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Abstract

The paper presents a controller design for systems suffering from multi-harmonic periodic distur-
bance and substantial input time-delay. It forms an alternative approach to Repetitive Control
where the goal is to stabilize a close-loop that encapsulates an explicit time-delay model of the
periodic signal. The proposed controller design is based on the Internal Model Control (IMC)
framework, and it consists of the inverse system model and a tuneable distributed delay with
an overall length related to the period of the disturbance. The properness of the controller can
be ensured by utilizing a low-pass filter, however, such a component is shown to be unnecessary
when the relative order of the system model is one. This fact makes the alternative approach es-
pecially suitable for systems approximated by a first-order model with input time-delay, leading
to a straightforward controller design thanks to its simple structure and attainable conditions.
Stability of the configuration is guaranteed by an ideal IMC framework. For further perfor-
mance and robustness requirements for the non-ideal case the tuning of the controller is posed
as a weighted-H∞ optimization problem where frequency-, spectral- and time-domain require-
ments are formulated as constraints. The overall control design is experimentally verified on a
laboratory setup that has high-order dynamics approximated by a first-order model with input
delay.

Keywords: Periodic disturbance, time delay, internal model control, robust design

1. Introduction

Inspired by the Internal Model Principle, the repetitive control approach makes a system
track/reject periodic signals by designing a controller that stabilizes the close-loop encapsulating
the system and a time-delay model of the periodic signal. In this paper, the proposed control
design essentially differs from that of the repetitive control by involving the model of the
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system in the close-loop via the Internal Model Control scheme rather than the signal model.
Employing the IMC framework leads to a straightforward stability condition for the close-loop
with a stable system which ideally requires only the controller to be stable and also allows us to
obtain the so-called ideal sensitivity, which is later on subjected to a weighted-H∞ optimization
problem for further robustness improvements for the control. The zeros targeting the harmonic
poles of the signal for tracking and rejection are placed by tuning the coefficients of a particular
distributed delay employed within the controller.

For real-life applicability of the proposed control strategy, the system model employed needs
to capture the original system dynamics as accurately as possible since the controller is tuned
under the assumption that the ideal setting holds i.e. the matching between the process and
its model is error-less. Fortunately, many industrial processes with high-order dynamics can
be well-captured by lower-order models when associated with an input time-delay component,
[1], [2], [3], [4]. Such an estimation, for instance, can be carried out using the open-loop step
response of the system as in [5] and [6] or the system in close-loop arrangement as in [7].
Alternatively, the suitability of the estimated model can be determined with respect to the
maximum absolute or relative error between the frequency responses of the original system and
the model within a certain bandwidth. The delay component in the considered models can also
directly capture the non-negligible delays arising from communication and sensor placement.

The paper mainly considers systems that can be approximated by first-order model with
input time-delay of the form

G(s) =
K

Ts+ 1
e−sτm , (1)

with time constant T , static gain K and delay τm. An example of such a system is the plate
thickness control in hot rolling, which practically motivates the presented research. The task is
to control the vertical roll position of a hot rolling mill in order to remove the periodic surface
defects caused by the inherent roll eccentricities. As it was discussed in [8, 9], the dynamic
relationship between the roll position and the surface thickness can be well approximated by
a first-order system with input-delay and the periodic surface defects can be treated as distur-
bance. The delay occurs due to the necessity of placing the sensor away from the working rolls
where the actual rolling process is happening. The occurring delay is considered to be a large
delay since the delay itself is greater than the time-constant of the system.

The design method presented in the paper follows an eigenvalue-based approach for time-
delay systems in continuous-time. The stability of the resulting close-loop system is assessed by
the spectral distribution of its characteristic roots. The periodic tracking/rejection feature is
assured by the harmonic zeros placed on the imaginary axis. The robustness study is carried out
in the frequency-domain and is investigated for two cases. The first case covers the robustness
of the controller to inevitable process-model mismatch. It is quantified by the H∞-norm of
the sensitivity transfer function and is aimed to be minimized. The second case considers the
robustness of the control to varying disturbance frequencies. It is quantified by the so-called
characteristic slope κ elaborated below. The resulting distributed-delay based controller is
suitable to easily implement on an industrial controller and as verified by the experimental
results, executes its task overwhelmingly effective.
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1.1. Repetitive Control - motivation and solutions
Repetitive control, initially introduced by Inoue [10], is a controller design to achieve periodic

tracking/rejection for systems that demand such a feature. The essence of the design relies on
the Internal Model Principle approach stated by Francis and Wonham [11] for linear systems:
a closed-loop with a controller aimed to track/reject a particular signal must encapsulate the
signal model within the loop, and the controller must have a stabilizing effect on the overall
close-loop. Generalization of this principle to nonlinear systems was studied in [12] with the
motivation to achieve periodic tracking/rejection by considering finitely many harmonic signal
models. In the case of repetitive control, this particular signal model ideally corresponds to a
time-delay model capable of representing all signals with period Td which is given by

