
HAL Id: hal-04175993
https://hal.science/hal-04175993

Submitted on 2 Aug 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Minimal Critical Sequences in Model-based Safety and
Security Analyses: Commonalities and Differences

Théo Serru, Nga Nguyen, Michel Batteux, Antoine Rauzy

To cite this version:
Théo Serru, Nga Nguyen, Michel Batteux, Antoine Rauzy. Minimal Critical Sequences in Model-based
Safety and Security Analyses: Commonalities and Differences. ACM Transactions on Cyber-Physical
Systems, 2023, 7 (3), pp.17. �10.1145/3593811�. �hal-04175993�

https://hal.science/hal-04175993
https://hal.archives-ouvertes.fr

Minimal Critical Sequences in Model-Based Safety and Security Analyses:
Commonalities and Differences

THÉO SERRU, ETIS laboratory - UMR8051, France and Airbus Protect, France

NGA NGUYEN, Léonard de Vinci Pôle Universitaire, Research Center, France

MICHEL BATTEUX, IRT SystemX, France

ANTOINE RAUZY, Norvegian University of Science and Technology, Norway

Discrete event systems are increasingly used as a modeling tool to assess safety and cybersecurity of complex systems. In both cases,

the analysis relies on the extraction of critical sequences. This approach proves to be very powerful. It suffers however from the

combinatorial explosion of the number of sequences to look at. To push the limits of what is feasible with reasonable computational

resources, extraction algorithms use cutoffs and minimality criteria.

In this article, we review the principles of extraction algorithms and we show that there are important differences between critical

sequences extracted in the context of safety analyses and those extracted in the context of cybersecurity analyses. Based on this

thorough comparison, we introduce a new cutoff criterion, so-called footprint, that aims at capturing the willfulness of an intruder

performing a cyberattack. We illustrate our presentation by means of three case studies, one focused on the analysis of failures and

two focused on the analysis of cyberattacks and their effects on safety. We show experimentally the interest of the footprint criterion.

CCS Concepts: • Security and privacy→ Formal security models.

Additional Key Words and Phrases: Safety, Cybersecurity, Critical Sequences, Model-Based Safety Analyses, Model-Based Security

Analyses

ACM Reference Format:

Théo Serru, Nga Nguyen, Michel Batteux, and Antoine Rauzy. 2022. Minimal Critical Sequences in Model-Based Safety and Security

Analyses: Commonalities and Differences. 1, 1 (April 2022), 20 pages. https://doi.org/XXXXXXX.XXXXXXX

1 INTRODUCTION

Industrial systems are increasingly embedding software and communication features. As a consequence, safety analyses

for these systems must consider not only the effects of mechanical failures, but also those of cyberattacks [44]. Discrete

event systems, such as stochastic Petri nets [28], Figaro [7] or AltaRica [2], provide a powerful framework to perform

behavioral simulations of systems, both from a safety and from a cybersecurity perspective. The cornerstone of analyses

relying on this framework is the generation of sequences of events leading to a critical state (so-called critical sequences).

These sequences make it possible to identify the weaknesses of the system under study and give hints on how to

improve its architecture to remedy these weaknesses. One of the main limitations of this approach stands however

Authors’ addresses: Théo Serru, theo.serru@ensea.fr, ETIS laboratory - UMR8051, Cergy, France, 95000 and Airbus Protect, Blagnac, France, 31700; Nga

Nguyen, nga.nguyen@devinci.fr, Léonard de Vinci Pôle Universitaire, Research Center, 92916 Paris La Défense, France; Michel Batteux, Michel.Batteux@irt-

systemx.fr, IRT SystemX, Palaiseau, France; Antoine Rauzy, antoine.rauzy@ntnu.no, Norvegian University of Science and Technology, Trondheim,

Norway.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not

made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components

of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to

redistribute to lists, requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2022 Association for Computing Machinery.

Manuscript submitted to ACM

Manuscript submitted to ACM 1

HTTPS://ORCID.ORG/0000-0002-0384-444X
HTTPS://ORCID.ORG/0000-0003-3273-8272
HTTPS://ORCID.ORG/0000-0001-5269-994X
HTTPS://ORCID.ORG/0000-0003-0926-5286
https://doi.org/XXXXXXX.XXXXXXX
https://orcid.org/0000-0002-0384-444X
https://orcid.org/0000-0003-3273-8272
https://orcid.org/0000-0003-3273-8272
https://orcid.org/0000-0001-5269-994X
https://orcid.org/0000-0003-0926-5286

2 Serru, Nguyen, Batteux, Rauzy

in the combinatorial explosion of the number of sequences to look at. To tackle this problem, minimality criteria and

cutoffs are applied to keep only the most relevant sequences and to reduce the exploration space. The relevant sequences

correspond to the ones highlighting the major weaknesses of the system (e.g. the shortest or likeliest sequences) and

the behavior of the stakeholders (e.g. behavior of the system when a failure occurs, behavior of the attacker, etc.).

Algorithms to extract sequences in discrete event systems share this technique with those used to extract cutsets in

fault trees [37]. In both cases, this is the only practical way to apply formal modeling and simulation approaches to

industrial-scale systems within feasible amounts of computational resources. This is indeed a heuristic approach that

relies on the assumption that the application of cutoffs does not discard important sequences. Consequently, a natural

and central question is whether appropriate minimality and cutoffs criteria are the same for safety and for cybersecurity

analyses.

In this article, we make a thorough review of commonalities and differences between critical sequences in both

domains. A key observation is that critical sequences representing cyberattacks tend to be longer than those representing

failures, which worsens the combinatorial explosion problem. However, conversely to safety critical sequences that

result, most of the time, of a combination of independent failures whose order does not matter [19, 21]—the sequence

𝑓3 → 𝑓1 → 𝑓2 produces the same effect as the sequence 𝑓1 → 𝑓2 → 𝑓3—cyberattacks are sequences of intentional actions,

performed in a well defined order to reach specific (sub-)objectives —e.g. the sequence 𝑎1 → 𝑎2 → 𝑎3 → 𝑏1 → 𝑏2 aims

at achieving two objectives 𝑎 and 𝑏, which both need series of actions to be performed in order, namely 𝑎1 → 𝑎2 → 𝑎3

on the one hand, 𝑏1 → 𝑏2 on the other hand. When extracting automatically critical sequences representing the latter,

it is possible to take advantage of this property. We introduce here the notion of footprint that aims at capturing the

willfulness of cyberattacks. We show this notion can be used as a powerful cutoff to get rid of sequences obtained by

shuffling actions performed to achieve sub-objectives. e.g. 𝑎1 → 𝑏1 → 𝑎2 → 𝑏2 → 𝑎3.

The above ideas have been implemented in tools extracting critical sequences provided by two integrated modeling

environments supporting the AltaRica language (SimfiaNeo [27] and AltaRica Wizard [3]).

To illustrate our discussion, we present in this article three case studies implemented in these environments. The

first of these case studies is a “pure” safety analysis. The two others deal with cyberattacks and their effects on safety.

The contribution of this article is thus threefold. First, it reviews the use of discrete event systems to assess the safety

related consequences of cyberattacks. Second, it introduces the notion of footprint as a new cutoff criterion to limit the

combinatorial explosion of the number of critical sequences to look at. Third, it illustrates the discussion by means of

case studies stemmed from industrial practice and shows the interest of footprints to assess these case studies.

The remainder of the article is organized as follows. Section 2 presents the context of this work and puts it in

perspective with related works. Section 3 recalls definitions of discrete event systems, executions and sequences.

Section 4 introduces formally minimality and cutoff criteria and discusses the application of the latter to both failure

and cyberattack sequences. A definition of the footprint criterion is notably given in this section. Section 5 presents

an algorithm dedicated to the extraction of minimal sequences with cutoffs, and demonstrates the benefits of using

footprint. Section 6 illustrates the proposed approach by means of three case studies. Finally, section 7 concludes the

article.

Manuscript submitted to ACM

Minimal Critical Sequences in Model-Based Safety and Security Analyses: Commonalities and Differences 3

2 CONTEXT OF THIS WORK

2.1 Model-Based Risk Assessment in Industry

The industry must ensure that its products are sufficiently protected against failures, cyberattacks and any other threats

potentially harming the system, its users or the environment. Consequently, safety and security risk assessments must be

performed prior operating the products. To ease the maintainability and to be less prone to human errors, model-based

analyses replace progressively document-centric ones [6]. Model-based safety or security analyses consist essentially

of four steps. First, failures or threats that can affect the components of the system are identified. Second, a model is

designed that reflects the architecture of the system and how failures and threats propagate. Third, critical scenarios

of failures or cyberattacks are extracted from the model and safety and cybersecurity related performance indicators

are calculated. Fourth, results of these calculations are analyzed to decide whether the system under study meets its

safety or security requirements. Thanks to the extracted scenarios, analysts can identify architecture’s weaknesses

and implement safety/security countermeasures (e.g. redundancy, backup components, firewall, intrusion detection

systems (IDS), etc.). The process is iterated until the system meets requirements. Compliance with requirements does

not mean that all critical scenarios must be eliminated. Rather, one must ensure that the most probable scenarios have

been evaluated and that the remaining ones have a sufficiently low impact or are very unlikely to occur. The main

limitation of this approach stands in the combinatorial explosion of the number of scenarios to look at.

2.2 Related Works

Several engineering disciplines are using formal modeling and simulation and face the combinatorial explosion problem.

We shall now review some of these works, which are directly related to the approach we propose in this article.

