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Introduction and Motivation

Despite their known negative impacts on system stability, delays have surprising benefits when it comes to improving the control performance of a close-loop control system. By treating delays from the very beginning, this poster presents a straightforward controller design to make systems suffering from delays or approximated by simple time-delay models track/reject periodic signals. For a control system to track or reject a periodic signal expressible by a finite Fourier Series as in

v(t) = v 0 + M d i=-M d v i e jΩ i t ,
(1) its close-loop sensitivity S(s) needs to be stable and must have zeros on the imaginary axis at targeted frequencies:

S(0) = S(±jΩ i ) = 0 (2)

Existing Solution: Repetitive Control

The periodic control is ideally achieved by employing a time delay model of the signal in the control loop. However, the ideal concept is applicable to only biproper systems and, in general, the loworder filter F that is associated with the delay e -sT d to relax the conditions on stabilization prevents zeros from being at their ideal positions on the imaginary axis.

Alternative Solution: Internal Model Control (IMC)

In contrast to Repetitive Control, we propose an approach based on IMC arrangement, which employs a model of the process in the loop instead of the signal model. The advantage of IMC scheme is that in the nominal case i.e. when the plant and the model perfectly match, a stable IMC controller implies a stable close-loop. In addition to this feature, the close-loop reduces to a finite-dimensional system despite the occurrence of delays.

We consider a plant of the form

G(s) = y(s) u(s) = G i (s)e -sτ (3) 
where τ is the input delay to be compensated and G i (s) is a proper and invertible transfer function.

We assume that G(s) can be approximated by a first-order model,

G m (s) = K T s + 1 (4)
with an input delay e -sτ m .

We let the IMC controller composed of two components, D and C. The subsystem D contains the controller's delay component. As demonstrated below, it leads to two different design approaches depending on whether the delay is lumped or distributed. The subsystem C is the controller that improves the stabilization and performance of the closed-loop. It has the form

C(s) = 1 G m (s) F (s) (5) 
The low-pass filter F (s) with unity static gain is introduced to ensure the properness of the IMC controller when required. As a result, the sensitivity transfer function of the scheme in the nominal case becomes

S(s) = 1 -D(s)F (s)e -sτ m . ( 6 
)

Lump-Delay based Compensator Design [1]

This configuration is mainly suitable for signals with one harmonic component, i.e. v(t

) = v 0 + A d cos(Ω d t + ϕ d ).
The design is carried out entirely analytically.

The subsystem D corresponds to a tuneable lumped delay e -sθ . A filter F , in the form 

F (s) = αT f s + 1 T f s + 1 Ω2 s 2 + 2 ξ Ωs + Ω2 ( 
ϑ = 2lπ + arg F (jΩ d ) Ω d -τ, (8) 
Based on this approach, a configuration aiming at multi-harmonic signals do exist.

Distributed-Delay based Compensator Design [2]

This configuration is suitable for multi-harmonic signals.

The subsystem D corresponds to a distributed delay with length T D and form

D(s) = 1 s N k=0 a k e -skϑ (9) 
where ϑ = T D N and N + 1 is the number of coefficients a k to be tuned.In this case, filter F (s) is only there to ensure the properness of the controller. The distributed delay is shaped by optimizing the weighted sensitivity through gains a k subjected to a linear constraint that ensures (2):

min x ∥(1 -D(jω)F (jω)e -jωτ m )W (jω)∥ ∞ s.t. Ax = B A n x ≤ B n (10)
where the weighting function is

W (s) = 1 b u s + ω b s + b l ω b (11) and x = [a 0 , a 1 , ..., a N ] T , A =             1 cos(Ω 1 ϑ) • • • cos(Ω 1 N ϑ) . . . . . . • • • . . . 1 cos(Ω M d ϑ) • • • cos(Ω M d N ϑ) 0 sin(Ω 1 ϑ) • • • sin(Ω 1 N ϑ) . . . . . . • • • . . . 0 sin(Ω M d ϑ) • • • sin(Ω M d N ϑ) 1 1 • • • 1 0 ϑ • • • N ϑ             , B =             R 1 . . . R M d I 1 . . . I M d 0 -1            
.

By setting N + 1 > M d , the linear constraint attains infinitely many feasible solutions.

Experimentation

The proposed methods are experimentally validated on a serially connected two mass-springdamper system. The original 4th-order system with input delay is made approximable by a 1storder time delay model using an inner PD control loop. Later on, the IMC controller forms the outer control loop to make position x 1 unaffected by the periodic disturbance given through input u 2 . 
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