GTd
(s) =

1

1− e−sTd
. (2)

However, with the time-delays occurring in the closed-loop and therefore in the characteristic
equation, the overall close-loop attains an infinite-dimensional character, and assuring stability
for such systems is known to be challenging. In fact, Hara et al., in [13], showed that the
controller comprising the ideal model is applicable to only SISO systems with zero relative
degrees and, to address this limitation, proposed the modified repetitive control, which is ensured
to be applicable to also strictly proper systems. The proposed modification takes place in the
signal model by pairing the delay with a low-pass filter F (s), as in

GTd
(s) =

1

1− F (s)e−sTd
. (3)

Figure 1 presents the scheme of this modified repetitive control which has a sensitivity transfer

Figure 1: Repetitive Control Scheme

function expressed by

S(s) =
1− F (s)e−sTd

1− F (s)e−sTd + C(s)G(s)
, (4)

where G(s) and C(s) denote the transfer functions of the system and the controller, respectively.
Notice that the ideal case can be regained by setting F (s) = 1, and under this case, the transfer
function has infinitely many zeros satisfying 1 − e−sTd = 0. In such a case, the zeros lie on
the imaginary axis at the integer multiples of the frequency of the periodic signal generator i.e.
sk = j2πk

Td
, k ∈ Z. Since a periodic signal with a period Td can be expressed by its Fourier series

as

d(t) =
c0
2
+

M∑
l=1

cl cos

(
2πl

Td

t− φl

)
(5)
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with c0
2

capturing the average value of d(t), cl, φl, l = 1, . . . ,M determining the amplitudes
and phase shifts of the M harmonic components and M being, in general, infinite, it follows
that the poles of the periodic signal model are canceled by the zeros of the sensitivity transfer
function. This fact leads the error to converge to zero provided that the closed-loop is stable.
However, in this ideal setting, the dynamics of the closed-loop system are described by neutral
functional differential equations (see, e.g. [14, 15] and the references therein), having both point
and essential spectrum in the linear case that make the analysis more complicated and further
involved. The introduction of the low-pass filter F (s) addresses this issue. Even though the filter
causes the harmonic zeros to shift away from the imaginary axis, especially at high-frequencies,
and, therefore, limits the precision of the signal generation, this downgrade is justified by the
fact that the overall closed-loop is represented now by a set of retarded functional differential
equations possessing only point spectrum in the linear case [14], [16]. In other words, this last
setting requires less strict conditions for stabilization and later on, a stabilizing controller C(s)
in Fig. 1 can be found by solving a finite-dimensional stabilization problem [17].

Further on, another marking modification to improve the robustness and the non-periodic
performance is the so-called high-order repetitive control, introduced by Inoue in [18]. In this
modification, the delay in the signal model is replaced by an exponential polynomial W (s) =∑m

i=1 wie
−msTd where wi denotes the weight of the ith term, giving rise to the signal model

GTd
(s) =

1

1− F (s)W (s)
. (6)

The original aim discussed in [18] was to improve the non-periodic signal tracking performance
of the repetitive controller by tuning the weights. Nevertheless, the degree of freedom provided
by the high number of weights led to various tuning methods for objectives targeting both
performance and robustness. For instance, alternative tuning methods of the weights to improve
non-periodic performance [19], robustness to varying period [20] and both combined, were
discussed in [21], [22]. Methods based on feed-forward and estimated disturbance-feedback
schemes were studied extensively in [23].

On the other hand, alternative approaches that do not necessarily rely on the high-order
repetitive controller to improve the robustness and performance do exist. In [24], robustness
was studied using structured singular values. A graphical design technique that ensured the
stability of the control system despite plant uncertainties was proposed in [25] and repetitive
control for linear systems with time-varying and norm-bounded uncertainties was studied in
[26] using Lyapunov functionals for time-delay systems. For systems with input-delay, a robust
repetitive controller was designed in [27] based on µ-synthesis. For cases where the main task
is to suppress disturbances, recent approaches such as those in [28, 29, 30] combine repetitive
control with disturbance-observers. For nonlinear systems, an advanced form of the signal
model (2) based on partial differential equation representation was employed in the design of
the repetitive controller in [31]. Alternative approaches to tackle uncertain/varying frequencies
based on adaptive methods were investigated in [32], [33]. Finally, repetitive consensus control
for multi-agent systems was considered in [34], see also [35, 36] for cases where the multi-agent
systems are subjected to stochastic disturbance and time-varying input delays.

