, more recent Frama-
C versions instead let Why3 generate them. While the new is very close to the
previous one, the way logic lists are handled was modified significantly.

In the past, Frama-C logic lists were translated into the lists Coq offers in
its standard library: an inductively defined type as usually found in functional
programming languages such as OCaml and Haskell. Such types come with an
induction principle that allows to reason by induction. Without reasoning in-
ductively, it also offers the possibility to reason by case on lists: a list is defined
either as empty, as built with the cons constructor. In recent versions of Frama-
C, acsl logic lists are axiomatized as follows: two functions nil and cons are
declared, as well as a few other functions on lists, including the length of a list
(length), the concatenation of two lists (concat), and getting an element from
a list given its position (nth). However, there is not any principle to reason by
induction on such lists, and because nil and cons are not constructors, it is not
possible to reason by case on lists in this formalization. It is possible to test if a
list is empty, but when it is not, we do not know it is built with cons. Writing
new recursive functions on such lists is also very difficult. Indeed, we only have
nth to observe a list, while the usual way to specify or program functions on lists
use the head (easily replaced by nth) and tail of a list for writing the recursive
case.

Even so, when the hypotheses of our lemmas include a fact expressed using
linked_ll, it is possible to reason by cases, because this inductive predicate
is translated into Coq as an inductive predicate. Consequently, there are only
two possible cases for the logic list: either it is empty, or it is built with cons.
When such a hypothesis is missing, we axiomatized a tail function, and a
decomposition principle stating that a list is either nil or cons. These axioms
are quite classic and can be using a list type defined by induction. We did not
need an inductive principle on lists as either the lemmas did not require a proof
by induction, or we reasoned inductively on inductive predicates. However, we
proved such an induction principle using only the axioms we added. Some of the
lemmas provided by the previous work on lists — but that we do not need yet
in our work — are proved by induction on lists.

Because of theses changes, all previous proof scripts needed to be modified,
and in a few cases significantly. The largest proof scripts are about 100 lines long
excluding our axioms, and the shortest takes a dozen lines. It is likely the next
version of Frama-C will come back to a concrete representation of lists. The
required changes in this case should however be minimal: we will only have to
prove the axioms we introduced on tail and our decomposition principle, and
the proofs themselves should remain unchanged.

14

User-provided Smoke tests RTE Total
acsl

Code subset Prover #Goals #Goals #Goals #Goals Time
Illustrative Qed 105 3 18 126 (38.65%)
example Script 1 0 0 1 (0.31%)

SMT 137 41 21 199 (61.04%)
All 243 (74.54%) 44 (13.50%) 39 (11.96%) 326 5m13s

Library Qed 275 3 38 316 (41.20%)
code subset Script 5 0 0 5 (0.65%)

SMT 314 101 31 446 (58.15%)
All 594 (77.44%) 104 (13.56%) 69 (9.00%) 767 21m44s

Table 1. Proof results for the illustrative example and the real-life code.

7 Verification Results

Proof results for our example were obtained by running Frama-C 26.1 (Iron) on
a desktop computer running Ubuntu 20.04.4 LTS, with an Intel(R) Core(TM)
i5-6600 CPU @ 3.30 GHz, featuring 4 cores and 4 threads, with 16GB RAM.
We ran Frama-C with options -wp-par 3 and -wp-timeout 30. We used the
Alt-Ergo v2.4.3 and CVC4 v1.8 solvers, through the Why3 v1.5.1 platform used
by Frama-C.

In our illustrative example, 276 goals were proved in a total of 3min13s with
the small majority of them by SMT solvers, and the rest by the internal simplifier
engine of WP. The maximum time to prove a goal was 20s.

Solutions to memory manipulation problems presented in this paper (and
solutions derived from them) are used on a larger verification study over 11
different functions of the main library (excluding macro functions, and interfaces
without code whose behaviors needed to be modeled in acsl), related to linked-
list manipulations and some internal ESAPI feasibility checks and operations
(cryptographic operations excluded). 767 goals were proved in a total of 21m44s,
the majority of which corresponding to user-provided notations to prove RTEs
and functional properties. The maximum time to prove a goal was 1min50s.

8 Related Work

TPM related safety and security. Various case studies centered around TPM
uses have emerged over the last decade, often focusing on use cases relying on
functionalities of the TPM itself. A recent formal analysis of the key exchange
primitive of TPM 2.0 [17] provides a security model to capture TPM protections
on keys and protocols. Authors of [16] propose a security model for the crypto-
graphic support commands in TPM 2.0, proved using the CryptoVerif tool. A
model of TPM commands was used to formalise the session-based HMAC autho-
risation and encryption mechanisms [13]. Such works focus on the TPM itself,
but to our knowledge, none of the previously published works were directed the
tpm2-tss library or any implementation of the TSS.

Linked lists. We use logical definitions from [4] to formalize and manipulate C
linked lists as acsl logic lists in our effort, but it is worth noting previous works
in [3] rely on a parallel view of a linked list via a companion ghost array. Both
approaches were tested on the linked list module of the Contiki OS [7], which
relies on static allocations and simple structures.

15

Formal verification for other real-life codes. Deductive verification on real-life
code has been spreading in the last decades, with various verification case studies
where bugs were often found by annotating and verifying codes [9]. Such studies
include [6], providing a feedback on the authors’ experience of using acsl and
Frama-C on a real-world example. Authors of [5] managed a large scale formal
verification of global security properties on the C code of the JavaCard Virtual
Machine.

Dynamic allocations in C programming Authors of [11] propose a memory model
for low-level imperative languages such as C, including mechanics for allocations
of fresh memory blocks, which they formally verified using the Coq proof assis-
tant.

