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Abstract A continuum theory of pantographic lattices, based on second-grade elasticity, is presented. The
proposed model is able to describe the mechanical behavior of a type of material structure made up of multiple
layers of pantographic sheets connected with a third family of fibers. Thus, these materials are characterized
by an orthogonal pattern of fibers that can bend, stretch and twist. Numerical experiments illustrate the pre-
dictive potential of the model when the material is subjected to different types of mechanical loads, including
compression, torsion and two kinds of bending. Analyzing the material responses for these various tests makes
it possible to reveal unusual deformation patterns characteristic of such “pantographic blocks.” Numerical
simulations using the finite element method are intended to assist in designing an experimental program using
3D-printed specimens made of different materials.

Keywords Second-grade elasticity · Lattices · Pantographic blocks · Metamaterials

1 Introduction

The emergence of 3D printing and related technologies has opened up a vast range of new possibilities for
the design of architectured metamaterials having a variety of substructures. We are concerned in the present
work with a particular substructure consisting of internal beams forming parallel planes that pivot about an
orthogonal family of beams to form a three-dimensional pantographic block (Fig. 1).

Drawing inspiration from standard theories of isolated beams, we propose a three-dimensional continuum
theory of the block in which the beams are replaced by an initially orthogonal lattice. This may be interpreted
as a coarse-grained version of a model of discrete beams in which the latter are represented by material lines
forming the lattice of the continuum theory [1,2]. However, here we do not investigate the homogenization
of such a discrete model; rather, we propose the continuum model on its own merits. The elastic response
of the individual beams and their mutual mechanical interactions are represented in the present model by a
strain-energy function that depends on the first and second gradients of the deformation. These account for
lattice flexure and certain additional non-standard effects.

From a modeling viewpoint, pantographic structures are noteworthy because they are one of the possible
substructures characterizing a generalized continuum that can be described at a macroscopic level by a second-
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Fig. 1 Pantographic block consisting of orthogonal beams

gradient model [3,4]. Their mechanical performance is, on the other hand, beneficial for numerous applications
in various fields. To name a few benefits, these materials can exhibit an advantageous weight–strength ratio,
large deformations in the elastic range, toughness as well reliability, a “hierarchy of resistances” and their
response to damage is easily quantified [5–8].

The basic kinematical structure of the theory is described in Sect. 2. The strain-energy function and asso-
ciated response functions are discussed in Sect. 3, and the equilibrium theory is deduced in Sect. 4 on the
basis of a virtual-power postulate. The paper concludes, in Sect. 5, with a number of numerical simulations of
equilibrium deformations.

2 Fiber decompositions of the first and second deformation gradients

Consider a configuration in which the beams constituting the block are straight and mutually orthogonal, as in
Fig. 1. We take this to be the reference configuration, denoted κ , for the purposes of analysis. In the continuum
theory, these beams are regarded as material fibers oriented by the fixed, right-handed orthonormal triad {Li }.
This is used to write the three-dimensional referential identity as

I = Li ⊗ Li . (1)

Let X be the position of a material point in κ . Every such point is regarded as a point of intersection of three
fibers, one from each family. A deformation x = χ(X) of the continuum is presumed to be twice differentiable,
with first and second gradients

F = ∇χ and G = ∇F = ∇∇χ , (2)

respectively, where ∇ is the gradient with respect to X. In Cartesian index notation, we have X = XAEA,
x = xiei , F = Fi Aei ⊗ EA and G = Gi ABei ⊗ EA ⊗ EB, where {EA} and {ei } respectively are fixed
right-handed bases associated with the referential and spatial Cartesian coordinates and where xi = χi (XA),
Fi A = χi,A and Gi AB = Fi A,B = χi,AB , in which commas followed by subscripts are used to denote partial
derivatives with respect to the X ′s, and the Einstein summation convention is also used.Moreover, small letters
stand for indices in spatial representation, while capital letters are employed for the referential representation.