1.2. Distributed Delays in Control and Compensation
As it will be shown, involving an IMC scheme in the periodic signal compensation provides

a straightforward controller design and enables the input delay compensation. Nevertheless,
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the main contribution of this paper lies in involving a distributed delay instead of the standard
lumped delay in the harmonics compensation. This research direction builds up on the results
of the broader authors team gained from the application of distributed delay in input shaping
[37], [38], [39], [40] and vibration absorption using acceleration feedback [41], [42], [43]. The
main benefit of using the distributed delay in input shaping, where the task is to compensate
isolated modes of flexible mechanical system in a feed-forward manner, is smoothing of the
command. The main benefit of involving the distributed delay in vibration suppression with
acceleration feedback is in retarded spectral features at the high-frequency range. Compared
to the neutral dynamics brought by the lumped delays, no further filtering is needed to save
the stability at high frequencies. Note, however, that so far, the distributed delay has not been
used for the periodic disturbance task considered here.

1.3. Objectives and paper outline
The objective of the proposed control design is to simplify the overall procedure to derive a

controller for tracking/rejecting periodic signals and compensating input delays by exploiting
the availability of an accurate yet low complexity time-delay model of the system and con-
sidering a distributed-delay structure for the controller. In contrast to the repetitive control
approach, where the low-order filters introduced to achieve stability shifts the ideal zeros away
from the imaginary axis, especially for high-frequencies, the proposed controller aims to place
the zeros targeting the harmonics of the periodic signal exactly to their ideal location on the
imaginary axis. Analytically derived conditions for the distributed delay and the posed opti-
mization problem allow for finding such a distributed delay in a single step, contrary to the
repetitive controller where the design mainly consists of two-step i.e., optimizing the signal
model (6) and finding a stabilizing controller. In addition to the convenience it brings to an-
alytical design, the chosen distributed delay structure also keeps the implementation of the
controller straightforward since it can be realized similarly to a shift register-like configuration.

The paper is organised as follows. In Section 2, the IMC scheme with the main components
is proposed and adjusted towards compensating both the input time delay and the periodic
disturbance. The compensator design based on the distributed delay, which is the main propo-
sition of the paper, is presented in Section 3. Section 4 presents a practically motivated case
study example. Brief conclusions and further directions are highlighted in Section 5. Note that
preliminary results were published in a conference paper [9]. The extension compared to [9]
stems in performing the design in full complexity, paying more attention to the robust analysis
and in providing extensive laboratory validation.

2. Internal Model Control and Compensation scheme

In order to fulfill the two compensation tasks (periodic disturbance and input time delay),
an Internal Model Control (IMC) scheme is considered as shown in Fig. 2. As can be recog-
nized, the scheme closely resembles the scheme of a Smith Predictor. However, in contrast
to Smith predictor, in which stabilization of systems with delays can be carried out as if the
system is delay-free, IMC yields more favorable close-loop equations for a design aimed at
tracking/rejection. The IMC arrangement was first introduced and carefully studied by Garcia
and Morari [44]. Its design and performance under periodic disturbances were studied in [45]
and its application to first order systems with time-delay was studied by Vyhlidal and Zitek
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in [46], see also [47]. Some other alternative approaches that target first-order systems with
delay exposed to disturbances are the IMC-based PID tuning method and active disturbance
suppression control proposed in [48] and [49], respectively.

The controlled plant in the IMC scheme in Fig. 2 is considered to be in the form

G(s) =
y(s)

u(s)
= Gi(s)e

−sτ (7)

where u, y are the system input and output, respectively; Gi(s) is assumed to be a proper
and invertible transfer function, i.e. without any positive zeros, and τ is the input delay to
be compensated. The transfer function Gm(s)e

−sτm denotes the model of the plant with input
delay τm. In the nominal form, it is assumed that Gm(s) = Gi(s) and τm = τ . In this case, the

Figure 2: Proposed internal model control scheme for periodic disturbance compensation

delay τ compensation is imposed by the IMC scheme. The compensation of the multi-harmonic
periodic disturbance d(s) is performed by the compensator D(s), which is of a distributed-delay
form with an overall length TD. The compensator output ū is determined by

ū(t) =

∫ TD

0

D(η)e(t− η) dη (8)

where e is the compensator input and D(η) denotes the delay distribution. We assume the piece-
wise equally distributed delay form, analogously as it was done in input shaper application [39].
In the Laplace transform form, it reads as

D(s) =
1

s

N∑
k=0

ake
−skϑ, (9)

where ak are the parameters to be tuned, ϑ = TD

N
is the delay segment and N is the number of

delay segments.
The controller C(s) of the IMC scheme shown in in Fig. 2 comprises the distributed delay

compensator together with the inverse model dynamic and a low-pass filter as in

C(s) =
1

Gm(s)
F (s)D(s), (10)

where the low-pass filter F (s) is included to guarantee that D(s)C(s) is a proper (biproper, at
least) transfer function, satisfying

lim
s→0

F (s) = 1, (11)
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i.e. having unity static gain. Considering s in the denominator of the distributed delay transfer
function (9), the filter can even be omitted, i.e. F (s) = 1, as soon as relative degree of Gm(s)
is equal to one, as it is the case, e.g., for first order plus input delay system (1).