9 Conclusion and Future Work

This paper presents a first case study on formal verification of the tpm2-tss li-
brary, a popular implementation of the TPM Software Stack. Making the bridge
between the TPM and applications, this library is highly critical: to take ad-
vantage of security guarantees of the TPM, its deductive verification is highly
desired. The library code is very complex and challenging for verification tools.
We have presented our verification results for a subset of functions of the ESAPI
layer of the library that we verified with Frama-C. We have described current
limitations of the verification tool and temporary solutions we used to address
them. We have proved all necessary lemmas (extending those of a previous case
study for linked lists [4]) in Coq using the most recent version of the Frama-
C–Coq translation. Finally, we identified desired tool improvements to achieve
a full formal verification of the library: support of dynamic allocations and basic
acsl clauses to handle them, a memory model that works at byte level, and
clearer separation of status of variables between the heap, the stack, and static
segments. We expect that the real-life code will become provable (without adap-
tations and simplifications used in this work) as soon as those improvements are
implemented.

This work opens the way towards a full verification of the tpm2-tss library.
Future work includes the verification of a larger subset of functions, including
lower-level layers and operations. Specification and verification of specific se-
curity properties is another future work direction. Finally, combining formally
verified modules with modules which undergo a partial verification (e.g. lim-
ited to the absence of runtime errors, or runtime assertion checking of expected
specifications on large test suites) can be another promising work direction to
increase confidence in the security of the library.

References

1. Arthur, W., Challener, D.: A Practical Guide to TPM 2.0: Using the Trusted
Platform Module in the New Age of Security. Apress, USA, 1st edn. (2015)

16

2. Baudin, P., Cuoq, P., Filliâtre, J.C., Marché, C., Monate, B., Moy, Y., Prevosto,
V.: ACSL: ANSI/ISO C Specification Language, http://frama-c.com/acsl.html

3. Blanchard, A., Kosmatov, N., Loulergue, F.: Ghosts for Lists: A Critical Mod-
ule of Contiki Verified in Frama-C. In: Proc. of the 10th NASA Formal Methods
Symposium (NFM 2018). LNCS, vol. 10811, pp. 37–53. Springer (2018)

4. Blanchard, A., Kosmatov, N., Loulergue, F.: Logic against ghosts: Comparison of
two proof approaches for a list module. In: Proc. of the 34th Annual ACM/SIGAPP
Symposium on Applied Computing, Software Verification and Testing Track (SAC-
SVT 2019). pp. 2186–2195. ACM (2019)

5. Djoudi, A., Hána, M., Kosmatov, N.: Formal Verification of a JavaCard Virtual
Machine with Frama-C. In: Proc. of the 24th International Symposium on Formal
Methods (FM 2021). LNCS, vol. 13047, pp. 427–444. Springer (2021)

6. Dordowsky, F.: An experimental study using ACSL and Frama-C to formulate and
verify low-level requirements from a DO-178C compliant avionics project. Elec-
tronic Proceedings in Theoretical Computer Science 187, 28–41 (2015)

7. Dunkels, A., Grönvall, B., Voigt, T.: Contiki - A lightweight and flexible operating
system for tiny networked sensors. In: Proc. of the 29th Annual IEEE Conference
on Local Computer Networks (LCN 2004). pp. 455–462. IEEE Computer Society
(2004)

8. Filliâtre, J.C., Paskevich, A.: Why3 - where programs meet provers. In: Proc. of the
22nd European Symposium on Programming (ESOP 2013). pp. 125–128. LNCS,
Springer (2013)

9. Hähnle, R., Huisman, M.: Deductive software verification: From pen-and-paper
proofs to industrial tools. In: Computing and Software Science – State of the Art
and Perspectives, LNCS, vol. 10000, pp. 345–373. Springer (2019)

10. Kirchner, F., Kosmatov, N., Prevosto, V., Signoles, J., Yakobowski, B.: Frama-C:
A software analysis perspective. Formal Asp. Comput. 27(3), 573–609 (2015)

11. Leroy, X., Blazy, S.: Formal verification of a C-like memory model and its uses for
verifying program transformations. Journal of Automated Reasoning 41(1), 1–31
(2008), https://inria.hal.science/inria-00289542

12. Mangano, F., Duquennoy, S., Kosmatov, N.: A memory allocation module of Con-
tiki formally verified with Frama-C. A case study. In: Proc. of the 11th International
Conference on Risks and Security of Internet and Systems (CRiSIS 2016). LNCS,
vol. 10158, pp. 114–120. Springer (2016)

13. Shao, J., Qin, Y., Feng, D.: Formal analysis of HMAC authorisation in the TPM2.0
specification. IET Inf. Secur. 12(2), 133–140 (2018)

14. The Coq Development Team: The Coq proof assistant. http://coq.inria.fr,
15. Trusted Computing Group: Trusted Platform Module Library Spec-

ification, Family “2.0”, Level 00, Revision 01.59 – November.
https://trustedcomputinggroup.org/work-groups/trusted-platform-module/
(2019), last accessed: May 2023

16. Wang, W., Qin, Y., Yang, B., Zhang, Y., Feng, D.: Automated security proof of
cryptographic support commands in TPM 2.0. In: Proc. of the 18th International
Conference on Information and Communications Security (ICICS 2016). LNCS,
vol. 9977, pp. 431–441. Springer (2016)

17. Zhang, Q., Zhao, S.: A comprehensive formal security analysis and revision of the
two-phase key exchange primitive of TPM 2.0. Comput. Networks 179 (2020)

17

A Appendix: Supplementary Material

This appendix is added for convenience of the reviewers, not for publication.
The complete illustrative example present in this appendix will be available

in the long online version of the paper and in the companion artifact published
online.

The full code of the subset of (slightly adapted) real-life functions of the
library annotated in acsl and fully verified in Frama-C will be available in the
companion artifact published online.

The companion artifact is (or will be soon) available on

https://nikolai-kosmatov.eu/iFM2023.zip

We also plan to submit this artifact for evaluation of the iFM 2023 artifact eval-
uation committee. For convenience of the reviewers, a VM under Ubuntu with
the companion artifact files and all necessary tools installed is (or will be soon)
available for reviewers on

https://nikolai-kosmatov.eu/VM iFM2023.ova

in case they want to run the proof before the official artifact evaluation. It was
tested with VirtualBox ((NK: give version)). Please contact the authors via the
PC chairs in case of any temporary access issue.

A.1 Complete Illustrative Example

Figures 9, 10, 11, 12, 13, 14, 15, 16 give the complete version of the illustrative
example (presented in Fig. 1–6 in the paper), annotated in acsl. It was proved
with Frama-C 26.1, Why3 1.5.1, Alt-Ergo 2.4.3 and CVC4 1.8. The command
used to run the proof is given at the end of the file.

