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Abstract—Neuromorphic computing based on Spiking Neural
Networks (SNNs) is an emerging computing paradigm inspired
by the functionality of the biological brain. Given its potential to
revolutionize the power efficiency of many Artificial Intelligence
(AI) applications, heavy research is underway on algorithms,
hardware implementations, and applications. This article focuses
on testing and reliability of hardware implementations providing
a review of the state-of-the-art.

Index Terms—Neuromorphic computing, spiking neural net-
works, testing, reliability, dependability.

I. INTRODUCTION

Spiking Neural Networks (SNNs) are the basis of neuromor-
phic computing. They enable a type of Artificial Intelligence
(AI) that closely mimics the “language” of the biological brain
[1], [2].

Compared to the more traditional Artificial Neural Networks
(ANNs), SNNs incorporate the notion of time, as illustrated
in Fig. 1. Input information is coded into spike trains that
propagate through the layers of neurons via their synapse
connections. A spike is a discrete event in time that emulates
the firing of neurons in the brain. For example, in a computer
vision application, the image is decomposed into pixels, and
the pixel intensity or brightness is translated to a spike
train, as illustrated in Fig. 1(b). Coding methods include rate
coding, where the spike frequency is made proportional to the
intensity, and time coding, where one spike per pixel is used
and the spike is emitted at a time that is inversely proportional
to the intensity. Another approach is to interface the SNN
with a Dynamic Vision Sensor (DVS) to generate the input
information in real time, as illustrated in Fig. 1(a). In this case,
the pixels are sensitive to the scene dynamics and produce a
spike in response to the temporal intensity changes.

Given two neurons connected with a synapse, the spike
generated by the pre-synaptic neuron is weighted by the
synapse’s strength and reaches the post-synaptic neuron, as
illustrated in Fig. 1(c). The most common and hardware-
friendly spiking neuron model is the Integrate & Fire (I&F),
illustrated also in Fig. 1(c). According to this model, the
neuron behaves as a leaky capacitor. A spike is integrated by
adding charge to the capacitor and increasing its potential.
If the potential exceeds a threshold, then the neuron fires
a spike of its own and the capacitor is reset to its resting
potential so that the neuron can fire again. There are two
additional functionalities that are often implemented, namely
leakage, i.e., between two consecutive spikes the potential
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decays towards the reset state, and refractory period, i.e., the
firing rate is suppressed by not allowing the neuron to spike
unless a specific time has elapsed.

To make a decision, the spikes produced by the output
neurons are translated to real values, i.e., by considering the
spike firing rate, the time to first spike, or the interval between
spikes. For example, for SNNs that use spike firing rate for
classification, the output layer has one neuron per class and
the winning class is the one whose neuron produces the larger
number of spikes within a time window.

Compared to ANNs, the potential of SNNs is that they can
offer low-power operation and faster inference, properties that
are particularly attractive for edge computing. In particular,
the spike sparsity at the SNN input makes that most neurons
remain idle not consuming any power and, in addition, weight
multiplications in ANNs are replaced with additions, which are
less computationally intensive. Regarding speed, spikes prop-
agate asynchronously through the network, while in ANNs the
computation of one layer needs to complete before proceeding
to the next layer. In fact, the first output spikes may already
point to the correct decision.

However, training SNNs remains a challenge since spikes
are discrete events and, thereby, back-propagation training
used in ANNs that relies on gradient computation based on
differential calculus is non applicable. SNNs also have more
hyper-parameters to tune, i.e., neuron’s threshold, leakage,
and refractory period. Training approaches include ANN to
SNN conversion, where an ANN model is trained and the
weights are applied onto the equivalent SNN model, Spike-
Timing-Dependent Plasticity (STDP), and adapting the back-
propagation for SNNs [3].