When the close-loop consists of linear subsystems, as ideally assumed for the IMC in Fig.
2, stability and tracking/rejection properties of the control system can be investigated from the
poles and zeros of the sensitivity transfer function. By definition, the sensitivity function is
the transfer function that relates the disturbance d to the output y, i.e., S(s) = y(s)

d(s)
, [50]. The

sensitivity function of the scheme in Fig. 2 is given by

S(s) =
1− C(s)Gm(s)e

−sτm

1 + C(s) (Gi(s)e−sτ −Gm(s)e−sτm)
. (12)

With the assumption Gi(s) = Gm(s), τ = τm and the controller in the form (10), it reduces
to

S(s) = 1− F (s)D(s)e−sτm . (13)

Note also that the ideal complementary sensitivity is given by

T (s) = F (s)D(s)e−sτm . (14)

Notice that in the nominal form (13), the input delay τ has been fully compensated and
the dynamics is finite dimensional. However, this is a strong idealization and therefore, in
practice, the closed loop dynamics still needs to be considered as infinite dimensional with the
characteristic equation given by

1 + C(s)
(
Gi(s)e

−sτ −Gm(s)e
−sτm

)
= 0, (15)

which can be further simplified to

Gm(s)
(
1−D(s)F (s)e−sτm

)
+D(s)F (s)Gi(s)e

−sτ = 0. (16)

Taking into account that all the involved transfer functions are proper, thanks to the distributed
delay features recognised in [39], the closed loop dynamics is of retarded time delay form with
all the positive spectrum distribution features.

In cases where the interest is the close-loop robustness against delay uncertainties, the
maximum delay variation ∆τ := |τ − τm| the close-loop can tolerate, i.e., the delay margin, can
be obtained utilizing geometric methods as demonstrated in [51] for Smith predictors. Note
that, despite being constructed by multiple delays, the distributed delay itself is insusceptible
to uncertainties in the delay values since it is fully adjustable and, once tuned, is ensured to be
fixed. Therefore, it is not involved in the delay margin analysis as a source of uncertainty.

3. Shaping Delay Distribution to Compensate the Periodic Disturbance

The distributed delay D(s) is to be shaped with the objective to compensate the dominant
(low-frequency) harmonics of the periodic disturbance d(t). Taking into account the Fourier
series expansion (5), the compensation of Md dominant harmonics with base frequency Ω = 2π

Td

leads to the equation set
S(jΩl) = 0, l = 1, 2, ..Md. (17)
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By reflecting condition (17) to the nominal (ideal) sensitivity function (13) substituted with
the distributed-delay (9), we get

N∑
k=0

ake
−jΩlkϑ =

jΩl

F (jΩl)
ejΩlτm , l = 1, 2, ..Md. (18)

When each equation is split to its real and imaginary part, we obtain
N∑
k=0

ak cos(Ωlkϑ) = Rl,

N∑
k=0

ak sin(Ωlkϑ) = Il,

(19)

where

Rl = ℜ
(
jΩlejΩlτm

F (jΩl)

)
, Il = −ℑ

(
jΩlejΩlτm

F (jΩl)

)
, (20)

for l = 1, 2, . . . ,Md.
Additional conditions to assess the coefficients ai result from the performance and structural

requirements on the compensator. Taking into account the requirements on the reference
tracking and the disturbance rejection (lims→0 S(s) = 0) and considering (11), the compensator
needs to have a static unity gain, i.e.

lim
s→0

D(s) = 1, (21)

which is also a common requirement on the delay transfer function. For the structure in (9),
this leads to the condition

N∑
k=0

ak = 0 (22)

implying the finite impulse response feature of D(s), and additionally to the condition

N∑
k=0

akkϑ = −1. (23)

Finally, the set of equations (19), (22) and (23) can be put into matrix form

Ax = B, (24)

where x ∈ RN+1, given as x = [a0, a1, ..., aN ]
T, A ∈ R2Md+2×N+1, B ∈ R2Md+2, given as

A =



1 cos(Ωϑ) · · · cos(ΩNϑ)
...

... · · ·
...

1 cos(ΩMdϑ) · · · cos(ΩMdNϑ)
0 sin(Ωϑ) · · · sin(ΩNϑ)
...

... · · ·
...

0 sin(ΩMdϑ) · · · sin(ΩMdNϑ)
1 1 · · · 1
0 ϑ · · · Nϑ


, B =



R1

...
RMd

I1
...

IMd

0
−1


.
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It should be stressed that the solution of (24) requires A being of full row rank. In order
to guarantee the full row rank property of A, i.e. to eliminate the potential dependencies
between the rows, the periodicity in the sine and cosine functions need be avoided. This can
be simply achieved by limiting the maximal difference in the trigonometric function argument
in the second column of A by

ΩMdϑ < π. (25)

Considering Ω = 2π
Td

and ϑ = TD

N
leads us to the condition

2
Md

Td

<
N

TD

. (26)

The independence of values then propagates to the subsequent columns of A too. The linear
independence of the last row from the others follows from trigonometric identities.