2.2.1 Fault Trees. Fault Trees are by far the most popular tool to assess the safety of industrial systems, see e.g. [40].

Their use is recommended by most of the safety standards, e.g. IEC 61508 (Functional Safety of Electrical/ Electronic/

Programmable Electronic Safety-related Systems), IEC 62279 (railway applications), IEC 61513 (nuclear industry),

ISO26262 (automotive industry), ARP4761 and ARP4754 (avionic industry), etc.

From a mathematical standpoint, a fault tree is a set of (stochastic) Boolean equations [37]. The basic events of a

fault tree represent individual failures of components of the system, while its top event encodes the combinations of

these failures that induce a failure of the system as a whole. Such a combination is called a cutset. A cutset is minimal if

none of its proper subsets is a cutset. Basic events are assumed to be statistically independent. Consequently, the order

in which they occur does not matter.

The extraction of minimal cutsets plays a central role in fault tree analyses. Minimal cutsets are actually used

both for qualitative purposes—as they represent scenarios of failure–and for quantitative purposes—as they can be

used to calculate probabilistic risk indicators (probability of failure, importance measures, safety integrity levels. . .).

Reference [37] describes state-of-the-art algorithms to extract minimal cutsets and to calculate these indicators.

In practice, industrial size fault trees may have a huge number of minimal cutsets (over several millions) and indeed

an even larger number of non-minimal ones. Attempting to extract all of these minimal cutsets would be pointless for

at least three reasons: first, they would not fit in the computer memory, even if advanced encoding techniques such as

Minato’s ZBBD [33] are used. Second, the analyst would not be able to review them individually. Third, it is, in general,

the case that a tiny proportion of them (say a few thousands) concentrates the probability of failure of the system. To

put it in another way, most of the failure scenarios can be safely ignored, as their probability is negligible. Consequently,

state-of-the-art algorithms do not aim at extracting all the minimal cutsets, but rather look for the most probable ones.

Manuscript submitted to ACM

4 Serru, Nguyen, Batteux, Rauzy

To do so, they apply probabilistic cutoffs during the exploration in order to filter on the fly all cutsets whose probability

is lower than a certain threshold (defined by the analyst).

As the present article focuses on safety and cybersecurity, it is worth mentioning attack trees. This method has been

proposed in the 1990s to represent cyberattacks graphically [45]. Attack trees are strongly inspired from fault trees.

Qualitative analyses are very similar in both cases. The calculation of probabilistic indicators is however slightly different

[10]. To the best of our knowledge, attack trees are by no means used as extensively in the context of cybersecurity

analyses as fault trees are in the context of safety analyses, probably in reason of the insufficient expressiveness of the

formalism for the former context.

The mathematical and algorithmic developments on fault trees and minimal cutsets have nevertheless been a key

source of inspiration for our work.

Note that the success of the modeling language AltaRica is partly due to the development of algorithms that compile

AltaRica models into fault trees, see e.g. [35]. Note also that there have been some attempts to order basic events of

minimal cutsets a posteriori [8] so to take into account dependencies.

2.2.2 Model-Checking. Model-checking techniques, see e.g. [1, 12] for reference monographs, rely on the representation

of the behavior of the system under study by means of a state automaton (as we do in the present work). Properties

of the system, such as the existence of a critical sequence, are then translated into properties of executions of the

automaton, themselves expressed in (some) temporal logic.

These techniques face indeed the combinatorial explosion of the number of states and executions of the automaton

representing the behavior of the system [11]. To tackle this problem, several powerful techniques have been developed,

such as symbolic model-checking [31], bounded model-checking [5] and on-the-fly model-checking [20]. Without

entering into too technical details here, these techniques are well suited to test the existence of a critical sequence,

possibly to extract such a sequence (if any), but not to extract all of the critical sequences verifying a certain criterion

(minimality, cost, probability. . .). This makes them quite difficult to use in the context of the present article.

On the fly model-checking can be combined with partial order reduction [16] which aims at reducing the search

space when the execution order of events does not change the validity of the property to be checked. The notion of

footprint introduced in this article relies actually on a similar idea although it implements it differently. It is worth

noting that partial order reduction is based on the work of Mazurkiewicz [29] on trace theory. The idea is to quotient

the set of executions of the automaton by means of some independence relation on its transitions. It suffices then

to consider only one representative for each equivalence class of executions. In a way, we apply a similar idea by

considering only minimal sequences, although the implementation is again very different.

To complete our tour of model-checking techniques, we must mention here probabilistic model-checking [25] that

aims at introducing probabilities of transitions. The model-checker PRISM [14] implements this approach. Again, the

key difference with our own approach is that we want to generate all the critical sequences verifying a certain criterion,

and not to check for the existence of such sequence (or to extract one of them).

Note to conclude this section that some authors proposed to use model-checking in the context of safety or security

assessment, see e.g. [24, 26, 32], with however the same limitations as discussed above.

2.2.3 Extraction of Critical Sequences. The extraction of critical sequences from discrete event systems has been already

explored by a few researchers.

The most noticeable work on this topic is probably the development of the tool FigSeq (Figaro Sequence Generator) [7]

that extracts critical sequences from Figaro models. The latter describe implicitly large Markov chains. The objective

Manuscript submitted to ACM

Minimal Critical Sequences in Model-Based Safety and Security Analyses: Commonalities and Differences 5

of the extraction of critical sequences is actually to avoid generating the underlying Markov chains when assessing

probabilities of failure. Cutoffs on length and probabilities of sequences are used to reduce the combinatorial explosion

of the number of sequences to look at. The work by Brameret & al. [9] showed, in the context of AltaRica models, that

the same result can be achieved (with a greater efficiency) by generating partial Markov chains.

The Figaro environment has been experimentally used to combine safety and cybersecurity assessments of control

systems [22], without modifying the existing tools (see also [23]). To the best of authors’ knowledge, this work has not

been pursued, probably because of the combinatorial explosion issues and because probabilistic cutoffs can hardly be

applied in the security context.

Note to conclude this section that integrated modeling environments supporting the AltaRica language, such as

SimfiaNeo and AltaRica Wizard, provide tools to extract minimal sequences. These tools have been used so far to

support safety analyses, but no article has been published so far on their implementation.

3 DISCRETE EVENT SYSTEMS

Although the ideas developed in the present article have been implemented in integrated modeling environments

supporting the AltaRica language [2], they apply in the more general framework of discrete event systems. This is the

reason we present them in this framework.

3.1 Definitions

Discrete Event Systems (DES) are formally defined as follows.

Definition 3.1 (Discrete Event Systems). A discrete event system is a five-tuple ⟨𝑉 , 𝐸,𝑇 , 𝑠0,𝐶𝑆⟩, where:

• 𝑉 is a finite set of variables. Each variable 𝑣 of 𝑉 takes its value in a finite or infinite set of constants, called the

domain of 𝑣 and denoted 𝑑𝑜𝑚(𝑣). Each variable of 𝑉 describes typically the state of a component of the system.

The (global) state of the system is thus described by valuations of variables of 𝑉 (which are members of the

Cartesian product of their respective domains).

• 𝐸 is a finite set of events;

• 𝑇 is a finite set of transitions, i.e. of triples ⟨𝑒, 𝑔, 𝑖⟩, where:
– 𝑒 is an event from 𝐸;

– 𝑔 is a Boolean condition on variables of 𝑉 , called the guard of the transition;

– 𝑖 is an instruction, i.e. a mechanism that modifies the current values of variables.

A transition ⟨𝑒, 𝑔, 𝑖⟩ is enabled in the state 𝑠 , if the valuation 𝑠 satisfies the guard 𝑔, i.e. if 𝑔(𝑠) = 𝑡𝑟𝑢𝑒 . Firing the

(enabled) transition ⟨𝑒, 𝑔, 𝑖⟩ in the state 𝑠 makes the system pass from the state 𝑠 to the state 𝑠 ′ = 𝑖 (𝑠), which is

denoted 𝑠
𝑒−→ 𝑠 ′.

• 𝑠0 is the initial state of the system;

• 𝐶𝑆 is a Boolean condition on the values of the variables of 𝑉 representing the critical states.

In practice, we shall consider that variables take their values into a finite set of symbolic constants, which are used

to represent:

• The state of a component, e.g. working, failed;

• The presence of flow between two components;

• The access privilege of the attacker on a component, e.g. none, user or root;

Manuscript submitted to ACM

6 Serru, Nguyen, Batteux, Rauzy

• The capacity of the attacker to harm the confidentiality, integrity and availability of an asset (a component or a

function critical from a functional or cybersecurity point of view);

• More generally, any information of interest regarding the functioning of the system, a failure or an ongoing

cyberattack.

Events are used to represent failures, attacks, and reconfiguration actions. The latter can for instance put the system

in a fail-safe mode, isolate a component, or turn on a security measure.

Transitions change the state of the system. Sequences of transitions can thus lead the system from its initial state to

a state that is critical with respect to safety or cybersecurity.

The above definition assumes that transitions are deterministic in the following sense.

Definition 3.2 (Determinism). A transition t = ⟨𝑒, 𝑔, 𝑖⟩ is deterministic if, starting from the state 𝑠 , the transition 𝑡

labeled with 𝑒 will always end in the same state. In other words:

∀𝑒, 𝑠, 𝑠𝑘 , 𝑠 𝑗 : (𝑠
𝑒−→ 𝑠𝑘) 𝑎𝑛𝑑 (𝑠

𝑒−→ 𝑠 𝑗) ⇒ (𝑠𝑘 = 𝑠 𝑗)

Note the above definition of discrete event system is actually close to the notion of guarded transition systems [36]

which is the underlying mathematical framework of AltaRica.