Using (1), we have the fiber decomposition of the deformation gradient:

F = FI = λ1l1 ⊗ L1 + λ2l2 ⊗ L2 + λ3l3 ⊗ L3, where λi li = FLi (no sum), λi = |FLi | (3)

are the fiber stretches, and li is the field of unit tangents to the i th fiber family after deformation. Accordingly,

det F = λ1λ2λ3l1 × l2 · l3. (4)

In terms of components, we have l j = l( j)i ei , L j = L( j)
A EA and

Fi A = λ1l
(1)
i L(1)

A + λ2l
(2)
i L(2)

A + λ3l
(3)
i L(3)

A . (5)
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We seek a similar decomposition of the second gradient G that automatically satisfies the compatibility
conditions Gi AB = GiBA, which follow from (2)2. To this end, we use (1) in the form

δAB = L(1)
A L(1)

B + L(2)
A L(2)

B + L(3)
A L(3)

B , (6)

where δAB is the Kronecker delta, together with

Gi AB = Gi(CD)δACδDB = GiCDδA(CδD)B = 1
2GiCD(δACδDB + δADδCB), (7)

where round braces are used to denote symmetrization, i.e., Gi(CD) = 1
2 (GiCD + GiDC ). We obtain

Gi AB = g(1)
i L(1)

A L(1)
B + g(2)

i L(2)
A L(2)

B + g(3)
i L(3)

A L(3)
B

+�
(1,2)
i [L(1)

A L(2)
B + L(2)

A L(1)
B ] + �

(1,3)
i [L(1)

A L(3)
B + L(3)

A L(1)
B ] + �

(2,3)
i [L(2)

A L(3)
B + L(3)

A L(2)
B ], (8)

where

g(1)
i = GiCDL

(1)
C L(1)

D and �
(1,2)
i = GiCDL

(1)
(C L(2)

D), etc., (9)

and thus arrive at the fiber decomposition

G = g1 ⊗ L1 ⊗ L1 + g2 ⊗ L2 ⊗ L2 + g3 ⊗ L3 ⊗ L3

+�12 ⊗ (L1 ⊗ L2 + L2 ⊗ L1)

+�13 ⊗ (L1 ⊗ L3 + L3 ⊗ L1) + �23 ⊗ (L2 ⊗ L3 + L3 ⊗ L2), (10)

where g1 = g(1)
i ei , �12 = �

(1,2)
i ei , etc.

We observe, from (2)2, (9) and the spatial uniformity of the lattice {Li }, that
g(1)
i = (FiC L

(1)
C ),DL

(1)
D and �

(1,2)
i = (FiC L

(1)
C ),DL

(2)
D = (FiC L

(2)
C ),DL

(1)
D , etc., (11)

or, in direct notation,

g1 = [∇(FL1)]L1 and �12 = [∇(FL1)]L2 = [∇(FL2)]L1. (12)

Then, from (3) we have the orthogonal decompositions

g1 = (L1 · ∇λ1)l1 + λ21c1n1 and

�12 = (L2 · ∇λ1)l1 + λ1(∇l1)L2 = (L1 · ∇λ2)l2 + λ2(∇l2)L1, (13)

where c1 is the principal curvature of a deformed l1-trajectory with principal unit normal n1. Thus, the gi
account for the tangential derivatives of the fiber stretches and for fiber bending, whereas the �i j account
for the cross derivatives of the fiber stretches and for fiber splay, that is, the rate of change of stretch and
orientation, respectively, of a given fiber as one moves along a member of an orthogonal family.