Nowadays, there is an intense activity on designing efficient
hardware accelerators for SNNs. We can group the existing
designs into three main categories: (a) Large-scale designs
for research purposes, such as SpiNNaker [4] and Loihi [5];
(b) Application-Specific Integrated Circuits (ASICs); and (c)
FPGA implementations. For recent reviews, the reader is
referred to [6], [7].

Moving forward, we foresee in the near future the high-
volume manufacturing of Integrated Circuits (ICs) and systems
comprising SNNs. To this end, in parallel to SNN hardware
accelerator design efforts, we need to address their testability
and reliability aspects [8]. Testing aims at proving that the in-
tent functionality is met. It targets manufacturing faults, but for
mission- and safety-critical applications it is applied also on-
line in the field to detect silicon aging and radiation-induced
soft errors. Reliability assessment aims at identifying the



Fig. 1: Principle of operation of SNNs.

critical faults and vulnerable parts of the hardware architecture.
This information is valuable for mitigating reliability concerns
early in the development process through cost-effective fault
tolerance strategies.

There is a belief that hardware implementations of neural
networks inherit the remarkable fault tolerance of the bio-
logical brain. This is true to some extent as neural networks
are highly parallel and distributed systems and thanks also to
their overprovisioning, i.e., there is a large number of extra
neurons in the network that are not used by the application.
As a result, most hardware-level faults are benign. They have
no effect locally or their effect gets masked as the information
propagates through the network. Some faults, however, will be
critical creating an error at the output. The most threatening
type of error is the Silent Data Corruption (SDC) that leads
to misleading computation but goes unnoticed. Instead, an
application crush is observable and the system can enter a safe
mode. While high fault rates can be overcome by performing
training with the hardware in the loop, the prevalent scenario
is that the training is performed in software and then the model
is uploaded onto the hardware. Thus, if a critical neuron or
synapse in the model is mapped onto a neuron or synapse on
the hardware that suffers a fault, this can have a detrimental
impact on the application.

This article provides an analysis of the state-of-the-art
in reliability, testing, and fault tolerance of SNN hardware
accelerators, and concludes by pointing to perspectives for
future work.

II. RELIABILITY ASSESSMENT

For neural networks, in general, a reliability assessment
experiment relies on performing fault injections and assessing
the fault impact on the inference accuracy. Fault injection can
be performed at the software or hardware level.

A. Fault injection experiments in software

The main challenge is that fault simulation is very time-
consuming at transistor level and even in higher-level hardware

descriptions, i.e., gate-level, microarchitetural or RTL level.
Compounded to this is that the inference accuracy needs
to be evaluated on a large validation dataset. To this end,
a behavioral-level fault model is often adopted, and fault
simulations are performed at the software level [9]–[21].
This is suitable for neural networks as their software and
hardware implementation match closely in terms of component
connectivity and data flow.

A neural network is often viewed as a distributed system
where neurons and synapses can fail independently. The
literature in testing and reliability of SNNs [9]–[33] assumes
different fault models with the most common being:

• Neuron faults: (a) variations in the timing of output spike
trains that can be implementing in various ways, i.e., mod-
ifying the neuron’s spike integration constant, threshold,
leakage, or refractory period; (b) stuck-at responses, includ-
ing neuron saturation, where firing is non-stop even in the
absence of input activity, and dead neurons that never spike.

• Synapse faults: (a) weight perturbation; (b) stuck-at weight;
(c) spike transmission delay.

• Spike routing faults.
• Bit-flips in network parameters, i.e., synapse weights, neu-

ron parameters, etc., that are stored as digital words in on-
chip memories, registers, and buffers.