3.2 Semantics

Definition 3.3 (Executions). Let𝑀 = ⟨𝑉 , 𝐸,𝑇 , 𝑠0,𝐶𝑆⟩ be a discrete event system. Then the set of executions on𝑀 is the

smallest set such that:

• 𝑠0 is an execution (in which no event is triggered);

• if 𝜎 : 𝑠0
𝑒1−−→ 𝑠1 · · ·

𝑒𝑛−−→ 𝑠𝑛 is an execution, 𝑛 ≥ 0, and ⟨𝑒, 𝑔, 𝑖⟩ is a transition that is enabled in the state 𝑠𝑛 then

𝜎
𝑒−→ 𝑖 (𝑠𝑛) is an execution.

The state 𝑠 is reachable from the initial state 𝑠0 if there exists an execution 𝑠0
𝑒1−−→ 𝑠1 · · ·

𝑒𝑛−−→ 𝑠 , 𝑛 ≥ 0.

An execution 𝑠0
𝑒1−−→ 𝑠1 · · ·

𝑒𝑛−−→ 𝑠𝑛 , 𝑛 ≥ 0, is critical if:

• 𝑠𝑛 satisfies 𝐶𝑆 ;

• None of the 𝑠𝑖 ’s, 0 ≤ 𝑖 < 𝑛 satisfies 𝐶𝑆 .

Then we define the sequence associated with an execution as the word made of the events labeling an execution.

Definition 3.4 (Sequences). Let 𝑀 = ⟨𝑉 , 𝐸,𝑇 , 𝑠0,𝐶𝑆⟩ be a discrete event system and let 𝜎 : 𝑠0
𝑒1−−→ 𝑠1 · · ·

𝑒𝑛−−→ 𝑠𝑛 be an

execution of𝑀 . The sequence associated with 𝜎 is the word 𝑒1 · · · 𝑒𝑛 .

As we assumed that transitions of discrete event systems are deterministic, the sequence associated with an execution

characterizes fully this execution. In particular, we can speak about critical sequences.

Note that the reverse is not true: not all of the sequences correspond to executions.

A sequence 𝑒1 · · · 𝑒𝑛 , 𝑛 ≥ 0, is valid if there exists an execution 𝑠0
𝑒1−−→ 𝑠1 · · ·

𝑒𝑛−−→ 𝑠𝑛 . It is invalid otherwise.

4 FILTERING CRITICAL SEQUENCES

4.1 Rational

As stated above, discrete event simulation faces the combinatorial explosion of the number of critical sequences. This

combinatorial explosion may have several sources that we shall illustrate by means of a series of stylized examples.

Manuscript submitted to ACM

Minimal Critical Sequences in Model-Based Safety and Security Analyses: Commonalities and Differences 7

First, the number of (reachable) states of the system may grow quickly with the number of variables. As an illustration

consider the following example.

Example 4.1. Consider a system with 𝑛 components that may be working or failed. Assume that the components

fail independently one another and that the system is failed if all these components are failed. Then, the number of

reachable states is 2
𝑛
.

Second, even if the number of reachable states remains tractable, there may be a huge number of critical sequences.

As an illustration, consider the following example.

Example 4.2. Consider a system with two components 𝐶 and 𝐷 with respectively𝑚 and 𝑛 degradation levels. The

degradation 𝑐𝑖 (resp. 𝑑𝑖) makes the component 𝐶 (resp. 𝐷) pass from the degradation level 𝑖 − 1 to the degradation level

𝑖 . Initially, a component is at degradation level 0. It is failed when it reaches its maximum degradation level (𝑚 for 𝐶 , 𝑛

for 𝐷). The system is failed when its two components are failed. The number of reachable states of the system is thus

simply (𝑚 + 1) × (𝑛 + 1). Now a critical sequence consists of the𝑚 degradations of 𝐶 and the 𝑛 degradations of 𝐷 , in

any order. It is easy to verify that there are

(𝑚+𝑛
𝑚

)
=
(𝑚+𝑛

𝑛

)
such sequences and that this number grows very fast with𝑚

and 𝑛.

In absence of further information on the system, there is not much one can do against these two sources of

combinatorial explosion. Note however that, due to their highly symmetric structures, the above examples could be

dealt with by representing them by means of fault trees.

In practice, there are however many cases where it is possible to do something against the combinatorial explosion.

As a first illustration, consider the following example.

Example 4.3. Consider again the system of example 4.2, but assume now that the system is failed if one of its

components is failed. There are still a huge number of critical sequences: basically, any sequence with𝑚 degradations

of 𝐶 and less than 𝑛 degradations of 𝐷 or with 𝑛 degradations of 𝐷 and less than𝑚 degradations of 𝐶 is a critical

sequence. The number of such sequences grows again very quickly with𝑚 and 𝑛. However, it is clear that only two

critical sequences are of real interest: the sequence consisting of the𝑚 successive degradations of 𝐶 , and the sequence

consisting of 𝑛 successive degradations of 𝐷 .

It may not be possible to avoid fully to look at the other critical sequences, but the extraction algorithm should

present only these two sequences to the analyst. In [38], the author calls this phenomenon symmetric shuffle.

There are also cases in which not all of the critical sequences are relevant. As a second illustration, consider the

following example.

Example 4.4. A system consisting of 𝑛 independent components that may fail independently. Assume that the system

is failed if 2 out of these 𝑛 components are failed. The number of critical sequences is thus 𝑛 × (𝑛 − 1). Now assume

that the 𝑛 components are separated into two groups containing respectively 2 and 𝑛 − 2 components and that the

probability of failure of components of the first group is 10
−2

while the probability of failure of components of the

second group is 10
−6
. Among the 𝑛 × (𝑛 − 1) critical sequences, there are thus:

• 2 sequences of probability 10
−4
;

• 4(𝑛 − 2) ≈ 4𝑛 sequences of probability 10
−8
;

• (𝑛 − 2) (𝑛 − 3) ≈ 𝑛2 sequences of probability 10
−12

;

Manuscript submitted to ACM

8 Serru, Nguyen, Batteux, Rauzy

It is clear that for not too big values of 𝑛 (𝑛 ≪ 10
4
), the sequences of the first group concentrate the probability of

failure of the system. For practical purposes, the others can thus be safely ignored.

The above stylized examples illustrate the ideas behind minimality and cutoffs: they are essentially means to filter

critical sequences so to keep only the relevant ones, thereby reducing the exploration space. We shall now define

formally these notions.

4.2 Minimality

The notion of minimal sequence has been defined by several authors [34, 38, 43] with the objective of avoiding the

“symmetric shuffle” issue. To define what is a minimal sequence, we must introduce first the notion of subsequence.

Definition 4.5 (Subsequences). A sequence 𝜎 is a subsequence in another sequence 𝜎 ′, which is denoted 𝜎 ⊆ 𝜎 ′, if all

the events of 𝜎 occur in 𝜎 ′ in order.

As an illustration, consider again Example 4.3 for𝑚 = 3 and 𝑛 = 2. The sequence 𝑐1𝑐2𝑐3 is a subsequence of, for

instance, the sequences 𝑐1𝑑1𝑐2𝑐3 and 𝑑1𝑐1𝑐2𝑑2𝑐3. Note that all these sequences are valid. It may be the case that a

subsequence of a sequence is not a valid sequence. For instance, the sequence 𝑐1𝑐3 is an invalid subsequence of the

sequence 𝑐1𝑐2𝑐3.

Minimal critical sequences are defined as follows.

Definition 4.6 (Minimal critical sequences). A critical sequence is minimal if none if its proper subsequences is a

critical sequence.

Still in Example 4.3, the only two minimal critical sequences are 𝑐1 · · · 𝑐𝑚 and 𝑑1 · · ·𝑑𝑛 .

4.3 Cutoffs for Safety Analyses

In safety analyses, critical sequences are successions of events (failures, repairs, reconfigurations, . . .) leading the system

to a failed state. Most of the time, failures are assumed to be statistically independent one another [19, 21]. If only such

failures are taken into account, the order of events does not matter and one can stay in the realm of Boolean algebra

(fault trees, minimal cutsets). If failures are dependent (e.g. common cause or cascading failures [19]) or if repairs and

reconfigurations need to be considered, the order of events matters and minimal critical sequences must be extracted

rather than minimal cutsets. Taking into account the order of events increase significantly the expressive power of the

modeling formalism. It comes however with a significant price, as a much larger state-space needs to be explored, as a

cutset of order 𝑘 gives potentially rise to 𝑘! sequences. For this reason, the application of cutoffs to limit the extraction

to relevant sequences—i.e. those that involve only few failures and/or whose probability is above a certain threshold—is

even more necessary than in the case of minimal cutsets.

The idea is to associate a cost to each event, to set the cost of a sequence as the aggregation of the costs of its events

and to put a threshold on the cost of sequences the algorithm looks at. A notion of cost should thus to be taken in a

very broad sense. The condition that a cost 𝐶𝑜𝑠𝑡 must verify is that:

• It associates events with values taken in a domain 𝐷 equipped with an order relation ⊑ and an aggregation

function ⊕;
Manuscript submitted to ACM

Minimal Critical Sequences in Model-Based Safety and Security Analyses: Commonalities and Differences 9

• It is monotonically increasing, i.e. for all valid sequences𝑤𝑒 , where𝑤 is a, possibly empty, sequence and 𝑒 is an

event, the following condition holds:

𝐶𝑜𝑠𝑡 (𝑤) ⊑ 𝐶𝑜𝑠𝑡 (𝑤𝑒) = 𝐶𝑜𝑠𝑡 (𝑤) ⊕ 𝐶𝑜𝑠𝑡 (𝑒) (1)

There are two immediate ways to implement costs.