Assuming N + 1 > Md, equation (24) has infinitely many solutions and can be solved via
the pseudoinverse

x =
(
ATA

)−1
ATB, (27)

yielding the least squares solution of (24). In what follows, considering that N + 1 ≫ Md, we
introduce additional positive features for the design of the compensator.

3.1. Optimal design
In order to enhance the closed loop robustness, we employ the standard H∞-norm mini-

mization of the weighted sensitivity function [52]. Considering the above derived conditions
(24), the design is formulated as a constrained optimization problem

min
x

∥(1−D(jω)F (jω)e−jωτm)W (jω)∥∞ ,
s.t. Ax = B

Anx ≤ Bn

(28)

where

W (s) =
1
bu
s+ ωb

s+ blωb

(29)

is the weight function determining the desired bandwidth ωb, lower bl, and upper bu bounds on
the sensitivity function. The weight function helps shape the frequency response of the sensitiv-
ity function when introduced to the cost function as in (28) and ideally drives the optimization
to make the sensitivity response |S(jω)| lie under |W−1(jω)| as much as possible. This way, it
becomes possible to tune the distributed delay to also account for aperiodic disturbance signals
up to a certain degree determined by the stop band of W−1(s).

The inequality constraint in (28) can be used, e.g., to impose the limits on the jerks, i.e.
maximum Jmax > 0 and minimum Jmin ≤ 0 of the impulse response of D(s), which results to

An =

[
L
−L

]
, Bn =

[
JmaxeN
−JmineN

]
,

where L ∈ RN+1×N+1 is a lower triangular matrix with Lp,q = 1, for q ≤ p and Lp,q = 0
otherwise, eN ∈ RN+1 is the unity vector eN = [1, 1, . . . , 1]T. From a technical viewpoint, the
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bound defined by the jerks is desired to be in its smallest possible form for two reasons. First, it
indirectly helps the controller keep the instruments operating in their linear working domains.
Second, it reduces the energy consumed for actuation. However, the conditions imposed for the
distributed delay for tracking/rejection prevent the bound from being arbitrarily small. For
instance, for the simplest case where only one zero to the origin is to be placed, conditions (22)
and (23) enforce

1

Nθ
< Jmax. (30)

Note that this distribution delay type with Jmax = 1
TD

was studied for a distributed delay zero-
vibration (ZV) input shaper designed in [40]. The lower limit on the jerk should be selected
as close to zero as possible. An ideal case when Jmin = 0, implying a non-decreasing character
of the step response, is a standard requirement for input shapers, see e.g. [39]. Here however,
due to large number of assigned zeros, the problem is likely to be unfeasible for Jmin = 0.

Further observations, for instance, on condition (18), yield that the absolute sum of the
coefficients is lower-bounded, i.e.

ΩMd ≤
N∑
k=0

|ak| , (31)

which in return implies that the maximum targeted frequency sets a lower limit to the bound.
Nevertheless, as can be seen from these conditions, increasing the number of delay segments
also benefits the bound defined through the jerks to be smaller. Therefore, the decision on the
number of segments N becomes vital and must be done with respect to the emerging trade-off:
higher values of N make the conditions to be satisfied easier and give flexibility for the solver;
on the other hand, increased N means longer computation time and a need for a more capable
controller.

Solving problem (28) relies heavily on the accuracy of the H∞ computation and its gra-
dient. However as stated in [53], computation of the norm for infinite dimensional systems
is a rather involved task. Nevertheless, since the considered systems are SISO, the maximum
of |S(jω)W (jω)| within finite frequency interval can be evaluated by solving the non-linear
eigenvalue problem corresponding to finding the imaginary roots s = jω of the transcendental
function defined as

Z(s) := SW (s)′SW (−s)− SW (−s)′SW (s), (32)

where SW = S(s)W (s), [54]. Note that, since the sensitivity is, in the case with system/model
mismatch, a retarded time-delay system, the maximum of the weighted function,

sup
ω≥0

|S(jω)W (jω)| ,

is achieved within a finite frequency interval. In general, the H∞ norm is a non-convex and non-
smooth function with respect to the parameters [55]. Therefore, the problem in (28) needs to
be handled as a constrained nonlinear optimization problem. In the application example below,
the Matlab fmincon function is used with the initial condition resulting from (27). Alternatively,
HANSO [56], (or recently designed GRANSO [57]), can be applied analogously, [55]. Note that
due to the problem complexity, we cannot guarantee achieving a global minimum. Despite this
fact, the locally optimal time-delay controllers can execute their tasks overwhelmingly well as
soon as all the set constraints are satisfied [58].
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Figure 3: Scheme of the experimental set-up and inner control loops

3.2. Robustness analysis against frequency mismatch
To quantify the robustness against the frequency mismatch analogously to [41], the characteristic-

slope defined as

κ(l) := lim
∆v→+0

|S(j(lΩ +∆v))| − |S(j(lΩ))|
∆v

= |S ′(jlΩ)| (33)

where ∆v is the frequency variation, is utilized. It corresponds to the slope of the magnitude-
frequency curve of the sensitivity at nominal frequency lΩ when converged from right. Hence,
the smaller the slope, the lesser the sensitivity for a deviated frequency. However, one should
note that, due to Bode’s Sensitivity Integral, the benefit of lowering the sensitivity for some
frequency intervals is paid by increased sensitivity for frequencies outside these intervals [59].