Figure 8 provides the definition of the lemmas required to perform the proof.
The same lemmas are used for the illustrative example and the proved subset of
the real-life code. All necessary lemmas were proved with Coq 8.16.1 (but other
recent versions should also work). The Coq proof scripts and the instructions
how to run the proof are available in the companion artifact.

18

1 /********************** lemmas_node_t.h **********************/
2 /*@
3 lemma linked_ll_in_valid{L}: ∀ NODE_T *bl , *el, \list<NODE_T*> ll;
4 linked_ll(bl, el, ll) ⇒ ∀ Z n ; 0 ≤ n < \length(ll) ⇒
5 \valid(\nth(ll, n));
6 lemma ptr_sep_from_nil{L}: ∀ NODE_T* l;
7 ptr_sep_from_list(l, \Nil);
8 lemma ptr_sep_from_cons{L}: ∀ NODE_T *e, *hd , \list<NODE_T*> l;
9 ptr_sep_from_list(e, \Cons(hd, l))⇐⇒

10 (\separated(hd, e) ∧ ptr_sep_from_list(e, l));
11 lemma dptr_sep_from_nil{L}:
12 ∀ NODE_T ** l ; dptr_sep_from_list(l, \Nil);
13 lemma linked_ll_all_separated{L}: ∀ NODE_T *bl , *el, \list<NODE_T*> ll;
14 linked_ll(bl, el, ll) ⇒ all_sep_in_list(ll);
15 lemma linked_ll_unchanged_ll{L1 , L2}: ∀ NODE_T *bl, *el, \list<NODE_T*> ll;
16 linked_ll{L1}(bl, el, ll) ⇒
17 unchanged_ll{L1, L2}(ll) ⇒ linked_ll{L2}(bl, el, ll);
18 lemma linked_ll_to_ll{L}: ∀ NODE_T *bl, *el, \list<NODE_T*> ll;
19 linked_ll(bl, el, ll) ⇒ ll == to_ll(bl, el);
20 lemma to_ll_split{L}: ∀ NODE_T *bl , *el, *sep , \list<NODE_T*> ll;
21 ll ̸= \Nil ⇒ linked_ll(bl, el, ll) ⇒ ll == to_ll(bl, el) ⇒
22 in_list(sep , ll) ⇒ ll == (to_ll(bl, sep) ^ to_ll(sep , el));
23 lemma in_list_in_sublist: ∀ NODE_T* e, \list<NODE_T*> rl, ll , l;
24 (rl ^ ll) == l ⇒ (in_list(e, l)⇐⇒(in_list(e, rl) ∨ in_list(e, ll)));
25 lemma linked_ll_end{L}: ∀ NODE_T *bl , *el, \list<NODE_T*> ll;
26 ll ̸= \Nil ⇒ linked_ll(bl, el, ll) ⇒
27 \nth(ll , \length(ll)-1)->next == el;
28 lemma linked_ll_end_separated{L}: ∀ NODE_T *bl , *el, \list<NODE_T*> ll;
29 linked_ll(bl, el, ll) ⇒ ptr_sep_from_list(el, ll);
30 lemma linked_ll_end_not_in{L}: ∀ NODE_T *bl , *el, \list<NODE_T*> ll;
31 linked_ll(bl, el, ll) ⇒ !in_list(el, ll);
32 // new lemmas wrt. previous work on linked lists [Blanchard et al., SAC ’19]
33 lemma in_next_not_bound_in{L}: ∀ NODE_T *bl , *el, *item , \list<NODE_T*> ll;
34 linked_ll(bl, el, ll) ⇒ in_list(item , ll) ⇒ item ->next ̸= el ⇒
35 in_list(item ->next , ll);
36 lemma linked_ll_split_variant{L}: ∀ NODE_T *bl , *bound , *el,
37 \list<NODE_T*> l1, l2;
38 linked_ll(bl, el, l1 ^ l2) ⇒ l2 ̸= \Nil ⇒
39 bound == \nth(l1 ^ l2, \length(l1 ^ l2) - \length(l2)) ⇒
40 linked_ll(bl, bound , l1) ∧ linked_ll(bound , el, l2);
41 */

Fig. 8. Lemmas used to prove the illustrative example and the subset of real-life code.

19

1 #include <stdint.h> // for uint types definitions
2 #include <string.h> // for size_t definition
3 #include <byteswap.h> // used in marshal
4 #define HOST_TO_BE_32(value) __bswap_32 (value) // swap endianness
5 typedef struct TPM2B_NAME { uint16_t size; uint8_t name [68];} TPM2B_NAME;
6 typedef struct {
7 uint32_t handle; // handle used by TPM
8 TPM2B_NAME name; // TPM name of the object
9 uint32_t rsrcType; // selector for resource type