The first one consists in associating defining costs over the domain

(
R+, ≤, +

)
, i.e. to associate a positive “weight”

to each event and to set the weight of a sequence as the sum of the weight of its events. If the weight is set to 1 for

all events, the weight of a sequence is simply its length. Alternatively, we may want to associate different weights to

events, depending on their categories, e.g. associate 1 to failures, and 0 to other events.

The second one consists in defining costs over the domain ([0, 1], ≥,×), i.e. to associate a probability to each event

and to define the probability of a sequence as the product of the probabilities of its events.

Note that it is also possible to combine two or more costs defined as above in order, for instance, to put a threshold

on both the number of failures involved in the sequence and a threshold on its probability.

In the context of safety analyses, combining cutoffs of lengths and probabilities of critical sequences is sufficient in

the vast majority of cases. The probability of individual events is actually low in general. Consequently, the probability

of a sequence decreases quickly with its size, as illustrated by Example 4.4. In practice, sequences involving more that 5

or 6 failures have usually an extremely low probability and can therefore be safely ignored. This makes it also possible

to deal to a large extent with situations such as the one of Example 4.3: sequences that interleave events 𝑐𝑖 ’s and 𝑑 𝑗 ’s

will be quickly discarded because their length is too large or their probability is too low.

Note to conclude this section that, as pointed out by Collet & al. [13], one can often obtain a good approximation of

the probability 𝑄 of failure of the system by applying the so-called rare event approximation:

𝑄 ≈
∑︁

𝑤∈Γ; 𝑝 (𝑤) ≥𝜏
𝑝 (𝑤) (2)

where Γ denotes the set of minimal critical sequences and 𝜏 is a conveniently chosen cutoff on the probability of the

critical sequences.

4.4 Cutoffs for Cybersecurity Analyses

At a first glance, sequences describing cyberattacks are quite similar to those describing failure scenarios: they are succes-

sions of actions from the intruder possibly interleaved with actions representing counter-measures and reconfiguration

of the system. There are, however, significant differences between the two types of sequences.

First, the former tend to be much longer than the latter, hence increasing the combinatorial explosion issue.

Second, it turns very hard in practice to associate a sound probability (of success) of an action of the intruder.

Discussions about the use of probabilities in cybersecurity can be found here [4, 30]. Consequently, thresholds on

lengths and probabilities make much less sense, while a solution based on only formal and sound .

Third and more importantly, actions of the intruder are deliberate. They do not occur at random like mechanical

failures. Right on the contrary, they are performed intentionally to reach a certain objective, or sub-objective, in a

precise order. We are typically in the situation of Example 4.2 where the attack consists in two independent sub-goals

that need to be achieved to make the attack successful.

The above remarks led us to introduce a new type of cutoff, hereafter called footprint.

Manuscript submitted to ACM

10 Serru, Nguyen, Batteux, Rauzy

Let𝑀 : ⟨𝑉 , 𝐸,𝑇 , 𝑠0,𝐶𝑆⟩ be a DES and let𝑤𝑒 be a valid sequence of𝑀 where𝑤 is a sequence of𝑀 and 𝑒 is event of 𝐸.

After the firing of the last transition (the one labeled with 𝑒), we can distinguish four disjoint subsets of 𝑇 :

• 𝑇00: the transitions not enabled before the firing of 𝑒 and still not enabled after;

• 𝑇01: the transitions not enabled before the firing of 𝑒 but enabled after;

• 𝑇10: the transitions enabled before the firing of 𝑒 but not enabled after; and finally,

• 𝑇11: the transitions enabled before the firing of 𝑒 and still enabled after.

By definition, we have 𝑇 = 𝑇00 ∪𝑇01 ∪𝑇10 ∪𝑇11.
In a critical sequence extraction process, we are not interested in transitions belonging to 𝑇00 and 𝑇10 as they are not

enabled after the firing of 𝑒 .

The transitions of 𝑇01 are the transitions that are made possible by the firing of 𝑒 , that are the direct consequence of

𝑒 . In a way, they represent actions that are connected to the action 𝑒 , that aim at achieving the same (sub-)goal.

On the contrary, the transitions of 𝑇11 represent actions that are not related to 𝑒 . In a way, they represent actions

that are not connected to the action 𝑒 , that aim at achieving another (sub-)goal.

Consequently, we want to prioritize, during critical sequence extraction process, the transitions of 𝑇01 over those of

𝑇11. Hence, the idea of associating with each event a footprint 𝐹 defined as follows:

𝐹 (𝑒) =


0 if (transition labeled with e) ∈ 𝑇01
1 if (transition labeled with e) ∈ 𝑇11

(3)

The footprint of the sequence is then defined as the sum of the footprints of its events. This cutoff is thus defined on

the domain (N, ≤, +). For the sake of completeness, we define in the initial state 𝑠0, 𝑇00 and 𝑇01 as the empty set, 𝑇10 as

the set of transitions not enabled in 𝑠0, and finally 𝑇11 as the set of transitions enabled in 𝑠0.

In Example 4.2, the footprint of sequences 𝑐1 · · · 𝑐𝑚𝑑1 · · ·𝑑𝑛 and 𝑑1 · · ·𝑑𝑛𝑐1 · · · 𝑐𝑚 is 2. All other sequences, that

interleave 𝑐𝑖 ’s and 𝑑 𝑗 ’s have a footprint larger than 2. By setting the threshold to 2, we can thus filter minimal critical

sequences so to keep only the relevant ones.

Setting the “right” threshold for the footprint results indeed of a heuristic reasoning. If the analyst sets it too low, e.g.

1 in Example 4.2, some important critical sequences will be missed. On the contrary, if the footprint is set to a too high

value, the cutoff will have no effect. The point is that it is always possible to take an iterative approach: first, extract

critical sequences with a maximum footprint of 1, then those with a maximum footprint of 2, and so on.

As for the other cutoffs, the objective is to spend as efficiently as possible the “computation budget” we have, by

prioritizing the analysis on the attack sequences that are the most likely to happen. By fixing these attacks, e.g. by

introducing safeguards, we can improve the robustness of the system. At the end of this process, the attacks that will

remain are either too improbable or too difficult to perform.

5 IMPLEMENTATION

We can now describe how the ideas developed in the previous section can be implemented in a concrete algorithm to

extract critical sequences.

5.1 Algorithm

Algorithm 1 extracts minimal critical sequences whose cost is lower than a given cutoff 𝑐 .

Manuscript submitted to ACM

Minimal Critical Sequences in Model-Based Safety and Security Analyses: Commonalities and Differences 11

Algorithm 1 Algorithm to Extract Minimal Critical Sequences

Input: A discrete event system ⟨𝑉 , 𝐸,𝑇 , 𝑠0,𝐶𝑆⟩
Input: A cost 𝐶𝑜𝑠𝑡 and a cutoff 𝑐 defined on a domain (𝐷, ⊑, ⊕)
Output: Γ the set of minimal critical sequences

1: Begin

2: 𝜎 = 𝑠0
3: Γ = ∅
4: ExtractCriticalSeqences(⟨𝑉 , 𝐸,𝑇 , 𝑠0,𝐶𝑆⟩, 𝑐 , 𝜎 , Γ)
5: return Γ
6: End

7: ExtractCriticalSeqences(⟨𝑉 , 𝐸,𝑇 , 𝑠0,𝐶𝑆⟩, 𝑐 , 𝑠0
𝑤−→ 𝑠𝑛 , Γ)

8: Begin

9: if 𝐶𝑜𝑠𝑡 (𝑤) ⊐ 𝑐 then

10: return

11: end if

12: if 𝐶𝑆 (𝑠𝑛) then
13: if IsMinimal(𝑤) then

14: Γ ← Γ ∪ {𝑤}
15: end if

16: return

17: end if

18: for all transitions ⟨𝑒, 𝑔, 𝑖⟩ of 𝑇 that are enabled in 𝑠𝑛 do

19: 𝑠𝑛+1 ← 𝑖 (𝑠𝑛)
20: ExtractCriticalSeqences(⟨𝑉 , 𝐸,𝑇 , 𝑠0,𝐶𝑆⟩, 𝑐 , 𝑠0

𝑤−→ 𝑠𝑛
𝑒−→ 𝑠𝑛+1, Γ)

21: end for

22: End

It calls the recursive function ExtractCriticalSequences. At each call, this function checks whether the cost of the

current sequence exceeds the cutoff. If so, the function exits. If not, it checks if the state is critical. If so and the current

sequence is minimal, it is stored. If the state is not critical, enabled transitions are fired, one after the other, and the

algorithm is called recursively after each of these firings.

The function IsMinimal is implemented by checking valid subsequences of the current sequence. The latter is

minimal if none of these valid subsequences is critical.

Algorithm 1 makes clear why selecting a suitable cutoff is so important: it makes it possible to reduce drastically the

search space by stopping the exploration as soon as the cutoff is exceeded. Algorithm 1 shows also that if considering

minimal sequences only reduces the number of sequences that are stored and improves the readability of the results, it

does not prune the exploration.

A key property of Algorithm 1 is that it is complete in the following sense.