4. Experimental validation

As mentioned in the introduction, the presented research has been motivated by a hot
rolling application, where a periodic disturbance and a substantial input time delay need to
be compensated simultaneously. Performing the validation on an industrial rolling mill is not
possible at this stage. Though, we validate the proposed method on a mechanical set-up at
which we mimic the key aspects of the rolling mill application, i.e. long input delay and periodic
disturbance.

The set-up is composed of two-mass system linked by the springs, dampers and actuators
as shown schematically in Fig. 3. The mathematical model of the physical setup is given by

m1ẍ1(t) + (c1 + c2)ẋ1(t) + (k1 + k2)x1(t) = c2ẋ2(t) + k2x2(t) + u1(t)− u2(t), (34)

m2ẍ2(t) + c2ẋ2(t) + k2x2(t) = c2ẋ1(t) + k2x1(t) + u2(t), (35)

where x1, x2 denote the positions of the bodies, and u1, u2 denote the control forces. The
parameters m1,m2 denote masses of the bodies, k1, k2 stiffness and c1, c2 damping of the links.
The system output to be controlled by the IMC scheme is the position of the body with m1,
i.e.

y(t) = x1(t). (36)
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Figure 4: The mechatronic implementation of the set-up and its control system

In order to achieve dynamics described by the model (1), we introduce the inner PD control
loops

u1(t) = ro1(u(t)− x1(t))− rd1ẋ1(t), (37)

u2(t) = ro2(dset(t)−∆x(t))− rd2∆ẋ(t), (38)

where ∆x(t) = x2(t)−x1(t), u is the control input of the IMC scheme, and dset is the set-point
of the disturbance - the position ∆x generating the disturbance force effect to the body with
m1. The parameters to be tuned to achieve non-oscillatory response in the u → y channel are
the proportional ro1, ro2 and derivative rd1, rd2 gains.

4.1. Instrumentation and mechatronic design
The implementation of the experimental set-up depicted in Fig. 3 is shown in Fig. 4, together

with implementation of the control scheme. The two carts with m1 and m2 are interconnected
with a pair of springs. Another pair of springs is used to fix the main body cart (m1) to the
left and right base elements. Both the carts slide on rails - the m2-cart rails are fixed to the
m1-cart while the rails of m1-cart are fixed to the base. The carts are actuated by two voice-coil
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linear motors generating forces u1 and u2. The damping in the cart dynamics is mainly caused
by the viscous friction between the bearings and the rails. The positions x1, x2 of the carts are
measured by incremental position sensors.

The discrete version of the proposed IMC control scheme for periodic disturbance compen-
sation depicted in Fig. 2, obtained by zero-order hold method, was implemented in LabVIEW™

and performed using the CompactRIO controller with 1 kHz sampling. The CompactRIO con-
troller consists of a microprocessor and an FPGA module. The microprocessor computes the
nominal forces u1 and u2. The control action u1 is exerted by the main control loop composed
of the master IMC scheme and inner PD loop. The other control action u2 generating the
disturbance is exerted by the other PD control loop. The FPGA module is used to (i) read
the quadrature incremental signals RS-422 from position sensors via digital input-output card
NI9401, (ii) decoding to increment or decrement the relative positions x1 and x2, and (iii) to
command an industrial control unit (ICU) to control voice-coil motors. Both voice-coil motors
run in the force regime. The nominal value of the forces u1 and u2 to be applied on the movable
carts is transmitted from serial card NI9870 via RS-232 into the industrial control unit. Both
the reading of the quadrature signals together with its decoding and the transmission of the
reference forces via RS-232 were also implemented in LabVIEW™.

4.2. Parameter Identification
In the model (34)-(35) the masses m1 = 1.1 kg, m2 = 0.514 kg were obtained by weighting

the carts. The stiffness coefficients k1 = 1750Nm−1, k2 = 407Nm−1, were measured utilizing
the force gauge, while the damping coefficients c1 = 5.4N sm−1, c2 = 1.8N sm−1 were deter-
mined experimentally from a series of responses. The parameters of the PD controllers have
been pre-tuned analytically by using the standard pole placement method and subsequently
adjusted experimentally to obtain the well-damped response shown in Fig. 5. Consequently,
the approximate model (1) parameters have been assessed as K = 0.59, T = 0.018 s and
τa = 0.012 s. As the identified dead time approximation delay of the fourth order dynamics is
relatively small, it was software-wise increased by delaying the variable u(t− τ) with τ = 0.2 s.
As it can be seen in Fig. 5, the model fits the measured response fairly well. Furthermore, it
is easy to observe that the overall delay of the model τm = τ + τa = 0.212 s is substantial with
respect to the time constant T . Consequently, its robust compensation by the IMC scheme is
crucial to achieve favourable control system responses.