10 } RESOURCE;
11 typedef struct NODE_T {
12 uint32_t handle; // the handle used as reference
13 RESOURCE rsrc; // the metadata for this rsrc
14 struct NODE_T * next; // next node in the list
15 } NODE_T; // linked list of resource
16 /*@
17 predicate zero_tpm2b_name(TPM2B_NAME tpm2b_name) =
18 tpm2b_name.size == 0 ∧ ∀ int i; 0 ≤ i < 68 ⇒ tpm2b_name.name[i] == 0;
19 predicate zero_resource(RESOURCE rsrc) =
20 rsrc.handle == 0 ∧ zero_tpm2b_name(rsrc.name) ∧ rsrc.rsrcType == 0;
21 predicate zero_rsrc_node_t(NODE_T node) =
22 node.handle == 0 ∧ zero_resource(node.rsrc) ∧ node.next == \null;
23 */
24 /************** Logic lists and linked lists definitions *************/
25 /*@
26 predicate ptr_sep_from_list{L}(NODE_T* e, \list<NODE_T*> ll) =
27 ∀ Z n; 0 ≤ n < \length(ll) ⇒ \separated(e, \nth(ll, n));
28 predicate dptr_sep_from_list{L}(NODE_T ** e, \list<NODE_T*> ll) =
29 ∀ Z n; 0 ≤ n < \length(ll) ⇒ \separated(e, \nth(ll, n));
30 predicate in_list{L}(NODE_T* e, \list<NODE_T*> ll) =
31 ∃ Z n; 0 ≤ n < \length(ll) ∧ \nth(ll , n) == e;
32 predicate in_list_handle{L}(uint32_t out_handle , \list<NODE_T*> ll) =
33 ∃ Z n; 0 ≤ n < \length(ll) ∧ \nth(ll , n)->handle == out_handle;
34 inductive linked_ll{L}(NODE_T *bl, NODE_T *el , \list<NODE_T*> ll) {
35 case linked_ll_nil{L}: ∀ NODE_T *el; linked_ll{L}(el , el , \Nil);
36 case linked_ll_cons{L}: ∀ NODE_T *bl, *el, \list<NODE_T*> tail;
37 (\separated(bl, el) ∧ \valid(bl) ∧ linked_ll{L}(bl ->next , el, tail) ∧
38 ptr_sep_from_list(bl, tail)) ⇒
39 linked_ll{L}(bl , el, \Cons(bl, tail));
40 }
41 predicate unchanged_ll{L1, L2}(\list<NODE_T*> ll) =
42 ∀ Z n; 0 ≤ n < \length(ll) ⇒
43 \valid{L1}(\nth(ll,n)) ∧ \valid{L2}(\nth(ll,n)) ∧
44 \at((\nth(ll,n))->next , L1) == \at((\nth(ll,n))->next , L2);
45 predicate all_sep_in_list(\list<NODE_T*> ll) =
46 ∀ Z n1 , n2; (0 ≤ n1 < \length(ll) ∧ 0 ≤ n2 < \length(ll) ∧ n1 ̸= n2) ⇒
47 \separated(\nth(ll, n1), \nth(ll, n2));
48 axiomatic Node_To_ll {
49 logic \list<NODE_T*> to_ll{L}(NODE_T* beg , NODE_T* end)
50 reads {node ->next | NODE_T* node; \valid(node) ∧
51 in_list(node , to_ll(beg , end))};
52 axiom to_ll_nil{L}: ∀ NODE_T *node; to_ll{L}(node , node) == \Nil;
53 axiom to_ll_cons{L}: ∀ NODE_T *beg , *end;
54 (\separated(beg , end) ∧ \valid{L}(beg) ∧
55 ptr_sep_from_list{L}(beg , to_ll{L}(beg ->next , end))) ⇒
56 to_ll{L}(beg , end) == \Cons(beg , to_ll{L}(beg ->next , end));
57 }
58 */
59

60 #include "lemmas_node_t.h"

Fig. 9. Illustrative provable example of the adjusted tpm2-tss list manipulation code,
part 1/8.

20

61

62 #define _alloc_max 100
63 static NODE_T _rsrc_bank[_alloc_max]; // bank used by the static allocator
64 static int _alloc_idx = 0; // index of the next rsrc node to be allocated
65 /*@
66 predicate valid_rsrc_mem_bank{L} = 0 ≤ _alloc_idx ≤ _alloc_max;
67 predicate list_sep_from_allocables{L}(\list<NODE_T*> ll) =
68 ∀ int i; _alloc_idx ≤ i < _alloc_max ⇒
69 ptr_sep_from_list{L}(& _rsrc_bank[i], ll);
70 predicate ptr_sep_from_allocables{L}(NODE_T* node) =
71 ∀ int i; _alloc_idx ≤ i < _alloc_max ⇒ \separated(node , &_rsrc_bank[i]);
72 predicate dptr_sep_from_allocables{L}(NODE_T ** p_node) =
73 ∀ int i; _alloc_idx ≤ i < _alloc_max ⇒ \separated(p_node , &_rsrc_bank[i]);
74 */
75 /***/
76 /*@
77 requires valid_rsrc_mem_bank;
78 assigns _alloc_idx , _rsrc_bank[\old(_alloc_idx)];
79 ensures valid_rsrc_mem_bank;
80

81 behavior not_allocable:
82 assumes _alloc_idx == _alloc_max;
83

84 ensures _alloc_idx == _alloc_max;
85 ensures \result == NULL;
86 ensures _rsrc_bank == \old(_rsrc_bank);
87 ensures ∀ int i; 0 ≤ i < _alloc_max ⇒
88 _rsrc_bank[i] == \old(_rsrc_bank[i]);
89 behavior allocable:
90 assumes 0 ≤ _alloc_idx < _alloc_max;
91

92 ensures _alloc_idx == \old(_alloc_idx) + 1;
93 ensures \result == &(_rsrc_bank[_alloc_idx - 1]);
94 ensures \valid(\result);
95 ensures zero_rsrc_node_t(*(\result));
96 ensures ∀ int i; 0 ≤ i < _alloc_max ∧ i ̸= \old(_alloc_idx) ⇒
97 _rsrc_bank[i] == \old(_rsrc_bank[i]);
98 disjoint behaviors; complete behaviors;
99 */

100 NODE_T *calloc_NODE_T ()
101 {
102 static const RESOURCE empty_RESOURCE;
103 if(_alloc_idx < _alloc_max) {
104 _rsrc_bank[_alloc_idx]. handle = (uint32_t) 0;
105 _rsrc_bank[_alloc_idx].rsrc = empty_RESOURCE;
106 _rsrc_bank[_alloc_idx].next = NULL;
107 _alloc_idx += 1;
108 return &_rsrc_bank[_alloc_idx - 1];
109 }
110 return NULL;
111 }

Fig. 10. Illustrative provable example of the adjusted tpm2-tss list manipulation code,
part 2/8.