It is important to consider behavioral-level faults that are
feasible from a hardware perspective and capture hardware-
level fault mechanisms. To develop such a fault model, one
approach is to simulate faults at circuit level for single
neurons or small-size networks [30], [34]. In [34], a neuron
is simulated at transistor level after injecting in the netlist
defects, i.e., short- and open-circuits, and, in addition, a Monte
Carlo simulation is performed to study the effect of process
variations. The aforementioned neuron faults were observed,
in addition to some others, for example ghost spikes that are
generated without the neuron’s threshold being exceeded, that
were considered to be design-specific. In [30], this bottom-
up approach to extract faulty behaviors is performed for



Fig. 2: SNN for N-MNIST.

a memristor-based SNN architecture. Memristors implement
synapses and are organized in crossbars implementing the
synaptic connections between two neuron layers [35]. This is
a form of in-memory computing addressing the main memory
wall challenge in AI hardware accelerator design. In [30],
fault simulation experiments show that all defects, i.e., open-
and short-circuits, transistor stuck-on and stuck-off, drift in
memristor resistance values, lead to a variation in the time
required by a neuron to finish its I&F operation. To this end,
it is proposed to use functional fault models at neuron level,
namely slow and fast spike integration.

However, by performing the analysis at the software level,
inevitably, some parts of the hardware architecture and
scheduling of network operations will be ignored. Further-
more, the reliability assessment becomes AI model-specific.
Notice also that even at the software level fault injection ex-
periments may be too time-consuming and may be exhaustive
only for small-size networks, thus a fault sampling approach
is often needed to focus the effort on faults that are likely to
be critical.

Herein, we show results and statistics that are generated
using the fault injection framework in [12]. It is built on top
of the SLAYER [3] and PyTorch [36] frameworks. It supports
a large library of fault models, as well as single or multiple
fault injections. It accelerates fault simulation on GPU and
by using “tricks” such as early stopping, i.e., simulation is
stopped if the fault effect is masked in an intermediate layer,
or skipping the computation of layers, i.e., for a fault in a
given layer the simulation starts at the prior layer considering
its golden fault-free response. Inference time is the same for
the nominal and faulty instances of the network.

The case study is a convolutional SNN, shown in Fig. 2,
for the classification of the N-MNIST dataset, which is a
neuromorphic, i.e., spiking, version of the MNIST dataset that
comprises images of handwritten arithmetic digits in gray-
scale format [37].

Fig. 3 shows the inference accuracy (y-axis) in the case of
dead and saturated neuron faults in different layers (x-axis).
Each column may be divided into blocks of different color
which points to a specific accuracy value according to the
color map at the bottom of Fig. 3. The projection of a block
onto the y-axis is the percentage of neurons that if faulty they
result in an accuracy according to the color of the block.

Results corroborated on several SNN models [12] lead to the
following observations: (a) Neuron saturation has far stronger
impact compared to a dead neuron. This is because a saturated

Fig. 3: Neuron fault simulation.

Fig. 4: Neuron threshold variation.

neuron generates an excess of spikes that propagate through
the network “polluting” it and eventually altering the spike
trains at its output based on which decisions are made. A dead
neuron has a lesser effect because of the sparse spiking activity
per neuron or because the neuron never fires anyways; (b) The
last layer is the most critical one. For example, let us consider
SNNs that use spike firing rate for classification. If a neuron
saturates, then the same class corresponding to this neuron
is always predicted and the accuracy drops to 100/N , where
N is the number of classes. If a neuron becomes dead, then
the corresponding class is never predicted and the maximum
accuracy that can be attained is (N − 1) · 100/N .

Fig. 4 shows the effect of neuron threshold variations. Small
thresholds trigger spiking at lower values of the membrane
potential and the neuron may spike more than usual. In the
extreme, the neuron could end up as a saturated neuron. On
the other hand, a high threshold requires higher values of the
membrane potential for spiking and in the extreme the neuron
could end up as a dead neuron. For this case study, only the
last layer is affected by neuron threshold variations with the
accuracy dropping drastically as the threshold starts reducing
below 50% of the nominal value.