3 Strain-energy and response functions

We take for granted the existence of a strain-energy density W (F, G) such that the strain energy stored in the
block is

E =
∫

κ

Wdv. (14)

We suppose the material response to be uniform in the sense that W does not depend explicitly on X. Further,
we assume this function to be Galilean invariant and hence require that W (F, G) = W (QF, QG) for arbitrary
spatially uniform rotations Q, where QF is given by (3) but with li replaced by Qli and where QG is given by
(10) but with gi and �i j replaced by Qgi and Q�i j , respectively. In this work, we adopt the Galilean invariant
function

W (F, G) = W1(F) + W2(G), (15)
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with

W1(F) = 1
2 E1ε

2
11 + 1

2 E2ε
2
22 + 1

2 E3ε
2
33 + G12ε

2
12 + G13ε

2
13 + G23ε

2
23, (16)

in which εi j = Li ⊗ L j · ε, ε = 1
2 (F

tF − I) is the Lagrange strain, and Ei (> 0) and Gi j (≥ 0) are material
constants; and

W2(G) = 1
2 (A1

∣∣g1∣∣2 + A2
∣∣g2∣∣2 + A3

∣∣g 3

∣∣2) + 1
2 (B12 |�12|2 + B13 |�13|2 + B23 |�23|2), (17)

where Ai (> 0) and Bi j (> 0) are further material constants. These functions are such thatW and its derivatives
WF and WG vanish when the body is undeformed, i.e., when F = I and G = 0. Further, from (3) we have that
the extensional and shear strains in the fiber axes are

ε11 = 1
2 (λ

2
1 − 1) and ε12 = 1

2λ1λ2l1 · l2, etc. (18)

Evidently W2(G) ≥ 0 for all G, with equality if and only if gi and �i j all vanish, i.e., if and only if G
vanishes. Accordingly W (F, G) is a homogeneous, positive definite, quadratic—and hence convex—function
of G. Granted further technical conditions, this guarantees the existence of energy minimizers in conservative
boundary-value problems of the kind considered here. We refer to [9–11] for statements and proofs of the
relevant theorems. With reference to (13)1, these statements remain valid if terms of the type A1 |g1|2 are
replaced by As

1(L1 · ∇λ1)
2 + Ab

1(λ
2
1c1)

2, etc., where As
1(> 0) is a stretch-gradient modulus and Ab

1(> 0) is
a bending modulus. We make such substitutions in the boundary-value problems discussed in Sect. 5. Similar
statements apply to (13)2 and B12 |�12|2, etc. Moreover, W is a positive semi-definite—but not positive
definite—function of the strain. Thus, if G12 = 0, for example, then ε12 can be varied arbitrarily without
affecting the energy, at least locally. In this case, all values of l1 · l2 belonging to the interval [−1, 1] are
energetically equivalent. We refer to this as a floppy mode. Fiber collapse is a special floppy mode in which
l2 = ±l1, yielding det F = 0 (see (4)).

The choice of a quadratic form for W2 is appropriate if both the spacings of the actual fibers and their
cross-sectional dimensions are much smaller than the length scale associated with the spatial variation of the
deformation function χ . Taking l to the larger of these local material scales, we thus have that l |∇∇χ | � 1
throughout the block. The leading-order dimensionless energy is then a homogeneous quadratic function of lG.
Naturally, this argument does not apply to W1 because ε is dimensionless. Instead, the quadratic dependence
on ε is assumed here in anticipation of applications involving small strains and possibly large rotations. It is
noteworthy that the assumed form of W does not fulfill the hypotheses of available existence theorems if W2
is suppressed, whereas unqualified existence is restored by the inclusion of W2.

We observe in passing that the energy (15) exhibits orthotropic symmetry in the sense that it remains
invariant under the replacement F → FR, for

R ∈ {±L1 ⊗ L1 ± L2 ⊗ L2 ± L3 ⊗ L3}, (19)

(a subgroup of the orthogonal group) with any combination of signs. For example, ε12 = L1 · εL2 →
L1 · RtεRL2 = RL1 · εRL2 = ±L1 · εL2 = ±ε12, so that ε212 is invariant. Similarly, (12)2 yields that
�12 = [∇(FL1)]L2 → [∇(FRL1)]L2 = ±[∇(FL1)]L2 = ±�12, and therefore that �12 · �12 is invariant.
This is an example of homogeneous symmetry in the general theory of second-grade elasticity [12,13].