21

112

113 typedef struct CONTEXT {
114 int placeholder_int;
115 NODE_T *rsrc_list;
116 } CONTEXT;
117 /*@
118 predicate ctx_sep_from_list(CONTEXT *ctx , \list<NODE_T*> ll) =
119 ∀ Z i; 0 ≤ i < \length(ll) ⇒ \separated(\nth(ll, i), ctx);
120 predicate ctx_sep_from_allocables(CONTEXT *ctx) =
121 ∀ int i; _alloc_idx ≤ i < _alloc_max ⇒ \separated(ctx , &_rsrc_bank[i]);
122

123 predicate freshness(CONTEXT * ctx , NODE_T ** node) =
124 ctx_sep_from_allocables(ctx)
125 ∧ list_sep_from_allocables(to_ll(ctx ->rsrc_list , NULL))
126 ∧ ptr_sep_from_allocables(ctx ->rsrc_list)
127 ∧ ptr_sep_from_allocables (*node)
128 ∧ dptr_sep_from_allocables(node);
129

130 predicate sep_from_list{L}(CONTEXT * ctx , NODE_T ** node) =
131 ctx_sep_from_list(ctx , to_ll{L}(ctx ->rsrc_list , NULL))
132 ∧ dptr_sep_from_list(node , to_ll{L}(ctx ->rsrc_list , NULL));
133 */
134

135 /*@
136 requires valid_rsrc_mem_bank ∧ freshness(ctx , out_node);
137 requires \valid(ctx);
138 requires ctx ->rsrc_list ̸= NULL ⇒ \valid(ctx ->rsrc_list);
139 requires linked_ll(ctx ->rsrc_list , NULL , to_ll(ctx ->rsrc_list , NULL));
140 requires sep_from_list(ctx , out_node);
141 requires ptr_sep_from_list (*out_node , to_ll(ctx ->rsrc_list , NULL));
142 requires !(in_list_handle(esys_handle , to_ll(ctx ->rsrc_list , NULL)));
143 requires \valid(out_node) ∧ \separated(ctx , out_node);
144 requires *out_node ̸= NULL ⇒ \valid (* out_node) ∧ (* out_node)->next == NULL;
145 assigns _alloc_idx , _rsrc_bank[_alloc_idx], ctx ->rsrc_list , *out_node;
146 ensures valid_rsrc_mem_bank ∧ freshness(ctx , out_node);
147 ensures sep_from_list(ctx , out_node);
148 ensures unchanged_ll{Pre , Post}(to_ll{Pre}(\old(ctx ->rsrc_list), NULL));
149 ensures \result \in {1610, 833};
150

151 behavior not_allocable:
152 assumes _alloc_idx == _alloc_max;
153

154 ensures _alloc_idx == _alloc_max;
155 ensures \valid(ctx);
156 ensures !(in_list_handle(esys_handle , to_ll(ctx ->rsrc_list , NULL)));
157 ensures ctx ->rsrc_list == \old(ctx ->rsrc_list);
158 ensures *out_node == \old(* out_node);
159 ensures unchanged_ll{Pre , Post}(to_ll(ctx ->rsrc_list , NULL));
160 ensures \result == 833;
161 behavior allocated:
162 assumes 0 ≤ _alloc_idx < _alloc_max;
163

164 ensures _alloc_idx == \old(_alloc_idx) + 1;
165 ensures in_list_handle(esys_handle , to_ll(ctx ->rsrc_list , NULL));
166 ensures \valid(ctx ->rsrc_list) ∧ *out_node == ctx ->rsrc_list;
167 ensures ctx ->rsrc_list == &_rsrc_bank[_alloc_idx - 1];
168 ensures ctx ->rsrc_list ->handle == esys_handle;
169 ensures ctx ->rsrc_list ->next == \old(ctx ->rsrc_list);
170 ensures linked_ll(ctx ->rsrc_list , NULL , to_ll(ctx ->rsrc_list , NULL));
171 ensures unchanged_ll{Pre , Post}(to_ll{Pre}(\old(ctx ->rsrc_list), NULL));
172 ensures \old(ctx ->rsrc_list) ̸= NULL ⇒
173 \nth(to_ll(ctx ->rsrc_list , NULL), 1) == \old(ctx ->rsrc_list);
174 ensures \result == 1610;
175 disjoint behaviors; complete behaviors;
176 */

Fig. 11. Illustrative provable example of the adjusted tpm2-tss list manipulation code,
part 3/8.