The number of synapses largely outnumbers the number
of neurons. Thus, the synapse fault simulation time quickly
explodes. Therefore, it is worth investigating whether the
synapse fault space can be sampled without missing any
critical synapses. To this end, in [17], an “extreme” fault



Fig. 5: Positive saturation of synapse weights.

scenario is considered where the synapse weight is saturated
to a maximum value, thus likely causing the post-synaptic
neuron to fire more than usual. Fault simulation results are
shown in Fig. 5, where each box corresponds to a synapse
connecting two neurons in two consecutive layers with each
axis corresponding to one layer and the number on the axis
corresponding to the neuron number in this layer. The color
of the box points to the inference accuracy according to
the color map at the bottom of Fig. 3. Results reveal that
a large number of synapses connecting the last two layers
are critical, a very small number of synapses connecting the
last two hidden layers are critical, while any other synapse
fault in previous layers has no impact. This observation was
corroborated on other SNN models too, thus, given that the
synapse fault model is “extreme”, a possible fault sampling
strategy is to simulate synapse faults only in the last layers.
The experiment continued considering the more realistic from
a hardware perspective synapse weight perturbation. It was
assumed that weights are stored on on-chip memory as 8-
bit integers. During fault simulation in software, real-valued
weights were quantized into 8 bits, random bit-flips were
performed, then the weights were reconverted to real values.
The fault simulation results are shown in Fig. 6. We observe
that only the first Most Significant Bit (MSB) positions are
critical, which allows us to further reduce the synapse fault
space.

As a final result, Fig. 7 shows the training accuracy in the
presence of different fault rates. Even at a fault rate as high as
100 faults, the network is capable of learning around the faults,
circumventing the faulty neurons and synapses, and achieving
the baseline accuracy.

B. Fault injection experiments in hardware

In [28], an FPGA-based SNN hardware accelerator [38] is
subject to fault injection. The case study is an SNN model
used to classify card symbols. The hardware accelerator uses
a feature map as the foundational building block. A node in a
layer can represent a feature map in the case of convolutional
layers, or a neuron in the case of fully-connected layers.
Equivalently, a neuron could be conceptualized as a 1 × 1
feature map. Written in VHDL, the feature map is appropri-
ately dimensioned and configured to represent a node of the

Fig. 6: Bit-flips in synapse weights.

Fig. 7: Training in the presence of faults.

model. Subsequently, the nodes are interconnected in a two-
dimensional mesh to construct the SNN model. The accelerator
employs the Address Event Representation (AER) protocol to
avoid the high number of neuron-to-neuron synapses. Accord-
ing to AER, a spike is an event encoded as a digital address of
the neuron that generated it. The address is sent via a shared
data bus to a receiver which decodes the address to identify
the destination neuron where the spike should be routed. Then
the spike is reconstructed at the destination neuron’s input. The
accelerator has local memory per node that stores the various
parameters of the node as digital words, i.e., feature map size,
neurons’ threshold, leakage, and refractory period, synapse
weights, routing parameters for the AER protocol such as the
self-addresses of nodes and neurons, etc. Every parameter is
represented with 8 bits.

The fault model used is bit-flips in every parameter across
different bit positions, as well as random multiple bit-flips
with varying Bit Error Rate (BER) probability. Fig. 8 shows
example results. Figs. 8(a)-(b) show single bit-flips at given
layers, while Fig. 8(c) shows random multiple bit-flips for
different BER values across the entire memory. Fault injection
experiments are repeated, i.e., in Fig. 8(a) a different synapse
in the layer is sampled, in Fig. 8(b) a different node in the
network is sampled, and in Fig. 8(c) any bit in the memory is
let to flip with probability equal to the BER value. Statistics
are visualized using box plots. The bottom and top edges of
the box indicate the 25th and 75th percentile, respectively,



Fig. 8: Reliability analysis of a hardware accelerator.

Fig. 9: Tolerated percentage of dead neurons using dropout.

the whiskers extend to the most extreme data points not
considered outliers, and the outliers are plotted individually
using the ‘o’ symbol and are not always aligned vertically for
illustration purpose. Fig. 8 also shows the tolerated inference
accuracy with green color and reports the median shown with
a dotted circle and the average across repetitions of the same
experiment shown with a red line.

