

Riparian vegetation mitigates river warming: exploring its large scale effects on past and future thermal regimes

Hanieh Seyedhashemi (Postdoctoral Fellow, INRAE-EDF)

Florentina MOATAR (INRAE, France) Jean-Philippe VIDAL (INRAE, France) Anthony MAIRE (EDF R&D, France)

hanieh.seyedhashemi@inrae.fr

Stream (water) temperature (Tw) is a key factor for water quality, aquatic communities and socio-economic activities

Dissolved oxygen

Eutrophication

Metabolism

Growth and survival of species

Distribution of aquatic communities

PLOS ONE

🔓 OPEN ACCESS 尨 PEER-REVIEWED

RESEARCH ARTICLE

Direct habitat descriptors improve the understanding of the organization of fish and macroinvertebrate communities across a large catchment

Coline Picard , Mathieu Floury, Hanieh Seyedhashemi, Maxime Morel, Hervé Pella, Nicolas Lamouroux, Laëtitia Buisson, Florentina Moatar, Anthony Maire

Tw warming due to climate change over the past decades

Country	Sites	Period	Rate of change ($^{\circ}C \text{ decade}^{-1}$)	Reference	•
France	52 278 reaches in the Loire basin	1963–2019	+0.17 to +0.72 (mean = +0.38) +0.01 to +0.65 (+0.35) in winter +0.11 to +0.76 (+0.38) in spring	Present study	
			+0.08 to +1.02 (+0.44) in summer		
			+0.05 to +0.81 (+0.33) in autumn		
Austria	18 rivers	2010–2017	+1.9 to +3.2 in summer	Niedrist and Füreder (2021)	Hydrol. Earth Syst. Sci., 26, 2583–2603, 2022 https://doi.org/10.5194/hess-26-2583-2022
England	6148 sites	2000-2018	-0.4	Wilby and Johnson (2020)	© Author(s) 2022. This work is distributed under the Creative Commons Attribution 4.0 License
Switzerland	31 rivers	1979–2018	+0.33 (±0.03)	Michel et al. (2020)	
			+0.6 to $+1.1$ in summer		BY BY
Poland	5 Carpathian rivers	1984-2018	+0.33 to +0.92	Kędra (2020)	
			+0.82 to +0.95 in spring		
			± 0.75 to ± 1.17 in summer		Dogional multi dacadal an
			+0.25 to $+0.29$ in winter		Regional, multi-decadal an
France	11 stations on the Loire	1980-2015	+0.79 in spring	Maire et al. (2019)	that stream temperature in
Thinke	Vienne, Rhône, Seine, and Meuse	1700 2015	10.77 in spring	Marie et al. (2017)	Hanieh Sevedhashemi ^{1,2} , Jean-Philippe Vidal ¹
Poland	6 stations on the Warta River	1960-2009	+0.096 to +0.28	Ptak et al. (2019a)	Frédéric Hendrickx ⁴ , Anthony Maire ⁴ , and Fl
Croatia	6 stations on the Kupa River	1990-2017	+0.23 to +0.796	Zhu et al. (2019)	
Switzerland	Rhine, Rhône, Aar, and Thur rivers	1983-2013	+0.27 (±0.03)	Zobrist et al. (2018)	
Northern Germany	132 sites	1985-2010	+0.3 (±0.03)	Arora et al. (2016)	
		1985-1995	+0.69 (±0.10) in spring		✓ up to ~1°C increa
			$+0.78 (\pm 0.06)$ in summer		
			$\pm 0.75 (\pm 0.09)$ in autumn $\pm 0.39 (\pm 0.23)$ in winter		30 years in Europ
			$+0.83 (\pm 0.23)$ in white +0.81 (± 0.2)		
	475 sites	2000-2010	+0.9 (±0.07)		,
England and Wales	2773 sites	1990-2006	+0.3 (±0.02)	Orr et al. (2015)	✓ +0.72; +2.31 °C ir
Poland	Coastal rivers (Rega, Parseta,	1971-2015	+0.26 to +0.31	Ptak et al. (2016)	RCP 4.5 in the mi
	Słupia, Łupawa, Łeba)		+0.46 in April (the month		the procent
			with the highest trend)		the present
France	4 stations on the Loire River	1976-2003	+0.61 to +0.71	Moatar and Gailhard (2006)	
			+0.86 to +1.07 in spring and summer		