22

177 int createNode(CONTEXT * ctx , uint32_t esys_handle , NODE_T ** out_node){
178 //@ ghost pre_calloc :;
179 // @ghost int if_id = 0;
180 /*@ assert \separated(out_node , &_rsrc_bank[_alloc_idx]);*/
181 /*@ assert \separated(ctx ->rsrc_list , &_rsrc_bank[_alloc_idx]); */
182 // NODE_T *new_head = calloc (1, sizeof(NODE_T)); /* library version */
183 /*@ assert list_sep_from_allocables(to_ll(ctx ->rsrc_list , NULL)); */
184 /*@ assert ptr_sep_from_list (& _rsrc_bank[_alloc_idx], to_ll{pre_calloc }(ctx ->rsrc_list , NULL)); */
185 /*@ assert ptr_sep_from_list (& _rsrc_bank[_alloc_idx], to_ll(ctx ->rsrc_list , NULL)); */
186 NODE_T *new_head = calloc_NODE_T ();
187 /*@ assert unchanged_ll{pre_calloc , Here}(
188 to_ll{pre_calloc }(ctx ->rsrc_list , NULL)); */
189 //@ ghost post_calloc :;
190 if (new_head == NULL){ return 833;}
191 /*@ assert \valid(new_head) ∧ new_head ->next == NULL; */
192 /*@ assert ptr_sep_from_list(new_head , to_ll(ctx ->rsrc_list , NULL)); */
193 /*@ assert unchanged_ll{Pre , Here}(to_ll{Here}(ctx ->rsrc_list , NULL));*/
194 //@ ghost pre_if :;
195 if (ctx ->rsrc_list == NULL) {
196 /* The first object of the list will be added */
197 ctx ->rsrc_list = new_head;
198 /*@ assert unchanged_ll{pre_if , Here}(to_ll(new_head , NULL));*/
199 /*@ assert to_ll(new_head , NULL) == [| new_head |]; */
200 /*@ assert \separated(new_head , new_head ->next);*/
201 new_head ->next = NULL;
202 /*@ assert to_ll(new_head , NULL) == [| new_head |]; */
203 }
204 else {
205 /* The new object will become the first element of the list */
206 /*@ assert dptr_sep_from_list (&ctx ->rsrc_list ,
207 to_ll(ctx ->rsrc_list , NULL));*/
208 new_head ->next = ctx ->rsrc_list;
209 //@ ghost post_assign :;
210 /*@ assert unchanged_ll{pre_if , Here}(
211 to_ll{pre_if }(ctx ->rsrc_list , NULL));*/
212 /*@ assert to_ll(new_head , NULL) ==
213 ([| new_head |] ^ to_ll(\at(ctx ->rsrc_list , pre_if), NULL));*/
214 /*@ assert dptr_sep_from_list (&ctx ->rsrc_list ,
215 to_ll(new_head , NULL));*/
216 ctx ->rsrc_list = new_head;
217 /*@ assert unchanged_ll{post_assign , Here}(
218 to_ll{post_assign }(new_head , NULL));*/
219 /*@ assert ctx ->rsrc_list ->next == \at(ctx ->rsrc_list , Pre);*/
220 /*@ assert to_ll(ctx ->rsrc_list , NULL) ==
221 ([| new_head |] ^ to_ll{Pre}(\at(ctx ->rsrc_list , Pre), NULL));*/
222 /*@ assert ctx ->rsrc_list == \nth(to_ll(ctx ->rsrc_list , NULL), 0);*/
223 }
224 //@ ghost post_add :;
225 /*@ assert ctx ->rsrc_list == \nth(to_ll(ctx ->rsrc_list , NULL), 0);*/
226 /*@ assert ctx_sep_from_list(ctx , to_ll(ctx ->rsrc_list , NULL));*/
227 /*@ assert ctx ->rsrc_list == new_head ;*/
228 /*@ assert unchanged_ll{Pre , Here}(to_ll{Pre}(\at(ctx ->rsrc_list , Pre), NULL));*/
229 /*@ assert to_ll(new_head , NULL) ==
230 ([| new_head |] ^ to_ll{Pre}(\at(ctx ->rsrc_list , Pre), NULL));*/
231 /*@ assert dptr_sep_from_list(out_node , to_ll(new_head , NULL));*/
232 *out_node = new_head;
233 /*@ assert unchanged_ll{post_add , Here}(to_ll{post_add }(new_head , NULL));*/
234 /*@ assert ctx ->rsrc_list == \nth(to_ll(ctx ->rsrc_list , NULL), 0);*/
235 new_head ->handle = esys_handle;
236 /*@ assert \nth(to_ll(ctx ->rsrc_list , NULL), 0)->handle == esys_handle ;*/
237 /*@ assert in_list_handle(esys_handle , to_ll(ctx ->rsrc_list , NULL));*/
238 /*@ assert list_sep_from_allocables(to_ll(ctx ->rsrc_list , NULL)); */
239 /*@ assert unchanged_ll{Pre , Here}(to_ll{Pre}(\at(ctx ->rsrc_list , Pre), NULL));*/
240 return 1610;
241 }

Fig. 12. Illustrative provable example of the adjusted tpm2-tss list manipulation code,
part 4/8.

23

243

244 /*@
245 requires \valid(out_handle);
246 assigns *out_handle;
247 ensures \result \in {0, 12};
248 ensures *out_handle \in {esys_handle , 0x4000000A , 0x4000000B ,
249 0x40000110 + (esys_handle - 0x120U), \old(* out_handle)};
250 behavior ok_handle:
251 assumes esys_handle ≤ 31U ∨ 0x120U ≤ esys_handle ≤ 0x12FU
252 ∨ esys_handle \in {0x10AU , 0x10BU};
253 ensures \result == 0;
254 behavior wrong_handle:
255 assumes esys_handle > 31U ∧ (esys_handle < 0x120U ∨ esys_handle >

0x12FU);
256 assumes !(esys_handle \in {0x10AU , 0x10BU });
257 ensures *out_handle == \old(* out_handle);
258 ensures \result == 12;
259 disjoint behaviors; complete behaviors;
260 */
261 int iesys_handle_to_tpm_handle(uint32_t esys_handle , uint32_t * out_handle)
262 {
263 if (esys_handle ≤ 31U) {* out_handle = (uint32_t) esys_handle; return 0;}
264 if (esys_handle == 0x10AU){* out_handle = 0x4000000A; return 0;}
265 if (esys_handle == 0x10BU){* out_handle = 0x4000000B; return 0;}
266 if (esys_handle ≥ 0x120U ∧ esys_handle ≤ 0x12FU)
267 {* out_handle = 0x40000110 + (esys_handle - 0x120U); return 0;}
268 return 12;
269 }
270

271 /*@
272 requires \valid(src) ∧ \valid(dest + (0 .. sizeof (*src)-1));
273 requires \separated(dest +(0.. sizeof (*src)-1),src);
274

275 assigns dest[0 .. sizeof (*src)-1];
276

277 ensures \valid(src);
278 ensures \valid(dest + (0 .. sizeof (*src)-1));
279 */
280 void memcpy_custom(uint8_t *dest , uint32_t * src , size_t n) {
281 dest [3] = (uint8_t)(*src & 0xFF);
282 dest [2] = (uint8_t)((* src >> 8) & 0xFF);
283 dest [1] = (uint8_t)((* src >> 16) & 0xFF);
284 dest [0] = (uint8_t)((* src >> 24) & 0xFF);
285 }
286

287 /*@
288 requires \valid(offset) ∧ 0 ≤ *offset ≤ UINT8_MAX - sizeof(in);
289 requires buff_size > 0 ∧ \valid (&buff [0] + (0 .. buff_size - 1));
290 requires *offset ≤ buff_size ∧ sizeof(in) + *offset ≤ buff_size;
291 requires \separated(offset , buff);
292

293 assigns *offset , (&buff[* offset])[0.. sizeof(in) - 1];
294

295 ensures *offset == \old(* offset) + sizeof(in);
296 ensures \result == 0;
297 */
298 int uint32_Marshal(uint32_t in , uint8_t buff[], size_t buff_size , size_t *offset) {
299 size_t local_offset = 0;
300 if (offset ̸= NULL){ local_offset = *offset ;}
301 in = HOST_TO_BE_32(in);
302 // memcpy (& buff[local_offset], &in , sizeof (in));
303 memcpy_custom (&buff[local_offset], &in, sizeof(in));
304 if (offset ̸= NULL){* offset = local_offset + sizeof (in);}
305 return 0;
306 }

Fig. 13. Illustrative provable example of the adjusted tpm2-tss list manipulation code,
part 5/8.