Property (Completeness of Algorithm 1). Let𝑀 : ⟨𝑉 , 𝐸,𝑇 , 𝑠0,𝐶𝑆⟩ be a discrete event system and let 𝐶𝑜𝑠𝑡 be a cost

and 𝑐 be a cutoff defined on a domain (𝐷, ⊑, ⊕), then Algorithm 1 produces all minimal critical sequences𝑤 of𝑀 such that

𝐶𝑜𝑠𝑡 (𝑤) ⊑ 𝑐 .

Proof. By construction, without the condition on costs, Algorithm 1 extracts all minimal critical sequences. It

corresponds actually to a depth-first exploration. Now, by the condition defined in equation 1, if it stops the recursive

exploration on some sequence 𝑤 because 𝐶𝑜𝑠𝑡 (𝑤) ⊐ 𝑐 , then all the sequences 𝑤𝑣 , that could have been obtained

Manuscript submitted to ACM

12 Serru, Nguyen, Batteux, Rauzy

from𝑤 by pursuing the exploration, verify 𝐶𝑜𝑠𝑡 (𝑤𝑣) ⊒ 𝐶𝑜𝑠𝑡 (𝑤) ⊐ 𝑐 and must therefore be discarded. It follows that

Algorithm 1 discards no sequence whose cost is less than 𝑐 . □

Algorithms derived from Algorithm 1 have been implemented in SimfiaNeo and AltaRica Wizard. These algorithms

implement several cutoffs, including the footprint presented in Section 4.4. The following sections show that this

cutoff makes it possible to push the limits of what is feasible within reasonable computation resources, by reducing

significantly the size of the exploration space.

5.2 Cutoffs Illustration

To illustrate the reduction of the exploration space, that is made possible by the cutoff on footprints, let us consider the

simple network presented in Figure 1.

Internet

UW1

UW2

DB

Fig. 1. Simple Network System With Two Workstations and a Database

The network contains an Internet server, two user workstations (UW) and a database server (DB). We consider a few

events for each component to ease the representation of the sequences. The events are:

• Internet: send malware to UW1 (smal1), send malware to UW2 (smal2);

• UW1: privilege escalation (priv1), forward malware to DB (fmal1);

• UW2: privilege escalation (priv2), forward malware to DB (fmal2);

• DB: malware delete DB (del).

The event leading to the critical state is the deletion of the database by an attacker (triggered by del). We are in the

situation of Example 4.3 where the two sequences C and D are:

C = smal1 priv1 fmal1 del

D = smal2 priv2 fmal2 del

In Table 1 we show several sequences that are extracted from the case study and the corresponding footprint and

number of events (i.e. the order). To help understanding how is calculated the footprint, transitions taken from the set

𝑇11 are bolded.

Table 1. Comparison of the Footprint, Order and Minimality for Several Sequences

Sequence Footprint Order Minimal?

smal1 priv1 fmal1 del 1 4 Yes

smal2 priv2 fmal2 del 1 4 Yes

smal1 priv1 smal2 priv2 fmal1 del 3 6 No

smal1 priv1 smal2 fmal1 priv2 del 4 6 No

Manuscript submitted to ACM

Minimal Critical Sequences in Model-Based Safety and Security Analyses: Commonalities and Differences 13

The two last sequences of Table 1 illustrate how two sequences with the same events can have a different footprint.

Therefore, setting the right value will keep only the minimal critical sequences with the lowest footprint.

Then, Figure 2 compares a sequence extraction with the algorithm using footprint (left part (a)), and with the

algorithm using only the length (right part (b)).

Initial State

smal1 smal2

priv1

fmal1

del

smal2

smal2

smal2

smal1 priv2

fmal2

del

smal1

smal1

F>1
F⩽1

c (σ)=FALSE

F⩽1

c (σ)=FALSE

F⩽1

c (σ)=TRUE

minimal=TRUE

F⩽1

c (σ)=FALSE

F⩽1

c (σ)=FALSE

F⩽1

c (σ)=FALSE

F⩽1

c (σ)=TRUE

minimal=TRUE

F>1

F>1

F⩽1

c (σ)=FALSE

F>1

(a)

Initial State

smal1 smal2

del smal2 fmal1 priv2 fmal1 priv2 priv1 fmal2

fmal1 smal2 priv1 priv2

priv1 smal2

...
O = 1

O = 2

O = 3

O = 4

c (σ)=TRUE

minimal=TRUE

(b)

Fig. 2. (a) Execution of Algorithm 1 with the footprint 𝐹 ≤ 1 as a cutoff (b) Execution of Algorithm 1 with the order 𝑜 ≤ 4 as a cutoff

The left part of the figure (a) illustrates the execution of the algorithm for the network model and with the cutoff

set to the footprint equal to one (i.e. 𝐹 = 1). Considering sequences of footprint 1, we can see that the exploration is

quickly restricted, i.e. it stops if the action executed is not from the set 𝑇01. The right part of the figure (b) shows the

exploration with the filter only on the length of the sequence (length ≤ 4). The figure reveals that the algorithm using

footprint will explore less sequences than the algorithm using only the length: 8 sequences for the footprint instead

of 16 sequences for the length. Furthermore, the second algorithm, using only the length, only tackles the explosion

described in Example 4.2, where the former algorithm, using footprint, also handles Example 4.3. With this illustration,

we show that, in theory, the length is not a good cutoff for cyberattack sequences contrarily to footprint.

6 EXPERIMENTAL VALIDATION

This section will provides concrete results, justifying theoretical elements for the relevance of minimality and cutoffs,

presented in the previous sections. These results are based on three case studies with the SimfiaNeo tool, to show the

interest of the footprint criterion. This tool extracts all critical sequences, and applies, during the generation, minimality

and cutoffs on the order and footprint.

6.1 High-Integrity Pressure Protection System

The first case study is based on High-Integrity Pressure Protection System (HIPPS). Such systems are classically used

for oil and gaz or chemical plants, to prevent the over-pressurization of a line or a vessel. We depict the system in

Figure 3. In this system, three pressure transmitters (PT) are sending pressure data to acquisition modules (AM). If two

out of three acquisition modules detect an overpressure, they send the information to the logic solver (LS). The logic

solver then sends an order to close the two solenoid valves (SV), which are in active redundancy, to activate the two

shutdown valves (SDV). Finally, autotest (AT) components are added to detect the failure of the acquisition module

Manuscript submitted to ACM

14 Serru, Nguyen, Batteux, Rauzy

and the logic solver. In this situation, the system would enter a fail-safe mode and close the valves. We consider three

different kinds of failures. Failures for the pressure transmitters, the logic solver and the autotest components. Failures

on demand for solenoid and shutdown valves Finally, false positive failures for pressure transmitters. The resulting

model contains 16 components and 29 events, detailed in Table 2.

SDV1 SDV2

SV1 SV2

LS

AM1

AM2

AM3

PT1 PT2 PT3

AT1

AT2

AT3

ATLS

pipe

Fig. 3. High-Integrity Pressure Protection System

Table 2. Events of the HIPPS Case Study

Component Event

Pressure Transmitter Failure, False Negative

PT Acquisition Module Failure

AutoTest Failure

Logic Solver Failure

Solenoid Valve Open, Close, Opening, Closing, Refuse to open, Refuse to close

Shutdown Valve Failure on demand

Pipe Overpressure

The safety critical state of this case study is the propagation of an overpressure in the pipe’s output (a vessel or a

tank for instance). As most of the failures are independent, the state space is very large, even for such a small system.

Therefore, we decide to cutoff the exploration up to the order 8. It resulted in the generation of 287 480 sequences,

lowered to 241 minimal critical sequences (MCS). Minimality is not enough to provide exploitable results from the

safety assessment. This is the main reason safety assessments are almost always probabilistic. Thus, we extracted failure

parameters from guides or used crafted ones (detailed in Table 3) to illustrate the interest of probabilistic studies. The

global probability of failure of the system is 5.4004 × 10−8 ℎ−1 and the six most probable sequences have a probability

of 9 × 10−9 ℎ−1. It is clear that these six sequences concentrate the probability of failure of the system, as indicated in

Example 4.4.

With this system, we show that purely qualitative assessment makes no sense, as there are too many combinations

of failures.

Manuscript submitted to ACM

Minimal Critical Sequences in Model-Based Safety and Security Analyses: Commonalities and Differences 15

Table 3. Failure Parameters for HIPPS Case Study

Component PT AM AT LS Valves

Failure mode Failure False negative Failure Failure Failure Failure On

Demand

Probability

distribution

exponential constant exponential exponential exponential constant

Failure

parameter

1.3 × 10−6 ℎ−1 1 × 10−5 ℎ−1 1 × 10−6 ℎ−1 1 × 10−6 ℎ−1 16 × 10−6 ℎ−1 3 × 10−2 per
demand

Source [17] none none none [17] [18]

6.2 Autonomous Vessel

This second case study is the navigation system of an autonomous vessel introduced in [41]. Here, the analysis aims to

generate the sequences of cyberattacks leading to a safety critical state. The architecture of the system is depicted in

Figure 4 with the following components: an autonomous navigation system (ANS), a gobal positioning system (GPS),

en electronic chart display and information system (ECDIS), an autonomous identification system (AIS), a RADAR, an

emitter/receiver satellite (SAT), and a shore control center (SCC).

Satellite
communications

Ethernet

NMEA

RADAR

ANS

ECDIS

GPS

SAT

AIS

SCC

Fig. 4. Architecture of the Autonomous Ship’s Navigation System

The safety critical state is the deviation, by the attacker, of the vessel from its route, without the radar activated (i.e.

without a collision avoidance system). We modeled the vessel using AltaRica. This model represents the architecture

depicted in Figure 4 and the behavior of every components is expressed in terms of DES. Table 4 contains all the

cyberattack events that can affect the components.