In view of (13) and (17), function (15) attributes elastic energy to various effects not accounted for in
conventional elasticity theory. These include the cross derivatives of the fiber stretches and fiber splay, the
latter featuring in theories of liquid crystals [14], and, as noted previously, also included are fiber bendings
and tangential fiber stretch gradients, as in theories of rods [15] and fibers [16]. The influence of the cross
derivatives of the stretches requires some explanation. Suppose, for example, that a fiber of the L1-family is
unstretched at a particular material point, i.e., λ1 = 1. A nonzero cross derivative L2 · ∇λ1 induces values
of λ1 greater than, and less than, unity in adjacent fibers of the same family. The function W represents the
average value of the associated energy over a small volume containing these fibers. Importantly, all of these
effects must be taken into account to ensure the convexity of the energy with respect to G. This situation also
arises in two-dimensional versions of the theory considered here, intended for applications to the mechanics
of thin sheets formed by two families of embedded fibers [17–20].

The basic response functions of the theory are the derivativesWF andWG. To derive the latter, we evaluate
the strain energy on a one-parameter family χ(X;μ) of deformations and invoke the chain rule in the form

(∂W/Gi AB)Ġi AB = WG · Ġ = (W2)G · Ġ = A1g1 · ġ1 + · · · + B12�12 · �̇12 + · · · , (20)
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where Ġ = ∇∇χ̇ , the superposed dot is used to denote the derivative with respect to μ, and

g1 · ġ1 = g(1)
i L(1)

A L(1)
B Ġi AB and �12 · �̇12 = �

(1,2)
i L(1)

(A L
(2)
B) Ġi AB, etc. (21)

Thus,

WG = A1g1 ⊗ L1 ⊗ L1 + A2g2 ⊗ L2 ⊗ L2 + A3g3 ⊗ L3 ⊗ L3

+ 1
2 B12�12 ⊗ (L1 ⊗ L2 + L2 ⊗ L1) + 1

2 B13�13 ⊗ (L1 ⊗ L3 + L3 ⊗ L1)

+ 1
2 B23�23 ⊗ (L2 ⊗ L3 + L3 ⊗ L2). (22)

We have incorporated the order-of-differentiation symmetry [21] ∂W/Gi AB = ∂W/GiBA, which follows
from (∂W/Gi AB)Ġi AB = (∂W/Gi AB)Ġi(AB) = (∂W/Gi(AB))Ġi AB .

A similar calculation using ε̇i j = Sym(Li ⊗ L j ) · ε̇ yields

WF = F(W̃1)ε, (23)

where W1(F) = W̃1(
1
2 (F

tF − I)) and

(W̃1)ε = E1ε11L1 ⊗ L1 + E2ε22L2 ⊗ L2 + E3ε33L3 ⊗ L3

+G12ε12(L1 ⊗ L2 + L2 ⊗ L1)

+G13ε13(L1 ⊗ L3 + L3 ⊗ L1) + G23ε23(L2 ⊗ L3 + L3 ⊗ L2). (24)

4 Equilibrium conditions

4.1 Principle of virtual power

For the sake of completeness and to elucidate the structure of the model, in this section we use a virtual-power
statement to derive the equilibrium equations and associated boundary conditions. However, our implementa-
tion of the model, using a routine available in the software package COMSOL, requires as input only the form
(15)–(17) of the strain-energy function.