24

308

309 /*@
310 requires valid_rsrc_mem_bank{Pre} ∧ freshness(ctx , node);
311 requires \valid(ctx);
312 requires ctx ->rsrc_list ̸= \null ⇒ \valid(ctx ->rsrc_list);
313 requires linked_ll(ctx ->rsrc_list , NULL , to_ll(ctx ->rsrc_list , NULL));
314 requires 0 ≤ \length(to_ll(ctx ->rsrc_list , NULL)) < INT_MAX;
315 requires \valid(node);
316 requires *node ̸= \null ⇒(\valid (*node) ∧ (*node)->next == \null);
317 requires sep_from_list(ctx , node) ∧ \separated(node , ctx);
318 requires ptr_sep_from_list (*node , to_ll(ctx ->rsrc_list , NULL));
319 assigns _alloc_idx , _rsrc_bank[_alloc_idx], ctx ->rsrc_list;
320 assigns *node , (&ctx ->rsrc_list ->rsrc.name.name [0])[0];
321 ensures valid_rsrc_mem_bank ∧ freshness(ctx , node);
322 ensures \separated(node , ctx);
323 ensures \result \in {616, 833, 1611, 12};
324

325 behavior handle_in_list:
326 assumes in_list_handle(rsrc_handle , to_ll(ctx ->rsrc_list , NULL));
327

328 ensures _alloc_idx == \old(_alloc_idx);
329 ensures ctx ->rsrc_list == \old(ctx ->rsrc_list);
330 ensures in_list (*node , to_ll(ctx ->rsrc_list , NULL)) ∧ *node ̸= NULL;
331 ensures (*node)->handle == rsrc_handle ∧ sep_from_list(ctx , node);
332 ensures unchanged_ll{Pre , Post}(to_ll(ctx ->rsrc_list , NULL));
333 ensures \result == 616;
334 behavior handle_not_converted:
335 assumes !(in_list_handle(rsrc_handle , to_ll(ctx ->rsrc_list , NULL)));
336 assumes rsrc_handle > 31U ∧ ! (rsrc_handle \in {0x10AU , 0x10BU});
337 assumes rsrc_handle < 0x120U ∨ rsrc_handle > 0x12FU;
338

339 ensures unchanged_ll{Pre , Post}(to_ll(ctx ->rsrc_list , NULL));
340 ensures ptr_sep_from_list (*node , to_ll(ctx ->rsrc_list , NULL));
341 ensures sep_from_list(ctx , node) ∧ *node == \old(*node);
342 ensures \result == 12;
343 behavior handle_not_in_list_and_node_not_allocable:
344 assumes !(in_list_handle(rsrc_handle , to_ll(ctx ->rsrc_list , NULL)));
345 assumes rsrc_handle ≤ 31U ∨ (rsrc_handle \in {0x10AU , 0x10BU })
346 ∨ (0x120U ≤ rsrc_handle ≤ 0x12FU);
347 assumes _alloc_idx == _alloc_max;
348

349 ensures _alloc_idx == _alloc_max;
350 ensures unchanged_ll{Pre , Post}(to_ll{Pre}(ctx ->rsrc_list , NULL));
351 ensures *node == \old(*node) ∧ ctx ->rsrc_list == \old(ctx ->rsrc_list);
352 ensures ptr_sep_from_list (*node , to_ll{Pre}(ctx ->rsrc_list , NULL));
353 ensures sep_from_list{Pre}(ctx , node); // has to stay in behavior
354 ensures \result == 833;
355 behavior handle_not_in_list_and_node_allocated:
356 assumes !(in_list_handle(rsrc_handle , to_ll(ctx ->rsrc_list , NULL)));
357 assumes rsrc_handle ≤ 31U ∨ (rsrc_handle \in {0x10AU , 0x10BU })
358 ∨ (0x120U ≤ rsrc_handle ≤ 0x12FU);
359 assumes 0 ≤ _alloc_idx < _alloc_max;
360

361 ensures in_list_handle(rsrc_handle , to_ll(ctx ->rsrc_list , NULL));
362 ensures (*ctx ->rsrc_list). handle == rsrc_handle;
363 ensures _alloc_idx == \old(_alloc_idx) + 1;
364 ensures \valid(ctx ->rsrc_list) ∧ *node == ctx ->rsrc_list;
365 ensures ctx ->rsrc_list ̸= \old(ctx ->rsrc_list);
366 ensures ctx ->rsrc_list ->next == \old(ctx ->rsrc_list);
367 ensures to_ll(ctx ->rsrc_list , NULL)
368 == ([|ctx ->rsrc_list |] ^ to_ll{Pre}(\old(ctx ->rsrc_list), NULL));
369 ensures \old(ctx ->rsrc_list) ̸= NULL ⇒
370 \nth(to_ll(ctx ->rsrc_list , NULL), 1) == \old(ctx ->rsrc_list);
371 ensures linked_ll(ctx ->rsrc_list , NULL , to_ll(ctx ->rsrc_list , NULL));
372 ensures sep_from_list(ctx , node);
373 ensures \result == 1611;
374 disjoint behaviors; complete behaviors;
375 */

Fig. 14. Illustrative provable example of the adjusted tpm2-tss list manipulation code,
part 6/8. 25