Fig. 8(a) indicates that only the first 4 MSBs of synapse
weights are critical. As synapse weights occupy over 60% of
the memory, this means that we can save significant test and
fault tolerance costs by considering only the 4 MSBs. Fig.
8(b) shows bit-flips in one of the router parameters, namely
the node’s self-address. All bits of routing parameters are very
critical as any bit-flip corrupts the AER protocol. Finally, Fig.
8(c) shows that the network can tolerate a BER up to 10−5.

III. MODEL-BASED FAULT TOLERANCE

A first step towards fault tolerance is to train the model in
a way that certain fault effects are suppressed by construction.
This can be achieved by fault-aware training where during the
training epochs faults are injected such that the model learns
in the presence of faults.

In [12], it is shown that training with dropout [39] can
nullify the effect of all neuron faults in all hidden layers except
neuron saturation faults. Dropout removes neurons during
training with some probability, along with their incoming and
outgoing connections. For a network with n neurons, there are

2n “thinned” scaled down networks, and training with dropout
combines exponentially many thinned network models. The
motivation is that model combination nearly always improves
performance, and dropout achieves this efficiently in one
training session. Dropout can be seen as a “natural” fault-
aware training as neuron and synapses become dead with some
probability during the course of training. Dropout equalizes
the importance of neurons across the network, resulting in
more uniform and sparse activity across the network. The
third column per layer in Fig. 3 shows the inference accuracy
in the presence of dead neurons after training with dropout.
We observe that for layer SF4 the effect of dead neurons is
suppressed. In fact, the SNN can withstand a multiple-fault
scenario with high dead neuron rates, which can be up to
50% as shown in Fig. 9.

In [14], [15], [20], network parameters, i.e., synapse
weights, are quantized according to their data precision on
hardware, and bit-flips are induced during the course of
training. This fault-aware training makes the network adapt
its accuracy to different bit-flip probabilities.

In [11], it is shown that the fault tolerance characteristics of
SNNs can greatly depend on the training algorithm, model, and
workload. It is proposed to modify the loss function towards
error resilience. In particular, for every network instance
visited during training, the baseline accuracy is computed
as normal and, in addition, fault injections are performed
to compute the accuracy in the presence of faults. The loss
function becomes a weighted sum of the baseline accuracy
and the average accuracy on faulty versions of the network.

IV. TESTING

AI hardware accelerators have several architectural partic-
ularities, e.g., they consist of an array of small Processing
Elements (PEs) (i.e., neurons), they are memory hungry, they
use in-memory computing, and there are innovative designs,
i.e., based on memristor crossbar arrays [35]. These partic-
ularities make standard IC test approaches costly or require
the development of novel fault models and conforming test
strategies [8]. Another challenge is that functional test is very
time-consuming as the tested specification is the inference
accuracy on a large dataset [16]. Besides, in this way, the
hardware accelerator is tested for one AI model that is likely
not using all the chip resources, i.e., neurons and synapses.

A. Functional testing

One direction is to derive a compact set of inputs that
can distinguish functional from faulty devices. For example,
in a computer vision application, the problem boils down to
generating a set of high-coverage images, as shown in Fig.
10. In [13], a test generation algorithm is proposed that starts
by injecting a fault and examining if any of the available
images (i.e., the training and validation sets) can detect it. If
not, adversarial examples are generated aiming at finding one
that detects the fault. Adversarial example generation adds a
minimum amount of noise to an available image such that it is
incorrectly predicted. If any image or adversarial example is



Fig. 10: Functional testing based on a compact set of images.

Fig. 11: Test image generation with no fault simulation.

found that detects the fault, then this successful test is tried out
on all faults. It is placed in the kept list and the detected faults
are dropped from the list. The algorithm reiterates targeting the
next undetected fault.