From this model, we obtain 593 sequences of length 8 to 14, and 25 minimal sequences. Among these sequences, many

of them contain the same events in a different order. For instance, Table 5 shows some sequences that are generated

for this case study. They contain the same events (defined in Table 4) but in a different order, resulting in a different

footprints.

The 3 sequences start with the same set of events: SAT receives an email infected with an infected payload, this

payload is transferred to ECDIS, virus is downloaded during the chart update. Then we have two subsequences that are

performed in any order; C: tempering of ECDIS maps (𝑐1), leading to the deviation of the vessel (𝑐2); D: ECDIS lateral

Manuscript submitted to ACM

16 Serru, Nguyen, Batteux, Rauzy

Table 4. Events of the Autonomous Vessel Case Study

Component Event

ECDIS Attacker access ECDIS, attacker exploits Apache vulnerability, attacker tempers with

maps, attacker delete maps, download virus during chart update, lateral movement from

ECDIS to radar via Ethernet

AIS Malware deploys on AIS, privilege escalation, lateral movement to ECDIS, attacker send

false information to ANS

ANS Ship deviates from route, loss of incoming signal

SCC Corrupted SCC send malicious package to AIS

RADAR Attacker accesses radar, attacker deletes radar targets, radar spoofing, attacker deactivates

radar

GPS GPS jamming, GPS spoofing

SAT Receive email with infected payload, infected payload transferred to ecdis

Sequence 1 Sequence 2 Sequence 3
SAT.receive_email_with_infected_payload SAT.receive_email_with_infected_payload SAT.receive_email_with_infected_payload
SAT.infected_payload_transfered_to_ecdis SAT.infected_payload_transfered_to_ecdis SAT.infected_payload_transfered_to_ecdis
ECDIS.download_virus_during_chart_update ECDIS.download_virus_during_chart_update ECDIS.download_virus_during_chart_update
ECDIS.attacker_tempers_with_maps ECDIS.lateral_movement_from_ecdis_to_radar_via_ethernet ECDIS.lateral_movement_from_ecdis_to_radar_via_ethernet
ANS.ship_deviates_from_route RADAR.attacker_accesses_radar RADAR.attacker_accesses_radar
ECDIS.lateral_movement_from_ecdis_to_radar_via_ethernet RADAR.attacker_deletes_radar_targets ECDIS.attacker_tempers_with_maps
RADAR.attacker_accesses_radar ECDIS.attacker_tempers_with_maps ANS.ship_deviates_from_route
RADAR.attacker_deletes_radar_targets ANS.ship_deviates_from_route RADAR.attacker_deletes_radar_targets

Table 5. Example of Sequences of Different Footprint Highlighted by Different Colors

movement to RADAR (𝑑1), attacker accesses RADAR (𝑑2), attacker deletes RADAR targets (𝑑3). We are in the situation

described in Example 4.2 with two sub-objectives obtained by executing actions from the sets 𝐶 : 𝑐1𝑐2 and 𝐷 : 𝑑1𝑑2𝑑3

that lead to the deviation of the vessel without the collision avoidance (radar) activated. The shuffle is illustrated

by Sequence 3 in Table 5 where the attacker penetrates the system, downloads the virus, and then executes the two

sub-sequences in any order: 𝑑1𝑑2𝑐1𝑐2𝑑3. As presented in Section 4.4 and Table 1, we avoid this shuffle by executing the

subsections in order 𝑐1𝑐2𝑑1𝑑2𝑑3 and 𝑑1𝑑2𝑑3𝑐1𝑐2, as in Sequence 1 and 2. Setting a footprint 𝐹 ≤ 2 allows to generate

these sequences while discarding the shuffle. It also allows to be closer to the reality, as the two sub-sequences (C and

D) are taken from a real experiment [46]:

(1) During an initial probe, Naval Dome sent a virus-laden email over the ship’s satellite link to the captain’s computer,

which is regularly connected to ECDIS for chart updates. During the very next chart update, the virus transferred

itself to ECDIS where it immediately installed itself and began to work. Once in place, the virus altered the vessel’s

position during a night voyage, deceiving the officer of the watch.

(2) Naval Dome used the local Ethernet switch interface that connects the radar to ECDIS, the voyage data recorder and

bridge alert system to successfully enter the radar workstation. After doing so, Naval Dome succeeded in deleting

radar targets from the vessel’s bridge radar screen, effectively blindfolding the vessel.

One can see here that the sequences with the lowest footprint are the ones where the scenarios from [46] are executed

one after another, i.e. when they are closer to the attacker’s behavior.

By extracting minimal critical sequences of footprint 𝐹 ≤ 2 we end-up with 10 sequences.

Manuscript submitted to ACM

Minimal Critical Sequences in Model-Based Safety and Security Analyses: Commonalities and Differences 17

6.3 Automotive

Our last case study is taken from the European project EVITA [15]. This project aimed at designing an architecture for

automotive on-board networks where security-relevant components are protected against tampering, and sensitive

data are protected against compromise. The architecture of the system is taken from [39] and depicted in Figure 5.

Powertrain

PTC

Body Electronic

BEM

Diagnosis
Interface

CAN / FlexRay

CAN / FlexRay

CAN / FlexRay

Hybrid Drive

Engine Control

Bluetooth

USB

 Communication

 Unit CU

Transmission

Chassis & Safety

CSC

Chassis /
Steering

Brake Control

Environmental
Sensors

Passive Safety
Airbag

Door
Modules

Instrument

Light Control

Display /
Video

Audio

Navigation

CAN MOST / Ethernet

Head Unit

HU

Mobile Device

In-vehicle network structure

PT Sensors

Chassis Sensors
e.g. Steer Angle

GPS/Galileo

UMTS

DSRC

Telephone
Climate

Seat ECU

Fig. 5. Evita Use-Case Reference Architecture [39]

In the deliverable D2.3 [39], some cyberattacks scenarios (called “dark side scenarios”) have been identified and

attack trees (AT) were built. From the scenarios having an effect on the system’s safety, we extracted cyberattacks

and modeled them in AltaRica. In the model, we remove components not involved in the scenarios, and we add two

“security” components to generate more complex outputs. Then, the resulting model contains 14 components, 21 links

and 60 events (the model is displayed in [42]).

A first critical state we consider results from the attack on the active brake function. This function activates the brake

when an emergency brake message from a neighbor car is received. Here, 401 625 critical sequences are generated in

14 minutes and 35 seconds. Minimality lowered the number of sequences to 116 and the time to 12 minutes and 34

seconds. At last, limiting the footprint 𝐹 ≤ 2 gives 72 sequences in less than 1 second.

The second critical state results from the unwanted activation of the brake by an attacker. Here, we get 133 429

critical sequences in 14 minutes 58 seconds, and we get 45 minimal sequences in 11 minutes and 15 seconds. Finally,

among these 45 minimal critical sequences, 44 of them have a footprint 𝐹 <= 2. Once again, the computation time

reduced to 1 second.

As a conclusion, this case study gives encouraging results. Indeed, we have a great decrease in the state space when

considering only minimal sequences and a great reduction in computation time when considering footprint. Then,

the fact that only one sequence is avoided with the footprint filter shows that many minimal sequences have a low

footprint. It also shows that the sequence we want to obtain in security shall have a low footprint, and that this cutoff is

a great opportunity to reduce the state space explosion during computation.

Manuscript submitted to ACM

18 Serru, Nguyen, Batteux, Rauzy

6.4 Assessment results

Table 6 summarizes the state-space reduction we obtain for all the case studies, using SimfiaNeo.

Table 6. Number of Sequences Generated With or Without State Space Reduction for the Three Case Study

Case study HIPPS Autonomous Vessel Evita TE1 Evita TE2

Critical sequences 287480 (order 8) 593 (order 15) 401625 (order 10) 133429 (order 10)

Computation time 2min48sec 1sec 14min35sec 14min58sec

MCS 241 25 116 45

Computation time 47s 1sec 12min34sec 11min15sec

MCS with cutoffs 6 with 𝑃 ≥ 10
−9/ℎ 10 with 𝐹 ≤ 2 72 with 𝐹 ≤ 2 44 with 𝐹 ≤ 2

Computation time N/A instantaneous <1sec 1sec

The benefits of having these numerical results are twofold. First, it highlights the state-space explosion and shows

that the generated sequences cannot be exploited as it is (they are too numerous). In Section 4, we give a heuristic

justification of the relevance of using the footprint, and proved that the filter is sound, along with minimality and cutoff

for failure sequence. Then, Table 6 demonstrates the significant reduction of state-space and sequences generated when

using cutoff and minimality. An analyst shall safely exploit these results and update the architecture of the system to

mitigate them before launching another generation. Finally, the table also shows that it is relevant and effective to use a

different cutoff for failures and cyberattacks.

7 CONCLUSION AND FUTUREWORKS

In this article, we reviewed the main commonalities and differences between the generation of attack and failure

scenarios in safety and security assessments. First, we introduced Discrete Event Systems (DES), as a common formalism

allowing to model Cyber-Physical Systems (CPS) and their behavior in case of failures or cyberattacks. A CPS modeled

with DES would allow to generate sequences of events leading to a safety critical state. With this definition, we analyzed

the commonalities and, more importantly, the fundamental difference between the occurrence of failure and cyberattack

events. Indeed, critical sequences representing cyberattacks are more likely to contain dependent events (occurring in a

defined order) and to be longer than those representing failures. Conversely, critical sequences representing failures of

systems tend to be shorter and independent (events occurring in a random order). This awareness allowed to define

an effective strategy to reduce the state-space when exploring and printing sequences of failures and cyberattacks.