3

Hydrology and Sciences

Regional, multi-decadal analysis on the Loire River basin reveals that stream temperature increases faster than air temperature

Ianieh Seyedhashemi^{1,2}, Jean-Philippe Vidal¹, Jacob S. Diamond¹, Dominique Thiéry³, Céline Monteil⁴, 'rédéric Hendrickx⁴, Anthony Maire⁴, and Florentina Moatar¹

- up to ~1°C increase in summer Tw over the past
 30 years in Europe
- ✓ +0.72; +2.31 °C increase in summer Tw under RCP 4.5 in the middle of the century respect to the present

> Riparian shading:

- can reduce maximum Tw by up to ~4°C from unshaded to fully shaded conditions in small lowland streams (Kail et al., 2020, Loicq et al, 2018)
- may mitigate the heating effect of small dams and ponds (Seyedhashemi et al., 2021; Maxted et al., 2005)
- effectiveness depends on many factors (Garner et al., 2017, Imholt et al., 2010, 2013; Dugdale et al., 2018) :
 - channel orientation
 - bank height canopy density
 - within-reach residence times
 - distance from the source
 - vegetation species

In small streams : influence of species on net energy fluxes

Figure adapted from Dugdale et al. (2018)

> Objectives:

Modelling thermal regimes under hydroclimatic factors and dynamics of riparian shading at a regional scale and a high spatial resolution over the past and future

Seyedhashemi, H., Moatar, F., Vidal, J.-P., and Thiéry, D.: Past and future discharge and stream temperature at high spatial resolution in a large European basin (Loire basin, France), Earth Syst. Sci. Data Discuss. [preprint], https://doi.org/10.5194/essd-2022-451, in prep, 2023.

Investigating and quantifying the extent to which riparian shading can help mitigate river warming at a large scale
 For past : Seyedhashemi, H., Vidal, J.-P., Diamond, J. S., Thiéry, D., Monteil, C., Hendrickx, F., Maire, A. & Moatar, F. (2021) Regional, multi-decadal analysis reveals that stream temperature increases faster than air temperature Hydrology and Earth System Sciences. In press. doi: 10.5194/hess-2021-450.

Exploring the consequences of theoretical scenarios of large-scale riparian restoration or loss on stream temperature Seyedhashemi et al., in progress

T-NET thermal model : reconstruction and projection

Improving representation of riparian vegetation shading in a regional stream temperature model using LiDAR data

Pierre Loicq^{a,*}, Florentina Moatar^a, Yann Jullian^b, Stephen J. Dugdale^c, David M. Hannah^c

Riparian shading can attenuate increasing trends in summer Tw

Small streams: distance from the source < 30km

Increase in Tw by up to +5°C over the past 57 years

Coise (small)

 Riparian shading can attenuate increasing trends in summer Tw in the south of the basin by 0.16°C/decade

Regional, multi-decadal analysis on the Loire River basin reveals that stream temperature increases faster than air temperature

Hanieh Seyedhashemi^{1,2}, Jean-Philippe Vidal¹, Jacob S. Diamond¹, Dominique Thiéry³, Céline Monteil⁴, Frédéric Hendrickx⁴, Anthony Maire⁴, and Florentina Moatar¹

Riparian shading can attenuate increase in future summer Tw

Small streams: distance from the source < 30km

Median summer Tw under RCP 8.5 across reaches

✓ Riparian shading can mitigate the increase in future summer Tw by at least 3.5°C

Theoretical scenarios of riparian restoration or loss and their impacts on Tw

Analysis of riparian vegetation restoration scenarios by thermal modeling Reconstitution for **1/08/2003**