Thus, equilibria are identified with configurations that satisfy

Ė = P, (25)

where E is the energy (14), the superposed dot is used to denote a variational derivative and P is the virtual
power of the external actions, the form of which is made explicit below. Here,

Ė =
∫

κ

Ẇdv, (26)

where, in index notation,

Ẇ = Pi Aui,A + (Mi ABui,A),B, (27)

where ui = χ̇i is the virtual velocity,

Mi AB = ∂W/∂Gi AB (28)

is given by (22), and

Pi A = ∂W/∂Fi A − Mi AB,B (29)

is the Piola stress in which ∂W/∂Fi A is given by (23) and (24).
Integration by parts yields

Ė =
∫

∂κ

(Pν · u + S · ∇u)da −
∫

κ

u · DivPdv, (30)
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where ν = νAEA is the exterior unit normal field on ∂κ , u = uiei , P = Pi Aei ⊗ EA, DivP = Pi A,Aei and

S = Si Aei ⊗ EA, where Si A = Mi ABνB . (31)

To reduce the term involving ∇u|∂κ , we invoke the normal-tangential decomposition of the gradient in
terms of the surface parametrization X(θβ) of ∂κ , where θβ (β = 1, 2) is a system of convected surface
coordinates. This induces the tangent basis Aα = X,α and dual tangent basis Aα , which we use to write

∇u = uν ⊗ ν + u,α ⊗ Aα, (32)

where uν = (∇u)ν is the normal derivative of u and u,α = ∂u(X(θβ))/∂θα = (∇u)Aα are tangential
derivatives. Thus,

S · ∇u = Sν · uν + Sα · u,α, where Sα = SAα. (33)

Here, ∂κ is the union of a finite number of smooth subsurfaces ωi that intersect at edges ei (Fig. 1). Applying
Stokes’ theorem to each of these, we obtain

∫
∂κ

Sα · u,α da =
∑ ∫

∂ωi

Sαξ(i)α · u ds −
∫

∂κ

Sα|α · u da, (34)

where ξ i = ξ(i)αAα is the unit normal to the curve ∂ωi , oriented such that {νi , ξ i , τ i } forms a right-handed
orthonormal triad, where τ i is the unit tangent to ∂ωi , s measures arclength in the direction of τ i , and where
Sα|α = (

√
A)−1(

√
ASα),α is the surface divergence, with A = det(Aα · Aβ). Here, it is understood that each

curve ∂ωi is viewed from the side of ωi into which its normal νi is directed.
Altogether, we then have

Ė =
∫

∂κ

[(Pν − Sα|α) · u + Sν · uν] da +
∑ ∫

∂ωi

Sξ i · u ds −
∫

κ

u · DivP dv. (35)

In a typical boundary-value problem, we fix χ and its normal derivative χν on parts ∂κ\∂κp and ∂κ\∂κs
of ∂κ , respectively, and also fix χ on certain edges fi of ∂κ . Accordingly, u vanishes on ∂κ\∂κp and fi , and
uν vanishes on ∂κ\∂κs . Because u and uν can be specified independently on ∂κ, the virtual-power statement
implies that

P =
∫

∂κp

p · u da +
∫

∂κs

s · uν da +
∑ ∫

ei
fi · u ds +

∫
κ

g · u dv, (36)

where

p = Pν − Sα|α (37)

is the Piola traction on ∂κp,

s = Sν (38)

is the double force density on ∂κs ,

g = −DivP (39)

is the body force density in κ , and fi is the edge force density on the i th edge ei , where {ei } ∪ { fi } is the set of
all edges of ∂κ. Concerning the latter, we observe that an edge e ∈ {ei } is the intersection of two subsurfaces
ω+ and ω−, say. Accordingly, in (36) e is traversed twice: once in the sense of τ+ and once in the sense of
τ− = −τ+. With (37)–(39) in force, (25) then furnishes the edge force density

f = [Sξ ] on e, (40)

where [·] is the difference of the limits of the enclosed quantity on e when approached from ω+ and ω−, i.e.,
[·] = (·)+ − (·)−.
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4.2 Rigid-body variations

If ∂κp and ∂κs coincide with ∂κ , and if { fi } is empty, then rigid-body variations

χ(X;μ) = Q(μ)x + d(μ) (41)

are admissible, where x = χ(X) is an equilibrium deformation field, Q(μ) is a one-parameter family of
rotations with Q(0) = I, and d(μ) is a family of vectors with d(0) = 0. Using superposed dots to denote
derivatives with respect to μ, evaluated at μ = 0, we compute the virtual velocity field u(X) = ω × x + ḋ,
where ω is the axial vector of Q̇.