In [17], test generation time is reduced by ordering the
available images based on their fault coverage without per-
forming any fault simulation. It is shown that images which
are predicted correctly with low confidence have higher fault
coverage. Intuitively this happens because these images are
located very close to the classification boundary, thus a fault
is likely to force their footprint in the feature space to jump
over the boundary onto the area of another class, as shown in
Fig. 11. For example, for SNNs that use spike frequency for
classification, the fault coverage score is inversely proportional
to the spike count difference of the top two classes. This idea
was demonstrated on hardware using the accelerator in [38].
As shown in Fig. 12, with 5 images we can detect all multiple
bit-flip scenarios leading to errors, while by adding one extra
image in the test set we can detect all single critical bit-flips
as well.

The test images can also be saved on an on-chip memory
and repeated periodically or in idle times during the applica-
tion to implement an on-line test.

In [40], a functional test is proposed for biologically-
inspired spiking neurons, illustrated in Fig. 13. The idea is
to test that the neuron is capable of producing all the basic
firing patterns, i.e., regular spiking (RS), fast spiking (FS),
intrinsic bursting (IB), and chattering (CH). The test stimulus
is composed of low-resolution ramps applied at the bias nodes
of the neuron such that in one pass all firing patterns appear.
If one or more firing patterns are missing, then the neuron is
deemed faulty.

In [30], a functional test is proposed considering as fault
detection criterion the time a neuron requires to finish its I&F

Fig. 12: Testing the accelerator in [38] with test images.

Fig. 13: Test generation for a biologically-inspired neuron.

operation. A fault is detected if the time exceeds the expected
nominal range computed by a process variation simulation.

B. On-line testing based on in-situ monitors

The idea here is to add monitors into the design that
detect symptoms of abnormal operation. In [12], a compact
monitor, illustrated in Fig. 14, is proposed to detect neuron
saturation which is the most lethal fault. It counts the number
of output spikes with the counter being reset when an input
spike arrives. The counter overflows and an error is flagged if
many spikes are generated without any input activity. In [18],
neuron saturation is detected if its membrane potential stays
above the threshold for more than two clock cycles.

To reduce the overhead of adding one monitor per neuron,
in [31], it is proposed to check for spike saturation at the
feature map level in the case of convolutional SNNs. The
cumulative spike counts at each feature map are used as
new features and are subsequently mapped to a go/no-go test
decision using an on-chip classification system. In essence,
an AI system is used to test the AI hardware accelerator. This
idea is demonstrated on hardware using the accelerator in [38],
where the classification system runs on the processor of the
board.



Fig. 14: Neuron saturation symptom detector.

V. HARDWARE-BASED FAULT TOLERANCE

1) Redundancy-based: A classical approach is Triple Mod-
ular Redundancy (TMR) where the system is triplicated and
a voting scheme is implemented to decide on the correct
response, given that it is unlikely that two systems will
fail simultaneously. Full-system triplication is of course very
costly. However, fault injection experiments have shown that
different layers have different sensitivity to faults. Therefore,
we can perform selective TMR by applying it to critical
layers only [12]. For example, the most critical output layer
is recommended to be protected with TMR.

2) Hardening: Another classical approach is hardening of
vulnerable components of the architecture, which refers to
applying changes in their layout so as to tolerate exposure
to radiation. In [41], a hardened spiking neuron design is
proposed. In [18], it is proposed to harden only the hardware
extensions that are used to enable fault tolerance.

3) Pruning: In [20], it is proposed to prune or bypass faulty
PEs in the accelerator, which requires testing as a first step to
determine the faulty PEs. Thereafter, fault-aware training is
performed to re-train the unpruned weights while optimizing
the neuron’s threshold for each layer.

4) Memory fault mitigation: To mitigate memory faults, in
[14] it is proposed to first derive the memory fault map using
memory testing, then perform bit shuffling to prioritize placing
the MSBs of the weights on the non-faulty memory cells.