Minimality and cutoffs are the principal tools to lower this complexity. Therefore, aside from classical cutoffs used in

safety assessments (e.g. order and probabilities) we introduced the notion of footprint in the attack sequences. Footprint

captures the willfulness of the attack and shall be used in extraction algorithms. We provide proofs of the relevance

and soundness of this cutoff and propose an algorithm to generate the sequences with minimality and cutoffs. This is

illustrated by three case studies, one focused on the analysis of failures and two on the analysis of cyberattacks and

their effects on safety. Relevance of the footprint criterion is emphasized by the reduction in computation time allowed

by its use — from several minutes to a second.

In the future, we wish to pursue this work in three different ways. The first one is to challenge the tools, with the

implemented algorithm on a more complex industrial case study, with more components, attacks and reconfiguration.

The second one is to evaluate the use of trace theory to reduce the state-space. As we deal with sequence of (sometimes

independent) events we could use the notion of equivalence class to take off some of the combinatorial. The third one is

Manuscript submitted to ACM

Minimal Critical Sequences in Model-Based Safety and Security Analyses: Commonalities and Differences 19

to consider the impact of cyberattacks on the system’s functions, to compare different strategies allocating functions to

components.

ACKNOWLEDGMENT

This research project is funded by CY Initiative d’Excellence and Airbus Protect. We would specially like to thank

Laurent Sagaspe, Raphael Blaize and Emmanuel Arbaratier for their support to this work.

REFERENCES
[1] Christel Baier and Joost-Pieter Katoen. 2008. Principles of Model-Checking. MIT Press, Cambridge, MA, USA.

[2] Michel Batteux, Tatiana Prosvirnova, and Antoine Rauzy. 2019. AltaRica 3.0 in 10 Modeling Patterns. International Journal of Critical Computer-Based
Systems 9, 1–2 (2019), 133–165. https://doi.org/10.1504/IJCCBS.2019.098809

[3] Michel Batteux, Tatiana Prosvirnova, and Antoine Rauzy. 2022. A Guided Tour of AltaRicaWizard, the AltaRica 3.0 Integrated Modeling Environment.

In 32nd European Safety and Reliability Conference (ESREL 2022) (Proceedings of the 32nd European Safety and Reliability Conference (ESREL 2022)),
Maria Chiara Leva, Edoardo Patelli, Luca Podofillini, and Simon Wilson (Eds.). Dublin, Ireland, 2246–2253. https://www.rpsonline.com.sg/

proceedings/esrel2022/html/S09-09-308.xml

[4] Steven M. Bellovin. 2006. On the Brittleness of Software and the Infeasibility of Security Metrics. IEEE Security & Privacy 4, 4 (July 2006), 96–96.

https://doi.org/10.1109/MSP.2006.101 Conference Name: IEEE Security & Privacy.

[5] Armin Biere, Alessandro Cimatti, Edmund M. Clarke, Ofer Strichman, and Yunshan Zhu. 2003. Bounded Model Checking. In Advances in Computers.
Vol. 58. Academic Press, Waltham, MA, USA, 117–148. https://www.cs.cmu.edu/~emc/papers/Books%20and%20Edited%20Volumes/Bounded%

20Model%20Checking.pdf

[6] Benjamin S. Blanchard and Wolter J. Fabrycky. 2008. Systems Engineering and Analysis. Pearson, Upper Saddle River, NJ 07456, USA.
[7] Marc Bouissou and Yannick Lefebvre. 2002. A path-based algorithm to evaluate asymptotic unavailability for large Markov models. In Proceedings of

the Reliability and Maintainability Symposium. Seattle, WA, USA, 32–39. https://doi.org/10.1109/RAMS.2002.981616

[8] Marco Bozzano and Adolfo Villafiorita. 2003. Integrating Fault Tree Analysis with Event Ordering Information. Technical Report. CENTRO PER LA

RICERCA SCIENTIFICA E TECNOLOGICA. 8 pages. https://es-static.fbk.eu/tools/FSAP/dissemination/papers/esrel-irst03.pdf

[9] Pierre-Antoine Brameret, Antoine Rauzy, and Jean-Marc Roussel. 2015. Automated generation of partial Markov chain from high level descriptions.

Reliability Engineering & System Safety 139 (July 2015), 179–187. https://doi.org/10.1016/j.ress.2015.02.009

[10] Carlos E. Budde, Christina Kolb, and Mariëlle Stoelinga. 2021. Attack Trees vs. Fault Trees: Two Sides of the Same Coin from Different Currencies. In

Quantitative Evaluation of Systems (Lecture Notes in Computer Science), Alessandro Abate and Andrea Marin (Eds.). Springer International Publishing,

Cham, 457–467. https://doi.org/10.1007/978-3-030-85172-9_24

[11] Edmund Clarke, Orna Grumberg, Somesh Jha, Yuan Lu, and Helmut Veith. 2001. Progress on the State Explosion Problem in Model Checking. In

Informatics: 10 Years Back, 10 Years Ahead, Reinhard Wilhelm (Ed.). Springer, Berlin, Heidelberg, 176–194. https://doi.org/10.1007/3-540-44577-3_12

[12] Edmund M. Clarke, Orna Grumberg, Daniel Kroening, Doron Peled, and Helmut Veith. 2018. Model Checking (second edition). MIT Press, Cambridge,

MA, USA.

[13] Jérôme Collet. 1996. Some remarks on rare-event approximation. IEEE Transactions on Reliability 45, 1 (March 1996), 106–108. https://doi.org/10.

1109/24.488924

[14] Department of Computer Science, University of Oxford. 2022. PRISM - Probabilistic Symbolic Model Checker. http://www.prismmodelchecker.org/

[15] EVITA Project. 2011. EVITA: E-safety vehicle intrusion protected applications. https://www.evita-project.org/

[16] Patrice Godefroid. 1996. Partial-Order Methods for the Verification of Concurrent Systems. Springer Berlin, Heidelberg, Berlin, Germany. 143 pages.

https://link.springer.com/book/10.1007/3-540-60761-7

[17] Stein Hauge and Tor Onshus. 2010. Reliability data for safety instrumented systems. Sintef, Trondheim, Norway.

[18] UKHealth and Safety Executive. 2017. Failure Rate and Event Data for use within Risk Assessments. https://www.hse.gov.uk/landuseplanning/failure-

rates.pdf

[19] Hiromitsu Kumamoto and Ernest J. Henley. 1996. Probabilistic Risk Assessment and Management for Engineers and Scientists. Wiley-IEEE Press,

Piscataway, NJ, USA. https://ieeexplore.ieee.org/book/5264399

[20] Gerard J. Holzmann. 2003. The SPIN Model Checker: Primer and Reference Manual. Addison Wesley, Boston, MA 02116, USA.

[21] John J. Andrews and Bob Moss. 2002. Reliability and Risk Assessment, 2nd Edition | Wiley (2nd edition ed.). Portland, OR, USA. https://www.wiley.

com/en-ie/Reliability+and+Risk+Assessment%2C+2nd+Edition-p-9781860582905

[22] Siwar Kriaa, Marc Bouissou, and Youssef Laarouchi. 2015. A new safety and security risk analysis framework for industrial control systems. Journal
of Risk and Reliability 233, 2 (2015), 151–174. https://doi.org/10.1177/1748006X18765885

[23] Siwar Kriaa, Ludovic Pietre-Cambacedes, Marc Bouissou, and Yoran Halgand. 2015. A survey of approaches combining safety and security for

industrial control systems. Reliability Engineering and System Safety 139 (2015), 156–178. https://doi.org/10.1016/j.ress.2015.02.008

Manuscript submitted to ACM

https://doi.org/10.1504/IJCCBS.2019.098809
https://www.rpsonline.com.sg/proceedings/esrel2022/html/S09-09-308.xml
https://www.rpsonline.com.sg/proceedings/esrel2022/html/S09-09-308.xml
https://doi.org/10.1109/MSP.2006.101
https://www.cs.cmu.edu/~emc/papers/Books%20and%20Edited%20Volumes/Bounded%20Model%20Checking.pdf
https://www.cs.cmu.edu/~emc/papers/Books%20and%20Edited%20Volumes/Bounded%20Model%20Checking.pdf
https://doi.org/10.1109/RAMS.2002.981616
https://es-static.fbk.eu/tools/FSAP/dissemination/papers/esrel-irst03.pdf
https://doi.org/10.1016/j.ress.2015.02.009
https://doi.org/10.1007/978-3-030-85172-9_24
https://doi.org/10.1007/3-540-44577-3_12
https://doi.org/10.1109/24.488924
https://doi.org/10.1109/24.488924
http://www.prismmodelchecker.org/
https://www.evita-project.org/
https://link.springer.com/book/10.1007/3-540-60761-7
https://www.hse.gov.uk/landuseplanning/failure-rates.pdf
https://www.hse.gov.uk/landuseplanning/failure-rates.pdf
https://ieeexplore.ieee.org/book/5264399
https://www.wiley.com/en-ie/Reliability+and+Risk+Assessment%2C+2nd+Edition-p-9781860582905
https://www.wiley.com/en-ie/Reliability+and+Risk+Assessment%2C+2nd+Edition-p-9781860582905
https://doi.org/10.1177/1748006X18765885
https://doi.org/10.1016/j.ress.2015.02.008

20 Serru, Nguyen, Batteux, Rauzy

[24] Orna Kupferman and Moshe Y. Vardi. 2001. Model Checking of Safety Properties. Formal Methods in System Design 19, 3 (Nov. 2001), 291–314.

https://doi.org/10.1023/A:1011254632723

[25] Marta Kwiatkowska, Gethin Norman, and David Parker. 2018. Probabilistic Model Checking: Advances and Applications. In Formal System
Verification: State-of the-Art and Future Trends, Rolf Drechsler (Ed.). Springer, Cham, 73–121. https://doi.org/10.1007/978-3-319-57685-5_3

[26] Timo Latvala. 2003. Efficient Model Checking of Safety Properties. InModel Checking Software, Thomas Ball and Sriram K. Rajamani (Eds.), Vol. 2648.