Because Ẇ vanishes for such variations, the virtual-power statement (25) reduces to P = 0, which is
satisfied for all rigid-body variations if and only if

∫
∂κ

p da +
∫

κ

g dv +
∑ ∫

ei
fi ds = 0 (42)

and ∫
∂κ

(x × p + c) da +
∫

κ

x × g dv +
∑ ∫

ei
x × f i ds = 0, (43)

where

c = xν × s (44)

and

xν = (∇χ)ν (45)

is the normal derivative of the equilibrium deformation on ∂κ .
These are respectively the force and torque balances for the body, the latter implying that c is a density

of torques acting on the boundary. Because these conditions were derived using a special form of u, they are
necessary for equilibrium. Indeed, it may be shown that they follow from (37)–(39). However, they are not
sufficient for equilibrium because (38) involves the full double force vector on ∂κ , whereas (44) involves only
that part which is perpendicular to xν . There is no one-to-one relation between s and c, and it is accordingly
not appropriate to assign the torque density c in a boundary-value problem.

In the present work, we confine attention to problems in which position is assigned on a pair of opposing
faces of the block depicted in Fig. 1. These faces comprise ∂κ\∂κp. We assign zero traction on the remaining
part ∂κp of the boundary, zero double force on the entire boundary ∂κ(= ∂κs), zero body force in κ and zero
edge forces on the long edges ei of the block. Thus, the equilibrium statement reduces simply to

Ė = 0. (46)

5 Some examples of exotic equilibrium configurations for pantographic lattices

We discuss several examples in which the pantographic lattice is specified by

L1 =
√
2
2 (E1 + E2), L2 =

√
2
2 (−E1 + E2) and L3 = E3, (47)

where {EA} are aligned with the edges of the block (Fig. 1).
To set the material parameters for the numerical simulations, we observe that with reference to (16), the

coefficients Ei and Gi j can be interpreted respectively as stiffnesses related to the resistance to stretching and
shearing of the beams of the lattice. Accordingly, some formulae borrowed from the beam theory can be used
to give a first estimate of their values (see, for more details, [22–28]); of course, the hypotheses underlying their
deduction in Saint-Venant theory are not verified and therefore one must expect that correction coefficients
will be needed when trying to predict experimental evidence (more details are given in [29–32]). Herein, for
the sake of definiteness and tractability, we set the Ei coefficients to be equal, assuming that the fibers have
the same cross-sectional area and density per unit volume.
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Regarding the second-gradient moduli appearing in (17), we have separated out the effects of tangential
stretch gradient, geodesic curvature and the normal curvature of the lattice fibers and assigned different elastic
moduli to each contribution. In particular, the representation for the vectors gi may be specialized as

g1 = (L1 · ∇λ1)l1 + λ21 η1(n12 × l1) + λ21 κ1n12 with n12 = l1 × l2

g2 = (L2 · ∇λ2)l2 + λ22 η2(n12 × l2) + λ22 κ2n12 (48)

g3 = (L3 · ∇λ3)l3 + λ23 κ3n with l3 · n = 0

in which for the pantographic plane X1 − X2 the three contributions mentioned above appear as addends in
(48)1−2. The coefficients η1 and η2 are the geodesic curvatures of the deformed fibers, while κ1 and κ2 are their
normal curvatures. In this way, the current directions n12 × l1 and n12 (as well as n12 × l2 and n12 for the other
family of fibers) can be regarded as the principal directions of the cross section of the beams and, thus, the
corresponding moduli related to the bending of the beams around them can be used. We note that the principal
curvature c1 introduced in (13) is related to the curvatures in (48) by the relationship (c1)2 = (η1)

2 + (κ1)
2.