5) Fault masking: Here, the idea is to mask the effect of
the fault upon detection. In Section III, dropout was shown
to nullify the effect of dead neuron faults. Thus, if neuron
saturation is detected, for example using one of the in-situ
monitors described in Section IV-B, one approach is to disable
the neuron [12], [18]. In [12], this concept is called “fault
hopping” and it is implemented by adding a single transistor
into the neuron that cuts off its power if the flag signal in
Fig. 14 is raised. For synapses, if the weight is increased or,
equivalently, an abnormal current comes into the post-synaptic
neuron, then one approach is to zero the weight [18], [33]. At
worse this makes the post-synaptic neuron dead.

6) Astrocyte neural networks: In [22], [24]–[26], [29],
it is proposed to mimic the self-repairing capability of the
biological brain. Astrocytes are added into the network, where
each astrocyte communicates with a set of neurons and their
incoming synapses, as illustrated in Fig. 15. Astrocytes are
capable of regulating the synaptic transmissions. For example,
when a synapse breaks, they enhance the probability of release
of the healthy synapses which can help the neuron maintain
its firing frequency.

Fig. 15: Astrocyte neural network.

7) Neuron adaptation: In [23], fault tolerance is achieved
by means of redundant synapses per neuron and neuron
adaptation. In particular, the neuron monitors the total injected
current from all synapses during a time window, and if an
abrupt or abnormal variation is noticed, then the neuron’s
threshold or operating frequency are adjusted such that it
retains the same firing rate. Vice versa, neuron’s threshold
variations can be compensated by adjusting the inference time
steps [33].

8) Re-learning: In [9], a high-level biologically-inspired
model of the cortical structure of the brain is developed.
The model is trained using Hebbian learning with repeated
exposure to input samples. For dead neurons, the network is
capable of re-learning as their functionality is taken over by
neighboring neurons. On the other hand, saturated neurons
can severely degrade the performance and upon detection are
disabled and the network re-learns. Detection is performed by
interrupting the operation and recomputing the response by
forming a TMR voting scheme using the existing redundancy.

9) Memristor crossbar arrays: Current memristor technolo-
gies are known to have low yield and endurance. The lifetime
of the memristor depends on many factors, including: (a) its
programmed resistance state according to the model mapping
onto the crossbar; (b) the current that flows though it which
depends on its position on the crossbar (i.e., the current in
the lower left cell is higher than this of the upper right cell
since the path is shorter and the voltage drop is smaller);
and (c) the criticality of the synapse which depends on the
workload. To this end, in [27], [32] frameworks are proposed
aiming at finding an endurance-aware mapping of synapses
onto the hardware, such that critical synapses are implemented
on memristors with high endurance.

VI. CONCLUSIONS AND PERSPECTIVES

We analyzed the emerging trends in the test and reliability
of SNN hardware accelerators. Moving forward, fault models
may need to expand to cover additional failure modes in
modern accelerators. An automated, versatile, and extendable
fault injection framework is yet to be made open source, which
can become a useful tool in the hands of the designers for
accelerating reliability analysis. Viewing an accelerator as a
black-box, one interesting problem is to generate a single
“golden” test image capable of detecting any fault. Model-
based fault tolerance has the advantage that it does not require
any hardware modifications, thus withstanding the largest
number of faults at this stage is very attractive as it reduces the



on-chip provisions needed for hardware-based fault tolerance.
Developing low-overhead in-situ self-test monitors and fault
mitigation strategies is another interesting research direction.
Finally, memristor crossbar array architectures require new test
and reliability strategies which are of vital importance given
the fragility of memristors.
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Barranco, and H.-G. Stratigopoulos, “Spiking neuron hardware-level
fault modeling,” in Proc. 26th IEEE Int. Symp. On-Line Test. Robust
Syst. Des. (IOLTS), Jul. 2020.
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