376 int getNode(CONTEXT *ctx , uint32_t rsrc_handle , NODE_T ** node) {
377 /*@ assert linked_ll(ctx ->rsrc_list , NULL , to_ll(ctx ->rsrc_list , NULL));*/
378 int r;
379 uint32_t tpm_handle;
380 {
381 NODE_T *tmp_node;
382 /*@ ghost int n = 0;*/
383 /*@
384 loop invariant unchanged_ll{Pre , Here}(to_ll(ctx ->rsrc_list , NULL));
385 loop invariant linked_ll(ctx ->rsrc_list , NULL ,
386 to_ll(ctx ->rsrc_list , NULL));
387 loop invariant linked_ll(ctx ->rsrc_list , tmp_node ,
388 to_ll(ctx ->rsrc_list , tmp_node));
389 loop invariant ptr_sep_from_list(tmp_node ,
390 to_ll(ctx ->rsrc_list , tmp_node));
391 loop invariant tmp_node ̸= \null ⇒
392 in_list(tmp_node , to_ll(ctx ->rsrc_list , NULL));
393 loop invariant !in_list_handle(rsrc_handle ,
394 to_ll(ctx ->rsrc_list , tmp_node));
395 loop invariant n == \length(to_ll(ctx ->rsrc_list , tmp_node));
396 for handle_in_list : loop invariant
397 in_list_handle(rsrc_handle , to_ll(ctx ->rsrc_list , NULL));
398 loop assigns n, tmp_node;
399 loop variant \length(to_ll(tmp_node , NULL));
400 */
401 for (tmp_node = ctx ->rsrc_list; tmp_node ̸= NULL;
402 tmp_node = tmp_node ->next) {
403 /*@ assert tmp_node == \nth(to_ll(ctx ->rsrc_list , NULL), n);*/
404 /*@ assert linked_ll(tmp_node , NULL , to_ll(tmp_node , NULL));*/
405 if (tmp_node ->handle == rsrc_handle){
406 /*@ assert dptr_sep_from_list(node , to_ll(ctx ->rsrc_list , NULL));*/
407 *node = tmp_node;
408 /*@ assert unchanged_ll{Pre , Here}(to_ll{Pre}(ctx ->rsrc_list , NULL));*/
409 /*@ assert ptr_sep_from_allocables (*node);*/
410 return 616;
411 }
412 /*@ assert to_ll(ctx ->rsrc_list , tmp_node ->next)
413 == (to_ll(ctx ->rsrc_list , tmp_node) ^ [| tmp_node |]);*/
414 /* @ghost n++;*/
415 }
416 }

Fig. 15. Illustrative provable example of the adjusted tpm2-tss list manipulation code,
part 7/8.

26

417 //@ ghost post_loop :;
418 /*@ assert !(in_list_handle(rsrc_handle , to_ll(ctx ->rsrc_list , NULL)));*/
419 /*@ assert unchanged_ll{Pre , Here}(to_ll(ctx ->rsrc_list , NULL));*/
420 r = iesys_handle_to_tpm_handle(rsrc_handle , &tpm_handle);
421 if (r == 12) { return r; };
422 {/** Anonymous used to circumvent issues with the WP memory model*/
423 NODE_T *tmp_node_2 = NULL;
424 /*@ assert dptr_sep_from_list (&tmp_node_2 ,
425 to_ll{post_loop }(ctx ->rsrc_list , NULL));*/
426 /*@ assert unchanged_ll{Pre , Here}(to_ll{Pre}(ctx ->rsrc_list , NULL));*/
427 /*@ assert \separated(node , &tmp_node_2);*/
428 r = createNode(ctx , rsrc_handle , &tmp_node_2);
429 /*@ assert sep_from_list(ctx , node);*/
430 if (r == 833) {/*@ assert sep_from_list(ctx , node);*/ return r;};
431 //@ ghost post_alloc :;
432 /*@ assert to_ll(ctx ->rsrc_list , NULL)
433 ==([|ctx ->rsrc_list |] ^ to_ll{Pre}(\at(ctx ->rsrc_list , Pre), NULL));*/
434 /*@ assert ctx_sep_from_list(ctx , to_ll(ctx ->rsrc_list , NULL));*/
435 tmp_node_2 ->rsrc.handle = tpm_handle;
436 tmp_node_2 ->rsrc.rsrcType = 0;
437 size_t offset = 0;
438 /*@ assert ptr_sep_from_list(tmp_node_2 ,
439 to_ll(ctx ->rsrc_list ->next , NULL));*/
440 r = uint32_Marshal(tpm_handle , &tmp_node_2 ->rsrc.name.name[0],
441 sizeof(tmp_node_2 ->rsrc.name.name),&offset);
442 /*@ assert in_list_handle(rsrc_handle , to_ll(ctx ->rsrc_list , NULL));*/
443 if (r ̸= 0) { return r;};
444 tmp_node_2 ->rsrc.name.size = offset;
445 /*@ assert unchanged_ll{post_alloc , Here}(to_ll(ctx ->rsrc_list , NULL));*/
446 /*@ assert dptr_sep_from_list(node , to_ll(ctx ->rsrc_list , NULL));*/
447 /*@ assert dptr_sep_from_list(node ,
448 to_ll{Pre}(\at(ctx ->rsrc_list , Pre), NULL));*/
449 *node = tmp_node_2;
450 /*@ assert unchanged_ll{Pre , Here}(
451 to_ll{Pre}(\at(ctx ->rsrc_list , Pre), NULL));*/
452 }
453 /*@ assert unchanged_ll{Pre , Here}(
454 to_ll{Pre}(\at(ctx ->rsrc_list , Pre), NULL));*/
455 /*@ assert in_list_handle(rsrc_handle , to_ll(ctx ->rsrc_list , NULL));*/
456 /*@ assert ctx ->rsrc_list ->next == \at(ctx ->rsrc_list , Pre);*/
457 /*@ assert \at(ctx ->rsrc_list , Pre) ̸= \null ⇒
458 ctx ->rsrc_list ->next == \nth(to_ll(ctx ->rsrc_list , NULL), 1);*/
459 /*@ assert ctx ->rsrc_list ->handle == rsrc_handle ;*/
460 /*@ assert freshness(ctx , node);*/
461 /*@ assert sep_from_list(ctx , node);*/
462 return 1611;
463 }
464

465 /* Command to run the proof with Frama -C:
466 frama -c-gui -c11 example.c -wp -wp-rte -wp-prover altergo ,cvc4 ,cvc4 -ce
467 -wp-timeout 240 -wp-smoke -tests -wp -model Typed+cast -wp-prop="-@lemma"
468 */

Fig. 16. Illustrative provable example of the adjusted tpm2-tss list manipulation code,
part 8/8.

27