Specifically, we introduce, for the beams along L1 in the reference configuration, As
1, A

g
1 , A

n
1 for the moduli

relative to the tangential stretch gradient, geodesic curvature, and normal curvature, respectively. Similarly,
As
2, A

g
2 , A

n
2 for the beams in L2-direction. Regarding the L3-direction, we limit our attention to the case

when the beams interconnecting pantographic planes have circular cross sections. Therefore, one can avoid
distinguishing between two different bending directions, and we introduce only themoduli related to tangential
stretch gradient, As

3, and to bending Ab
3 associated with the curvature κ3.

The mechanical responses of the pantographic block are evaluated using the finite element software COM-
SOL Multiphysics, which allows for the straightforward implementation of the energy contributions (16) and
(17). The finite element discretization employs Hermite elements of the third order since the continuummodel
considered is a second-gradient elastic one. Indeed, it requires, at least, a set of interpolating functions suited
to span the Sobolev space H2. They preserve continuity across element boundaries as well as continuity
with respect to the first spatial derivative. Equivalently, the same equilibrium shapes might be obtained more
efficiently with an ad hoc code using isogeometric formulation [33–37], discrete Hencky models based on
the geometry of the microstructure of the fibers in the three considered directions, as done in [38–41], or as
recently proposed, based on swarm robotics [42,43].

To characterize the peculiar behavior of pantographic metamaterials, two twisting tests with different
material parameters are performed. The dimensions of the specimen are 26 × 56.8 × 210 mm. The boundary
conditions are assigned displacements on the bases parallel to the planes X2 − X3 (Fig. 1). Particularly, a rigid
rotation around the X1-axis is imposed on one base through the displacement

d = (RX1(ϑ) − I) X (49)

where RX1(ϑ) is the elemental rotation of an anti-clockwise angle ϑ , namely

d1 = 0

d2 = X2 [cos(ϑ) − 1] − X3 sin(ϑ)

d3 = X2 sin(ϑ) + X3 [cos(ϑ) − 1] (50)

The other base is completely fixed (d1 = d2 = d3 = 0).
The first-gradient moduli are set to be:

E1 = E2 = E3 = 600 MPa G13 = G23 = 214.3 MPa (51)

while the modulus G12 related to the shear stiffness in the pantographic plane X1 − X2 is specified in two
different instances.

The second-gradient moduli are set to be:

As
1 = As

2 = 1.9 N Ag
1 = Ag

2 = 38.09 N An
1 = An

2 = 9.52 N

As
3 = 0.020 Ab

3 = 0.39 N

B12 = 0.41 N B13 = B23 = 1.31 N (52)

In the first example, we set G12 = 10 MPa. The response for the twisting test is shown in Fig. 2. In L1-
direction, the fibers belonging to the pantographic plane are compressed beyond a certain threshold, and an
in-plane fiber undulation occurs in that direction.
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Fig. 2 Pantographic block under twisting test: G12 = 10 MPa, ϑ = 59 degrees. The displacement component d3, orthogonal to
the pantographic plane, is indicated by colors

By setting the shear modulus to a much smaller value, namely, G12 = 0.1 MPa, instead, we find a
dramatically different buckling mode with the necking behavior shown in Fig. 3.

Next, two compression tests are performed. In this kind of test, the dimensions of the specimen are
43.77× 40.2× 112 mm. A negative longitudinal displacement in X1-direction is imposed on one face parallel
to X2 − X3 plane and the other opposite face is held fixed.