4.3. Controller and compensator design
The IMC controller is formed with respect to the identified system model (1), and in order to

demonstrate its multi-harmonic suppression property. The system is exposed to an artificially
created disturbance dset in a form of a saw-tooth with a frequency f = 4 Hz, i.e. Ω = 25.13 s−1,
determining the set-point of PD2 controller which projects to ∆x. A single period profile of
this periodic signal is shown in Fig. 6, together with the coefficient cl of its Fourier series
expansion (5). As seen in its frequency domain representation, the acting disturbance consists
of four dominant and several minor harmonic terms. In order to demonstrate the compensation
applicability, we target eight dominant harmonics, i.e. Md = 8, even though four would most
likely be sufficient.

Before targeting the parameters of the distributed delay D(s), turn the attention to the
controller (10). As the relative degree of the considered model (1) is one, we select F (s) = 1.
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Figure 5: Transient response of the inner control loop of the set-up and its approximation by the model (1),
with the visualization of the assumed input delay τm = 0.212[s]

Then, the composed compensator-controller transfer function, which needs to be implemented
at the physical controller, is given by

C(s) =
Ts+ 1

s

N∑
k=0

ake
−skϑ. (39)

The parameters for the distributed delay (9) are chosen to be θ = 0.01[s] and N = 59 which
is in accordance with condition (26). The sufficiently large number of N provides the degrees of
freedom for the optimization and is within the limits of the maximum buffer size of the industrial
controller. Also, with the chosen θ value, the controller is capable of generating the control
action almost in two period time of the acting disturbance. The sensitivity weight function W (s)
utilized in the optimization of the coefficients ak are set to be bu = 1.5 , bl = 0.01 and ωb = 1 s−1

to provide sufficient robustness against noise and parameter mismatch. In addition, the close-
loop is ensured to be insensitive to aperiodic disturbances with slow variations compared to
ωb. For the particular study, the impulse response of the distributed delay is subject to the
bounds set by Jmax = 23 and Jmin = −6. Note that the bounds were determined so that the
optimization problem (28) was feasible and the magnitude of the limits was reasonably small.
Note also that the Jerk limits are set asymmetrically so that the step set-point responses
are almost non-decreasing. Taking into account the ideal complementary sensitivity (14), for
the considered F (s) = 1, the unit step set-point response is obtained as y(s) = 1

s
D(s)e−sτm ,

i.e. by integration of the D(s) impulse response. However, setting Jmin = 0 to impose truly
non-decreasing character of the step response, makes the optimization problem (28) become
unfeasible.

Solving the optimization problem (28) by fmincon, the results are shown in Fig. 7 - 9. The
top figure in Fig. 7 shows the Bode magnitude plot of the resulting sensitivity, which is almost
optimally enveloped by the inverse of the chosen weight function. The middle graph, which is
a close-up view of the sensitivity at f = 4 Hz, shows that the characteristic slope evaluated as
κ = 0.5 via (33) is in accordance with the magnitude plot and captures the local sensitivity
information. Also in this graph, the provided comparison between the theoretical and actual
frequency response of the experimental setup in the proximity of the base harmonic frequency
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Figure 6: (Top) Period of the disturbance in time domain d and (Bottom) its frequency domain representation
with magnitudes of the harmonics according to (5).

f = 4[Hz] proves that the theory can precisely capture the properties of the physical system
thanks to careful model parameter identification. The constraints imposed by the placement
of eight harmonic zeros can be clearly seen to be satisfied in the bottom figure of Fig. 7, since
the sensitivity yields zero gain at these frequencies.

The spectrum of the sensitivity (12) with the resulting optimal controller C(s), approxi-
mated plant model Gm, and the fourth-order plant found as

Gi(s) =
2286s2 + 1.055 105s+ 1.816 106

s4 + 167.5s3 + 9647s2 + 2.581 105s+ 3.079 106
, (40)

via (34)-(38) and τ = 0.2 s is as shown in Figure 8. Clearly, the zeros encircled in red, which are
on the imaginary axis and placed at the desired positions, are another validation of the equality
constraint being satisfied. Despite the obvious mismatch between the plant Gi(s)e

−sτ and model
Gm(s)e

−sτm , the targeted harmonic zeros are still placed correctly since the numerator of (12)
is determined by Gm and τm only. The occurrence of pole-zero chains is due to having the
numerator and the denominator of (12) in the form of a retarded quasi-polynomial when a
mismatch is evident. Nevertheless, all the poles lie on the left half plane, and the controller
achieves certain stability margin. As can also be seen, the high frequency poles tend to match
the high frequency zeros, which results from (16).