100% 0% -30% +30% \times **** Tw (°C) >24 22-24 20-22 18-20 16-18 14-16 < 14Diff (°C) > 2.5 2:2.5 1.5;2 1;1.5 0.5;1 -0.5;0.5 -1;-0.5 -1.5;-1 -2;-1.5 -2.5;-2 < -2.5

Under present condition

Theoretical scenarios of riparian restoration or loss and their impacts on Tw

Analysis of riparian vegetation restoration scenarios by thermal modeling Reconstitution for **1/08/2003**

100% 0% -30% +30% **** \times Tw (°C) >24 22-24 20-22 18-20 16-18 14-16 < 14Diff (°C) Diff (°C) - > 2.5 -0.09 - 2;2.5 -1.1 -1.38 -1.49 - 1.5;2 -1.72 -1.92 -2.05 -2 -- 1;1.5 Large 0.5;1 -3 -0.5:0.5 rivers **Small streams** -4 --1;-0.5 -1.5;-1 -2;-1.5 -2.5;-2 <-2.5

Under present condition

> Take-home messages

✓ Frow low shaded reaches (<15%) to high shaded ones (>40%) riparian shading mitigate :

- Increasing <u>past trends</u> in summer Tw by 0.16 °C/decade
- the increase <u>future</u> summer Tw by at least 3.5°C

- ✓ Theoretical scenarios of large-scale riparian restoration showed:
 - No mitigation of increase in Tw for large rivers
 - 30% increase in riparian vegetation in upstream of a reach mitigate the increase in summer Tw by up to ~2°C

Perspectives

- Quantifying the downstream diffusion of the thermal gains associated with the restoration of the riparian vegetation depending on the context
- Characterizing better the potential for thermal gain depending on the river/tributary

13

https://doi.org/10.5194/essd-2022-451 Preprint. Discussion started: 12 January 2023 © Author(s) 2023. CC BY 4.0 License.

Past and future discharge and stream temperature at high spatial resolution in a large European basin (Loire basin, France)

Hanieh Seyedhashemi^{1,2}, Florentina Moatar¹, Jean-Philippe Vidal¹, and Dominique Thiéry³

Hydrol. Earth Syst. Sci., 26, 2583–2603, 2022 https://doi.org/10.5194/hess-26-2583-2022 © Author(s) 2022. This work is distributed under the Creative Commons Attribution 4.0 License.

Thank you!

Regional, multi-decadal analysis on the Loire River basin reveals that stream temperature increases faster than air temperature

Hanieh Seyedhashemi^{1,2}, Jean-Philippe Vidal¹, Jacob S. Diamond¹, Dominique Thiéry³, Céline Monteil⁴, Frédéric Hendrickx⁴, Anthony Maire⁴, and Florentina Moatar¹

Contents lists available at ScienceDirect

Science of the Total Environment

journal homepage: www.elsevier.com/locate/scitotenv

PLOS ONE

GOPEN ACCESS DEPER-REVIEWED

Direct habitat descriptors improve the understanding of the organization of fish and macroinvertebrate communities across a large catchment

Coline Picard a, Mathieu Floury, Hanieh Seyedhashemi, Maxime Morel, Hervé Pella, Nicolas Lamouroux, Laëtitia Buisson, Florentina Moatar, Anthony Maire

Improving representation of riparian vegetation shading in a regional stream temperature model using LiDAR data

Pierre Loicq^{a,*}, Florentina Moatar^a, Yann Jullian^b, Stephen J. Dugdale^c, David M. Hannah^c

> Agreement between obs and sim

Regional, multi-decadal analysis on the Loire River basin reveals that stream temperature increases faster than air temperature

Hanieh Seyedhashemi^{1,2}, Jean-Philippe Vidal¹, Jacob S. Diamond¹, Dominique Thiéry³, Céline Monteil⁴, Frédéric Hendrickx⁴, Anthony Maire⁴, and Florentina Moatar¹