The second-gradient moduli are set to be:

As
1 = As

2 = 3.67 N Ag
1 = Ag

2 = 73.43 N An
1 = An

2 = 26.43 N

As
3 = 0.030 Ab

3 = 0.59 N

B12 = 0.86 N B13 = B23 = 0.86 N (53)

All the other parameters are kept the same unless otherwise specified.
These simulations also exhibit strong sensitivity to G12. Relatively small values, for example, 10 Pa, result

in a deformed shape with only one bulging “wave” along the long lateral faces (see Fig. 4).
By increasing G12 up to 100 MPa, we obtain a two-wave bulging shape in the compression test (Fig. 5).

Clearly, here the ratio between the geodesic bending and shear moduli determines this different behavior
inducing either the spread of the deformation or the localization of it.

Finally, two three-point bending tests are performed in two orthogonal directions to illustrate the behavior
of the pantographic plane with different boundary conditions (see Figs. 6 and 7). In these tests, the dimensions
of the specimen are 56.8 × 40 × 121.8 mm.

The second-gradient moduli are set to be:

As
1 = As

2 = 1.94 N Ag
1 = Ag

2 = 38.09 N An
1 = An

2 = 9.52 N

As
3 = 0.019 Ab

3 = 0.39 N (54)

B12 = 2.04 N B13 = B23 = 1.31 N

All the other parameters are kept the same, while G12 = 0.1 MPa.
These last two tests are the only ones in which we do not impose displacements, but the effects of the

edges upon which the block rests in the tests are simulated with an elastic barrier of potential that prevents
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Fig. 3 Pantographic block under twisting test: G12 = 0.1 MPa, ϑ = 21 degrees. The displacement component d2 is indicated by
colors

Fig. 4 Pantographic block under compressionwithG12 = 10 Pa: a perspective view; b top view. Imposed displacement d1 = −20
mm. The colors indicate the displacement d2 in X2-direction

Fig. 5 Pantographic block under compression with G12 = 100 MPa: a perspective view; b top view. Imposed displacement
d1 = −20 mm. The colors indicate the displacement d2 in X2-direction
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Fig. 6 Three-point bending test: load application parallel to the pantographic plane. The colors are the displacement d2 in
X2-direction

Fig. 7 Three-point bending test: load application orthogonal to the pantographic plane: a perspective view; b top view. The colors
are the displacement d2 in X2-direction

the sample from overlapping with them. In these tests, the two supports beneath the sample are kept fixed,
while the central edge on the top can have a displacement along X2-direction or X3-direction. Specifically,
Figs. 6 and 7 show the deformation for a given displacement of the edge of d2 = −25 mm and d3 = −15
mm, respectively. When the direction of load application lies in the pantographic plane, as shown in Fig. 6, the
deformation due to the blade is absorbed almost entirely on the same side of the load. In contrast, the opposite
face remains quasi-plane, and the sample undergoes a significant elongation in the X1-direction. This kind of
response is remarkable in applications where a specific load must be shielded, hence, used to design specific
metamaterials [44,45]. By changing the direction for the application of the load, we observe a remarkable
macroscopic Poisson effect amplified by the pantographic substructure lying in the X1− X2 plane, as shown in
Fig. 7. In Fig. 7, the pantographic layers are characterized by an anticlastic deformationmode. Specifically, they
present an anticlastic curvature, i.e., a type of surface curvature where the surface bends in opposite directions
along two orthogonal axes. Thus, the surface has a saddle-like shape, with one axis curving up and the other
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curving down. This specific phenomenon of anticlastic curvature arises from Poisson effects observable at the
macroscopic level. The interaction between different pantographic layers is mainly characterized by a common
first-gradient energy contribution; therefore, a standard kind of deformation is observed.

The numerical simulations which we have shown are intended to aid in the design of an experimental
program using 3D-printed specimens both in polyamide and metal alloys. Indeed, experimental tests are
needed to corroborate the proposed model, and we intend to conduct them in our future research. However,
some measurements are already performed on this kind of material, which appear to confirm the predictive
potential of the present model (see [46,47]).
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