The finite impulse response of the resulting distributed delay D(s) is as shown in Fig 9. As
it can be seen, the overall delay length is TD = θN = 0.59 s and the magnitude of the N steps
within the response holds the information of the evaluated coefficients ak. Additionally, the
impulse response is within limits determined by the chosen Jerk limits.
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Figure 7: Amplitude responses of the sensitivity function S(jω) in frequency-domain with the considered har-
monic disturbance cases (Top) Simulated on a large frequency range. The dashed line depicts the frequency
response of 1

W (s) (Middle) Comparison of measured and simulated in the vicinity of the base frequency f = 4

[Hz]. (Bottom) Overall suppression performance at harmonic frequencies together with their associated char-
acteristic slope.

4.4. Experimental validation
The proposed IMC based compensation scheme was thoroughly tested on the laboratory

set-up1. Figure 10 shows the measured transient performance in disturbance rejection. Until
t = 2 s, the IMC control was not active. Thus, in the region t ∈ [0, 2]s, we can see the measured
effect of the periodic disturbance on the system output x1. When the IMC loop is turned on,
as it can be seen, almost ideal rejection is achieved within one second with gradual suppression.
All the targeted harmonics are successfully addressed up to the precision set by the sensor
resolution, which is also the cause of the noisy result.

Fig. 11 shows the reference tracking performance of the IMC controller. For a practical
reason, a ramp set-point change is applied. In agreement with the design, the response affected
by the noise is of finite time with a duration corresponding to τm + Nϑ + ρ = 1.002 s, where
ρ = 0.2 s is the ramp signal length. Due to the ramp slope and possibly also due to filtration
effect of the true fourth order dynamics, the ramp response is practically non-decreasing.

Finally, the magnitude-frequency response of the actual setup with the controller in the

1Video link: https://control.fs.cvut.cz/en/aclab/experiments/imcdd
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Figure 8: Pole (+) - Zero (•) spectrum of the resulting sensitivity (12) with D(s), Gm(s) and Gi(s) given by
Eq. (9) , (1) and (40), respectively. Encircled zeros correspond to the placed harmonic zeros. (Top) Overall
distribution (Bottom) Close-up view on the zeros compensating the harmonics.

Figure 9: Impulse Response of the Optimized Distributed Delay with form (9). Dashed line - the upper
(Jmax = 23) and lower (Jmin = −6) bounds for the Jerk.
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Figure 10: Experimental results for multi-harmonic disturbance compensation. The IMC loop with controller-
compensator of the form (39) turned on at t = 2s.

vicinity of f = 4 [Hz] is shown in the middle graph of Fig. (7). As it can be seen, the measured
response agrees with the analytically estimated one, supporting the feasibility of investigating
the system with frequency-based methods.

5. Conclusion

An optimization-based control design method has been proposed for simultaneous compen-
sation of a long input time delay and a multi-harmonic periodic disturbance. The method is
directly applicable to a large class of systems and processes, which can be approximated by first
order model and input time delay. Compared to the standard repetitive control, by the Internal
Model Control scheme, the proposed approach was straightforward in the sense that both the
controller and the compensator design are performed simultaneously. Thanks to the scheme,
the delay has been compensated from the closed loop dynamics which nominally becomes of
finite order. The multi-harmonic disturbance has been compensated by the multi-parameter
distributed delay. The synthesis stemmed from the direct assignment of zeros at the targeted
frequencies on the imaginary axis, forming the set of constraints. Thanks to the retarded spec-
trum brought by the distributed delay, the closed loop stability has been not endangered by the
high-frequency roots. Additional constraints have been imposed by the structural properties of
the distributed delay, particularly aimed at achieving its unity gain and finite impulse response.
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Figure 11: Experimental results for set-point response under multi-harmonic disturbance compensation, IMC
loop with the controller-compensator of the form (39).

The closed loop robustness has been then obtained by minimizing the H∞ norm of weighted
sensitivity, forming the objective function of the constrained optimization problem.

The theoretical design has been thoroughly validated in an experimental case-study. The
outstanding experimental results confirmed the practical applicability of the method. As
demonstrated, a large number of zeros corresponding to the active harmonics can be fully
and robustly covered even for a system with substantial input time delay and a certain level of
plant parameter uncertainty.

Before bringing the proposed control method to an industrial application, e.g. to the ref-
erenced hot rolling problem, enhanced attention needs to be paid to online model parameter
identification and to handling the nonlinearities associated with the actuator element, e.g. its
saturation or rate-limit. In the subsequent research, attention will also be paid to the gener-
alization of the proposed method to a more complex nominal model, including e.g. oscillatory
modes. More attention will also be paid to the involved optimization methods with the aim to
achieve a global optimum.
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