Springer, Berlin, Germany, 74–88. https://doi.org/10.1007/3-540-44829-2_5

[27] Mathilde Machin, Laurent Sagaspe, and Xavier de Bossoreille. 2018. SimfiaNeo, Complex Systems, yet Simple Safety. In Embeded Real Time Software
and System conference. Toulouse, France, 4. https://www.erts2018.org/uploads/program/ERTS_2018_paper_9.pdf

[28] Marco Ajmone Marsan, Gianfranco Balbo, Gianni Conte, Susanna Donatelli, and Giuliana A. Franceschinis. 1998. Modelling with Generalized

Stochastic Petri Nets. ACM SIGMETRICS Performance Evaluation Review 26, 2 (Aug. 1998), 2. https://doi.org/10.1145/288197.581193

[29] Antoni Mazurkiewicz. 1996. Introduction to Trace Theory. In The Book of Traces. WORLD SCIENTIFIC, 3–41. https://doi.org/10.1142/9789814261456_

0001

[30] John McHugh. 2006. Quality of protection: measuring the unmeasurable?. In Proceedings of the 2nd ACM workshop on Quality of protection. ACM,

Alexandria Virginia USA, 1–2. https://doi.org/10.1145/1179494.1179495

[31] Kenneth L. McMillan. 1993. Symbolic Model Checking. Kluwer Academic Publisher, New York, NY, USA.

[32] Saoussen Mili, Nga Nguyen, and Rachid Chelouah. 2019. Transformation-based Approach to Security Verification for Cyber-Physical Systems. IEEE
Systems Journal 13 (December 2019), 3989 – 4000. Issue 4. https://doi.org/10.1109/JSYST.2019.2923818

[33] Shin-Ichi Minato. 1993. Zero-Suppressed BDDs for Set Manipulation in Combinatorial Problems. In Proceedings of the 30th ACM/IEEE Design
Automation Conference, DAC’93. IEEE, Dallas, Texas, USA, 272–277. https://doi.org/10.1145/157485.164890

[34] Pierre-Yves Piriou, Jean-Marc Faure, and Jean-Jacques Lesage. 2016. A formal definition of Minimal Cut Sequences for dynamic, repairable and

reconfigurable systems. In 2016 European Safety and Reliability Conference (ESREL 2016). Glasgow, United Kingdom, 9. https://hal.archives-

ouvertes.fr/hal-01325898/file/ESREL2016_PiriouFaureLesage_V3.pdf

[35] Tatiana Prosvirnova and Antoine Rauzy. 2015. Automated generation of Minimal Cutsets from AltaRica 3.0 models. International Journal of Critical
Computer-Based Systems 6, 1 (2015), 50–79. https://doi.org/10.1504/IJCCBS.2015.068852

[36] Antoine Rauzy. 2008. Guarded Transition Systems: a new States/Events Formalism for Reliability Studies. Journal of Risk and Reliability 222, 4

(2008), 495–505. https://doi.org/10.1243/1748006XJRR177

[37] Antoine Rauzy. 2020. Probabilistic Safety Analysis with XFTA. AltaRica Association. http://www.altarica-association.org/members/arauzy/

Publications/pdf/Rauzy2020-XFTABook.pdf

[38] Antoine B. Rauzy. 2011. Sequence Algebra, Sequence Decision Diagrams and Dynamic Fault Trees. Reliability Engineering & System Safety 96, 7

(July 2011), 785–792. https://doi.org/10.1016/j.ress.2011.02.005

[39] Alastair Ruddle, David Ward, Benjamin Weyl, Muhammad Sabir Idrees, Yves Roudier, Michael Friedewald, Timo Leimbach, Andreas Fuchs,

Sigi Gurgens, Olaf Henniger, Rieke Roland, Matthias Ritscher, Henrik Broberg, Ludovic Apvrille, Renaud Pacalet, and Gabriel Pedroza. 2010.

Security requirements for automotive on-board networks based on dark-side scenarios, Deliverable D2.3. Contract EVITA. Telecom ParisTech.

https://hal.telecom-paris.fr/hal-02286288

[40] Enno Ruijters and Mariëlle Stoelinga. 2015. Fault tree analysis: A survey of the state-of-the-art in modeling, analysis and tools. Computer Science
Review 15-16 (Feb. 2015), 29–62. https://doi.org/10.1016/j.cosrev.2015.03.001

[41] Théo Serru, Nga Nguyen, Michel Batteux, and Antoine Rauzy. 2023. Modeling Cyberattack Propagation and Impacts on Cyber-Physical System

Safety: An Experiment. Electronics 12, 1 (2023). https://doi.org/10.3390/electronics12010077

[42] Théo Serru, Nga Nguyen, Michel Batteux, Antoine Rauzy, Raphael Blaize, Laurent Sagaspe, and Emmanuel Arbaretier. 2022. Generation of

Cyberattacks Leading to Safety Top Event Using AltaRica: an Automotive Case Study. In Congrès Lambda Mu 23 “ Innovations et maîtrise des risques
pour un avenir durable ” - 23e Congrès de Maîtrise des Risques et de Sûreté de Fonctionnement, Institut pour la Maîtrise des Risques. Paris-Saclay, France,
8. https://hal.archives-ouvertes.fr/hal-03814648

[43] Zhihua Tang and Joanne B. Dugan. 2004. Minimal cut set/sequence generation for dynamic fault trees. In Annual Symposium Reliability and
Maintainability, 2004 - RAMS. Los Angeles, CA, USA, 207–213. https://doi.org/10.1109/RAMS.2004.1285449

[44] Jean-Marc Thiriet and Stéphane Mocanu. 2018. Some Considerations on Dependability Issues and Cyber-Security of Cyber-Physical Systems. In

The 7 th IEEE International Conference on Smart Communications in Network Technologies (SACONET’18). El Oued, Algeria, 6. https://hal.archives-

ouvertes.fr/hal-01909025

[45] J. D. Weiss. 1991. A System Security Engineering Process.. In Proceedings of the 14th National Computer Security Conference, Vol. 249. 572–581.
[46] Martyn Wingrove. 2018. ‘Impregnable’ radar breached in simulated cyber attack. https://www.rivieramm.com/news-content-hub/news-content-

hub/impregnable-radar-breached-in-simulated-cyber-attack-25158.

Manuscript submitted to ACM

https://doi.org/10.1023/A:1011254632723
https://doi.org/10.1007/978-3-319-57685-5_3
https://doi.org/10.1007/3-540-44829-2_5
https://www.erts2018.org/uploads/program/ERTS_2018_paper_9.pdf
https://doi.org/10.1145/288197.581193
https://doi.org/10.1142/9789814261456_0001
https://doi.org/10.1142/9789814261456_0001
https://doi.org/10.1145/1179494.1179495
https://doi.org/10.1109/JSYST.2019.2923818
https://doi.org/10.1145/157485.164890
https://hal.archives-ouvertes.fr/hal-01325898/file/ESREL2016_PiriouFaureLesage_V3.pdf
https://hal.archives-ouvertes.fr/hal-01325898/file/ESREL2016_PiriouFaureLesage_V3.pdf
https://doi.org/10.1504/IJCCBS.2015.068852
https://doi.org/10.1243/1748006XJRR177
http://www.altarica-association.org/members/arauzy/Publications/pdf/Rauzy2020-XFTABook.pdf
http://www.altarica-association.org/members/arauzy/Publications/pdf/Rauzy2020-XFTABook.pdf
https://doi.org/10.1016/j.ress.2011.02.005
https://hal.telecom-paris.fr/hal-02286288
https://doi.org/10.1016/j.cosrev.2015.03.001
https://doi.org/10.3390/electronics12010077
https://hal.archives-ouvertes.fr/hal-03814648
https://doi.org/10.1109/RAMS.2004.1285449
https://hal.archives-ouvertes.fr/hal-01909025
https://hal.archives-ouvertes.fr/hal-01909025
https://www.rivieramm.com/news-content-hub/news-content-hub/impregnable-radar-breached-in-simulated-cyber-attack-25158
https://www.rivieramm.com/news-content-hub/news-content-hub/impregnable-radar-breached-in-simulated-cyber-attack-25158

	Abstract
	1 Introduction
	2 Context of this work
	2.1 Model-Based Risk Assessment in Industry
	2.2 Related Works

	3 Discrete Event Systems
	3.1 Definitions
	3.2 Semantics

	4 Filtering Critical Sequences
	4.1 Rational
	4.2 Minimality
	4.3 Cutoffs for Safety Analyses
	4.4 Cutoffs for Cybersecurity Analyses

	5 Implementation
	5.1 Algorithm
	5.2 Cutoffs Illustration

	6 Experimental Validation
	6.1 High-Integrity Pressure Protection System
	6.2 Autonomous Vessel
	6.3 Automotive
	6.4 Assessment results

	7 Conclusion and Future Works
	References

